import math import torch import torch.nn as nn import torch.nn.functional as F class Mish(nn.Module): def forward(self, x): return x * torch.tanh(F.softplus(x)) class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super(SinusoidalPosEmb, self).__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim-1) emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) emb = x.unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class ResidualBlock(nn.Module): def __init__(self, encoder_hidden, residual_channels, dilation): super().__init__() self.dilated_conv = nn.Conv1d( residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation ) self.diffusion_projection = nn.Linear( residual_channels, residual_channels ) self.conditioner_projection = nn.Conv1d( encoder_hidden, 2 * residual_channels, 1 ) self.output_projection = nn.Conv1d( residual_channels, 2 * residual_channels, 1 ) def forward(self, x, conditioner, diffusion_step): diffusion_step = self.diffusion_projection(diffusion_step ).unsqueeze(-1) conditioner = self.conditioner_projection(conditioner) y = x + diffusion_step y = self.dilated_conv(y) + conditioner gate, filter = torch.chunk(y, 2, dim=1) y = torch.sigmoid(gate) * torch.tanh(filter) y = self.output_projection(y) residual, skip = torch.chunk(y, 2, dim=1) return (x+residual) / math.sqrt(2.0), skip class DiffSingerNet(nn.Module): def __init__( self, in_dims=128, residual_channels=256, encoder_hidden=256, dilation_cycle_length=4, residual_layers=20, ): super().__init__() # self.pe_scale = pe_scale self.input_projection = nn.Conv1d(in_dims, residual_channels, 1) self.time_pos_emb = SinusoidalPosEmb(residual_channels) dim = residual_channels self.mlp = nn.Sequential( nn.Linear(dim, dim * 4), Mish(), nn.Linear(dim * 4, dim) ) self.residual_layers = nn.ModuleList([ ResidualBlock( encoder_hidden, residual_channels, 2**(i % dilation_cycle_length) ) for i in range(residual_layers) ]) self.skip_projection = nn.Conv1d( residual_channels, residual_channels, 1 ) self.output_projection = nn.Conv1d(residual_channels, in_dims, 1) nn.init.zeros_(self.output_projection.weight) def forward(self, x, timesteps, context, x_mask=None, context_mask=None): # make it compatible with int time step during inference if timesteps.dim() == 0: timesteps = timesteps.expand(x.shape[0] ).to(x.device, dtype=torch.long) x = self.input_projection(x) # x [B, residual_channel, T] x = F.relu(x) t = self.time_pos_emb(timesteps) t = self.mlp(t) cond = context skip = [] for layer_id, layer in enumerate(self.residual_layers): x, skip_connection = layer(x, cond, t) skip.append(skip_connection) x = torch.sum(torch.stack(skip), dim=0) / math.sqrt(len(self.residual_layers)) x = self.skip_projection(x) x = F.relu(x) x = self.output_projection(x) # [B, M, T] return x * x_mask.unsqueeze(1)