from typing import Dict, Union import requests from huggingface_hub import DatasetFilter, HfApi, ModelFilter api = HfApi() def get_auth_headers(token: str, prefix: str = "autonlp"): return {"Authorization": f"{prefix} {token}"} def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response: """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" try: response = requests.post( url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params ) except requests.exceptions.ConnectionError: print("❌ Failed to reach AutoNLP API, check your internet connection") response.raise_for_status() return response def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response: """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" try: response = requests.get( url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True, params=params ) except requests.exceptions.ConnectionError: print("❌ Failed to reach AutoNLP API, check your internet connection") response.raise_for_status() return response def get_metadata(dataset_name: str) -> Union[Dict, None]: filt = DatasetFilter(dataset_name=dataset_name) data = api.list_datasets(filter=filt, full=True) if data[0].cardData is not None and "train-eval-index" in data[0].cardData.keys(): return data[0].cardData["train-eval-index"] else: return None def get_compatible_models(task, dataset_name): filt = ModelFilter(task=task, trained_dataset=dataset_name, library="transformers") compatible_models = api.list_models(filter=filt) return [model.modelId for model in compatible_models]