""" Define structure optimization tasks. """ from __future__ import annotations from prefect import task from prefect.cache_policies import INPUTS, TASK_SOURCE from prefect.runtime import task_run from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator from ase import Atoms from ase.calculators.calculator import Calculator from ase.calculators.mixing import SumCalculator from ase.constraints import FixSymmetry from ase.filters import * # type: ignore from ase.filters import Filter from ase.optimize import * # type: ignore from ase.optimize.optimize import Optimizer from mlip_arena.models import MLIPEnum from mlip_arena.models.utils import get_freer_device _valid_filters: dict[str, Filter] = { "Filter": Filter, "UnitCell": UnitCellFilter, "ExpCell": ExpCellFilter, "Strain": StrainFilter, "FrechetCell": FrechetCellFilter, } # type: ignore _valid_optimizers: dict[str, Optimizer] = { "MDMin": MDMin, "FIRE": FIRE, "FIRE2": FIRE2, "LBFGS": LBFGS, "LBFGSLineSearch": LBFGSLineSearch, "BFGS": BFGS, "BFGSLineSearch": BFGSLineSearch, "QuasiNewton": QuasiNewton, "GPMin": GPMin, "CellAwareBFGS": CellAwareBFGS, "ODE12r": ODE12r, } # type: ignore def _generate_task_run_name(): task_name = task_run.task_name parameters = task_run.parameters atoms = parameters["atoms"] calculator_name = parameters["calculator_name"] return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" @task( name="OPT", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS # cache_key_fn=task_input_hash, # cache_expiration=timedelta(days=1) ) def run( atoms: Atoms, calculator_name: str | MLIPEnum, calculator_kwargs: dict | None = None, dispersion: str | None = None, dispersion_kwargs: dict | None = None, device: str | None = None, optimizer: Optimizer | str = BFGSLineSearch, optimizer_kwargs: dict | None = None, filter: Filter | str | None = None, filter_kwargs: dict | None = None, criterion: dict | None = None, symmetry: bool = False, ): device = device or str(get_freer_device()) print(f"Using device: {device}") calculator_kwargs = calculator_kwargs or {} if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum: assert issubclass(calculator_name.value, Calculator) calc = calculator_name.value(**calculator_kwargs) elif ( isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_ ): calc = MLIPEnum[calculator_name].value(**calculator_kwargs) else: raise ValueError(f"Invalid calculator: {calculator_name}") print(f"Using calculator: {calc}") dispersion_kwargs = dispersion_kwargs or {} dispersion_kwargs.update({"device": device}) if dispersion is not None: disp_calc = TorchDFTD3Calculator( **dispersion_kwargs, ) calc = SumCalculator([calc, disp_calc]) print(f"Using dispersion: {dispersion}") atoms.calc = calc if isinstance(filter, str): if filter not in _valid_filters: raise ValueError(f"Invalid filter: {filter}") filter = _valid_filters[filter] if isinstance(optimizer, str): if optimizer not in _valid_optimizers: raise ValueError(f"Invalid optimizer: {optimizer}") optimizer = _valid_optimizers[optimizer] filter_kwargs = filter_kwargs or {} optimizer_kwargs = optimizer_kwargs or {} criterion = criterion or {} if symmetry: atoms.set_constraint(FixSymmetry(atoms)) if isinstance(filter, type) and issubclass(filter, Filter): filter_instance = filter(atoms, **filter_kwargs) print(f"Using filter: {filter_instance}") optimizer_instance = optimizer(atoms, **optimizer_kwargs) print(f"Using optimizer: {optimizer_instance}") optimizer_instance.run(**criterion) elif filter is None: optimizer_instance = optimizer(atoms, **optimizer_kwargs) print(f"Using optimizer: {optimizer_instance}") optimizer_instance.run(**criterion) return { "atoms": atoms, }