# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['title', 'description', 'learners', 'models', 'active_model', 'example_images', 'demo', 'classify_image', 'select_model'] # %% app.ipynb 1 from fastai.vision.all import * import gradio as gr import warnings warnings.filterwarnings('ignore') title = "FastAI - Big Cats Classifier" description = "Classify big cats using all Resnet models available pre-trained in FastAI" # %% app.ipynb 2 learners = { "resnet-18" : 'models/resnet18-model.pkl', "resnet-34" : 'models/resnet34-model.pkl', "resnet-50" : 'models/resnet50-model.pkl', "resnet-101": 'models/resnet101-model.pkl', "resnet-152": 'models/resnet152-model.pkl' } models = list(learners.keys()) active_model = learners["resnet-18"] # %% app.ipynb 3 def classify_image(img): learn = load_learner(active_model) pred,idx,probs = learn.predict(img) return dict(zip(learn.dls.vocab, map(float, probs))) def select_model(model_name): if model_name not in models: model_name = "resnet-18" active_model = learners[model_name] return model_name # %% app.ipynb 5 example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ] demo = gr.Blocks() with demo: with gr.Column(variant="panel"): image = gr.inputs.Image(label="Pick an image") model = gr.inputs.Dropdown(label="Select a model", choices=models) btnClassify = gr.Button("Classify") with gr.Column(variant="panel"): selected = gr.outputs.Textbox(label="Active Model") result = gr.outputs.Label(label="Result") model.change(fn=select_model, inputs=model, outputs=selected) btnClassify.click(fn=classify_image, inputs=image, outputs=result) img_gallery = gr.Examples(examples=example_images, inputs=image) demo.launch(debug=True, inline=False) # intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description ) # if __name__ == "__main__": # intf.launch(debug=True, inline=False)