import matplotlib matplotlib.use("Agg") # Libraries import streamlit as st # Utility import time import io import argparse import sys import os.path import subprocess import tempfile import logging # Viz import altair as alt import av # ML import numpy as np import pandas as pd import cv2 as cv from PIL import Image, ImageOps from tqdm import tqdm # Custom import inference from app_utils import * def run_app(): # Options st.set_option("deprecation.showfileUploaderEncoding", False) # Counter variable views_counter = 0 # Increment the counter on page/view access views_counter += 1 # Display the counter value st.write("Number of Views:", views_counter) # App documentation st.title("MIT Count Fish Counter") st.text("Upload a video file to detect and count fish") video_url = "yolo2_out_py.mp4" # Replace with the actual video URL or file path video_bytes = open(video_url, "rb").read() col1, col2 = st.columns(2) ## Col1 ######################################### with col1: ## Initial visualizations # Historical values st.altair_chart( plot_historical_data(pd.read_csv("herring_count_all.csv")), use_container_width=True, ) # Locations st.subheader("Map of Fishery Locations") st.map( pd.DataFrame( np.random.randn(5, 2) / [50, 50] + [42.41, -71.38], columns=["lat", "lon"], ) ) ## Col2 ######################################### with col2: # Replace the loading message with the video st.subheader("Example of processed video") st.video(video_bytes) st.subheader("Upload your own video...") # Initialize img_types = ["jpg", "png", "jpeg"] video_types = ["mp4", "avi"] uploaded_file = st.file_uploader( "Select an image or video file...", type=img_types + video_types ) # Display uploaded file if uploaded_file is not None: if str(uploaded_file.type).split("/")[-1] in img_types: image = Image.open(uploaded_file) st.image(image, caption="Uploaded image", use_column_width=True) # TBD: Inference code to run and display for single image elif str(uploaded_file.type).split("/")[-1] in video_types: # Display uploaded file st.video(uploaded_file) # Convert streamlit video object to OpenCV format to run inferences tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_file.read()) vf = cv.VideoCapture(tfile.name) # Run inference with st.spinner("Running inference..."): frames, counts, timestamps = inference.main(vf) logging.info("INFO: Completed running inference on frames") st.balloons() # Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit streamlit_video_file = frames_to_video(frames=frames, fps=11) st.video(streamlit_video_file) # Show processed video\ st.download_button( label="Download processed video", data=streamlit_video_file, mime="mp4", file_name="processed_video.mp4", ) df_counts_time = pd.DataFrame( data={"fish_count": counts, "timestamps": timestamps[1:]} ) st.altair_chart( plot_count_date(dataframe=df_counts_time), use_container_width=True, ) else: st.write("No file uploaded") if __name__ == "__main__": run_app()