from __future__ import annotations import os from pathlib import Path from ase import Atoms, units from ase.calculators.calculator import BaseCalculator from dotenv import load_dotenv from prefect import flow, task from prefect.cache_policies import INPUTS, TASK_SOURCE from prefect.futures import wait from mlip_arena.models import MLIPEnum from mlip_arena.tasks import MD from mlip_arena.tasks.utils import get_calculator from .data import get_atoms_from_db load_dotenv() HF_TOKEN = os.environ.get("HF_TOKEN", None) @task(cache_policy=TASK_SOURCE + INPUTS) def nvt_heat_one(atoms: Atoms, model: MLIPEnum | BaseCalculator, run_dir: Path): """Run a 10 ps NVT MD simulation with linear heating schedule. This task invokes the MD task (wrapped via Prefect) to perform an NVT simulation using the provided calculator or MLIP model. It is intended to probe whether the model remains stable when the system is heated from 300 K to 3000 K over a short timeframe. Parameters - atoms: ASE Atoms object representing the system to simulate. A copy is typically submitted by the caller. - model: either an MLIPEnum entry (selects a registered model) or an already-constructed ASE BaseCalculator. Returns - The result produced by the MD task. On exception, the exception object is returned (the calling flow records and filters results). """ calculator = ( get_calculator( model.name, calculator_kwargs=None, ) if isinstance(model, MLIPEnum) else model ) model_name = model.name if isinstance(model, MLIPEnum) else model.__class__.__name__ return MD.with_options( # timeout_seconds=600, # retries=1, refresh_cache=True )( atoms=atoms, # wrap get_calculator in task to dynamically assign GPU device calculator=calculator, ensemble="nvt", dynamics="nose-hoover", time_step=None, dynamics_kwargs=dict( ttime=25 * units.fs, # pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa ), total_time=1e4, # 10 ps temperature=[300, 3000], pressure=None, traj_file=run_dir / f"{model_name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_nvt.traj", traj_interval=10, ) @task(cache_policy=TASK_SOURCE + INPUTS) def npt_compress_one(atoms: Atoms, model: MLIPEnum | BaseCalculator, run_dir: Path): """Run a 10 ps NPT MD simulation with linear pressure ramp. This task invokes the MD task (wrapped via Prefect) to perform an NPT simulation where the pressure ramps up to probe structural response and potential instabilities under compression. Parameters - atoms: ASE Atoms object representing the system to simulate. - model: either an MLIPEnum entry (selects a registered model) or an already-constructed ASE BaseCalculator. Returns - The result produced by the MD task. """ calculator = ( get_calculator( model.name, calculator_kwargs=None, ) if isinstance(model, MLIPEnum) else model ) model_name = model.name if isinstance(model, MLIPEnum) else model.__class__.__name__ return MD.with_options(timeout_seconds=600, retries=2, refresh_cache=True)( atoms=atoms, calculator=calculator, ensemble="npt", dynamics="nose-hoover", time_step=None, dynamics_kwargs=dict( ttime=25 * units.fs, pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa ), total_time=1e4, # 5e4, # fs temperature=[300, 3000], pressure=[0, 5e2 * units.GPa], # 500 GPa / 10 ps = 50 GPa / 1 ps traj_file=run_dir / f"{model_name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_npt.traj", traj_interval=10, ) @flow def heating( model: MLIPEnum | BaseCalculator, run_dir: Path, hf_token: str | None = HF_TOKEN ): """Prefect flow to run NVT heating tasks for many database structures. This flow iterates over structures from the 'random-mixture.db' dataset and submits nvt_heat_one tasks for each structure. It waits for all submitted futures and returns the list of completed results. Parameters - model: MLIPEnum or BaseCalculator to use for the simulations. Returns - A list of results from completed tasks. Failed tasks are filtered out. """ futures = [] # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN for i, atoms in enumerate( get_atoms_from_db("random-mixture.db", hf_token=hf_token, force_download=False) ): if i >= 200: break future = nvt_heat_one.with_options( timeout_seconds=600, retries=2, refresh_cache=False ).submit(atoms.copy(), model, run_dir) futures.append(future) wait(futures) return [ f.result(timeout=None, raise_on_failure=False) for f in futures if f.state.is_completed() ] @flow def compression( model: MLIPEnum | BaseCalculator, run_dir: Path, hf_token: str | None = HF_TOKEN ): """Prefect flow to run NPT compression tasks for many database structures. This flow iterates over structures from the 'random-mixture.db' dataset and submits npt_compress_one tasks for each structure. It waits for completion and returns the list of successful results. Parameters - model: MLIPEnum or BaseCalculator to use for the simulations. Returns - A list of results from completed tasks. Failed tasks are filtered out. """ futures = [] # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN for i, atoms in enumerate( get_atoms_from_db("random-mixture.db", hf_token=hf_token, force_download=False) ): if i >= 200: break future = npt_compress_one.with_options( timeout_seconds=600, retries=2, refresh_cache=False ).submit(atoms.copy(), model, run_dir) futures.append(future) wait(futures) return [ f.result(timeout=None, raise_on_failure=False) for f in futures if f.state.is_completed() ]