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1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a significant research area in the field of artifi-
cial intelligence, with a wide range of applications in robotics, finance, healthcare, and gaming
Ngan Le (2021). The primary goal of RL is to develop algorithms that allow agents to learn optimal
policies through interaction with their environment, maximizing the cumulative reward over time
Kai Arulkumaran (2017). Despite the considerable progress made in recent years, RL still faces
several challenges, such as the trade-off between exploration and exploitation, the curse of dimen-
sionality, and the need for efficient algorithms that can handle large-scale and complex problems
Sergey Ivanov (2019).

One of the major breakthroughs in RL has been the development of Q-learning algorithms, which
have been proven to converge to the optimal solution Barber (2023). However, Q-learning is known
to suffer from overestimation bias, leading to suboptimal performance and slow convergence in
some cases Li Meng (2021). To address this issue, researchers have proposed various modifications
and extensions to Q-learning, such as Double Q-learning Ehud Lehrer (2015) and Self-correcting
Q-learning Rong Zhu (2020), which aim to mitigate the overestimation bias while maintaining con-
vergence guarantees.

Another essential aspect of RL research is the incorporation of deep learning techniques, giving rise
to the field of Deep Reinforcement Learning (DRL) Mahipal Jadeja (2017). DRL has demonstrated
remarkable success in various domains, such as playing video games directly from pixels and learn-
ing control policies for robots Kai Arulkumaran (2017). However, DRL algorithms often require
a large amount of data and computational resources, which limits their applicability in real-world
scenarios Sergey Ivanov (2019). To overcome these limitations, researchers have proposed various
approaches, including distributed DRL Qiyue Yin (2022) and expert-guided DRL Li Meng (2021),
which aim to improve the sample efficiency and scalability of DRL algorithms.

Related work in the field of RL has also focused on the development of policy gradient methods,
which optimize the policy directly by following the gradient of the expected return Ehsan Imani
(2018). These methods have been particularly successful in continuous action settings and have led
to the development of algorithms such as Trust Region Policy Optimization (TRPO) and Proximal
Policy Optimization (PPO) van Heeswijk (2022). However, policy gradient methods often require
on-policy data, which can be inefficient in terms of sample complexity Kmmerer (2019).

In summary, this survey aims to provide a comprehensive overview of the current state of Reinforce-
ment Learning, focusing on the challenges and recent advances in Q-learning, Deep Reinforcement
Learning, and policy gradient methods. By examining the key algorithms, techniques, and applica-
tions in these areas, we hope to shed light on the current limitations and future research directions
in the field of RL.

2 RELATED WORKS

Markov Decision Processes: The study of reinforcement learning is fundamentally rooted in the
understanding of Markov decision processes (MDPs). A concise description of stochastic approx-
imation algorithms in reinforcement learning of MDPs is provided by Krishnamurthy (2015). The
work done in Ehud Lehrer (2015) offers a full characterization of the set of value functions of
MDPs, while Philip S. Thomas (2015) specifies a notation for MDPs. The concept of decisiveness
in denumerable Markov chains has been extended to MDPs in Nathalie Bertrand (2020), explor-
ing the implications of resolving non-determinism in adversarial or cooperative ways. Additionally,
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Arie Leizarowitz (2007) introduces an embedding technique to produce a finite-state MDP from a
countable-state MDP, which can be used as an approximation for computational purposes.

Q-Learning and Variants: Q-learning is a widely used reinforcement learning algorithm that
converges to the optimal solution Barber (2023). However, it is known to overestimate values and
spend too much time exploring unhelpful states. Double Q-learning, a convergent alternative, miti-
gates some of these overestimation issues but may lead to slower convergence Barber (2023). To ad-
dress the maximization bias in Q-learning, Rong Zhu (2020) introduces a self-correcting algorithm
that balances the overestimation of conventional Q-learning and the underestimation of Double Q-
learning. This self-correcting Q-learning algorithm is shown to be more accurate and achieves faster
convergence in certain domains.

Expert Q-Learning: Expert Q-learning is a novel deep reinforcement learning algorithm pro-
posed in Li Meng (2021). Inspired by Dueling Q-learning, it incorporates semi-supervised learning
into reinforcement learning by splitting Q-values into state values and action advantages. An expert
network is designed in addition to the Q-network, which updates each time following the regular
offline minibatch update. The algorithm is demonstrated to be more resistant to overestimation bias
and achieves more robust performance compared to the baseline Q-learning algorithm.

Policy Gradient Methods: Policy gradient methods are widely used for control in reinforcement
learning, particularly in continuous action settings. Natural gradients have been extensively studied
within the context of natural gradient actor-critic algorithms and deterministic policy gradients van
Heeswijk (2022). The work in Ehsan Imani (2018) presents the first off-policy policy gradient the-
orem using emphatic weightings and develops a new actor-critic algorithm called Actor Critic with
Emphatic weightings (ACE) that approximates the simplified gradients provided by the theorem.
This algorithm is shown to outperform previous off-policy policy gradient methods, such as OffPAC
and DPG, in finding the optimal solution.

Deep Reinforcement Learning: Deep reinforcement learning (DRL) combines the power of deep
learning with reinforcement learning, achieving remarkable success in various domains, such as
finance, medicine, healthcare, video games, robotics, and computer vision Ngan Le (2021). The
field has seen significant advancements in recent years, with central algorithms such as the deep Q-
network, trust region policy optimization, and asynchronous advantage actor-critic being developed
Kai Arulkumaran (2017). A detailed review of DRL algorithms and their theoretical justifications,
practical limitations, and empirical properties can be found in Sergey Ivanov (2019).

Temporal Networks: Temporal networks, where links change over time, are essential in under-
standing the ordering and causality of interactions between nodes in various applications. The work
in Xiu-Xiu Zhan (2021) proposes a temporal dissimilarity measure for temporal network comparison
based on the fastest arrival distance distribution and spectral entropy-based Jensen-Shannon diver-
gence. This measure is shown to effectively discriminate diverse temporal networks with different
structures and functional distinctions.

In conclusion, reinforcement learning has seen significant advancements in recent years, with vari-
ous algorithms and techniques being developed to address the challenges in the field. From under-
standing the fundamentals of MDPs to developing advanced DRL algorithms, researchers continue
to push the boundaries of what is possible in reinforcement learning and its applications.

3 BACKGROUNDS

3.1 PROBLEM STATEMENT AND FOUNDATIONAL CONCEPTS

Reinforcement Learning (RL) is a subfield of machine learning that focuses on training agents to
make decisions in an environment to maximize a cumulative reward signal. In RL, an agent interacts
with an environment through a sequence of actions, observations, and rewards, aiming to learn an
optimal policy that maps states to actions Philip S. Thomas (2015). The problem can be formalized
as a Markov Decision Process (MDP), which is defined by a tuple (S,A, P,R, γ), where S is the
set of states, A is the set of actions, P is the state transition probability function, R is the reward
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function, and γ is the discount factor Ehud Lehrer (2015). The goal of RL is to find a policy π(a|s)
that maximizes the expected cumulative reward, defined as Gt =

∑∞
k=0 γ

kRt+k+1, where Rt+k+1

is the reward received at time step t+ k + 1 Krishnamurthy (2015).

3.2 Q-LEARNING AND RELATED ALGORITHMS

Q-learning is a popular model-free RL algorithm that estimates the action-value function Q(s, a),
which represents the expected cumulative reward of taking action a in state s and following the
optimal policy thereafter Barber (2023). The Q-learning update rule is given by:

Q(s, a)← Q(s, a) + α
[
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
,

where α is the learning rate, R(s, a) is the reward for taking action a in state s, and s′ is the next
state Barber (2023). However, Q-learning can suffer from overestimation bias, which can lead to
suboptimal performance Li Meng (2021). To address this issue, Double Q-learning was proposed,
which uses two separate Q-value estimators and updates them alternately, mitigating overestimation
bias while maintaining convergence guarantees Barber (2023). Another variant, Expert Q-learning,
incorporates semi-supervised learning by splitting Q-values into state values and action advantages,
and using an expert network to assess the value of states Li Meng (2021).

3.3 POLICY GRADIENT METHODS

Policy gradient methods are another class of RL algorithms that optimize the policy directly by
estimating the gradient of the expected cumulative reward with respect to the policy parameters
Yemi Okesanjo (2017). The policy gradient theorem provides a simplified form for the gradient,
which can be used to derive on-policy and off-policy algorithms Ehsan Imani (2018). Natural policy
gradients, which incorporate second-order information to improve convergence, form the foundation
for state-of-the-art algorithms like Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO) van Heeswijk (2022).

3.4 METHODOLOGY AND EVALUATION METRICS

In this paper, we will explore various RL algorithms, focusing on Q-learning and its variants, as well
as policy gradient methods. We will delve into their theoretical foundations, convergence properties,
and practical limitations. To assess the performance of these algorithms, we will use evaluation
metrics such as cumulative reward, convergence speed, and sample efficiency. By comparing the
performance of different algorithms, we aim to provide insights into their strengths and weaknesses,
and identify potential areas for improvement and future research directions.
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