import gradio as gr from diffusers import AutoPipelineForText2Image import torch # Load Dreambooth model pipeline = AutoPipelineForText2Image.from_pretrained("sd-dreambooth-library/herge-style", torch_dtype=torch.float16).to("cuda") def generate_image(prompt): # Generate image based on prompt pipeline.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) image = pipeline(prompt).images[0] return image def image_to_base64(image): # Convert image to base64 buffered = BytesIO() image.save(buffered, format="JPEG") return base64.b64encode(buffered.getvalue()).decode() def base64_to_image(base64_str): # Convert base64 to image image_data = base64.b64decode(base64_str) return Image.open(BytesIO(image_data)) def handle_prompt_image(prompt): # Generate image based on prompt and convert to base64 image = generate_image(prompt) base64_str = image_to_base64(image) return base64_str def main(): # Interface setup image_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...") prompt_output = gr.Textbox(label="Base64 Encoded Image", readonly=True) iface = gr.Interface( fn=handle_prompt_image, inputs=image_input, outputs=prompt_output, title="Dreambooth Image Generator", description="Enter a prompt to generate an image using the Dreambooth model.", theme="compact" ) iface.launch(share=True) if __name__ == "__main__": main()