import os import gradio as gr import numpy as np import torch from groq import Groq from transformers import pipeline from TTS.api import TTS # Get device device = "cuda" if torch.cuda.is_available() else "cpu" MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def use_pipe(inputs): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] return text groq_client = Groq(api_key=os.getenv('GROQ_API_KEY')) def transcribe(stream, new_chunk): """ Transcribes using whisper """ sr, y = new_chunk # Convert stereo to mono if necessary if y.ndim == 2 and y.shape[1] == 2: y = y.mean(axis=1) # Averaging both channels if stereo y = y.astype(np.float32) # Normalization y /= np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y return stream, use_pipe(stream) def autocomplete(text): """ Autocomplete the text using Gemma. """ if text != "": response = groq_client.chat.completions.create( model='llama3-8b-8192', messages=[{"role": "system", "content": "Tu es une assistante tres polis, tu ne repond que en francais et uniquement en utilisant le vous et jamais le tu"}, {"role": "user", "content": text}] ) return response.choices[0].message.content def process_audio(input_audio, new_chunk): """ Process the audio input by transcribing and completing the sentences. Accumulate results to return to Gradio interface. """ stream, transcription = transcribe(input_audio, new_chunk) text = autocomplete(transcription) print (transcription, text) api = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2").to(device) api.tts_to_file(text, file_path="output.wav", split_sentences=True) audio = "./output.wav" return stream, text, audio demo = gr.Interface( fn = process_audio, inputs = ["state", gr.Audio(sources=["microphone"], streaming=True)], outputs = ["state", gr.Markdown(), gr.Audio(interactive=False, autoplay=True)], title="Parlons nous ☎️", description="Powered by [whisper-base-en](https://huggingface.co/openai/whisper-base.en), and [gemma-7b-it](https://huggingface.co/google/gemma-7b-it) (via [Groq](https://groq.com/))", live=True, allow_flagging="never" ) demo.launch()