from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat # import configigure # from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder from torch.utils import checkpoint import os from torchvision.utils import save_image iter_att = 0 def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class CrossAttention(nn.Module): def __init__(self, query_dim, key_dim, value_dim, heads=8, dim_head=64, dropout=0): super().__init__() inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(key_dim, inner_dim, bias=False) self.to_v = nn.Linear(value_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def fill_inf_from_mask(self, sim, mask): if mask is not None: B,M = mask.shape mask = mask.unsqueeze(1).repeat(1,self.heads,1).reshape(B*self.heads,1,-1) max_neg_value = -torch.finfo(sim.dtype).max sim.masked_fill_(~mask, max_neg_value) return sim # def scaled_dot_product(q, k, v, mask=None): # d_k = q.size()[-1] # attn_logits = torch.matmul(q, k.transpose(-2, -1)) # attn_logits = attn_logits / math.sqrt(d_k) # if mask is not None: # attn_logits = attn_logits.masked_fill(mask == 0, -9e15) # attention = F.softmax(attn_logits, dim=-1) # values = torch.matmul(attention, v) # return values, attention def forward(self, x, key, value, mask=None): # import pdb; pdb.set_trace() q = self.to_q(x) # B*N*(H*C) k = self.to_k(key) # B*M*(H*C) v = self.to_v(value) # B*M*(H*C) B, N, HC = q.shape _, M, _ = key.shape H = self.heads C = HC // H q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C k = k.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C v = v.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale # (B*H)*N*M self.fill_inf_from_mask(sim, mask) attn = sim.softmax(dim=-1) # (B*H)*N*M # import pdb; pdb.set_trace() # if attn.shape[1] == 4096: # self.visual_att(attn) out = torch.einsum('b i j, b j d -> b i d', attn, v) # (B*H)*N*C out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C) return self.to_out(out), attn def visual_att(self, att): global iter_att ll = [0,2,7] for i in range(12): kk = torch.sum(att[:,:,i], axis=0) kk = kk.reshape(64,64) save_image( (kk-kk.min()) / (kk.max() - kk.min()) , os.path.join('att', str(iter_att) + '_' +str(i) + '.png')) iter_att += 1 class SelfAttention(nn.Module): def __init__(self, query_dim, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(query_dim, inner_dim, bias=False) self.to_v = nn.Linear(query_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, gated=False): q = self.to_q(x) # B*N*(H*C) k = self.to_k(x) # B*N*(H*C) v = self.to_v(x) # B*N*(H*C) B, N, HC = q.shape H = self.heads C = HC // H # if gated: import pdb; pdb.set_trace() # import pdb; pdb.set_trace() q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C k = k.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C v = v.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C sim = torch.einsum('b i c, b j c -> b i j', q, k) * self.scale # (B*H)*N*N attn = sim.softmax(dim=-1) # (B*H)*N*N # if gated and attn.shape[1] == 4126: # self.visual_att(attn) out = torch.einsum('b i j, b j c -> b i c', attn, v) # (B*H)*N*C out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C) return self.to_out(out), attn def visual_att(self, att): global iter_att ll = [0,2,7] for i in range(): kk = torch.sum(att[i],axis=0) kk = kk[:4096].reshape(64,64) save_image( (kk-kk.min()) / (kk.max() - kk.min()) , os.path.join('att', str(iter_att) + '_' +str(i) + '.png')) iter_att += 1 class GatedCrossAttentionDense(nn.Module): def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head): super().__init__() self.attn = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, glu=True) self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) ) self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) ) # this can be useful: we can externally change magnitude of tanh(alpha) # for example, when it is set to 0, then the entire model is same as original one self.scale = 1 def forward(self, x, objs): x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(x), objs, objs) x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) ) return x class GatedSelfAttentionDense(nn.Module): def __init__(self, query_dim, context_dim, n_heads, d_head): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, glu=True) self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) ) self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) ) # this can be useful: we can externally change magnitude of tanh(alpha) # for example, when it is set to 0, then the entire model is same as original one self.scale = 1 def forward(self, x, objs,t): # if t >300: # self.scale = 1 # elif t > 200: # self.scale = 0.9 # else: # self.scale = 0.6 # if t >700: # self.scale = 1 # elif t > 300: # self.scale = 0.7 # else: # self.scale = 0.4 # self.scale = 0 N_visual = x.shape[1] objs = self.linear(objs) out, grounding_att = self.attn( self.norm1(torch.cat([x,objs],dim=1)), True ) out = out[:,0:N_visual,:] x = x + self.scale*torch.tanh(self.alpha_attn) * out x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) ) return x , grounding_att class GatedSelfAttentionDense2(nn.Module): def __init__(self, query_dim, context_dim, n_heads, d_head): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, glu=True) self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) ) self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) ) # this can be useful: we can externally change magnitude of tanh(alpha) # for example, when it is set to 0, then the entire model is same as original one self.scale = 1 def forward(self, x, objs): B, N_visual, _ = x.shape B, N_ground, _ = objs.shape objs = self.linear(objs) # sanity check size_v = math.sqrt(N_visual) size_g = math.sqrt(N_ground) assert int(size_v) == size_v, "Visual tokens must be square rootable" assert int(size_g) == size_g, "Grounding tokens must be square rootable" size_v = int(size_v) size_g = int(size_g) # select grounding token and resize it to visual token size as residual out = self.attn( self.norm1(torch.cat([x,objs],dim=1)) )[:,N_visual:,:] out = out.permute(0,2,1).reshape( B,-1,size_g,size_g ) out = torch.nn.functional.interpolate(out, (size_v,size_v), mode='bicubic') residual = out.reshape(B,-1,N_visual).permute(0,2,1) # add residual to visual feature x = x + self.scale*torch.tanh(self.alpha_attn) * residual x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) ) return x class BasicTransformerBlock(nn.Module): def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=True): super().__init__() self.attn1 = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, glu=True) self.attn2 = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head) self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.norm3 = nn.LayerNorm(query_dim) self.use_checkpoint = use_checkpoint if fuser_type == "gatedSA": # note key_dim here actually is context_dim self.fuser = GatedSelfAttentionDense(query_dim, key_dim, n_heads, d_head) elif fuser_type == "gatedSA2": # note key_dim here actually is context_dim self.fuser = GatedSelfAttentionDense2(query_dim, key_dim, n_heads, d_head) elif fuser_type == "gatedCA": self.fuser = GatedCrossAttentionDense(query_dim, key_dim, value_dim, n_heads, d_head) else: assert False def forward(self, x, context, objs,t): # return checkpoint(self._forward, (x, context, objs), self.parameters(), self.use_checkpoint) # import pdb; pdb.set_trace() if self.use_checkpoint and x.requires_grad: return checkpoint.checkpoint(self._forward, x, context, objs,t) else: return self._forward(x, context, objs,t) def _forward(self, x, context, objs,t): # self_att_grounding = [] out, self_prob = self.attn1( self.norm1(x) ) x = x + out x, self_prob_grounding = self.fuser(x, objs,t) # identity mapping in the beginning x_1, prob = self.attn2(self.norm2(x), context, context) x = x + x_1 x = self.ff(self.norm3(x)) + x # self_att_grounding.append(self_prob) # self_att_grounding.append(self_prob_grounding) return x, prob, self_prob class SpatialTransformer(nn.Module): def __init__(self, in_channels, key_dim, value_dim, n_heads, d_head, depth=1, fuser_type=None, use_checkpoint=True): super().__init__() self.in_channels = in_channels query_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d(in_channels, query_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=use_checkpoint) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(query_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context, objs,t): b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c') probs = [] self_prob_list = [] for block in self.transformer_blocks: x, prob, self_prob = block(x, context, objs,t) probs.append(prob) self_prob_list.append(self_prob) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in, probs, self_prob_list