from __future__ import annotations from datetime import datetime, timedelta from pathlib import Path from typing import Literal, Sequence, Tuple import numpy as np from ase import Atoms, units from ase.calculators.calculator import Calculator from ase.calculators.mixing import SumCalculator from ase.io import read from ase.io.trajectory import Trajectory from ase.md.andersen import Andersen from ase.md.langevin import Langevin from ase.md.md import MolecularDynamics from ase.md.npt import NPT from ase.md.nptberendsen import NPTBerendsen from ase.md.nvtberendsen import NVTBerendsen from ase.md.velocitydistribution import ( MaxwellBoltzmannDistribution, Stationary, ZeroRotation, ) from ase.md.verlet import VelocityVerlet from prefect import task from prefect.tasks import task_input_hash from scipy.interpolate import interp1d from scipy.linalg import schur from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator from tqdm.auto import tqdm from mlip_arena.models.utils import MLIPEnum, get_freer_device # from mlip_arena.models.utils import EXTMLIPEnum, MLIPMap, external_ase_calculator _valid_dynamics: dict[str, tuple[str, ...]] = { "nve": ("velocityverlet",), "nvt": ("nose-hoover", "langevin", "andersen", "berendsen"), "npt": ("nose-hoover", "berendsen"), } _preset_dynamics: dict = { "nve_velocityverlet": VelocityVerlet, "nvt_andersen": Andersen, "nvt_berendsen": NVTBerendsen, "nvt_langevin": Langevin, "nvt_nose-hoover": NPT, "npt_berendsen": NPTBerendsen, "npt_nose-hoover": NPT, } def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray: """Interpolate temperature / pressure on a schedule.""" n_vals = len(values) return np.interp( np.linspace(0, n_vals - 1, n_pts + 1), np.linspace(0, n_vals - 1, n_vals), values, ) def _get_ensemble_schedule( ensemble: Literal["nve", "nvt", "npt"] = "nvt", n_steps: int = 1000, temperature: float | Sequence | np.ndarray | None = 300.0, pressure: float | Sequence | np.ndarray | None = None ) -> Tuple[np.ndarray, np.ndarray]: if ensemble == "nve": # Disable thermostat and barostat temperature = np.nan pressure = np.nan t_schedule = np.full(n_steps + 1, temperature) p_schedule = np.full(n_steps + 1, pressure) return t_schedule, p_schedule if isinstance(temperature, Sequence) or ( isinstance(temperature, np.ndarray) and temperature.ndim == 1 ): t_schedule = _interpolate_quantity(temperature, n_steps) # NOTE: In ASE Langevin dynamics, the temperature are normally # scalars, but in principle one quantity per atom could be specified by giving # an array. This is not implemented yet here. else: t_schedule = np.full(n_steps + 1, temperature) if ensemble == "nvt": pressure = np.nan p_schedule = np.full(n_steps + 1, pressure) return t_schedule, p_schedule if isinstance(pressure, Sequence) or ( isinstance(pressure, np.ndarray) and pressure.ndim == 1 ): p_schedule = _interpolate_quantity(pressure, n_steps) elif isinstance(pressure, np.ndarray) and pressure.ndim == 4: p_schedule = interp1d( np.arange(n_steps + 1), pressure, kind="linear" ) assert isinstance(p_schedule, np.ndarray) else: p_schedule = np.full(n_steps + 1, pressure) return t_schedule, p_schedule def _get_ensemble_defaults( ensemble: Literal["nve", "nvt", "npt"], dynamics: str | MolecularDynamics, t_schedule: np.ndarray, p_schedule: np.ndarray, ase_md_kwargs: dict | None = None) -> dict: """Update ASE MD kwargs""" ase_md_kwargs = ase_md_kwargs or {} if ensemble == "nve": ase_md_kwargs.pop("temperature", None) ase_md_kwargs.pop("temperature_K", None) ase_md_kwargs.pop("externalstress", None) elif ensemble == "nvt": ase_md_kwargs["temperature_K"] = t_schedule[0] ase_md_kwargs.pop("externalstress", None) elif ensemble == "npt": ase_md_kwargs["temperature_K"] = t_schedule[0] ase_md_kwargs["externalstress"] = p_schedule[0] # * 1e3 * units.bar if isinstance(dynamics, str) and dynamics.lower() == "langevin": ase_md_kwargs["friction"] = ase_md_kwargs.get( "friction", 10.0 * 1e-3 / units.fs, # Same default as in VASP: 10 ps^-1 ) return ase_md_kwargs @task(cache_key_fn=task_input_hash, cache_expiration=timedelta(days=1)) def md( atoms: Atoms, calculator_name: str | MLIPEnum, calculator_kwargs: dict | None, dispersion: str | None = None, dispersion_kwargs: dict | None = None, device: str | None = None, ensemble: Literal["nve", "nvt", "npt"] = "nvt", dynamics: str | MolecularDynamics = "langevin", time_step: float | None = None, total_time: float = 1000, temperature: float | Sequence | np.ndarray | None = 300.0, pressure: float | Sequence | np.ndarray | None = None, ase_md_kwargs: dict | None = None, mb_velocity_seed: int | None = None, zero_linear_momentum: bool = True, zero_angular_momentum: bool = True, traj_file: str | Path | None = None, traj_interval: int = 1, # ttime: float = 25 * units.fs, # pfactor: float = (75 * units.fs) ** 1 * units.GPa, # mask: np.ndarray | list[int] | None = None, # traceless: float = 1.0, restart: bool = True, # interval: int = 500, # device: str | None = None, # dtype: str = "float64", ): device = device or str(get_freer_device()) print(f"Using device: {device}") calculator_kwargs = calculator_kwargs or {} if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum: assert issubclass(calculator_name.value, Calculator) calc = calculator_name.value(**calculator_kwargs) elif isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_: calc = MLIPEnum[calculator_name].value(**calculator_kwargs) else: raise ValueError(f"Invalid calculator: {calculator_name}") print(f"Using calculator: {calc}") dispersion_kwargs = dispersion_kwargs or {} dispersion_kwargs.update({"device": device}) if dispersion is not None: disp_calc = TorchDFTD3Calculator( **dispersion_kwargs, ) calc = SumCalculator([calc, disp_calc]) print(f"Using dispersion: {dispersion}") atoms.calc = calc if time_step is None: # If a structure contains an isotope of hydrogen, set default `time_step` # to 0.5 fs, and 2 fs otherwise. has_h_isotope = "H" in atoms.get_chemical_symbols() time_step = 0.5 if has_h_isotope else 2.0 n_steps = int(total_time / time_step) target_steps = n_steps t_schedule, p_schedule = _get_ensemble_schedule( ensemble=ensemble, n_steps=n_steps, temperature=temperature, pressure=pressure, ) ase_md_kwargs = _get_ensemble_defaults( ensemble=ensemble, dynamics=dynamics, t_schedule=t_schedule, p_schedule=p_schedule, ase_md_kwargs=ase_md_kwargs, ) if isinstance(dynamics, str): # Use known dynamics if `self.dynamics` is a str dynamics = dynamics.lower() if dynamics not in _valid_dynamics[ensemble]: raise ValueError( f"{dynamics} thermostat not available for {ensemble}." f"Available {ensemble} thermostats are:" " ".join(_valid_dynamics[ensemble]) ) if ensemble == "nve" and dynamics is None: dynamics = "velocityverlet" md_class = _preset_dynamics[f"{ensemble}_{dynamics}"] elif issubclass(dynamics, MolecularDynamics): md_class = dynamics if md_class is NPT: # Note that until md_func is instantiated, isinstance(md_func,NPT) is False # ASE NPT implementation requires upper triangular cell u, _ = schur(atoms.get_cell(complete=True), output="complex") atoms.set_cell(u.real, scale_atoms=True) last_step = 0 if traj_file is not None: traj_file = Path(traj_file) if restart and traj_file.exists(): traj = read(traj_file, index=":") last_step = traj[-1].info.get("step", len(traj) * traj_interval) n_steps -= last_step last_atoms = traj[-1] traj = Trajectory(traj_file, "a", atoms) atoms.set_positions(last_atoms.get_positions()) atoms.set_momenta(last_atoms.get_momenta()) else: traj = Trajectory(traj_file, "w", atoms) if not np.isnan(t_schedule).any(): MaxwellBoltzmannDistribution( atoms=atoms, temperature_K=t_schedule[last_step], rng=np.random.default_rng(seed=mb_velocity_seed), ) if zero_linear_momentum: Stationary(atoms) if zero_angular_momentum: ZeroRotation(atoms) md_runner = md_class( atoms=atoms, timestep=time_step * units.fs, **ase_md_kwargs, ) if traj_file is not None: md_runner.attach(traj.write, interval=traj_interval) with tqdm(total=n_steps) as pbar: def _callback(dyn: MolecularDynamics = md_runner) -> None: step = last_step + dyn.nsteps dyn.atoms.info["restart"] = last_step dyn.atoms.info["datetime"] = datetime.now() dyn.atoms.info["step"] = step dyn.atoms.info["target_steps"] = target_steps if ensemble == "nve": return dyn.set_temperature(temperature_K=t_schedule[step]) if ensemble == "nvt": return dyn.set_stress(p_schedule[step] * 1e3 * units.bar) pbar.update() md_runner.attach(_callback, interval=1) start_time = datetime.now() md_runner.run(steps=n_steps) end_time = datetime.now() traj.close() return {"runtime": end_time - start_time, "n_steps": n_steps}