import streamlit as st import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances from sklearn.preprocessing import MinMaxScaler import re from PyPDF2 import PdfReader def extract_text_from_file(file): if file.type == "application/pdf": return extract_text_from_pdf(file) else: return file.read().decode('utf-8') def extract_text_from_pdf(file): reader = PdfReader(file) text = "" for page in reader.pages: text += page.extract_text() return text def clean_text(text): text = re.sub(r'\W', ' ', text) return text.lower() def calculate_similarity_metrics(resumes, keywords): tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform(resumes + [keywords]) cosine_sim = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten() def jaccard_similarity(doc1, doc2): set1 = set(doc1.split()) set2 = set(doc2.split()) return len(set1.intersection(set2)) / len(set1.union(set2)) jaccard_sim = [jaccard_similarity(keywords, resume) for resume in resumes] euclidean_dist = euclidean_distances(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten() euclidean_sim = 1 / (1 + euclidean_dist) return cosine_sim, jaccard_sim, euclidean_sim st.title("Resume Analyzer") st.sidebar.subheader("Enter Keywords and Priority") data = pd.DataFrame({ 'Keyword': ['']*10, 'Priority': ['']*10 }) keywords_df = st.sidebar.data_editor(data, num_rows="dynamic", key="keyword_table") if not keywords_df['Keyword'].isnull().all(): keywords_combined = " ".join(keywords_df.apply(lambda row: f"{row['Keyword']} " * int(row['Priority']) if row['Priority'].isdigit() else row['Keyword'], axis=1)) st.subheader("Upload up to 5 resumes (PDF or Text files)") uploaded_files = st.file_uploader("Choose Resume Files", accept_multiple_files=True, type=["txt", "pdf"]) if len(uploaded_files) > 0 and keywords_combined: with st.spinner("Analyzing Resumes..."): resumes = [] for file in uploaded_files: try: resume_text = extract_text_from_file(file) clean_resume = clean_text(resume_text) resumes.append(clean_resume) except Exception as e: st.error(f"Error processing {file.name}: {str(e)}") clean_keywords = clean_text(keywords_combined) cosine_scores, jaccard_scores, euclidean_scores = calculate_similarity_metrics(resumes, clean_keywords) st.subheader("Resume Analysis Results") results_df = pd.DataFrame({ 'Resume': [file.name for file in uploaded_files], 'Cosine Similarity': cosine_scores, 'Jaccard Index': jaccard_scores, 'Euclidean Similarity': euclidean_scores }) scaler = MinMaxScaler() normalized_scores = scaler.fit_transform(results_df[['Cosine Similarity', 'Jaccard Index', 'Euclidean Similarity']]) overall_scores = np.mean(normalized_scores, axis=1) results_df['Overall Score'] = overall_scores results_df['Rank'] = results_df['Overall Score'].rank(ascending=False, method='min').astype(int) results_df = results_df.sort_values('Rank') st.dataframe(results_df) else: st.info("Please upload resumes and enter keywords with priority.")