import gradio as gr from transformers import pipeline import os import pandas as pd # Load the text summarization pipeline summarizer = pipeline("summarization", model="astro21/bart-cls") chunk_counter = 0 def summarize_text(input_text): global chunk_counter chunk_counter = 0 max_chunk_size = 1024 chunks = [input_text[i:i + max_chunk_size] for i in range(0, len(input_text), max_chunk_size)] summarized_chunks = [] chunk_lengths = [] summarized_chunks_only = [] for chunk in chunks: chunk_counter += 1 summarized_chunk = summarizer(chunk, max_length=128, min_length=64, do_sample=False)[0]['summary_text'] summarized_chunks.append(f"Chunk {chunk_counter}:\n{summarized_chunk}") summarized_chunks_only.append(summarized_chunk) chunk_lengths.append(len(chunk)) summarized_text = "\n".join(summarized_chunks) summarized_text_only = "\n".join(summarized_chunks_only) # Save the merged summary to a file with open("summarized.txt", "w") as output_file: output_file.write(summarized_text_only) chunk_df = pd.DataFrame({'Chunk Number': range(1, chunk_counter + 1), 'Chunk Length': chunk_lengths}) return summarized_text # def read_file(file): # print(file[0].name) # with open(file[0].name, 'r') as file_: # content = file_.read() # return content # def summarize_text_file(file): # if file is not None: # content = read_file(file) # return summarize_text(content) input_type = gr.inputs.TextBox("textbox" , lines = 15) # Name the outputs using the label parameter and provide a download option demo = gr.Interface(fn=summarize_text, inputs=input_type, outputs=[gr.Textbox(label="Summarized Text")], title = "Text Summarization", description = "Summarize text using BART", theme = "huggingface", allow_flagging="never", live=True) demo.launch(share=True)