import os from slack_bolt import App, Assistant, BoltContext, Say, SetSuggestedPrompts, SetStatus from slack_bolt.adapter.socket_mode import SocketModeHandler import logging from slack_sdk import WebClient from slack_sdk.errors import SlackApiError from transformers import ( load_tool, ReactCodeAgent, HfApiEngine, stream_to_gradio, ) logging.basicConfig(level=logging.INFO) logging.info('App loading again..\n\n') # Import tool from Hub hf_token = os.environ.get("HF_TOKEN") llm_engine = HfApiEngine(model="Qwen/Qwen2.5-72B-Instruct", token=hf_token) # Initialize the agent with the image generation tool agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, additional_authorized_imports=['requests', 'bs4', "html5lib"], add_base_tools=True ) logging.info('App initialized \n') # Initializes your app with your bot token and socket mode handler app = App(token=os.environ.get("SLACK_BOT_TOKEN")) assistant = Assistant() # This listener is invoked when a human user opened an assistant thread @assistant.thread_started def start_assistant_thread(say: Say, set_suggested_prompts: SetSuggestedPrompts): # Send the first reply to the human who started chat with your app's assistant bot say(":wave: Hi, how can I help you today?") # Setting suggested prompts is optional set_suggested_prompts( prompts=[ # If the suggested prompt is long, you can use {"title": "short one to display", "message": "full prompt"} instead {"title" : "Summarize latest post from Slack engineering blog", "message": "Read blog post https://slack.engineering/slack-audit-logs-and-anomalies/ and summarize it in 200 words"} ], ) # This listener is invoked when the human user sends a reply in the assistant thread @assistant.user_message def respond_in_assistant_thread( payload: dict, logger: logging.Logger, context: BoltContext, set_status: SetStatus, client: WebClient, say: Say, ): try: # Tell the human user the assistant bot acknowledges the request and is working on it set_status("is hard at work...") query = payload['blocks'][0]['elements'][0]['elements'][0]['text'] # Pass the latest prompt and chat history to the LLM (call_llm is your own code) agent_gen = agent.run(task=query, stream=True, url="https://slack.engineering/slack-audit-logs-and-anomalies/") for val in agent_gen: if 'final_answer' in val: say(f":tada: *Final Answer* : {val['final_answer']}") elif 'rationale' in val: say(f":thinking_face: {val['rationale']}") except Exception as e: logger.exception(f"Failed to respond to an inquiry: {e}") # Don't forget sending a message telling the error # Without this, the status 'is typing...' won't be cleared, therefore the end-user is unable to continue the chat say(f":warning: Sorry, something went wrong during processing your request (error: {e})") # Enable this assistant middleware in your Bolt app app.use(assistant) # # Start your app # if __name__ == "__main__": # logging.info('Listening on socket mode \n') # SocketModeHandler(app, os.environ["SLACK_APP_TOKEN"]).start()