import os os.system('pip install transformers') # Import the necessary libraries import os os.system('pip install torch') # Import the necessary libraries # Import the necessary libraries from transformers import AutoModel, AutoTokenizer import torch from torch.utils.data import DataLoader, Dataset from sklearn.model_selection import train_test_split # Corrected import statement import pandas as pd import gradio as gr # Load the pre-trained model and tokenizer model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) # Function to load the dataset def load_dataset(): df = pd.read_excel("your_dataset.xlsx") # Ensure the file name and path are correct print("Columns in the dataset:", df.columns.tolist()) return df # Example function to search by name and return the PEC number def search_by_name(name, df): name_matches = df[df['Name'].str.contains(name, case=False, na=False)] if not name_matches.empty: return f"Your PEC number: {name_matches['PEC No'].values[0]}" else: return "No matches found for your name." # Gradio interface def build_interface(): df = load_dataset() # Load your dataset iface = gr.Interface( fn=lambda name: search_by_name(name, df), inputs=gr.Textbox(label="Please write your Name"), outputs=gr.Textbox(label="Your PEC number"), title="PEC Number Lookup", description="Enter your name to find your PEC number." ) return iface # Main function to run the Gradio app if __name__ == "__main__": iface = build_interface() iface.launch()