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1 INTRODUCTION

Deep Reinforcement Learning (DRL) has emerged as a powerful approach for solving complex
problems in various domains, ranging from robotics to autonomous driving and game playing
Sharifzadeh et al.| (2016). The motivation behind DRL research lies in its ability to combine the
strengths of deep learning for handling high-dimensional state spaces with reinforcement learning
for decision-making and control. This has led to significant advancements in artificial intelligence,
making DRL a topic of great importance and relevance to the Al community Wang & Vinel| (2020).

The problem addressed in this survey revolves around the challenges and limitations of DRL algo-
rithms, such as overestimation of Q-values, inefficiencies in handling large state spaces, and diffi-
culties in learning from discrete-continuous hybrid action spaces [Leibfried et al.| (2017); [Fu et al.
(2019). To overcome these challenges, we propose a comprehensive analysis of various DRL algo-
rithms, focusing on their strengths, weaknesses, and potential improvements. Our research questions
aim to identify the key factors that contribute to the success of DRL algorithms and explore novel
techniques that can enhance their performance and applicability in different domains.

In the context of related work, we draw upon several DRL algorithms, including inverse reinforce-
ment learning with Deep Q-Networks (DQNs)|Sharifzadeh et al.|(2016)), cross Q-learning algorithms
Wang & Vinel| (2020), and parameterized action DRL algorithms such as P-DQN and MP-DQN
Bester et al. (2019). Additionally, we consider multi-agent DRL algorithms, such as Deep Multi-
Agent Parameterized Q-Networks (Deep MAPQN) and Deep Multi-Agent Hierarchical Hybrid Q-
Networks (Deep MAHHQN) [Fu et al.| (2019), which tackle problems with discrete-continuous hy-
brid action spaces.

The main differences between our work and the existing literature lie in our comprehensive analysis
and comparison of various DRL algorithms, as well as our focus on identifying novel techniques and
strategies for improving their performance. By examining the strengths and limitations of existing
DRL algorithms, we aim to provide a deeper understanding of their underlying mechanisms and
contribute to the development of more effective and efficient DRL techniques in the future|Okesanjo
& Kofia (2017).

2 RELATED WORKS

Deep Reinforcement Learning and Inverse Reinforcement Learning Deep reinforcement
learning (DRL) has been widely applied to various problems with large state spaces, such as au-
tonomous driving [Sharifzadeh et al|(2016). Inverse reinforcement learning (IRL) is an approach
that extracts rewards from problems with large state spaces using deep Q-networks Sharifzadeh et al.
(2016). One of the strengths of IRL is its ability to generate collision-free motions and human-like
lane change behavior after a few learning rounds |[Sharifzadeh et al.| (2016). However, DRL meth-
ods often suffer from the overestimation problem, which is exacerbated by function approximation
errors in deep Q-networks [Wang & Vinel| (2020). To address this issue, a novel cross Q-learning
algorithm has been proposed, which maintains a set of parallel models and estimates the Q-value
based on a randomly selected network, leading to reduced overestimation bias and variance Wang
& Vinel| (2020).

Parameterized Actions and Hybrid Action Spaces Parameterized actions in reinforcement
learning consist of discrete actions with continuous action-parameters, providing a framework for
solving complex domains requiring high-level actions and flexible control Bester et al.|(2019). The
P-DQN algorithm extends deep Q-networks to learn over such action spaces, but it treats all action-
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parameters as a single joint input to the Q-network, invalidating its theoretical foundations [Bester
et al.| (2019). To address this issue, a novel method called multi-pass deep Q-networks (MP-DQN)
has been proposed, which significantly outperforms P-DQN and other previous algorithms in terms
of data efficiency and converged policy performance on various domains Bester et al.| (2019)). Fur-
thermore, deep multi-agent parameterized Q-networks (Deep MAPQN) and deep multi-agent hier-
archical hybrid Q-networks (Deep MAHHQN) have been proposed for multi-agent problems with
discrete-continuous hybrid action spaces, showing significant performance improvements over ex-
isting independent deep parameterized Q-learning methods [Fu et al.| (2019).

Addressing Q-value Overestimation and Policy Gradient Methods To address the problem of
Q-value overestimation in DRL, an intrinsic penalty signal has been introduced, encouraging re-
duced Q-value estimates [Leibfried et al.| (2017). This algorithm outperforms other algorithms like
deep and double deep Q-networks in terms of both game-play performance and sample complexity
Leibfried et al.[(2017). Policy gradient methods are widely used for control in reinforcement learn-
ing, particularly for continuous action settings |Okesanjo & Kofial (2017)). The off-policy stochastic
counterpart to deterministic action-value gradients has been studied, as well as an incremental ap-
proach for following the policy gradient instead of the natural gradient|Okesanjo & Kofia (2017). A
recent work has provided the first off-policy policy gradient theorem, developing a new actor-critic
algorithm called Actor Critic with Emphatic weightings (ACE) that approximates the simplified
gradients provided by the theorem and finds the optimal solution Imani et al.| (2018)).

Novel Algorithms and Frameworks Several novel algorithms have been proposed to improve the
performance of reinforcement learning, such as STOchastic Recursive Momentum for Policy Gra-
dient (STORM-PG) Yuan et al.|(2020), diversity actor-critic (DAC) for sample-efficient exploration
Han & Sung| (2020), and Stackelberg actor-critic algorithms that model the actor and critic inter-
action as a two-player general-sum game Zheng et al.|(2021)). Discriminator-Actor-Critic has been
proposed to address the implicit bias present in the reward functions used in adversarial imitation
learning algorithms and reduce policy-environment interaction sample complexity Kostrikov et al.
(2018). Furthermore, a transfer learning framework called Learning to Transfer (L2T) has been pro-
posed to automatically determine what and how to transfer by leveraging previous transfer learning
experiences Wei et al.| (2017).

In summary, deep reinforcement learning has made significant progress in recent years, with nu-
merous algorithms and techniques proposed to address various challenges, such as overestimation,
parameterized actions, hybrid action spaces, and policy gradient methods. These advancements
have led to improved performance and efficiency in a wide range of applications, demonstrating the
potential of deep reinforcement learning in solving complex real-world problems.

3 BACKGROUNDS

Deep Reinforcement Learning (DRL) is a subfield of machine learning that combines deep learning
and reinforcement learning to tackle problems with large state spaces and complex action spaces.
The central problem in DRL is learning an optimal policy that maps states to actions, maximizing
the cumulative reward in a given environment Sharifzadeh et al.|(2016).

3.1 FOUNDATIONAL THEORIES AND CONCEPTS

Reinforcement learning (RL) is a framework for learning sequential decision-making tasks, where
an agent interacts with an environment to achieve a goal. The agent’s objective is to learn a policy
m(als), which is a probability distribution over actions a given a state s. The agent receives a reward
r¢ at each time step ¢ and aims to maximize the expected cumulative reward, also known as the
return G, = > 7o, v*7¢ 4141, where v € [0, 1] is a discount factor[Wang & Vinel| (2020).

Q-learning is a popular RL algorithm that estimates the action-value function Q™ (s, a), representing
the expected return when taking action a in state s and following policy 7 thereafter. The optimal
action-value function Q* (s, a) is defined as the maximum expected return achievable by any policy.
Q-learning updates the action-value function iteratively using the Bellman equation:

Qs,0) < Q(s,0) +a [r +ymax Q(s,a') = Q(s,a) |,



Under review as a conference paper at ICLR 2022

where « is the learning rate and s’ is the next state [Fu et al.|(2019).

Deep Q-Networks (DQN) extend Q-learning by using a neural network to approximate the action-
value function. DQN addresses the instability and divergence issues in traditional Q-learning by
introducing experience replay and target networks. Experience replay stores past experiences in a
buffer and samples mini-batches for training, breaking the correlation between consecutive samples.
Target networks are used to fix the target values during updates, reducing the risk of divergence
Leibfried et al.|(2017).

3.2 MATHEMATICAL NOTATIONS AND EQUATIONS

In DRL, the state and action spaces are often high-dimensional and continuous. The policy 7 (als)
and value function V7 (s) are approximated using deep neural networks with parameters 6 and
¢, respectively. The policy gradient theorem provides a way to update the policy parameters by
following the gradient of the expected return:

VoJ(0) =E, [Vglogme(als)Q™ (s,a)],
where .J(#) is the objective function to be maximized Okesanjo & Kofial (2017).

Natural policy gradient methods, such as Trust Region Policy Optimization (TRPO) and Proximal
Policy Optimization (PPO), improve the convergence and stability of policy gradient methods by
incorporating second-order information into the update rule. The natural gradient is defined as
VoJ(0) = F~1(0)VyJ(6), where F(0) is the Fisher information matrix, capturing the curvature of
the objective function van Heeswijk| (2022).

Actor-critic algorithms combine the policy gradient methods with value function approximation to
reduce variance in the updates. The critic estimates the value function V'™ (), while the actor updates
the policy parameters using the advantage function A" (s,a) = Q™(s,a) — V™(s), which measures
the relative value of taking action a in state s|Imani et al.| (2018]).

3.3 EXTENSIONS AND VARIANTS

Several extensions and variants of DRL algorithms have been proposed to address specific chal-
lenges, such as handling parameterized action spaces Bester et al.| (2019), multi-agent problems
with hybrid action spaces Fu et al.| (2019), and transfer learning |[Wei et al.|(2017). These algorithms
often build upon the foundational concepts and principles of DRL, adapting them to address the
unique challenges of their respective problem domains.

REFERENCES

Craig J. Bester, Steven D. James, and George D. Konidaris. Multi-pass g-networks for deep rein-
forcement learning with parameterised action spaces. arXiv preprint arXiv:1905.04388, 2019.
URL http://arxiv.org/abs/1905.04388v1.

Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep
multi-agent reinforcement learning with discrete-continuous hybrid action spaces. arXiv preprint
arXiv:1903.04959, 2019. URL http://arxiv.org/abs/1903.04959v1l

Seungyul Han and Youngchul Sung. Diversity actor-critic: Sample-aware entropy regularization for
sample-efficient exploration. arXiv preprint arXiv:2006.01419, 2020. URL http://arxiv.
org/abs/2006.01419v2.

Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using emphatic
weightings. arXiv preprint arXiv:1811.09013,2018. URLhttp://arxiv.org/abs/1811.
09013v2.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. arXiv preprint arXiv:1809.02925,2018. URL http://arxiv.org/abs/
1809.02925v2.


http://arxiv.org/abs/1905.04388v1
http://arxiv.org/abs/1903.04959v1
http://arxiv.org/abs/2006.01419v2
http://arxiv.org/abs/2006.01419v2
http://arxiv.org/abs/1811.09013v2
http://arxiv.org/abs/1811.09013v2
http://arxiv.org/abs/1809.02925v2
http://arxiv.org/abs/1809.02925v2

Under review as a conference paper at ICLR 2022

Felix Leibfried, Jordi Grau-Moya, and Haitham Bou-Ammar. An information-theoretic optimality
principle for deep reinforcement learning. arXiv preprint arXiv:1708.01867,2017. URL http:
//arxiv.org/abs/1708.01867v5.

Yemi Okesanjo and Victor Kofia. Revisiting stochastic off-policy action-value gradients. arXiv
preprint arXiv:1703.02102,2017. URL |http://arxiv.org/abs/1703.02102v2,

Sahand Sharifzadeh, Ioannis Chiotellis, Rudolph Triebel, and Daniel Cremers. Learning to drive
using inverse reinforcement learning and deep g-networks. arXiv preprint arXiv:1612.03653,
2016. URL http://arxiv.org/abs/1612.03653v2l

W.J. A. van Heeswijk. Natural policy gradients in reinforcement learning explained. arXiv preprint
arXiv:2209.01820, 2022. URL http://arxiv.org/abs/2209.01820v1l

Xing Wang and Alexander Vinel.  Cross learning in deep q-networks. arXiv preprint
arXiv:2009.13780, 2020. URL http://arxiv.org/abs/2009.13780v1.

Ying Wei, Yu Zhang, and Qiang Yang. Learning to transfer. arXiv preprint arXiv:1708.05629, 2017.
URL http://arxiv.org/abs/1708.05629v1.

Huizhuo Yuan, Xiangru Lian, Ji Liu, and Yuren Zhou. Stochastic recursive momentum for policy
gradient methods. arXiv preprint arXiv:2003.04302, 2020. URL http://arxiv.org/abs/
2003.04302v1l

Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, and Lillian J. Ratliff.
Stackelberg actor-critic: Game-theoretic reinforcement learning algorithms. arXiv preprint
arXiv:2109.12286,2021. URL http://arxiv.org/abs/2109.12286v1.


http://arxiv.org/abs/1708.01867v5
http://arxiv.org/abs/1708.01867v5
http://arxiv.org/abs/1703.02102v2
http://arxiv.org/abs/1612.03653v2
http://arxiv.org/abs/2209.01820v1
http://arxiv.org/abs/2009.13780v1
http://arxiv.org/abs/1708.05629v1
http://arxiv.org/abs/2003.04302v1
http://arxiv.org/abs/2003.04302v1
http://arxiv.org/abs/2109.12286v1

	INTRODUCTION
	RELATED WORKS
	BACKGROUNDS
	Foundational Theories and Concepts
	Mathematical Notations and Equations
	Extensions and Variants


