""" Define molecular dynamics task. This script has been adapted from Atomate2 MLFF MD workflow written by Aaron Kaplan and Yuan Chiang https://github.com/materialsproject/atomate2/blob/main/src/atomate2/forcefields/md.py atomate2 Copyright (c) 2015, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: (1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code ("Enhancements") to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory or its contributors, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form. """ from __future__ import annotations from collections.abc import Sequence from datetime import datetime from pathlib import Path from typing import Literal import numpy as np from prefect import task from prefect.cache_policies import INPUTS, TASK_SOURCE from prefect.runtime import task_run from scipy.interpolate import interp1d from scipy.linalg import schur from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator from tqdm.auto import tqdm from ase import Atoms, units from ase.calculators.calculator import Calculator from ase.calculators.mixing import SumCalculator from ase.io import read from ase.io.trajectory import Trajectory from ase.md.andersen import Andersen from ase.md.langevin import Langevin from ase.md.md import MolecularDynamics from ase.md.npt import NPT from ase.md.nptberendsen import NPTBerendsen from ase.md.nvtberendsen import NVTBerendsen from ase.md.velocitydistribution import ( MaxwellBoltzmannDistribution, Stationary, ZeroRotation, ) from ase.md.verlet import VelocityVerlet from mlip_arena.models import MLIPEnum from mlip_arena.models.utils import get_freer_device _valid_dynamics: dict[str, tuple[str, ...]] = { "nve": ("velocityverlet",), "nvt": ("nose-hoover", "langevin", "andersen", "berendsen"), "npt": ("nose-hoover", "berendsen"), } _preset_dynamics: dict = { "nve_velocityverlet": VelocityVerlet, "nvt_andersen": Andersen, "nvt_berendsen": NVTBerendsen, "nvt_langevin": Langevin, "nvt_nose-hoover": NPT, "npt_berendsen": NPTBerendsen, "npt_nose-hoover": NPT, } def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray: """Interpolate temperature / pressure on a schedule.""" n_vals = len(values) return np.interp( np.linspace(0, n_vals - 1, n_pts + 1), np.linspace(0, n_vals - 1, n_vals), values, ) def _get_ensemble_schedule( ensemble: Literal["nve", "nvt", "npt"] = "nvt", n_steps: int = 1000, temperature: float | Sequence | np.ndarray | None = 300.0, pressure: float | Sequence | np.ndarray | None = None, ) -> tuple[np.ndarray, np.ndarray]: if ensemble == "nve": # Disable thermostat and barostat temperature = np.nan pressure = np.nan t_schedule = np.full(n_steps + 1, temperature) p_schedule = np.full(n_steps + 1, pressure) return t_schedule, p_schedule if isinstance(temperature, Sequence) or ( isinstance(temperature, np.ndarray) and temperature.ndim == 1 ): t_schedule = _interpolate_quantity(temperature, n_steps) # NOTE: In ASE Langevin dynamics, the temperature are normally # scalars, but in principle one quantity per atom could be specified by giving # an array. This is not implemented yet here. else: t_schedule = np.full(n_steps + 1, temperature) if ensemble == "nvt": pressure = np.nan p_schedule = np.full(n_steps + 1, pressure) return t_schedule, p_schedule if isinstance(pressure, Sequence) or ( isinstance(pressure, np.ndarray) and pressure.ndim == 1 ): p_schedule = _interpolate_quantity(pressure, n_steps) elif isinstance(pressure, np.ndarray) and pressure.ndim == 4: p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear") assert isinstance(p_schedule, np.ndarray) else: p_schedule = np.full(n_steps + 1, pressure) return t_schedule, p_schedule def _get_ensemble_defaults( ensemble: Literal["nve", "nvt", "npt"], dynamics: str | MolecularDynamics, t_schedule: np.ndarray, p_schedule: np.ndarray, ase_md_kwargs: dict | None = None, ) -> dict: """Update ASE MD kwargs""" ase_md_kwargs = ase_md_kwargs or {} if ensemble == "nve": ase_md_kwargs.pop("temperature", None) ase_md_kwargs.pop("temperature_K", None) ase_md_kwargs.pop("externalstress", None) elif ensemble == "nvt": ase_md_kwargs["temperature_K"] = t_schedule[0] ase_md_kwargs.pop("externalstress", None) elif ensemble == "npt": ase_md_kwargs["temperature_K"] = t_schedule[0] ase_md_kwargs["externalstress"] = p_schedule[0] # * 1e3 * units.bar if isinstance(dynamics, str) and dynamics.lower() == "langevin": ase_md_kwargs["friction"] = ase_md_kwargs.get( "friction", 10.0 * 1e-3 / units.fs, # Same default as in VASP: 10 ps^-1 ) return ase_md_kwargs def _generate_task_run_name(): task_name = task_run.task_name parameters = task_run.parameters atoms = parameters["atoms"] calculator_name = parameters["calculator_name"] return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" @task( name="MD", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS # cache_key_fn=task_input_hash, # cache_expiration=timedelta(days=1) ) def run( atoms: Atoms, calculator_name: str | MLIPEnum, calculator_kwargs: dict | None, dispersion: str | None = None, dispersion_kwargs: dict | None = None, device: str | None = None, ensemble: Literal["nve", "nvt", "npt"] = "nvt", dynamics: str | MolecularDynamics = "langevin", time_step: float | None = None, # fs total_time: float = 1000, # fs temperature: float | Sequence | np.ndarray | None = 300.0, # K pressure: float | Sequence | np.ndarray | None = None, # eV/A^3 ase_md_kwargs: dict | None = None, md_velocity_seed: int | None = None, zero_linear_momentum: bool = True, zero_angular_momentum: bool = True, traj_file: str | Path | None = None, traj_interval: int = 1, restart: bool = True, ): device = device or str(get_freer_device()) print(f"Using device: {device}") calculator_kwargs = calculator_kwargs or {} if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum: assert issubclass(calculator_name.value, Calculator) calc = calculator_name.value(**calculator_kwargs) elif ( isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_ ): calc = MLIPEnum[calculator_name].value(**calculator_kwargs) else: raise ValueError(f"Invalid calculator: {calculator_name}") print(f"Using calculator: {calc}") dispersion_kwargs = dispersion_kwargs or {} dispersion_kwargs.update({"device": device}) if dispersion is not None: disp_calc = TorchDFTD3Calculator( **dispersion_kwargs, ) calc = SumCalculator([calc, disp_calc]) print(f"Using dispersion: {dispersion}") atoms.calc = calc if time_step is None: # If a structure contains an isotope of hydrogen, set default `time_step` # to 0.5 fs, and 2 fs otherwise. has_h_isotope = "H" in atoms.get_chemical_symbols() time_step = 0.5 if has_h_isotope else 2.0 n_steps = int(total_time / time_step) target_steps = n_steps t_schedule, p_schedule = _get_ensemble_schedule( ensemble=ensemble, n_steps=n_steps, temperature=temperature, pressure=pressure, ) ase_md_kwargs = _get_ensemble_defaults( ensemble=ensemble, dynamics=dynamics, t_schedule=t_schedule, p_schedule=p_schedule, ase_md_kwargs=ase_md_kwargs, ) if isinstance(dynamics, str): # Use known dynamics if `self.dynamics` is a str dynamics = dynamics.lower() if dynamics not in _valid_dynamics[ensemble]: raise ValueError( f"{dynamics} thermostat not available for {ensemble}." f"Available {ensemble} thermostats are:" " ".join(_valid_dynamics[ensemble]) ) if ensemble == "nve": dynamics = "velocityverlet" md_class = _preset_dynamics[f"{ensemble}_{dynamics}"] elif dynamics is MolecularDynamics: md_class = dynamics else: raise ValueError(f"Invalid dynamics: {dynamics}") if md_class is NPT: # Note that until md_func is instantiated, isinstance(md_func,NPT) is False # ASE NPT implementation requires upper triangular cell u, _ = schur(atoms.get_cell(complete=True), output="complex") atoms.set_cell(u.real, scale_atoms=True) last_step = 0 if traj_file is not None: traj_file = Path(traj_file) traj_file.parent.mkdir(parents=True, exist_ok=True) if restart and traj_file.exists(): try: traj = read(traj_file, index=":") last_atoms = traj[-1] assert isinstance(last_atoms, Atoms) last_step = last_atoms.info.get("step", len(traj) * traj_interval) n_steps -= last_step traj = Trajectory(traj_file, "a", atoms) atoms.set_positions(last_atoms.get_positions()) atoms.set_momenta(last_atoms.get_momenta()) except Exception: traj = Trajectory(traj_file, "w", atoms) if not np.isnan(t_schedule).any(): MaxwellBoltzmannDistribution( atoms=atoms, temperature_K=t_schedule[last_step], rng=np.random.default_rng(seed=md_velocity_seed), ) if zero_linear_momentum: Stationary(atoms) if zero_angular_momentum: ZeroRotation(atoms) else: traj = Trajectory(traj_file, "w", atoms) if not np.isnan(t_schedule).any(): MaxwellBoltzmannDistribution( atoms=atoms, temperature_K=t_schedule[last_step], rng=np.random.default_rng(seed=md_velocity_seed), ) if zero_linear_momentum: Stationary(atoms) if zero_angular_momentum: ZeroRotation(atoms) md_runner = md_class( atoms=atoms, timestep=time_step * units.fs, **ase_md_kwargs, ) if traj_file is not None: md_runner.attach(traj.write, interval=traj_interval) with tqdm(total=n_steps) as pbar: def _callback(dyn: MolecularDynamics = md_runner) -> None: step = last_step + dyn.nsteps dyn.atoms.info["restart"] = last_step dyn.atoms.info["datetime"] = datetime.now() dyn.atoms.info["step"] = step dyn.atoms.info["target_steps"] = target_steps if ensemble == "nve": return dyn.set_temperature(temperature_K=t_schedule[step]) if ensemble == "nvt": return dyn.set_stress(p_schedule[step]) pbar.update() md_runner.attach(_callback, interval=1) start_time = datetime.now() md_runner.run(steps=n_steps) end_time = datetime.now() if traj_file is not None: traj.close() return { "atoms": atoms, "runtime": end_time - start_time, "n_steps": n_steps, }