""" Define equation of state task. https://github.com/materialsvirtuallab/matcalc/blob/main/matcalc/eos.py """ from __future__ import annotations from typing import TYPE_CHECKING, Any import numpy as np from prefect import task from prefect.cache_policies import INPUTS, TASK_SOURCE from prefect.futures import wait from prefect.runtime import task_run from prefect.states import State from ase import Atoms from ase.filters import * # type: ignore from ase.optimize import * # type: ignore from ase.optimize.optimize import Optimizer from mlip_arena.models import MLIPEnum from mlip_arena.tasks.optimize import run as OPT from pymatgen.analysis.eos import BirchMurnaghan if TYPE_CHECKING: from ase.filters import Filter def _generate_task_run_name(): task_name = task_run.task_name parameters = task_run.parameters atoms = parameters["atoms"] calculator_name = parameters["calculator_name"] return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" @task( name="EOS", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS # cache_key_fn=task_input_hash, ) def run( atoms: Atoms, calculator_name: str | MLIPEnum, calculator_kwargs: dict | None = None, device: str | None = None, optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore optimizer_kwargs: dict | None = None, filter: Filter | str | None = "FrechetCell", # type: ignore filter_kwargs: dict | None = None, criterion: dict | None = None, max_abs_strain: float = 0.1, npoints: int = 11, concurrent: bool = True, cache_opt: bool = True, ) -> dict[str, Any] | State: """ Compute the equation of state (EOS) for the given atoms and calculator. Args: atoms: The input atoms. calculator_name: The name of the calculator to use. calculator_kwargs: Additional kwargs to pass to the calculator. device: The device to use. optimizer: The optimizer to use. optimizer_kwargs: Additional kwargs to pass to the optimizer. filter: The filter to use. filter_kwargs: Additional kwargs to pass to the filter. criterion: The criterion to use. max_abs_strain: The maximum absolute strain to use. npoints: The number of points to sample. concurrent: Whether to relax multiple structures concurrently. cache_opt: Whether to cache the intermediate optimization results. Returns: A dictionary containing the EOS data, bulk modulus, equilibrium volume, and equilibrium energy if successful. Otherwise, a prefect state object. """ OPT_ = OPT.with_options( refresh_cache=not cache_opt ) state = OPT_( atoms=atoms, calculator_name=calculator_name, calculator_kwargs=calculator_kwargs, device=device, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, filter=filter, filter_kwargs=filter_kwargs, criterion=criterion, return_state=True, ) if state.is_failed(): return state elif state.is_completed() and state.name in ["Completed", "Cached"]: first_relax = state.result(raise_on_failure=False) elif state.is_completed() and state.name in ["Rollback"]: first_relax = state.result(raise_on_failure=False) assert isinstance(first_relax, dict) relaxed = first_relax["atoms"] # p0 = relaxed.get_positions() c0 = relaxed.get_cell() factors = np.linspace(1 - max_abs_strain, 1 + max_abs_strain, npoints) ** (1 / 3) if concurrent: futures = [] for f in factors: atoms = relaxed.copy() atoms.set_cell(c0 * f, scale_atoms=True) future = OPT_.submit( atoms=atoms, calculator_name=calculator_name, calculator_kwargs=calculator_kwargs, device=device, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, filter=None, filter_kwargs=None, criterion=criterion, ) futures.append(future) wait(futures) results = [ f.result(raise_on_failure=False) for f in futures if future.state.is_completed() ] else: states = [] for f in factors: atoms = relaxed.copy() atoms.set_cell(c0 * f, scale_atoms=True) state = OPT_( atoms=atoms, calculator_name=calculator_name, calculator_kwargs=calculator_kwargs, device=device, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, filter=None, filter_kwargs=None, criterion=criterion, return_state=True, ) states.append(state) results = [ s.result(raise_on_failure=False) for s in states if s.is_completed() ] volumes = [f["atoms"].get_volume() for f in results] energies = [f["atoms"].get_potential_energy() for f in results] volumes, energies = map( list, zip( *sorted(zip(volumes, energies, strict=True), key=lambda i: i[0]), strict=True, ), ) bm = BirchMurnaghan(volumes=volumes, energies=energies) bm.fit() return { "atoms": relaxed, "calculator_name": calculator_name, "eos": {"volumes": volumes, "energies": energies}, "K": bm.b0_GPa, "b0": bm.b0, "b1": bm.b1, "e0": bm.e0, "v0": bm.v0, }