diff --git a/README.md b/README.md index 9e3a95eb0adcc45dae2e4d3002152c29e38c18ca..78e49b815c970798a4c57495ace7f42673e6ef24 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,36 @@ ---- -title: Ask ANRG -emoji: 📈 -colorFrom: indigo -colorTo: blue -sdk: docker -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +# Ask ANRG + +## Set up project & Install Dependencies +``` +git clone git@github.com:ANRGUSC/ask-anrg.git +cd ask-anrg/ +virtualenv -p $(which python3) ./venv +source ./venv/bin/activate +pip3 install -r requirements.txt +``` + + +## Contributors +- Bhaskar Krishnamachari +- Jared Coleman +- Mingyu Zong +- Eason Qin +- Flora Jia +- Govind Thakur +- Lorena Yan +- Yixiao Li + +## Overview +Objective: Create an AI Chatbot for research labs equipped to answer inquiries about lab history, members, research papers, projects, and more. + +Motivation: Research lab websites (like anrg.usc.edu) are frequented by academics, recruiters, collaborators, students, and others seeking information about a lab, its members, and its research. Visitors often have questions like: + +- Who works here? +- How long has [x] been doing research in [y] area? +- Who in the lab is currently working on [x]? +- Where does former member [x] work now? +- What are some recent publications by this lab in the area of [x]? +- What conferences does this lab usually publish to? +- What kind of undergraduate projects does this lab work on? + +With the recent advancements in Large Language Models (LLMs), such as ChatGPT, we can develop a bot that provides immediate, direct answers to these and other questions. This initiative will enhance user experience and efficiency, allowing easier access to the lab's information. diff --git a/ask_anrg_eval_question.csv b/ask_anrg_eval_question.csv new file mode 100644 index 0000000000000000000000000000000000000000..56b1d079d73638d9ae7ba7a18b7d24f1c7e4f0df --- /dev/null +++ b/ask_anrg_eval_question.csv @@ -0,0 +1,37 @@ +,question,human_answer,chatbot_answer +0,"Who contribute to the publication of ""Search and Rescue on the Line""",J Coleman,N/A +1,"Which year is ""Search and Rescue on the Line"" published>",2023,N/A +2,"Give me the link to ""Search and Rescue on the Line""",/static/public/papers/search_and_rescue.pdf,N/A +3,"What is the venue of the publication of ""Search and Rescue on the Line""",SIROCCO 2023 – 30th International Colloquium on Structural Information and Communication Complexity.,N/A +4,What publications does J Coleman contribute to,Search and Rescue on the Line,N/A +5,What publications does L Cheng contribute to,Search and Rescue on the Line,N/A +6,What publications does B Krishnamachari contribute to,Search and Rescue on the Line,N/A +7,"Who contribute to the publication of ""Solving Math Word Problems Concerning Systems of Equations with GPT-3""",M Zong,N/A +8,"What is the venue of the publication of ""Solving Math Word Problems Concerning Systems of Equations with GPT-3""","Thirteenth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-23) to be held February 11-12, 2023.",N/A +9,"Give me the link to ""Solving Math Word Problems Concerning Systems of Equations with GPT-3""",/static/public/papers/Solving_Math_Word_Problems_with_GPT3-2022.pdf,N/A +10,"Which year is ""Solving Math Word Problems Concerning Systems of Equations with GPT-3"" published",2023,N/A +11,"Who contribute to the publication of ""Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things""",J Coleman,N/A +12,"In what venue is ""Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things"" published",IEEE MILCOM 2022.,N/A +13,"Give me the link to ""Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things""",/static/public/papers/edge_gcn_scheduler.pdf,N/A +14,"In what year is ""Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things"" published",2022,N/A +15,What publications does M Kiamari contribute to,Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things,N/A +16,What publications does L Clark contribute to,Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things,N/A +17,What publications does D DSouza contribute to,Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things,N/A +18,"Who contribute to the publication of ""Characterizing ML training performance at the tactical edge""",A Alshabanah,N/A +19,"What is the venue of the publication of ""Characterizing ML training performance at the tactical edge""","Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, vol. 12113, pp. 500-513. SPIE, 2022.",N/A +20,"Give me the link to ""Characterizing ML training performance at the tactical edge""",https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12113/121131N/Characterizing-ML-training-performance-at-the-tactical-edge/10.1117/12.2617773.short?SSO=1,N/A +21,"Which year is ""Characterizing ML training performance at the tactical edge"" published",2022,N/A +22,A Alshabanah contributes to which publications,Characterizing ML training performance at the tactical edge,N/A +23,K Balasubramanian contributes to which publications,Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things,N/A +24,M Annavaram contributes to which publications,Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things,N/A +25,Who is the director of the lab,Bhaskar Krishnamachari,N/A +26,Who are the current phd working at the lab,Jason A. Tran,N/A +27,Who is Bhaskar Krishnamachari,Director of the lab,N/A +28,"Who published ""Search and Rescue on the Line""",J Coleman,N/A +29,"Give me the link to ""Search and Rescue on the Line""",/static/public/papers/search_and_rescue.pdf,N/A +30,"Which year is ""Search and Rescue on the Line"" published>",Bhaskar Krishnamachari,N/A +31,"Give me the link to ""RouteSwarm Video""",http://anrg.usc.edu/www/download_files/RouteSwarm5.avi,N/A +32,"What is depicted in ""RouteSwarm Video""","July 2013. Simulation video showing automated network reconfiguration using robotic nodes in response to dynamic flow activation/deactivation. This is described in the following paper: “RouteSwarm: Wireless Network Optimization through Mobility”, by  Ryan Williams, Andrea Gasparri, and Bhaskar Krishnamachari, currently in submission.",N/A +33,"Who contributed to ""Time stamped packet exchange data with CC2420-equipped motes.""",Maulik Desai,N/A +34,"Give me the files about ""Sequence-Based Localization in Wireless Sensor Networks.""",http://anrg.usc.edu/www/download_files/SBL.zip,N/A +35,Give me the photo of the director,/static/public/members/bhaskar_krishnamachari.png,N/A diff --git a/configs.py b/configs.py new file mode 100644 index 0000000000000000000000000000000000000000..abb76e37941dec95645bd857ec49d0b35d63a27c --- /dev/null +++ b/configs.py @@ -0,0 +1,3 @@ +OPENAI_KEY = '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' +# OPENAI_KEY = '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' +DEBUG_PRINT = False \ No newline at end of file diff --git a/database/document_name_to_embedding.csv b/database/document_name_to_embedding.csv new file mode 100644 index 0000000000000000000000000000000000000000..1d3084535a3038b2e354bc127948493a5cd34b31 --- /dev/null +++ b/database/document_name_to_embedding.csv @@ -0,0 +1,2 @@ +,original_filename,embedding_filename,embedding +0,database/original_documents/publications_text/2004_pavan_a_policy_framework_for_availability_in_vehicular_adhoc_networks.txt,database/embeddings/publications_text/2004_pavan_a_policy_framework_for_availability_in_vehicular_adhoc_networks.json,"[0.011235746555030346, 0.002654926385730505, 0.030270010232925415, -0.011214744299650192, 0.011333752423524857, -0.009191609919071198, -0.010101670399308205, -0.02021734230220318, -0.02248549275100231, -0.026265744119882584, 0.011851786635816097, 0.02783384919166565, -0.004886324517428875, 0.020287347957491875, -0.007749514654278755, 0.007196478080004454, 0.024179605767130852, -0.012474828399717808, -0.02168744057416916, -0.0018761245300993323, -0.00456430297344923, -0.00451879994943738, -0.027553830295801163, -0.013349886052310467, 0.0027861851267516613, 0.02381558157503605, 0.026825781911611557, -0.03234214708209038, 0.007826520130038261, -0.002290902193635702, 0.01761316880583763, -0.0010544450487941504, -0.007616505958139896, -0.007735513616353273, 0.007917526178061962, -0.014378954656422138, 0.0114737618714571, -0.02445962466299534, 0.021953457966446877, -0.011501763947308064, 0.02546769194304943, 0.023689573630690575, -0.0021281412336975336, -0.022163471207022667, -0.011956794187426567, 0.02063737064599991, 0.033854249864816666, 0.0022453991696238518, -0.013727911747992039, 0.03211813420057297, 0.005218846723437309, 0.01654909923672676, -0.023437555879354477, -0.005138341337442398, -0.015569034032523632, 0.01317487470805645, -0.009058601222932339, 0.03847455605864525, -0.025215674191713333, -0.018103202804923058, 0.004777817055583, 0.011088736355304718, -0.029905986040830612, 0.012495829723775387, -0.02464163675904274, -0.005701878573745489, 0.004522300325334072, 0.01765517331659794, 5.80272899242118e-05, 0.008337553590536118, 0.03287418186664581, 0.02170144021511078, 0.0035107331350445747, -0.02144942432641983, 0.02227547951042652, -0.017053132876753807, -0.006664442364126444, 0.004973830189555883, -0.035562362521886826, 0.01786518655717373, 0.005390358157455921, -0.03839055076241493, -0.00021471738000400364, 0.03511433303356171, 0.028841914609074593, -0.0007017966127023101, 0.017963193356990814, 0.01766917295753956, -0.005295851733535528, -0.013272881507873535, 0.023941589519381523, 0.01561103668063879, 0.017123136669397354, -0.010815718211233616, -0.0023364052176475525, 0.034974321722984314, -0.013643906451761723, 0.01572304405272007, 0.024277612566947937, -0.006559435743838549, 0.0080715361982584, 0.013468894176185131, -0.014616970904171467, -0.02273751050233841, -0.00014427521091420203, -0.01888725347816944, -0.010878722183406353, 0.01759916916489601, 0.007364489138126373, 0.023087533190846443, -0.007924525998532772, 0.0340222604572773, -0.0043332879431545734, -0.022667504847049713, -0.018215209245681763, -0.024165604263544083, -0.01010867115110159, -0.013244879432022572, -0.016605103388428688, 0.0029926986899226904, 0.019195275381207466, 0.004637808073312044, 0.009835653007030487, -0.008302551694214344, 0.01008766982704401, -0.016045065596699715, 0.006205912213772535, -0.02758183144032955, 4.697968324762769e-05, -0.012089802883565426, -0.010906724259257317, 0.002451912732794881, 0.0003187399124726653, 0.013111870735883713, -0.013517897576093674, 0.005351855419576168, -0.022891519591212273, -0.0043542892672121525, -0.036878447979688644, -0.030858049169182777, 0.0034022259060293436, 0.046819109469652176, -0.02822587452828884, -0.01467297412455082, -0.022863518446683884, 0.02170144021511078, -0.00759550416842103, 0.009198610670864582, 0.012075802311301231, 0.031530093401670456, 0.00583838764578104, 0.0030014493968337774, -0.008904591202735901, 0.014658973552286625, 0.000951188150793314, -0.004088271409273148, -0.00784752145409584, 0.019671306014060974, 0.007889524102210999, 0.0010544450487941504, -0.0009861905127763748, 0.01951729692518711, -0.02081938274204731, -0.018117202445864677, 0.0015138505259528756, 0.02720380574464798, 0.018789248540997505, 0.011746780015528202, -0.01402193121612072, -0.025607701390981674, -0.031754110008478165, 0.019503295421600342, -0.009170608595013618, -0.005799885373562574, -0.009898656979203224, 0.033462222665548325, 0.04648308828473091, 0.0034862314350903034, -0.020749377086758614, -0.017935190349817276, 0.015779048204421997, 0.0123068168759346, 0.023199541494250298, 0.02804386243224144, -0.008673575706779957, 0.0029086931608617306, 0.02079138159751892, -0.021841449663043022, 0.003699745750054717, -0.010752714239060879, 0.025985725224018097, -0.00040930844261310995, -0.0010719462297856808, 0.00674144783988595, -0.6187291145324707, -0.011284749023616314, 0.003255216171965003, -4.167464066995308e-05, -0.029485957697033882, 0.015457026660442352, 0.009527632966637611, 0.022597501054406166, -0.030718039721250534, 0.023675572127103806, -0.031054062768816948, 0.00043490389361977577, 0.0034949821420013905, -0.03349022567272186, -0.01866323873400688, -0.016717109829187393, 0.01538702193647623, -0.021169405430555344, 0.03060603328049183, -0.0006339796236716211, -0.0014394705649465322, 0.02143542282283306, -0.009114605374634266, 0.0014998496044427156, 0.011998796835541725, 0.017893187701702118, 0.034918319433927536, -0.012446826323866844, 0.015289015136659145, 0.012369821779429913, -0.030017992481589317, 0.031558096408843994, 0.01741715706884861, 0.00924061331897974, 0.05625573545694351, 0.003503732616081834, -0.019377287477254868, 0.039202604442834854, 0.016871120780706406, 0.06322819739580154, -0.030045995488762856, -0.019251277670264244, -0.006303918547928333, 0.016507096588611603, -0.0030732040759176016, 0.0017142387805506587, 0.0149669935926795, -0.009163608774542809, -0.01612907089293003, -0.037298478186130524, 0.006622439716011286, -0.010101670399308205, -0.020665371790528297, -0.002310153329744935, 0.009912658482789993, -0.0231295358389616, 0.030690038576722145, -0.03545035421848297, 0.018635237589478493, 0.010871722362935543, 0.01636708714067936, 0.004525800701230764, 0.004952828865498304, -0.04135874658823013, 0.0020143836736679077, 0.03503032773733139, 0.012110804207623005, 0.02318553999066353, -0.005313352681696415, -0.034722305834293365, -0.0020266345236450434, 0.017095135524868965, 0.002395909046754241, -0.03245415538549423, 0.027567829936742783, 0.011816784739494324, 0.022471493110060692, 0.01803319714963436, -0.041106730699539185, 0.01339888945221901, 0.023633569478988647, -0.005897891707718372, -0.007259482052177191, -0.013853919692337513, 0.022611500695347786, 0.0059573957696557045, -0.04861122742295265, 0.021771445870399475, 0.01996532641351223, 0.01337788812816143, 0.02613973617553711, 0.004840821493417025, -0.009877655655145645, -0.010633706115186214, -0.010360687971115112, 0.036402419209480286, 0.00696546258404851, 0.004770816769450903, -0.010598704218864441, -0.027105800807476044, -0.026083732023835182, -0.005813885945826769, 0.007175476290285587, -0.0305500291287899, 0.035590361803770065, 0.02339555323123932, -0.012397822923958302, -0.01976931281387806, 0.022191474214196205, -0.026027727872133255, 0.01870524138212204, -0.008792583830654621, 0.010591703467071056, 0.006468429695814848, 0.0235635656863451, -0.032594162970781326, 0.01852322928607464, 0.013951926492154598, -6.623096123803407e-05, -0.007217479404062033, -0.01326588075608015, -0.0035019826609641314, -0.0263497494161129, 0.0017256145365536213, -0.00050447101239115, 0.00966064166277647, 0.01828521490097046, -0.04541901499032974, -0.0024011593777686357, 0.014133938588202, -0.0046833110973238945, -0.007553501520305872, 0.028155868873000145, -0.005229347385466099, 0.053847577422857285, -0.0004830320831388235, 0.011305750347673893, -0.018971260637044907, 0.0031817113049328327, -0.021351417526602745, -0.01085072010755539, 0.009324619546532631, -0.01827121339738369, -0.01850922964513302, -0.03455429524183273, -0.0026304246857762337, -0.029233941808342934, 0.00546736316755414, -0.016507096588611603, 0.007910525426268578, -0.011102736927568913, 0.005124340299516916, -0.011277749203145504, 0.010353687219321728, -0.0013694659573957324, -0.013671907596290112, 0.00933161936700344, -0.021099401637911797, -0.002427411265671253, -0.014476961456239223, 0.0012259563663974404, 0.011746780015528202, -0.00041499632061459124, -0.012621838599443436, 0.014798983000218868, 0.009520632214844227, -0.008638573810458183, 0.013986928388476372, 0.00409177178516984, -0.042366813868284225, -0.015163007192313671, -0.015443025156855583, -0.010332685895264149, 0.030970057472586632, -0.029401952400803566, 0.00882758665829897, 0.00045240504550747573, -0.012957860715687275, -0.01325888093560934, 0.0008273674175143242, -0.007084470242261887, 0.03125007450580597, -0.00457480363547802, -0.011123738251626492, 0.03161409869790077, 0.019055265933275223, 0.023731576278805733, 0.03083004802465439, -0.01849522814154625, -0.011956794187426567, 0.01759916916489601, 0.017277147620916367, -0.007651508320122957, -0.0022646503057330847, -0.02483764849603176, 0.0041652764193713665, -0.011179742403328419, 0.013972927816212177, -0.006699444726109505, 0.05757182464003563, 0.029877984896302223, 0.006132407113909721, -0.005484864115715027, -0.007749514654278755, -0.01390992384403944, -0.01486898772418499, 0.006891957484185696, 0.0025936721358448267, 0.031586095690727234, 0.004956329241394997, 0.0305500291287899, -0.016409089788794518, -0.028323881328105927, -0.012243812903761864, -0.012376821599900723, 0.034134265035390854, -0.023213541135191917, 0.009100604802370071, -0.03253816068172455, 0.018971260637044907, -0.00966064166277647, -0.009709645062685013, 0.04105072468519211, 0.0027581830509006977, -0.0195452980697155, -0.01178878266364336, 0.01053569931536913, 0.06177210062742233, -0.0010491947177797556, -0.01084372028708458, -0.023115534335374832, 0.026839781552553177, 0.01051469799131155, 0.01612907089293003, 0.0157090425491333, -0.009093604050576687, 0.022555498406291008, 0.00882758665829897, 0.04222680255770683, -0.011305750347673893, 0.019461292773485184, 0.04063069820404053, 0.029037928208708763, -0.0212114080786705, 0.01786518655717373, -0.010969728231430054, 0.005719379987567663, 0.033658236265182495, -0.016269080340862274, 0.009044600650668144, -0.014315950684249401, 0.01317487470805645, 0.014910990372300148, -0.0029366950038820505, 0.02233148366212845, -0.005061336327344179, -0.0014779731864109635, -0.006475429981946945, 0.02447362430393696, 0.02466963790357113, 0.01527501456439495, 0.003554485971108079, 0.003419727087020874, -0.006247914861887693, -0.012558833695948124, -0.022667504847049713, -0.017291149124503136, -0.01569504290819168, 0.004515300039201975, -0.0038257541600614786, 0.019811315461993217, -0.029205938801169395, 0.005211845971643925, -0.004308786243200302, 0.014574968256056309, 0.014140939339995384, -0.001251333043910563, -0.011102736927568913, 0.031530093401670456, 0.02272350899875164, -0.02333954907953739, -0.017781181260943413, 0.01719314232468605, -0.0036892450880259275, 0.002833438105881214, -0.017445158213377, 0.0026584265287965536, 0.0010124422842636704, -0.025565696880221367, -0.007385490462183952, -0.0010316935367882252, 0.018537230789661407, -0.012173808179795742, -0.01698312722146511, -0.021771445870399475, -0.0037732506170868874, 0.03231414407491684, 0.005967896431684494, -0.012397822923958302, 0.000930186768528074, 0.0012417074758559465, 0.02080538123846054, -0.02165943756699562, -0.0021771446336060762, 0.03797052055597305, -0.01866323873400688, 0.0007871147827245295, -0.01717914082109928, -0.0028561896178871393, -0.012733845971524715, 0.011508764699101448, 0.003148459130898118, 0.004336787853389978, -0.021981459110975266, 0.007616505958139896, 0.0026426755357533693, 0.014364954084157944, 0.011291749775409698, 0.03318220376968384, 0.003083704737946391, 0.005663376301527023, -0.013314884155988693, -0.008190544322133064, 0.011200743727385998, 0.05712379515171051, 0.015639038756489754, 0.0015672290464863181, -0.00148759875446558, -0.015583034604787827, -0.022401487454771996, -0.043206870555877686, -0.01241182442754507, 0.021645437926054, -0.002668927190825343, -0.00043052859837189317, 0.0017404905520379543, 0.008505565114319324, -0.022653505206108093, 0.04435494542121887, -0.01337088830769062, -0.011004731059074402, -0.006779950112104416, 0.01467297412455082, -0.025005660951137543, -0.0072524817660450935, -0.02186945267021656, 0.00653843441978097, 0.008533566258847713, 0.005537367891520262, -0.02401159517467022, 0.04424293711781502, 0.015135005116462708, 0.011949793435633183, 0.003025950863957405, -0.0003301156684756279, 0.021715441718697548, 0.023745577782392502, 0.01243282575160265, -0.014063933864235878, 0.00562487356364727, 0.024795645847916603, 0.04233881086111069, 0.02864590287208557, 0.026013728231191635, 0.02440362051129341, 0.030634034425020218, -0.004553802311420441, 0.01317487470805645, 0.017305148765444756, -0.03206212818622589, 0.016647106036543846, 0.026825781911611557, 0.004816319793462753, -0.022821515798568726, 0.022023461759090424, 0.009597637690603733, -0.030690038576722145, -0.007315485738217831, 0.015597036108374596, -0.009296617470681667, -0.003983264323323965, 0.0057893842458724976, -0.02336755208671093, -0.03332221135497093, -0.021547431126236916, -0.014630971476435661, 0.00030802044784650207, -0.010857720859348774, -0.018985260277986526, -0.006464929319918156, -0.03651442378759384, -0.022387485951185226, -0.002702179364860058, 0.003668243531137705, 0.011550767347216606, -0.017893187701702118, -0.04116273298859596, 0.005001832265406847, 0.0032989690080285072, 0.008022532798349857, 0.022233476862311363, -0.0052258470095694065, -0.029261942952871323, 0.027749842032790184, -0.0015619787154719234, -0.022639503702521324, 0.002933194860816002, -0.04231080785393715, 0.007007465232163668, 0.005852388683706522, -0.026237742975354195, -0.014700976200401783, 0.00870157778263092, -0.0066189393401145935, 0.012054800055921078, -0.00805753469467163, -0.003284968202933669, -0.008365555666387081, 0.01930728182196617, 0.016465093940496445, 0.005575870163738728, 0.021925456821918488, 0.020567364990711212, -0.017991194501519203, 0.022807514294981956, -0.008638573810458183, -0.01210380345582962, -0.0235635656863451, 0.0007538625504821539, 0.016955126076936722, -0.014077934436500072, 0.002796685788780451, -0.014938992448151112, -0.013419890776276588, -0.000540348410140723, -0.00679745152592659, 0.0011253247503191233, -0.0033882251009345055, 0.011172741651535034, 0.02527167834341526, 0.0018936257110908628, -0.01724914461374283, 0.0002338592748856172, 0.0018008695915341377, -0.023017529398202896, -0.010899723507463932, 0.00610790541395545, 0.01740315556526184, -0.01538702193647623, 0.0208473838865757, 0.0018778747180476785, -0.0072314804419875145, -0.019853318110108376, 0.019923323765397072, 0.03057803027331829, 0.042814843356609344, -0.01350389700382948, -0.03519833832979202, -0.030942054465413094, -0.004403292201459408, -0.013657907024025917, -0.014161940664052963, -0.020343350246548653, -0.03511433303356171, -0.000765675853472203, -0.020343350246548653, -0.00044977988000027835, -2.3489841623813845e-05, 0.02420760691165924, -0.02655976451933384, -0.010080669075250626, 0.014434958808124065, -0.0016923623625189066, 0.021085400134325027, -0.015793047845363617, 0.02210746891796589, -0.011865788139402866, -0.011102736927568913, -0.028729908168315887, -0.051299408078193665, -0.015653040260076523, -0.00599589804187417, 0.025803713127970695, 0.02291952259838581, 0.03998665511608124, -0.018607236444950104, 0.0020861385855823755, 0.010654707439243793, 0.007490497548133135, -0.0011244496563449502, -0.017781181260943413, -0.011375755071640015, -0.006646941415965557, 0.015457026660442352, 0.042170800268650055, -0.001846372615545988, 0.0319221206009388, 0.0075605022720992565, 0.020091334357857704, 0.014812983572483063, 0.003067953744903207, -0.021393420174717903, -0.0037242472171783447, -0.027329815551638603, 0.016731111332774162, 0.006678443402051926, -0.02658776566386223, -0.0013887172099202871, -0.034330278635025024, -0.008141540922224522, 0.00037649375735782087, -0.008876589126884937, -0.0032744675409048796, 0.003878257470205426, 0.03396625444293022, -0.014518964104354382, 0.0030732040759176016, 0.027259809896349907, 0.0133918896317482, 0.0022138969507068396, -0.013790915720164776, -0.036850448697805405, -0.002150892745703459, 0.0037522490601986647, -0.002976947696879506, 0.011907790787518024, 0.005992398131638765, 0.0018708741990849376, -0.022891519591212273, 0.01932128332555294, 0.014490962028503418, -0.02060936950147152, 0.002096639247611165, 0.0005508490721695125, -0.02107139863073826, -0.015317017212510109, -0.04231080785393715, -0.013314884155988693, 0.0019233777420595288, 0.0006164784426800907, 0.003174710785970092, 0.007357488386332989, -0.02209346741437912, -0.02613973617553711, 0.024109600111842155, 0.010073669254779816, 0.010003664530813694, -0.024151604622602463, 0.014546966180205345, 0.008750581182539463, -0.01913927122950554, -0.0024081598967313766, -0.005425360053777695, -0.009100604802370071, 0.007087970618158579, 0.01786518655717373, 0.005026333965361118, 0.008246547542512417, -0.02143542282283306, -0.00759550416842103, 0.002740682102739811, -0.02503366209566593, -0.04331887513399124, 0.017375154420733452, 0.029009927064180374, 0.015107003040611744, -0.003234214847907424, -0.02466963790357113, -0.016451092436909676, 0.014798983000218868, 0.024795645847916603, 0.01933528482913971, 0.023003527894616127, -0.017935190349817276, 0.00526434974744916, 0.022681506350636482, -0.005292351357638836, 0.009702644310891628, 0.0010465695522725582, -0.04312286525964737, 0.010332685895264149, 0.007119472604244947, -0.006443927995860577, 0.012341819703578949, -0.008568569086492062, 0.028001859784126282, -0.0036647433880716562, -0.010451694019138813, 0.010493696667253971, 0.006972462870180607, 0.005267849657684565, -0.0023836581967771053, 0.00552336685359478, 0.023311547935009003, -0.00653843441978097, -0.005932894069701433, 0.02528567984700203, -0.0006024775211699307, 0.009688643738627434, -0.018369220197200775, 0.02569170668721199, -0.030045995488762856, -0.018635237589478493, -0.006219913251698017, -0.0010343187022954226, 0.015877055004239082, -0.014084935188293457, -0.00334797240793705, 0.016857119277119637, -0.01393092516809702, -0.005610872525721788, -0.004578304011374712, -0.015135005116462708, -0.016199076548218727, -0.026251742616295815, -0.005141841247677803, -0.035142332315444946, 0.031978122889995575, 0.010822718963027, 0.021981459110975266, 0.007238480728119612, 0.02762383408844471, -0.015401022508740425, 0.016633104532957077, 0.025215674191713333, -0.018103202804923058, -0.01615707203745842, 0.010878722183406353, 0.0037522490601986647, 0.00175274140201509, 0.013433892279863358, -0.0035247341729700565, -0.03584238141775131, 0.014518964104354382, 0.0018341217655688524, 0.024809647351503372, 0.009527632966637611, -0.01561103668063879, 0.008092537522315979, 0.0028159369248896837, -0.004585304297506809, -0.03038201667368412, -0.01722114346921444, 0.036402419209480286, -0.01827121339738369, 0.008120539598166943, 0.015807049348950386, -0.013559900224208832, 0.024543629959225655, -0.009576636366546154, -0.0020126337185502052, -0.014826984144747257, -0.0340222604572773, -0.008141540922224522, -0.01169777661561966, 0.021967459470033646, -0.003927260637283325, -0.032174136489629745, 0.008953594602644444, -0.017809182405471802, -0.02063737064599991, 0.027343815192580223, -0.003958763089030981, -0.024081598967313766, 0.02357756532728672, -0.004214279819279909, -0.017305148765444756, -0.0044067925773561, -0.01696912758052349, -0.018985260277986526, 0.01337788812816143, -0.002395909046754241, -0.00943662691861391, -0.006041401065886021, 9.680330549599603e-05, 0.02633574977517128, 0.031754110008478165, -0.021617434918880463, -0.020049331709742546, -0.030101999640464783, -0.035142332315444946, 0.0047043124213814735, -0.00276168342679739, 0.012558833695948124, 0.002961196703836322, 0.010003664530813694, -0.00017085509898606688, -3.2643770282447804e-06, -0.008561568334698677, 0.0021701441146433353, 0.004256282467395067, -0.00999666377902031, -0.00462030665948987, -0.0034739805851131678, 0.009247614070773125, 0.014910990372300148, -0.04984331130981445, -0.011662774719297886, 0.0072314804419875145, 0.021295413374900818, -0.0026864283718168736, 0.022877519950270653, -0.0015103502664715052, 0.012152806855738163, -0.01638108864426613, 0.010136673226952553, -0.006839454174041748, -0.015779048204421997, 0.005593371577560902, -0.029681971296668053, -0.014420957304537296, -0.004322787281125784, -0.013748913072049618, 0.0022996526677161455, 0.0004712187801487744, 0.011312751099467278, -0.007889524102210999, 0.017151139676570892, -0.0006217287736944854, -0.018831251189112663, 0.011368755251169205, -0.021099401637911797, 0.019503295421600342, 0.0037802511360496283, -0.0006024775211699307, 0.03788651525974274, -0.007406491786241531, 0.00347748096100986, -0.001552353031001985, 0.00829555094242096, -0.0147849814966321, 0.0022226476576179266, 0.014231945388019085, -0.019671306014060974, 0.0016433590790256858, 0.0031327081378549337, 0.016227077692747116, -0.021617434918880463, -0.0037732506170868874, -1.1396264198992867e-05, -0.010248680599033833, -0.01677311398088932, 0.04519500210881233, -0.0040672700852155685, -0.00021045147150289267, -0.015022997744381428, -0.013412890955805779, 0.001216330798342824, -0.0038677568081766367, -0.0054113594815135, 0.011214744299650192, -0.012222811579704285, -0.0018446225440129638, -0.022415488958358765, -0.021743444725871086, 0.019601302221417427, 0.018103202804923058, 0.008260548114776611, -0.02571970783174038, -0.006912959273904562, 0.1917567402124405, -0.006282917223870754, 0.028183871880173683, 0.017151139676570892, 0.0018481226870790124, -0.003318220376968384, 0.018341217190027237, -0.0014315950684249401, 0.010451694019138813, 0.0035579863470047712, -0.008981596678495407, 0.011760780587792397, -0.005271350033581257, -0.004865323193371296, -0.004235281143337488, 0.01953129656612873, -0.04401892423629761, -0.03284618258476257, -0.04049069061875343, 0.0002175613190047443, -0.004347288515418768, -0.03545035421848297, -0.003433728124946356, -0.015359019860625267, 0.018789248540997505, -0.009338620118796825, 0.01029068324714899, -0.018733244389295578, 0.014490962028503418, 0.022891519591212273, 0.001932128332555294, -0.004623807035386562, 0.011256747879087925, 0.017263146117329597, -0.012425824999809265, 0.006240914575755596, 0.024319615215063095, -0.006188410799950361, 0.019251277670264244, 0.009401624090969563, -0.0039517623372375965, -0.03550635650753975, -0.01325888093560934, -0.03889458253979683, -0.01549902930855751, 0.005166342947632074, -0.003081954549998045, -0.0037102464120835066, -0.023885585367679596, -0.0026951790787279606, -0.022569498047232628, 0.008050534874200821, 0.03570237010717392, 0.007896523922681808, -0.028505893424153328, -0.00012075802078470588, -0.00273368158377707, 0.03083004802465439, 0.009954661130905151, 0.01888725347816944, 0.008862588554620743, 0.013888922519981861, -0.015457026660442352, 0.0053238533437252045, 0.005607372149825096, 0.007077469956129789, -0.004889824893325567, -0.01611506938934326, 0.02592972107231617, -0.018579233437776566, -0.0004865323135163635, -0.004466296639293432, -0.0044067925773561, 0.007469496224075556, -0.013545899651944637, -0.0322861447930336, 0.00711247231811285, -0.00748349679633975, 0.003769750241190195, 0.018341217190027237, -0.002710930071771145, 0.021337416023015976, -0.02465563639998436, -0.01115874107927084, -0.020133337005972862, -0.04413092881441116, 0.008715578354895115, -0.016843117773532867, -0.002784434938803315, -0.003720747074112296, -0.01849522814154625, -0.0018796247895807028, -0.01232781819999218, -0.005201345309615135, -0.021603435277938843, -0.006048401817679405, 0.016185075044631958, 0.0025219174567610025, 0.010836719535291195, 0.02122540958225727, -0.017137138172984123, 0.05964396148920059, 0.02402559481561184, -0.0025534196756780148, 0.0011034483322873712, 0.0026846781838685274, -0.006650441791862249, 0.019167272374033928, 0.006664442364126444, -0.013545899651944637, -0.013699909672141075, -0.010171675123274326, -0.00331997056491673, -0.009702644310891628, 0.02675577625632286, 0.00977264903485775, 0.0014464710839092731, -0.015877055004239082, 0.018859252333641052, -0.00072979845572263, -0.0056528751738369465, -0.03477830812335014, 0.0016547348350286484, 0.018859252333641052, 0.004088271409273148, 0.0056703765876591206, -0.04273083806037903, 0.02105739898979664, -0.025859717279672623, -0.002710930071771145, 0.026013728231191635, -0.00753950048238039, -0.007616505958139896, -0.006709945388138294, 0.009163608774542809, 0.0037102464120835066, 0.003090705256909132, -0.014588968828320503, 0.0029209440108388662, 0.011494763195514679, -0.004382290877401829, 0.004042768385261297, 0.032622165977954865, 0.030270010232925415, -0.008785583078861237, -0.014812983572483063, 0.01071771141141653, -0.02695178985595703, -0.006821953225880861, -0.03547835722565651, -0.011998796835541725, -0.02655976451933384, -0.008743580430746078, -0.03839055076241493, 0.02524367719888687, -0.017921190708875656, -0.00573688093572855, -0.04723913595080376, 0.011522765271365643, 0.008778583258390427, -0.02143542282283306, 0.009814651682972908, 0.024305613711476326, 0.0031379584688693285, -0.011018731631338596, 0.005285351071506739, -0.17965993285179138, 0.009793650358915329, 0.0182432122528553, -0.02889791876077652, -0.007497497834265232, 0.0035597363021224737, 0.018215209245681763, 0.0019146271515637636, -0.022009462118148804, -0.011165741831064224, 0.020077332854270935, -0.0054113594815135, -0.011452760547399521, -0.015107003040611744, -0.001488473848439753, 0.00456430297344923, -0.0035457354970276356, 0.014462960883975029, 0.001930378144606948, -0.0010964478133246303, 0.02016133815050125, -0.028841914609074593, 0.019223276525735855, -0.020497361198067665, -0.016255078837275505, 0.02062336914241314, -0.03626240789890289, 0.0314180850982666, -0.01659110188484192, -0.020259344950318336, 0.01740315556526184, 0.0006449178326874971, 0.018005196005105972, 0.009807650931179523, 0.005103338975459337, 0.014406956732273102, -0.020231343805789948, 0.007644507568329573, -0.010129672475159168, 0.05541567876935005, -0.0014184692408889532, 0.022163471207022667, 0.007035467308014631, -0.014084935188293457, 0.0024011593777686357, 0.010577701963484287, -0.007623506244271994, 0.009044600650668144, 0.00748349679633975, -0.030718039721250534, 0.012789849191904068, 0.010808717459440231, 0.028953922912478447, 0.00420377915725112, 0.01827121339738369, 0.027749842032790184, 0.010598704218864441, 0.008225546218454838, 0.034274276345968246, 0.0004088708956260234, -0.035786375403404236, -0.0022804015316069126, -0.0011183242313563824, 0.009779649786651134, -0.0212114080786705, -0.04035067930817604, -0.03886657953262329, 0.007994530722498894, -0.0295699629932642, 0.008617572486400604, -0.01974131166934967, -0.0014613470993936062, 0.004571303725242615, -0.02038535289466381, 0.02571970783174038, 0.009646640159189701, -0.021379420533776283, 0.001423719571903348, 0.005866389721632004, -0.005589871201664209, -0.008141540922224522, 0.03993065282702446, -0.00595039501786232, -0.00026404878008179367, 0.031306080520153046, -0.014490962028503418, 0.006653941702097654, 0.01485498622059822, -0.0067869508638978004, -0.001287210499867797, -0.00520834606140852, -0.013125871308147907, -0.000158276132424362, -0.030718039721250534, 0.020651372149586678, 0.012131805531680584, 0.009485630318522453, -0.007434493862092495, 0.006874456536024809, -0.0094646280631423, -0.021169405430555344, -0.007455495186150074, -0.01723514497280121, -0.0011682026088237762, 0.0077775162644684315, 0.0027739342767745256, -0.003340971888974309, 0.012586835771799088, 0.03827854245901108, -0.016059067100286484, -0.01743115670979023, 0.023899586871266365, 0.03287418186664581, 0.008155541494488716, -0.008351554162800312, 0.02143542282283306, -0.0250476635992527, -0.015541031956672668, 0.008736580610275269, -0.0011078235693275928, 0.05230747535824776, 0.006160409189760685, -0.002122890902683139, 0.01485498622059822, -0.006317919585853815, -0.028169870376586914, -0.09397424012422562, -0.011872788891196251, 0.02699379250407219, -0.004266783129423857, -0.03396625444293022, -0.004595804959535599, 0.0068114520981907845, 0.016269080340862274, -0.025215674191713333, 0.0387265719473362, -0.010899723507463932, -0.021519428119063377, 0.005866389721632004, -0.012271814979612827, 0.018733244389295578, -0.03147409111261368, -0.006020399741828442, -0.02444562315940857, 0.0037802511360496283, 0.039202604442834854, 0.004739314783364534, -0.038362547755241394, 0.000690858403686434, -0.0050333342514932156, -0.0227655116468668, -0.007364489138126373, -0.031586095690727234, 0.0026094233617186546, 0.012908857315778732, -0.0021386421285569668, 0.00840755831450224, -0.009394624270498753, 0.031306080520153046, -0.01265684049576521, -0.0026881785597652197, -0.025411687791347504, -0.0014412207528948784, -0.0193632859736681, 0.008302551694214344, -0.03183811530470848, 0.000271705532213673, 0.011732779443264008, 0.03290218487381935, -0.025635702535510063, 0.007833519950509071, -0.01765517331659794, -0.04735114425420761, 0.03805452585220337, 0.02377357892692089, -0.025453690439462662, -0.008267548866569996, -0.009107604622840881, 0.002917443634942174, -0.020861385390162468, 0.020469360053539276, -0.035170335322618484, 0.0010789466323330998, 0.018131203949451447, -0.02248549275100231, -0.004935327917337418, -0.030662035569548607, 0.00028636277420446277, -0.027091799303889275, 0.025621701031923294, 0.012705843895673752, 0.016017064452171326, -0.01456096675246954, -0.023731576278805733, 0.007287484128028154, -0.02105739898979664, -0.02083338424563408, 0.0007538625504821539, -0.023031529039144516, -0.004004266113042831, -0.01829921454191208, -0.020707374438643456, -0.01611506938934326, -0.008442560210824013, 0.009401624090969563, 0.010773715563118458, -0.009177609346807003, -0.008806584402918816, 0.004445295315235853, -0.016241079196333885, 0.0031939621549099684, 0.017585167661309242, 0.006856955122202635, 0.01549902930855751, 0.004018266685307026, -0.015065000392496586, 0.022163471207022667, 0.017333151772618294, 0.0229475237429142, -0.00041871529538184404, -0.024277612566947937, -0.003412726568058133, 0.01456096675246954, -0.014826984144747257, -0.02021734230220318, 0.018369220197200775, -0.030045995488762856, 0.012404823675751686, -0.07650107890367508, 0.03144608810544014, 0.015050999820232391, -0.01717914082109928, -0.0107317129150033, -0.0018708741990849376, 0.018159205093979836, -0.00805753469467163, -0.004903825465589762, 0.0034512290731072426, -0.033854249864816666, 0.004728814121335745, -0.018845250830054283, 0.009058601222932339, 0.002954196184873581, 0.006657442077994347, 0.023311547935009003, -0.02170144021511078, -0.009380622766911983, 0.013979928568005562, -0.006069403141736984, 0.023045530542731285, 0.028211873024702072, 0.016437090933322906, -0.022037463262677193, -0.007574502844363451, 0.016885120421648026, -0.003120457287877798, -0.0044732969254255295, 0.009912658482789993, 0.002525417599827051, -0.03399425745010376, 0.009856654331088066, 0.003619240364059806, -0.02590171992778778, 0.013538898900151253, 0.0049703302793204784, -0.013888922519981861, -0.011760780587792397, 0.03377024084329605, -0.01701113022863865, -0.032174136489629745, 0.008512564934790134, -0.025103667750954628, -0.01337788812816143, -0.0022471491247415543, -0.010479696094989777, 0.007091470994055271, -0.0026496760547161102, -0.0056703765876591206, 0.015681041404604912, -0.004826820455491543, -0.013965927064418793, -0.037718504667282104, 0.004070770461112261, 0.0037522490601986647, 0.002912193303927779, -8.61932203406468e-05, -0.014658973552286625, -0.013671907596290112, 0.037690501660108566, -0.008491563610732555, 0.03808252885937691, -0.010283682495355606, 0.020105335861444473, -0.019923323765397072, -0.00966064166277647, -0.0011323251528665423, -0.00466580968350172, -0.01071771141141653, -0.003456479636952281, -0.003088955068960786, 0.008484563790261745, 0.03080204501748085, 0.005414859391748905, -0.0010833219857886434, -0.0009616888710297644, 0.01593305729329586, -0.006377423647791147, 0.010661708191037178, 0.00954863429069519, -0.003118707099929452, -0.014315950684249401, 0.015807049348950386, 0.04009866341948509, 0.009478629566729069, -0.026825781911611557, 0.029009927064180374, -0.003748748917132616, 0.006468429695814848, -0.016199076548218727, 0.009310618042945862, -0.01993732340633869, -0.010780716314911842, -0.0030014493968337774, 0.015331017784774303, -0.010983729735016823, -0.0034022259060293436, 0.023955591022968292, 0.025817714631557465, 0.009744646959006786, 0.017893187701702118, 0.017795180901885033, -0.017473161220550537, -0.036682434380054474, 0.0016547348350286484, -0.006471929606050253, -0.02167343907058239, -0.0011620771838352084, 0.005932894069701433, 0.014742978848516941, 0.031082063913345337, 0.01659110188484192, 0.011487762443721294, -0.01519100833684206, 0.013923924416303635, 0.0003657742927316576, -0.0003557111194822937, -0.04592305049300194, 0.009723645634949207, 0.011354753747582436, 0.0005937269306741655, 0.028183871880173683, -0.004441794939339161, 0.03777450695633888, 0.019713308662176132, 0.003339221701025963, -0.031082063913345337, 0.020763378590345383, -0.018551232293248177, 0.018761245533823967, -0.021295413374900818, -0.017151139676570892, -0.0005946019664406776, -0.02441762201488018, -0.0026566763408482075, -0.006377423647791147, 0.022891519591212273, -0.011438759975135326, 0.08333353698253632, 0.0023591567296534777, -0.0062654162757098675, -0.02569170668721199, -0.001774617820046842, -0.0265317615121603, 0.040014658123254776, 0.005180343985557556, 0.00456430297344923, -0.011193742975592613, -0.006174410227686167, 0.01113773975521326, 0.011858787387609482, -0.04012666642665863, 0.004368290305137634, -0.006272416561841965, -0.013496896252036095, 0.015163007192313671, -0.009919658303260803, 0.011655773967504501, 0.023661570623517036, -0.00515234237536788, 0.00600639870390296, -0.0022699006367474794, -0.019601302221417427, -0.014896988868713379, 0.020875386893749237, -0.007791517302393913, 0.023885585367679596, -0.06513232737779617, 0.0011962044518440962, 0.0015532281249761581, -0.034526292234659195, -0.005911892745643854, -0.002161393640562892, 0.008302551694214344, 0.006653941702097654, -0.018859252333641052, 0.006457929033786058, -0.007812518626451492, 0.015135005116462708, 0.03839055076241493, -0.00435078889131546, -0.024081598967313766, 0.004553802311420441, -0.00786852277815342, -0.024963658303022385, -0.005558369215577841, -0.03469430282711983]" diff --git a/database/embeddings/publications_txt/2020_blockchain_technology_as_a_means_for_brand_trust_repair__empirical_evidence_from_a_digital_transgression.json b/database/embeddings/publications_txt/2020_blockchain_technology_as_a_means_for_brand_trust_repair__empirical_evidence_from_a_digital_transgression.json new file mode 100644 index 0000000000000000000000000000000000000000..dd2d5ce3e4beb730abe1c571f9f73d4c15b03159 --- /dev/null +++ b/database/embeddings/publications_txt/2020_blockchain_technology_as_a_means_for_brand_trust_repair__empirical_evidence_from_a_digital_transgression.json @@ -0,0 +1 @@ +[-0.01624784991145134, -0.0024685573298484087, -0.008075111545622349, -0.036344975233078, -0.008632977493107319, 0.007712498307228088, -0.02412770688533783, 0.006931486073881388, -0.007133712526410818, -0.037070199847221375, 0.0017607647459954023, 0.01880008727312088, -0.01575971581041813, 0.006826885975897312, -0.0004040170751977712, 0.012761186808347702, 0.03765596076846123, -0.02142205648124218, -0.02987372875213623, 0.010285655967891216, -0.018604833632707596, -0.005927327089011669, -0.005299727898091078, 0.020585257560014725, 0.00651308661326766, 0.020529471337795258, 0.029845835641026497, -0.0304315946996212, -0.023792987689375877, -0.0007927800179459155, -0.0012743753613904119, 0.009002563543617725, -0.03163100779056549, 0.013667718507349491, -0.0017842997331172228, -0.02931586280465126, 0.003103130031377077, -0.03098946064710617, 0.032774630934000015, -0.0002782793017104268, 0.003577316179871559, 0.00863995123654604, 0.015020543709397316, -0.011694267392158508, -0.009330309927463531, -0.006443353369832039, 0.05062634497880936, -0.013312079012393951, -0.017321741208434105, 0.002681243931874633, -0.0004255907842889428, 0.031407859176397324, -0.027126237750053406, 0.017028862610459328, -0.007273179013282061, -0.004658181685954332, 0.02277488261461258, 0.02294224314391613, 0.007398698944598436, 4.1948915168177336e-05, 0.015146063640713692, -0.005334594286978245, -0.0409194752573967, -0.0008367990958504379, 0.009943963028490543, -0.013835079036653042, -0.019971605390310287, 0.0356755368411541, 0.006101659964770079, 0.020362112671136856, 0.01895350031554699, 0.01485318411141634, 0.020417898893356323, -0.012140560895204544, 0.005407814402133226, -0.014002438634634018, -0.010411175899207592, -0.006624659523367882, 0.013814158737659454, 0.01556446310132742, -0.0010939404601231217, 0.00561352726072073, 0.01127586793154478, 0.018897714093327522, 0.017503047361969948, 0.022746989503502846, 0.00632829312235117, 0.004797648172825575, -0.0031275367364287376, -0.004762781783938408, -0.00490224827080965, 0.02380693517625332, -0.004135182127356529, 0.011889521032571793, -0.04203520715236664, 0.03243991360068321, -0.013186559081077576, 0.03472716361284256, 0.004229322075843811, -0.025619998574256897, 0.02292829565703869, -0.008047218434512615, -0.010801682248711586, -0.02292829565703869, -0.024866880849003792, 0.0026725272182375193, 0.0045605553314089775, 0.011847680434584618, -0.011059694923460484, -0.013367866165935993, -0.05176997184753418, 0.03018055483698845, -0.030598953366279602, -0.02571762539446354, 0.008793364278972149, -0.013291159644722939, 0.003713296027854085, 0.001696261577308178, -0.008054191246628761, -0.017084648832678795, 0.046386562287807465, -0.004187482409179211, 0.01418374478816986, -0.012963413260877132, 0.01776803471148014, 0.023360641673207283, -0.029817942529916763, -0.011003908701241016, 0.0008934573852457106, -0.02509002760052681, 0.013291159644722939, 0.01854904741048813, -0.0011654171394184232, 0.021226804703474045, 0.013528252020478249, 0.03375089913606644, -0.009832389652729034, -0.00541478767991066, -0.023304855450987816, -0.04130998253822327, 0.009455829858779907, 0.036679696291685104, -0.01585734263062477, -0.001206385437399149, -0.01888376660645008, 0.0012229470303282142, -0.007573031820356846, 0.023625629022717476, 0.014176771976053715, -0.00025888471282087266, -0.010439069010317326, -0.0007152017205953598, -0.027976984158158302, 0.004110775422304869, -0.006373620126396418, 0.02820013090968132, 0.0002676013973541558, 0.018256166949868202, 0.001775583135895431, -0.017489101737737656, 0.005017308052629232, 0.009888175874948502, -0.013925732113420963, 0.009413990192115307, 0.015871290117502213, 0.032384127378463745, 0.02588498592376709, 0.016219956800341606, -0.0037830292712897062, -0.027419118210673332, -0.031407859176397324, 0.023039868101477623, -0.026024451479315758, -0.012956439517438412, -0.0035947496071457863, 0.02277488261461258, 0.042732540518045425, 0.016345476731657982, -0.002491220599040389, -0.02182650938630104, -0.02150573767721653, 0.0012360219843685627, 0.025857092812657356, 0.03514556214213371, 0.01047393586486578, 0.01704280823469162, 0.02945532836019993, -0.02987372875213623, 0.008068137802183628, -0.011108508333563805, 0.03366721794009209, 0.024866880849003792, 0.003856249153614044, 0.028228024020791054, -0.6082971692085266, -0.005488007329404354, -0.008047218434512615, -0.002585360547527671, -0.0166523028165102, 0.01608048938214779, 0.03614972159266472, -0.007642765063792467, -0.036289189010858536, 0.03673548251390457, -0.0037167826667428017, -0.00577391404658556, 0.011624534614384174, -0.01886981911957264, -0.009002563543617725, -0.00541478767991066, 0.0007675017113797367, -0.009853309951722622, 0.044964004307985306, 0.0029845836106687784, 0.0015393616631627083, 0.009720816276967525, 0.007328965701162815, -0.002144297817721963, 0.004344381857663393, 0.013563118875026703, 0.01341667864471674, -0.01322839967906475, 0.024434534832835197, 0.011080615222454071, -0.034364551305770874, 0.014964757487177849, 0.008688763715326786, 0.007147659081965685, 0.05319252982735634, 0.003957362379878759, -0.006408486515283585, 0.022328589111566544, 0.02389061450958252, 0.02732149139046669, -0.018995339050889015, -0.032774630934000015, 0.025522373616695404, 0.006404999643564224, 0.0057390471920371056, 0.01011132262647152, 0.02461584098637104, 0.0036575093399733305, -0.019023234024643898, -0.024030081927776337, -0.01663835532963276, 0.005944760516285896, -0.00899559073150158, 0.0013475952437147498, 0.012524093501269817, -0.0034221597015857697, 0.018019074574112892, -0.01905112713575363, 0.02740517072379589, 0.009128083474934101, 0.015996810048818588, 0.019846085458993912, -0.00704654585570097, -0.03369510918855667, 0.00983936246484518, 0.00983936246484518, -0.005390380974858999, 0.019553206861019135, 0.025773413479328156, -0.03486663103103638, -0.0007077925838530064, 0.0220636036247015, -0.02811644971370697, -0.024950560182332993, -0.018841926008462906, 0.0439598448574543, 0.013849025592207909, 0.010376309044659138, -0.002191367791965604, 0.02835354395210743, -0.012468306347727776, -0.00615396024659276, 0.010425122454762459, -0.021059444174170494, 0.028144342824816704, -0.006973325740545988, -0.005484520923346281, -0.025229493156075478, 0.005840160418301821, 0.028228024020791054, 0.01179189421236515, 0.0038841424975544214, -0.02055736444890499, -0.001348466845229268, 0.0027004205621778965, 0.04382038116455078, -0.0035302462056279182, 0.0038109226152300835, -0.01489502377808094, -0.01198714692145586, -0.0014940351247787476, 0.02133837714791298, 0.0040549892000854015, -0.010564588941633701, 0.015048437751829624, 0.014602144248783588, 0.014783451333642006, -0.013151693157851696, 0.030933674424886703, -0.017098594456911087, 0.007496325299143791, -0.004278135485947132, -0.020682884380221367, 0.010013695806264877, 0.013946651481091976, -0.03506188467144966, 0.022802775725722313, -0.009762655943632126, 0.006771099288016558, 0.0009518589940853417, 0.015634195879101753, -0.0019664778374135494, -0.011199161410331726, -0.0035441929940134287, -0.019009286537766457, 0.023207228630781174, 0.013570092618465424, -0.03366721794009209, -0.009867256507277489, 0.025034239515662193, -0.005634447559714317, -0.01831195317208767, 0.020654991269111633, -0.006248100195080042, -0.0013179585803300142, 0.003671456128358841, 0.021449951454997063, -0.01871640607714653, 0.01047393586486578, -0.0261220782995224, -0.003197269979864359, -0.0035162996500730515, 0.019539259374141693, 0.0052160476334393024, -0.06259257346391678, -0.032774630934000015, -0.011568747460842133, 0.02701466530561447, -0.016931235790252686, 0.014176771976053715, -0.01905112713575363, 0.003486662870272994, -0.010006722994148731, 0.018060913309454918, 0.0002560518041718751, 5.8074729167856276e-05, -0.0008620774024166167, -0.03932955861091614, -0.022286750376224518, -0.004414115101099014, -0.0036784294061362743, 0.022105442360043526, 0.0005744277150370181, -0.031352072954177856, 0.01776803471148014, -0.008075111545622349, 0.009386097081005573, -0.0010102605447173119, 0.00960227008908987, -0.02644285187125206, -0.009107164107263088, -0.0090862438082695, -0.0206270981580019, 0.01721016876399517, -0.009016510099172592, 0.040277931839227676, -0.0044803619384765625, 0.0030839534010738134, -0.002981096738949418, -0.0027579504530876875, -0.023472215980291367, 0.016219956800341606, -0.005174207966774702, -0.007691578473895788, 0.012035960331559181, 0.012586853466928005, 0.01609443686902523, 0.010041588917374611, 0.018521154299378395, 0.007635791786015034, -0.013193532824516296, -0.008939803577959538, 0.005303214304149151, 0.006955892778933048, -0.019957659766077995, 0.024336908012628555, -0.013033146038651466, -0.005902920383960009, 0.004243268631398678, 0.016038648784160614, 0.027182023972272873, 0.02262146957218647, 0.02468557469546795, -0.024016134440898895, -0.010299602523446083, -0.014616090804338455, 0.017572781071066856, 0.0012900653528049588, 0.006038900464773178, -0.0004467286926228553, 0.02619181200861931, -0.00742659205570817, -0.024392694234848022, -0.020822351798415184, -0.002186137717217207, 0.010529722087085247, -0.009825415909290314, 0.009581349790096283, -0.013186559081077576, 0.0331372432410717, -0.013458519242703915, -0.01935795322060585, 0.020180804654955864, -0.011380467563867569, -0.016261795535683632, 0.012879732996225357, 0.03863222524523735, 0.0016186833381652832, 0.012935519218444824, -0.03338828310370445, -0.006087713409215212, 0.034280870109796524, 0.016945181414484978, 0.0028311703354120255, -0.011840707622468472, 0.0019891413394361734, 0.04183995723724365, 0.0035738295409828424, 0.013862972147762775, -0.015383156947791576, -0.0010564589174464345, 0.06917539238929749, 0.02701466530561447, -0.025773413479328156, 0.022844616323709488, -0.004145642276853323, 0.014058224856853485, 0.01362587884068489, 0.026080239564180374, 0.0222309622913599, -0.029176395386457443, 0.035089775919914246, -0.03575921431183815, -0.007754338439553976, 0.03467137739062309, -0.015118170529603958, -0.019929764792323112, 0.0020431845914572477, 0.01966477930545807, 0.017335688695311546, 0.015313424170017242, 0.013444572687149048, 0.0011662887409329414, 0.016833608970046043, 0.018841926008462906, -0.014232558198273182, -0.017879607155919075, 0.0017520481487736106, -0.001901974668726325, -0.0001754227268975228, -0.0018618779722601175, -0.008897963911294937, 0.00797051191329956, 0.00595173379406333, 0.0167359821498394, 0.02133837714791298, 0.021547576412558556, 0.008179711177945137, -0.008402857929468155, 0.015954969450831413, -0.03846486657857895, -0.006729259621351957, 0.020515525713562965, 0.009302416816353798, 0.020906031131744385, -0.025787359103560448, 0.005550767295062542, -0.011157321743667126, -0.048143841326236725, -0.014532411471009254, -0.00418399553745985, 0.010439069010317326, 0.011973200365900993, -0.021073391661047935, -0.014323211275041103, 0.005714640486985445, 0.0387159064412117, -0.000980623997747898, -0.01410006545484066, -0.01389783900231123, 0.014037305489182472, 0.018507206812500954, -0.015899183228611946, -0.0083261514082551, 0.05648393929004669, -0.006418946664780378, 0.015787610784173012, 0.005941273644566536, 0.02382088080048561, -0.009455829858779907, 0.02493661269545555, -0.00651308661326766, -0.03497820347547531, -0.0077613117173314095, 0.009211763739585876, 0.03299777954816818, 0.02245410904288292, 0.0037690827157348394, 0.024838987737894058, 0.001770353177562356, -0.0123009467497468, -0.010048562660813332, -0.03793489187955856, 0.012782106176018715, 0.06822702288627625, 0.04133787751197815, 0.01785171404480934, 0.031045246869325638, -0.018688512966036797, -0.005669313948601484, -0.01285881269723177, -0.030292127281427383, 0.014908971264958382, -0.01832590065896511, 0.010759841650724411, 0.010906281881034374, -0.0014609118225052953, 0.006035413593053818, 0.012321867048740387, -0.012175426818430424, -0.015173957683146, -0.0053450544364750385, -0.0006711826426908374, -0.009407016448676586, -0.008702711202204227, -0.010362362489104271, -0.006840832531452179, 0.03698652237653732, 0.013402732089161873, -0.022440163418650627, 0.04580080509185791, 0.008270364254713058, -0.010550642386078835, -0.018200380727648735, -0.007004705723375082, 0.014504518359899521, 0.019162699580192566, 0.016443101689219475, -0.015034490264952183, 0.026345225051045418, -0.0024249739944934845, 0.020599205046892166, 0.02613602578639984, 0.02995740808546543, 0.01655467599630356, 0.024350853636860847, 0.018060913309454918, 0.012091747485101223, -0.01799118146300316, -0.05469876900315285, -0.005603067576885223, 0.019873978570103645, -0.03469926863908768, -0.01934400573372841, 0.020055284723639488, 0.003233879804611206, -0.04819962754845619, -0.03369510918855667, 0.02587103843688965, -0.017865661531686783, 0.01896744593977928, 0.012356733903288841, -0.029817942529916763, -0.001654421561397612, -0.01679176837205887, -0.038353294134140015, -0.0011349087581038475, -0.010599455796182156, -0.03283041715621948, 0.0011671604588627815, -0.02444848045706749, -0.012001093477010727, -0.010536695830523968, 0.028646422550082207, -0.015076330862939358, -0.007893805392086506, -0.05489402264356613, -0.0008154432871378958, 0.004232808947563171, 0.005676287226378918, 0.027182023972272873, 0.013033146038651466, -0.003936442546546459, 0.004654695279896259, -0.004978954792022705, -0.015913130715489388, 0.0013711302308365703, -0.04052897170186043, 0.005732073914259672, -0.013800212182104588, -0.018451420590281487, -0.026958877220749855, -0.027656210586428642, 0.00955345667898655, 0.002571413991972804, -0.010550642386078835, -0.003361143171787262, 0.02086419053375721, 0.008144844323396683, 0.021728884428739548, 0.007116279099136591, 0.005212561227381229, 0.03121260739862919, 0.0037063227500766516, -0.004330435302108526, -0.0024424074217677116, -0.009427936747670174, -0.02780962362885475, -0.013835079036653042, -0.013012225739657879, -0.012091747485101223, -0.007391725666821003, 0.0038736825808882713, 0.012293973937630653, -0.006087713409215212, 0.00400268891826272, 0.0057390471920371056, -0.002128607826307416, 7.883126818342134e-05, 0.009051376953721046, 0.00043016704148612916, -0.004309515468776226, 0.006422433070838451, -0.012475280091166496, -0.004187482409179211, -0.00883520394563675, 0.012949466705322266, 0.028813783079385757, -0.001301396987400949, -0.0006812067585997283, -0.0017468181904405355, -0.019413739442825317, -0.040835797786712646, 0.0023256042040884495, -0.005073094740509987, 0.019469525665044785, -0.009923042729496956, -0.023053815588355064, -0.049650080502033234, -0.0040061757899820805, -0.019929764792323112, -0.003999202512204647, 0.0014609118225052953, -0.032858312129974365, -0.019162699580192566, 0.000176512316102162, 0.020515525713562965, -0.004313001874834299, -0.002024007961153984, -0.02875799685716629, -0.01175005454570055, 0.013444572687149048, 0.013849025592207909, 0.011268895119428635, -0.004686075262725353, 0.010439069010317326, -0.028618529438972473, 0.0016674965154379606, -0.018437473103404045, -0.056679192930459976, -0.014560304582118988, -0.02539685368537903, 0.03107313998043537, 0.01357706543058157, 0.015913130715489388, 0.030068980529904366, 0.0004277699626982212, 0.027363330125808716, -0.015592357143759727, 0.008493511006236076, -0.0007348142098635435, 0.009971856139600277, -0.02375114895403385, 0.011889521032571793, 0.006673472933471203, -0.011973200365900993, 0.022802775725722313, -0.008235498331487179, 0.004222348798066378, -0.00883520394563675, -0.004124722443521023, 0.00872363056987524, -0.002618483966216445, 0.0027893304359167814, 0.00704654585570097, 0.007259232457727194, 0.008897963911294937, 0.0038806558586657047, -0.06242521479725838, -0.009504643268883228, 0.02828381024301052, 0.0028573202434927225, 0.00416307570412755, 0.011868600733578205, 0.02651258558034897, -0.025982612743973732, 0.013876918703317642, 0.004323462024331093, 0.019455580040812492, -0.013967571780085564, -0.009685949422419071, -0.04356934130191803, 2.2459013052866794e-05, 0.03868801146745682, -0.0031833231914788485, 0.017489101737737656, -0.02389061450958252, -0.0010738922283053398, -0.017182275652885437, 0.0061644199304282665, 0.01317958626896143, -0.02269120328128338, 0.002097227843478322, -0.004142155405133963, -0.005840160418301821, -0.013960598967969418, -0.02245410904288292, -0.02669389173388481, 0.015438943170011044, 0.021059444174170494, 0.011324681341648102, 0.01928821951150894, -0.004822054877877235, -0.007872885093092918, 0.005449654068797827, 0.01433715783059597, 0.03472716361284256, -0.0010311806108802557, 0.03442033752799034, 0.039859529584646225, -0.022649362683296204, -0.024016134440898895, 0.010955095291137695, 0.0016073515871539712, -0.0017738398164510727, 0.017823820933699608, 0.031240500509738922, -0.017558835446834564, -0.02588498592376709, 0.009609242901206017, -0.0007138942601159215, -0.011736107990145683, -0.007301072124391794, 0.025536319240927696, 0.02446242794394493, -0.009769629687070847, -0.017168328166007996, -0.007043058983981609, -0.01783776842057705, 0.006073766853660345, -0.03302567079663277, 0.007907751947641373, 0.006446839775890112, -0.01935795322060585, -0.00852140411734581, -0.0029009035788476467, -0.0034796895924955606, 0.029427435249090195, -0.0009291956666857004, -0.015424996614456177, 0.0077264453284442425, 0.01760067418217659, -0.03670758754014969, 0.005038227885961533, 0.0052648610435426235, 0.020166859030723572, -0.028479063883423805, 0.012224240228533745, 0.011519934050738811, 0.010857468470931053, 0.008200631476938725, -0.0053764344193041325, 0.004037555772811174, 0.024406639859080315, -0.010536695830523968, -0.0029427434783428907, 0.00919781718403101, -0.007231338880956173, -0.004501281771808863, 0.004424575250595808, 0.019720565527677536, -0.008653897792100906, -0.026819411665201187, -0.004410628695040941, 0.01198714692145586, 0.009546482935547829, -0.006066793575882912, 0.005676287226378918, 0.005958707071840763, -0.039078518748283386, 0.004640748258680105, -0.007273179013282061, 0.002644633874297142, -0.01584339700639248, -0.03506188467144966, 0.0130610391497612, 0.0036435627844184637, 0.02175677753984928, 0.01031354907900095, 0.023235121741890907, 0.007294098846614361, 0.024964507669210434, -0.029009036719799042, -0.01734963431954384, -0.005094014573842287, -0.025843145325779915, -0.005135854706168175, -0.009211763739585876, 0.0019473013235256076, 0.0028451168909668922, 0.01465793140232563, 0.003298383206129074, -0.011213107965886593, -0.019790299236774445, -0.025536319240927696, -0.026861252263188362, 0.009992776438593864, -0.009588323533535004, -0.0007274050731211901, -0.005038227885961533, -0.004330435302108526, -0.01270539965480566, -0.021631257608532906, 0.028228024020791054, -0.0010512288426980376, 0.01357706543058157, 0.023472215980291367, -0.002988070249557495, -0.0018915146356448531, -0.005285780876874924, 0.00792169850319624, -0.009162950329482555, -0.04501979053020477, -0.016443101689219475, 0.022956188768148422, 0.02979004755616188, -0.021477844566106796, -0.016345476731657982, 0.007621845230460167, -0.00964410975575447, -0.02278882823884487, 0.012551986612379551, -0.012586853466928005, -0.006415459793061018, 0.030208447948098183, 0.001237765303812921, 0.025912879034876823, -0.0012203319929540157, -0.009651083499193192, -0.03495030850172043, -0.009469776414334774, 0.02372325398027897, -0.0018392147030681372, -0.02531317248940468, -0.022635415196418762, 0.030292127281427383, 0.021547576412558556, -0.02906482294201851, -0.05718127265572548, -0.027209917083382607, -0.018772194162011147, -0.018060913309454918, -0.00028002262115478516, -0.0018583913333714008, 0.00234826747328043, 0.0014626551419496536, -0.004487335216253996, 0.028409330174326897, -0.03394614905118942, 0.023848773911595345, -0.008632977493107319, 0.013925732113420963, 0.009365176782011986, 0.0012055137194693089, 0.004912707954645157, 0.004431548528373241, -0.054670874029397964, 0.002126864390447736, 0.017712248489260674, 0.003744676010683179, -0.00671182619407773, 0.016136275604367256, -0.003132766578346491, 0.015285530127584934, 0.013570092618465424, 0.005289267748594284, 0.005045201163738966, -0.01215450745075941, -0.004114262294024229, -0.05946852266788483, -0.012796052731573582, 0.0034483096096664667, 0.005453140940517187, -0.00380394933745265, 0.004647721536457539, 0.004075909033417702, 0.000505566131323576, -0.003681916045024991, -0.030794207006692886, -8.536876703146845e-05, 0.014309264719486237, -0.0025801307056099176, 0.029845835641026497, 0.0083261514082551, -0.007796178571879864, 0.03581500053405762, 0.007412645500153303, 0.0022314642556011677, -0.018855873495340347, 0.03224465996026993, 0.00812392495572567, -0.0011174754472449422, 0.00742659205570817, -0.030794207006692886, -0.017391474917531013, -0.007635791786015034, -0.002735287183895707, 0.0030264235101640224, 0.014769504778087139, -0.023207228630781174, -0.017307795584201813, -0.01341667864471674, 0.012328839860856533, 0.02683335728943348, -0.021924136206507683, -0.03375089913606644, -0.030933674424886703, 0.003817895893007517, 0.004637261852622032, -0.018521154299378395, -0.0005626602214761078, -0.0221472829580307, 0.015717877075076103, 5.763889566878788e-05, -0.025341065600514412, 0.010955095291137695, 0.017586728557944298, 0.006038900464773178, -0.01967872492969036, -0.0030839534010738134, 0.16936813294887543, -0.02158941701054573, -0.0028852135874330997, 0.013151693157851696, 0.010885361582040787, -0.01617811620235443, 0.014671877957880497, -0.0002451559994369745, -0.024016134440898895, 0.006823399569839239, 0.008298258297145367, 0.019483473151922226, -0.004295568913221359, -0.0007400442264042795, 0.014030331745743752, 0.0177540872246027, -0.03941323980689049, -0.022677255794405937, -0.00884217768907547, -0.006596766412258148, -0.020682884380221367, -0.02813039720058441, -0.017252007499337196, -0.0061644199304282665, 0.0018026047619059682, -0.035647641867399216, -0.008800337091088295, -0.008897963911294937, 0.009420963004231453, 0.033639322966337204, -0.01871640607714653, 0.015160010196268559, 0.031435754150152206, 0.003845789236947894, -0.007684605196118355, -0.019790299236774445, 0.002696933690458536, 0.004996388219296932, 0.02047368511557579, -0.01158966775983572, 0.02635917253792286, -0.020403951406478882, -0.00543570751324296, -0.030682634562253952, 0.008730604313313961, 0.029734261333942413, -0.004849947988986969, -0.0033646298106759787, -0.021366270259022713, -0.020278431475162506, -0.04984533414244652, 0.015104223974049091, 0.001143625471740961, 0.012949466705322266, -0.019706619903445244, 0.000392467511119321, 0.0023430376313626766, 0.030487380921840668, 0.009260577149689198, -0.018270114436745644, 0.01134560164064169, -0.0014739867765456438, 0.012900653295218945, -0.00024951432715170085, -0.013570092618465424, -0.0002582309825811535, -0.018256166949868202, 0.009420963004231453, 0.014232558198273182, -0.025773413479328156, -0.017698301002383232, -0.014922917820513248, -0.019302166998386383, 0.01920454017817974, -0.010299602523446083, -0.0222309622913599, 0.008849150501191616, 0.019134806469082832, 0.021714936941862106, 0.03609393537044525, -0.011261921375989914, 0.007168578915297985, -0.028451168909668922, -0.013563118875026703, -0.016052596271038055, -0.0236674677580595, 0.0014243017649278045, -0.015160010196268559, 0.019804244861006737, 0.00903743039816618, -0.013730478473007679, 0.027112292125821114, 0.0007718600099906325, -0.008605084381997585, -0.0024040541611611843, -0.027209917083382607, 0.0037795426324009895, -0.0018339847447350621, 0.0033803198020905256, 0.0300131943076849, -0.013493386097252369, 0.06945432722568512, -0.0016613949555903673, -0.013479438610374928, 0.0003336300724186003, -0.0001707375340629369, -0.02429506741464138, 0.015899183228611946, 0.010920228436589241, -0.0326351672410965, 0.0006031927186995745, -0.017977233976125717, 0.0003024680190719664, -0.0062446133233606815, 0.00907927006483078, 0.040333718061447144, 0.020738670602440834, -0.0013502102810889482, 0.021394163370132446, -0.018186433240771294, -0.016052596271038055, -0.02230069600045681, 0.027614369988441467, -0.004958034958690405, -0.0038074359763413668, -0.012273053638637066, -0.01679176837205887, 0.0027091370429843664, -0.04072422534227371, -0.013200505636632442, 0.03185415267944336, -0.007621845230460167, 0.019330060109496117, 0.010662215761840343, -0.007600925397127867, 0.021770723164081573, 0.029176395386457443, -0.02453215979039669, -0.0019873979035764933, 0.008870070800185204, -0.02373720146715641, -0.008054191246628761, -0.023304855450987816, 0.006931486073881388, -0.014643984846770763, -0.04747440293431282, -0.026665998622775078, -0.010390255600214005, -0.022342536598443985, -0.006924512796103954, -6.379503611242399e-05, -0.0016735981917008758, -0.013772319070994854, -0.028004877269268036, 0.021533630788326263, 0.005198614671826363, 0.0028172237798571587, -0.0328025259077549, -0.01163150742650032, 0.0023116576485335827, -0.0415889173746109, 0.023611681535840034, 0.013123799115419388, -0.015676036477088928, -0.01190346758812666, 0.01138744130730629, -0.17773613333702087, 0.02326301485300064, 0.01815854012966156, -0.010697081685066223, 0.025271333754062653, -0.026387065649032593, 0.012063853442668915, 0.014274397864937782, -0.0023116576485335827, 0.011150348000228405, 0.01656862162053585, 0.006903592497110367, -0.013326025567948818, -0.008988616988062859, -0.007586978841573, -0.013528252020478249, 0.01358403917402029, 0.006188826635479927, 0.020208697766065598, 0.009888175874948502, 0.007831045426428318, -0.035312920808792114, 0.012015040963888168, -0.002965406747534871, -0.0012072570389136672, 0.019553206861019135, -0.008179711177945137, 0.0032687464263290167, 0.002597563900053501, -0.020961817353963852, 0.006401513237506151, 0.002133837668225169, 0.029287969693541527, -0.006202773191034794, -0.005453140940517187, 0.02143600396811962, -0.022886455059051514, -0.009427936747670174, -0.013751398772001266, 0.04524293914437294, -0.00041338748997077346, 0.05425247550010681, -0.01199412066489458, -0.030152661725878716, -0.004745348356664181, 0.012419493868947029, 0.0261220782995224, 0.004811594728380442, 0.004100315738469362, -0.014630037359893322, -0.009455829858779907, -0.013249319046735764, 0.001348466845229268, 0.03163100779056549, 0.022565683349967003, 0.02255173586308956, -0.004354842007160187, -0.019065072759985924, -0.012447386980056763, -0.0009788806783035398, -0.007545138709247112, -0.003877169219776988, 0.028730103746056557, -0.0018461880972608924, -0.010773788206279278, -0.03336039185523987, -0.00014273526903707534, -0.0003445258771535009, -0.032384127378463745, 0.02843722328543663, -0.021561523899435997, -0.013974545523524284, -0.007824071682989597, 0.014420838095247746, 0.011568747460842133, -0.012517119757831097, -0.001369386911392212, 0.013500358909368515, 0.016903342679142952, -0.007161605637520552, -0.02341642789542675, 0.02246805652976036, -0.007287125568836927, -0.017698301002383232, 0.016680195927619934, -0.008075111545622349, -0.00955345667898655, 0.018144594505429268, -0.022733042016625404, 0.004379248712211847, -0.00740567222237587, -0.030543167144060135, -0.014574251137673855, -0.012405546382069588, -0.0015707416459918022, 0.012789079919457436, -0.00744751188904047, 0.01854904741048813, -0.002438920782878995, -0.008974670432507992, 0.005756480619311333, 0.01688939519226551, 0.0042502423748373985, 0.02701466530561447, 0.012224240228533745, 0.0003022500895895064, -0.015076330862939358, 0.008096031844615936, 0.04387616738677025, -0.012140560895204544, -0.0446292869746685, 0.005582147277891636, 0.024727413430809975, 0.030598953366279602, 0.0035285030025988817, 0.014016385190188885, -0.01792144775390625, -0.0038283560425043106, 0.019846085458993912, 0.0029793535359203815, 0.05846436321735382, 0.004103802144527435, -0.003418673062697053, 0.04772544279694557, -0.011164294555783272, -0.03575921431183815, -0.0875849723815918, -0.022175176069140434, 7.087732228683308e-05, 0.016038648784160614, 0.0027631802950054407, 0.004532661754637957, 0.0038632226642221212, 0.033499859273433685, -0.0033262765500694513, 0.034057725220918655, -0.027851464226841927, -0.032858312129974365, -0.012970386072993279, -0.03216097876429558, 0.0013667718740180135, -0.010048562660813332, -0.015871290117502213, 0.002053644508123398, -0.0012238187482580543, 0.03177047148346901, -0.012356733903288841, -0.014420838095247746, -0.005944760516285896, -0.01888376660645008, 0.002496450673788786, 0.025131866335868835, -0.04267675429582596, 0.005610040854662657, -0.0054949806071817875, 0.012231213971972466, 0.0072522591799497604, -0.005603067576885223, 0.0130191994830966, -0.015048437751829624, 0.016931235790252686, -0.01998555287718773, 0.010041588917374611, -6.466670311056077e-05, 0.02596866525709629, -0.01744726113975048, 0.01648494228720665, 0.0058820005506277084, 0.043374087661504745, -0.01358403917402029, -0.008151818066835403, -0.008556270971894264, -0.03098946064710617, 0.042732540518045425, -0.004661668557673693, -0.012042934074997902, -0.02669389173388481, -0.012468306347727776, 0.005857593845576048, 0.0019141780212521553, 0.012886706739664078, -0.010439069010317326, -0.012517119757831097, -0.00020462353131733835, -0.027516745030879974, -0.033890362828969955, -0.04239782318472862, -0.009699895977973938, -0.024267174303531647, 0.026554424315690994, 0.029650582000613213, 0.023597734048962593, -0.017544887959957123, 0.0010738922283053398, 0.013109852559864521, -0.01880008727312088, -0.0037202693056315184, 0.011561774648725986, -0.01792144775390625, 0.0005195128032937646, -0.017182275652885437, -0.014009411446750164, -0.028311703354120255, -0.020529471337795258, 0.01871640607714653, -0.008744550868868828, 0.0011662887409329414, -0.02204965613782406, -0.008361018262803555, -0.012754213064908981, 0.01500659715384245, 0.015968916937708855, -0.011526907794177532, 0.008444697596132755, 0.011303761042654514, -0.016261795535683632, 0.03386247158050537, 0.008263391442596912, 0.0037830292712897062, -0.026331279426813126, -0.006181853357702494, 0.016345476731657982, -0.0004855178121943027, 0.005958707071840763, -0.012224240228533745, -0.020654991269111633, -0.03377879038453102, 0.006499139592051506, -0.07079320400953293, 0.021324431523680687, 0.010257762856781483, -0.03160311281681061, 0.01485318411141634, 0.016219956800341606, 0.016303636133670807, -0.0034308764152228832, 0.0005818369099870324, 0.010369335301220417, -0.029901621863245964, 0.013995464891195297, -0.0034116997849196196, -0.01326326560229063, -0.007168578915297985, -0.006021467037498951, 0.029483221471309662, -0.008849150501191616, 0.009818443097174168, 0.023792987689375877, 0.009100190363824368, 0.0007095359032973647, 0.023876668885350227, -0.0054914942011237144, -0.00831917766481638, 0.018060913309454918, 0.01358403917402029, -0.014741610735654831, -0.014323211275041103, -0.012328839860856533, -0.00581575371325016, -0.02238437533378601, -0.005421760957688093, 0.023304855450987816, 0.008591137826442719, 0.002735287183895707, -0.017949340865015984, 0.02287250943481922, 0.010927202180027962, 0.03336039185523987, -0.009490696713328362, -0.022328589111566544, 0.005142827983945608, -0.01822827383875847, 0.006401513237506151, -0.0015655116876587272, -0.015592357143759727, 0.0047592949122190475, 0.0017346148379147053, -0.02093392424285412, 0.033248819410800934, 0.008347070775926113, -0.0300131943076849, -0.03542449697852135, -0.004665154963731766, 0.001069533871486783, 0.006900106091052294, 0.017740141600370407, 0.0022244909778237343, 0.0011575721437111497, 0.04100315645337105, -0.017461208626627922, 0.006255073472857475, -0.022272802889347076, 0.01999949850142002, -0.024838987737894058, -0.013702585361897945, -0.011247974820435047, 0.020334217697381973, -0.012691453099250793, 0.0012665303656831384, -0.00015254149911925197, 0.012384627014398575, 0.02587103843688965, -0.0003560754412319511, -0.0012360219843685627, -0.014260451309382915, 0.007684605196118355, 0.008130897767841816, 0.03478294983506203, 0.013849025592207909, 0.007635791786015034, -0.02659626491367817, -0.005418274085968733, 0.019497418776154518, 0.022495949640870094, -0.011261921375989914, -0.002287250943481922, 0.009497669525444508, 0.022398322820663452, -0.006464273203164339, 0.024434534832835197, -0.0050661214627325535, 0.015271583572030067, -0.03662390634417534, 0.008688763715326786, -0.003953875973820686, -0.0015759716043248773, 0.028325650840997696, -0.00852837786078453, 0.004971981514245272, 0.0033349930308759212, 0.006377106532454491, -0.016861502081155777, -0.049566399306058884, 0.013995464891195297, -0.02532711997628212, -0.04103105142712593, -0.00108435214497149, 0.002855577040463686, -0.01896744593977928, 0.011875574477016926, 0.002569670556113124, -0.00635269982740283, -0.03352775052189827, 0.036596015095710754, -0.0023238607682287693, 0.012837893329560757, -0.04499189928174019, 0.04962218552827835, -0.0001192002891912125, 0.006924512796103954, 0.024420587345957756, -0.011164294555783272, 0.02189624309539795, -0.00631086016073823, 0.02094787172973156, -0.024169547483325005, -0.01847931370139122, -0.006844319403171539, 0.024350853636860847, 0.003218189813196659, 0.004546608310192823, -0.010843521915376186, -0.013639825396239758, -0.010062509216368198, -0.004616341553628445, 0.0010651755146682262, 0.006785046309232712, 0.06845016777515411, 0.027279650792479515, -0.018576940521597862, 0.005449654068797827, -0.008012351579964161, -0.00843772478401661, 0.021463897079229355, 0.007475405465811491, -0.002123377751559019, -0.03712598606944084, 0.008430751040577888, 0.0007661941926926374, 0.003699349472299218, -0.022007817402482033, -0.008612057194113731, 0.006213233340531588, -0.02111523039638996, 0.013549172319471836, -0.019399791955947876, 0.010097376070916653, 0.006199286784976721, 0.016457049176096916, 0.0005282294587232172, 0.005027768202126026, -0.008486537262797356, -0.018284060060977936, 0.0024737874045968056, -0.012809999287128448, 0.0035319896414875984, -0.02962268888950348, 0.016108382493257523, -0.0040898555889725685, -0.054196689277887344, -0.021143123507499695, 0.010536695830523968, -0.013235372491180897, -0.0009623189689591527, -0.009727790020406246, 0.016373369842767715, 0.008200631476938725, 0.01091325469315052, 0.0130191994830966, 0.015996810048818588, -0.031184714287519455, -0.017712248489260674, -0.004382735583931208, -0.01871640607714653, 0.009783576242625713, -0.037795428186655045] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_contain_privacyoriented_contact_tracing_protocols_for_epidemics.json b/database/embeddings/publications_txt/2020_contain_privacyoriented_contact_tracing_protocols_for_epidemics.json new file mode 100644 index 0000000000000000000000000000000000000000..b4f5bf09459cb75fd5a5ad7b4cf18e875bfd35e9 --- /dev/null +++ b/database/embeddings/publications_txt/2020_contain_privacyoriented_contact_tracing_protocols_for_epidemics.json @@ -0,0 +1 @@ +[0.0011527972528710961, 0.016601743176579475, 0.03405185788869858, -0.028142515569925308, 0.016075167804956436, 0.008768938481807709, -0.02060956507921219, -0.002713324734941125, -0.02101912349462509, -0.011328678578138351, 0.005115823820233345, 0.01850326545536518, -0.010692400857806206, 0.004442977719008923, -0.0010330380173400044, 0.010158511810004711, 0.016206812113523483, -0.0170405562967062, -0.007046598941087723, 0.012857209891080856, -0.024339472874999046, 0.015124407596886158, -0.01363244466483593, -0.016982048749923706, -0.01758175902068615, 0.011540771462023258, 0.02548038586974144, -0.026826078072190285, 0.003640316193923354, -0.02066807448863983, 0.010611951351165771, -0.0014042003313079476, -0.014290664345026016, 0.012762133032083511, -0.019088348373770714, -0.01939551718533039, 0.01796206273138523, -0.016806522384285927, 0.03296945244073868, -0.014129766263067722, 0.03697727620601654, 0.016250694170594215, -0.021063005551695824, -0.016806522384285927, -0.0029181039426475763, 0.003788415575399995, 0.020317023620009422, -0.016821149736642838, -0.01347154751420021, -0.00020672187383752316, 0.003462962806224823, 0.04271109402179718, -0.019527161493897438, 0.002241601003333926, -0.008586100302636623, -0.014619773253798485, -0.01613367721438408, 0.01705518364906311, -0.015460831113159657, 0.0045929052866995335, 0.021092260256409645, -0.011723610572516918, -0.04929328337311745, 0.0031813913956284523, 0.0008648264920338988, 0.009522234089672565, -0.01917611062526703, 0.02315467782318592, -0.025012318044900894, 0.018942078575491905, 0.018956704065203667, 0.01864953525364399, 0.0238714050501585, -0.010970314964652061, 0.0013703751610592008, -0.022130781784653664, -0.006121436133980751, 0.0013091242872178555, -0.01021702028810978, 0.017113691195845604, -0.010758222080767155, 0.0008552274666726589, 0.010355977341532707, 0.025260979309678078, 0.016923539340496063, 0.025012318044900894, 0.033291250467300415, 0.018239976838231087, -0.004903730936348438, -0.015241424553096294, 0.0011747379321604967, 0.004728205967694521, 0.006476142909377813, -0.008944463916122913, -0.01238182932138443, 0.02564128302037716, -0.008169228211045265, 0.025582775473594666, -0.0036293459124863148, -0.008586100302636623, -0.003057061228901148, 0.024617386981844902, -0.02030239626765251, -0.020536430180072784, -0.026694433763623238, -0.010187766514718533, 0.023725135251879692, -0.00959536898881197, 0.0015577847370877862, 0.00338434218429029, -0.018371621146798134, 0.03963940590620041, -0.00028271417249925435, -0.016908911988139153, 0.012418396770954132, -0.003931029699742794, 0.00031128269620239735, -0.012433024123311043, -0.018430128693580627, -0.008622667752206326, 0.028683718293905258, -0.007730415556579828, -0.002954671625047922, 0.010282842442393303, 0.013822597451508045, 0.021048378199338913, -0.033993348479270935, -0.02603621408343315, 0.010377918370068073, -0.026270247995853424, -0.01239645667374134, -0.0013466061791405082, 0.002223317278549075, 0.032910946756601334, 0.0053388867527246475, 0.009712385945022106, -0.03513426333665848, -0.004336931277066469, -0.013420352712273598, -0.041014350950717926, -0.002013052813708782, 0.030278069898486137, -0.011072704568505287, 0.011643161065876484, -0.007613398600369692, 0.008768938481807709, 0.0029071334283798933, 0.01157733891159296, 0.017274590209126472, 0.008812819607555866, 0.0032380714546889067, -0.015270679257810116, 0.0023165647871792316, -0.0033112068194895983, -0.008271617814898491, 0.010078063234686852, 0.0021830927580595016, 0.022701239213347435, 0.0053388867527246475, -0.006439574994146824, -0.018708044663071632, 0.025012318044900894, 0.007847432047128677, -0.0008246020297519863, 0.012089286930859089, 0.0444955974817276, 0.010838671587407589, 0.01705518364906311, 0.0031887050718069077, 0.001542243524454534, -0.03261840343475342, 0.020229261368513107, -0.03141898289322853, -0.025421876460313797, -0.00995373260229826, 0.012133168987929821, 0.02584606222808361, 0.022130781784653664, -0.004925671499222517, -0.027572058141231537, -0.004497829359024763, 0.006940552964806557, 0.030570611357688904, 0.038849543780088425, 0.004029762465506792, 0.01576799899339676, 0.03264765813946724, 0.007017345167696476, 0.016192184761166573, 0.007174585945904255, 0.019629551097750664, 0.01535844150930643, 0.002245257841423154, 6.347927410388365e-05, -0.5939767360687256, -0.04303288832306862, 0.018049824982881546, -0.021428681910037994, -0.01667487993836403, 0.012674370780587196, 0.01614830456674099, 0.002279997104778886, -0.04426156356930733, 0.05959075316786766, -0.01031209621578455, 0.018049824982881546, 0.008249676786363125, -0.011635847389698029, -0.00718189962208271, -0.009412530809640884, -0.010663146153092384, -0.011474949307739735, 0.030044035986065865, 0.02081434428691864, -0.03677249699831009, 0.02708936482667923, 0.008834760636091232, -0.002195891458541155, -0.009134615771472454, 0.017728028818964958, 0.020711954683065414, -0.030073290690779686, 0.009719699621200562, -0.006852790247648954, -0.04218452051281929, 0.003446507267653942, 0.03501724451780319, 0.016411591321229935, 0.05631428584456444, -0.011065390892326832, 0.0008963661966845393, 0.03358379006385803, 0.022832883521914482, 0.019600296393036842, -0.028961632400751114, -0.03996120020747185, 0.0252902340143919, 0.0013219229876995087, -0.006658981554210186, 0.005814266856759787, 0.002912618685513735, -0.005744788330048323, -0.009639250114560127, -0.01990746520459652, -0.0006687321583740413, -0.0035031873267143965, -0.023798270151019096, -0.013259454630315304, 0.02366662584245205, -0.019629551097750664, 0.02350572869181633, -0.012893777340650558, 0.03121420368552208, -0.015475458465516567, -0.006227482110261917, 0.013040048070251942, 0.022335560992360115, -0.0451684445142746, -0.012330634519457817, 0.011635847389698029, -0.005185302346944809, 0.009244319051504135, 0.02419320121407509, -0.021750478073954582, 0.027689075097441673, 0.038878798484802246, 0.0010632063494995236, -0.02710399217903614, 0.017333097755908966, 0.02439798042178154, 0.026489654555916786, -0.013976181857287884, -0.017684148624539375, 0.005997105501592159, 0.025553520768880844, 0.0015897814882919192, -0.017991317436099052, -0.0058874026872217655, 0.028610581532120705, -0.007357424590736628, -0.02347647398710251, -0.00970507226884365, 0.019059093669056892, -0.009002972394227982, -0.00444663455709815, 0.023608118295669556, -0.025202471762895584, -0.029912393540143967, 0.0006838163244538009, 0.024105438962578773, -0.006907641887664795, -0.019614923745393753, -0.005547322798520327, -0.016908911988139153, 0.005013434216380119, -0.00951492041349411, 0.025187844410538673, 0.006121436133980751, 0.033993348479270935, 0.006534650921821594, -0.017347725108265877, 0.008001016452908516, 0.05333035811781883, -0.022145409137010574, -0.017172200605273247, -0.02119464986026287, 0.005401052068918943, -0.0071709295734763145, 0.025714419782161713, -0.02818639576435089, 0.04613383114337921, 0.024090811610221863, -0.011694355867803097, 0.012528100050985813, 0.008264304138720036, 0.018810434266924858, 0.0022671984042972326, -0.006468829233199358, -0.011877194978296757, 0.02995627373456955, 0.04420305788516998, -0.042447805404663086, -0.015036645345389843, -0.0077962372452020645, 0.0007788923685438931, -0.0373283252120018, 0.027586685493588448, 0.009902537800371647, 0.052481986582279205, 0.010078063234686852, 0.021677343174815178, -0.010692400857806206, 0.008030271157622337, -0.01863490790128708, -0.01534381415694952, -0.007920567877590656, 0.02008298970758915, 0.005902029573917389, -0.04288661852478981, -0.025363368913531303, -0.02708936482667923, 0.008388634771108627, -0.011467636562883854, -0.0054997848346829414, 0.00619822833687067, 0.010392545722424984, -0.0035507252905517817, 0.006607786752283573, 0.02169197052717209, -0.006439574994146824, -0.0027517208363860846, -0.03051210381090641, -0.010633892379701138, 0.009851342998445034, -0.003364230040460825, 0.035456057637929916, -0.0015660125063732266, -0.03141898289322853, 0.03138972818851471, -0.01391035970300436, 0.02296452596783638, 0.03141898289322853, 0.013018107041716576, -0.03963940590620041, 0.004278422798961401, -0.017611011862754822, -0.02366662584245205, 0.026460399851202965, -0.016382336616516113, 0.024310218170285225, -0.028025498613715172, -0.01831311360001564, -0.008944463916122913, -0.010845985263586044, 0.0035964350681751966, 0.010319409891963005, -0.03627517446875572, 0.0009973845444619656, 0.017523249611258507, 0.00039127457421272993, 0.005167018622159958, 0.014597833156585693, 0.008278931491076946, 0.014597833156585693, -0.015416949987411499, 0.006194571498781443, -0.021238530054688454, 0.03767937794327736, -0.005247467663139105, 0.009566115215420723, 0.00960999634116888, 0.005276721436530352, 0.013120496645569801, 0.03586561605334282, 0.0401659794151783, 0.016587115824222565, 0.003377028740942478, -0.030599866062402725, 0.01211854163557291, -0.01777191087603569, 0.01497082319110632, -0.007189213298261166, 0.039580896496772766, -0.014861120842397213, 0.009229691699147224, -0.00781817827373743, -0.022145409137010574, 0.001203992054797709, -0.029210291802883148, 0.03071688301861286, -0.0023458190262317657, 0.03261840343475342, -0.026299502700567245, -0.001803702674806118, -0.005580233875662088, -0.00233667716383934, 0.017274590209126472, -0.011584652587771416, -0.024090811610221863, 0.0032271011732518673, 0.025948451831936836, 0.04078031703829765, 0.008008330129086971, -0.007002717815339565, -0.011189721524715424, 0.021662715822458267, 0.025407250970602036, 0.0007843775674700737, -0.011957643553614616, 0.0042528253979980946, 0.03621666878461838, -0.017142945900559425, 0.02368125319480896, -0.017479369416832924, -0.0206241924315691, 0.04162868857383728, 0.03647995367646217, -0.011109272949397564, 0.013427665457129478, 0.011431068181991577, 0.015914270654320717, 0.030746137723326683, 0.003099114168435335, 0.020887481048703194, -0.021779732778668404, 0.01481723878532648, -0.026782196015119553, 0.01614830456674099, 0.01687965914607048, 0.0032929228618741035, 0.0031448237132281065, 0.0010138399666175246, 0.032940201461315155, 0.025553520768880844, -0.004150435794144869, -0.00995373260229826, -0.0016053228173404932, -0.012667057104408741, 0.008907895535230637, -0.022496460005640984, 0.009617310017347336, -0.021969884634017944, -0.012184363789856434, 0.0024920899886637926, 0.015724118798971176, -0.011453009210526943, 0.0019143200479447842, -0.0011665101628750563, 0.013734834268689156, 0.024617386981844902, 0.012579294852912426, -0.0007423246861435473, 0.01901521347463131, 0.008300871588289738, -0.03285243734717369, -0.030570611357688904, 0.003201503772288561, 0.035105008631944656, 0.012155109085142612, -0.011635847389698029, -0.013866478577256203, -0.014283350668847561, -0.020551057532429695, -0.009295513853430748, 0.01597277820110321, 0.007262348663061857, -0.029020139947533607, -0.002013052813708782, -0.014517383649945259, -0.00529500562697649, 0.016894284635782242, -0.014619773253798485, -0.009902537800371647, 0.006304274313151836, -0.007357424590736628, 0.007342797704041004, -0.018576400354504585, -0.017376979812979698, 0.029488207772374153, -0.024983065202832222, 0.02330094948410988, -0.01901521347463131, -0.006026359740644693, -0.015314560383558273, 0.019673431292176247, 0.018795806914567947, -0.0050609721802175045, -0.016967421397566795, 0.0041358089074492455, 0.023037662729620934, 0.010414485819637775, 0.008681176230311394, 0.01758175902068615, -0.01630920171737671, -0.01490500196814537, -0.06769415736198425, -0.022481832653284073, 0.010290156118571758, 0.048883724957704544, 0.020492548123002052, 0.005836207885295153, -0.0015970950480550528, -0.015065900050103664, -0.005247467663139105, -0.012974225915968418, -0.021604208275675774, 0.003040605690330267, -0.001366718439385295, -0.03206257522106171, 0.017128318548202515, -0.0015203028451651335, -0.010626578703522682, 0.016177557408809662, 0.006893014535307884, 0.008205795660614967, -0.005832551047205925, 0.009982987307012081, 0.005715534090995789, 0.017523249611258507, -0.03694802150130272, 0.00457827840000391, 0.0074378736317157745, 0.027966991066932678, -0.033847078680992126, 0.03387633338570595, 0.015139034949243069, -0.0035159860271960497, -0.0040663303807377815, -0.0013246656162664294, 0.01102882344275713, 0.025772927328944206, -0.025743672624230385, -0.021311664953827858, 0.030395086854696274, 0.017698775976896286, 0.044583361595869064, -0.004172376357018948, 0.017464742064476013, 0.03712354600429535, 0.025802182033658028, -0.0033587447833269835, -0.011723610572516918, -0.0008090607589110732, -0.03305721655488014, 0.0049512689001858234, 0.01724533550441265, -0.00691495556384325, -0.007876686751842499, 0.03446141630411148, -4.608103699865751e-05, -0.007083166856318712, -0.027191754430532455, 0.013837223872542381, -0.007832804694771767, 0.006417634431272745, 0.009090734645724297, -0.012879149988293648, -0.04677742347121239, -0.018064452335238457, -0.010436426848173141, 0.020945988595485687, -0.011160467751324177, -0.018547145649790764, -0.014948883093893528, -0.016952794045209885, -0.006139719858765602, -0.005803296808153391, 0.007927881553769112, 0.010107317008078098, -0.018766552209854126, -0.034695450216531754, 0.02726488932967186, 0.013610504567623138, 0.011972270905971527, 0.004176033195108175, -0.017333097755908966, -0.02670906111598015, 0.02565591037273407, 0.014210214838385582, -0.017815791070461273, 0.009390589781105518, -0.05259900540113449, 0.005130450706928968, 0.004812311846762896, -0.017333097755908966, -0.021223902702331543, 0.0011948501924052835, 0.03194555640220642, -0.018400875851511955, 0.0020715612918138504, 0.004194317385554314, -0.004095584154129028, 0.0003848752239719033, 0.008096092380583286, 0.014180961064994335, 0.01829848624765873, 0.0010760050499811769, 0.0015221312642097473, 0.0018439271952956915, -0.0061653172597289085, -0.012169736437499523, -0.010187766514718533, 0.01336184423416853, -0.0013603190891444683, -0.024134693667292595, -0.001315523637458682, -0.02694309502840042, -0.025202471762895584, 0.010897180065512657, -0.030102545395493507, -0.001983798574656248, 0.0023787301033735275, 0.013310649432241917, 0.0037408776115626097, 0.002567053772509098, 0.0023641029838472605, 0.013354530557990074, -0.008417888544499874, -0.028127888217568398, -0.0052291834726929665, 0.0025286576710641384, 0.021414054557681084, -0.007737729232758284, 0.010348663665354252, -0.019073721021413803, -0.007876686751842499, -0.03972717002034187, -0.015490084886550903, 0.014020062983036041, 0.01327408105134964, -0.008805505931377411, -0.010758222080767155, -0.017289217561483383, -0.007006374653428793, -0.006366439629346132, 0.0066224136389791965, 0.0009265345288440585, -0.019848957657814026, -0.030190307646989822, 0.0017973033245652914, 0.02027314342558384, -0.005540009122341871, 0.03390558809041977, -0.02173585072159767, -0.0026712717954069376, 0.019629551097750664, -0.0011985069140791893, 0.011584652587771416, -0.014912315644323826, -0.007130704820156097, 0.0052401539869606495, 0.009302827529609203, -0.022291680797934532, -0.03179928660392761, -0.01228675339370966, 0.0017991317436099052, 0.04186272248625755, -0.010026868432760239, 0.0296198520809412, -0.006220168899744749, 0.02100449614226818, 0.024529624730348587, 0.006732116919010878, 0.01192838978022337, -0.018415503203868866, 0.020507175475358963, -0.0034958738833665848, -0.014758730307221413, -0.0014371112920343876, -0.0017579930135980248, 0.023388711735606194, -0.015373068861663342, 0.003627517493441701, 0.003563523991033435, 0.0009169355034828186, 0.003190533258020878, 0.010107317008078098, -0.0405755378305912, -0.0261678583920002, 0.0048817903734743595, -0.010114630684256554, 0.015285305678844452, -0.05760146677494049, 0.00031448237132281065, 0.011694355867803097, 0.01200883835554123, -0.01148226298391819, -0.0030332922469824553, 0.02065344713628292, -0.012857209891080856, -0.0038615509402006865, -0.001642804709263146, 0.015753373503684998, -8.850530139170587e-05, 0.005177988670766354, -0.030453594401478767, -0.009039539843797684, 0.03337901085615158, -0.009697758592665195, 0.014202901162207127, 0.0044246939942240715, 0.0015203028451651335, -0.01148226298391819, 0.04984911158680916, 0.005382767878472805, -0.03086315281689167, 0.0066224136389791965, 0.0008410575101152062, -0.03288169205188751, 0.002598136430606246, -0.03355453908443451, -0.008790879510343075, -0.02027314342558384, -0.002810229081660509, 0.017142945900559425, 0.01813758723437786, -0.003075344953685999, -0.023359457030892372, -0.0023659314028918743, 0.020565684884786606, 0.026050841435790062, 0.00871043000370264, 0.019848957657814026, 0.01886894181370735, -0.027908481657505035, -0.022525714710354805, 0.013500801287591457, -0.00188506580889225, 0.01129211112856865, 0.013464233838021755, 0.015577848069369793, -0.04569501802325249, -0.011862567625939846, 0.019102975726127625, 0.02510008215904236, -0.016894284635782242, -0.03609964996576309, 0.018386248499155045, 0.03899581357836723, 0.012813327834010124, -0.03539755195379257, -0.02151644416153431, -0.020141499117016792, 0.018415503203868866, -0.02101912349462509, 0.008249676786363125, 0.016367711126804352, 0.0063444990664720535, 0.004461261443793774, 0.02871297113597393, -0.004856192972511053, 0.03212108463048935, 0.020141499117016792, -0.02527560666203499, -0.017464742064476013, 0.007013688329607248, 0.006567561998963356, -0.012791387736797333, 0.0025597403291612864, 0.018985958769917488, -0.02084359899163246, -0.02600696124136448, 0.03961015120148659, 0.008915209211409092, 0.009734326042234898, -0.005642398726195097, -0.014042003080248833, 0.03013180010020733, -0.0091638695448637, -0.006377410143613815, -0.004940298851579428, -0.022379443049430847, 0.021297039464116096, 0.003464791225269437, 0.004395439755171537, -0.010568070225417614, -0.010787476785480976, -0.016455473378300667, 0.02388603240251541, 0.017479369416832924, 0.010041494853794575, -0.02708936482667923, 0.015680236741900444, -0.00780355092138052, -0.0197465680539608, -0.006179944146424532, 0.002523172413930297, -0.016426218673586845, -0.030746137723326683, -0.0010970315197482705, -0.0026877273339778185, 0.028054753318428993, 0.026460399851202965, 0.00897371768951416, -0.013054675422608852, 0.02581680938601494, -0.0319163054227829, -0.0007322685560211539, 0.017128318548202515, -0.023549610748887062, -0.03337901085615158, 0.020229261368513107, -0.010165825486183167, -0.020887481048703194, -0.0016802866011857986, -0.004519769921898842, -0.03642144799232483, -0.04750877991318703, 0.009434470906853676, 0.015241424553096294, 0.011248230002820492, -0.030629120767116547, -0.0010842328192666173, -0.004629473201930523, -0.0026237338315695524, -0.014261409640312195, -0.03513426333665848, 0.027030857279896736, -0.01851789280772209, -0.010926433838903904, 0.02316930517554283, 0.0012570152757689357, 0.032384369522333145, -0.033788569271564484, 0.002064247615635395, -0.00191797676961869, -0.02906402200460434, -0.00592031329870224, 0.004574621561914682, 0.005964194890111685, -0.01793280802667141, -0.01078016310930252, 0.02906402200460434, -0.027030857279896736, -0.01630920171737671, -0.0033368042204529047, 0.020390158519148827, -0.006377410143613815, 0.02890312299132347, 0.0014709364622831345, -0.012579294852912426, 0.00018740954692475498, -0.0026292188558727503, -0.009412530809640884, -0.008096092380583286, 0.02204301953315735, -0.014129766263067722, -0.018444756045937538, 0.026284875348210335, 0.024266337975859642, 0.014159020036458969, -0.033847078680992126, -0.037445344030857086, -0.01425409596413374, -0.02780609205365181, -0.012345261871814728, -0.020887481048703194, 0.004837909247726202, 0.00041550068999640644, 0.01391035970300436, 0.00871043000370264, 0.016748014837503433, 0.00020683615002781153, 0.018269231542944908, 0.0035964350681751966, -0.014224842190742493, 0.019132230430841446, -0.0075183226726949215, 0.018561773002147675, -0.004815968219190836, -0.07225780934095383, -0.020580312237143517, 0.010919120162725449, 0.023359457030892372, -0.0124769052490592, 0.03943462669849396, -0.019249247387051582, 0.014334545470774174, -0.005364484153687954, 0.00013027249951846898, -0.00260179303586483, -0.010524189099669456, 0.002652987837791443, -0.023915287107229233, 0.01355199608951807, 0.018591027706861496, 0.025363368913531303, 0.0007286117761395872, -0.011869881302118301, 0.009119988419115543, -0.01381528377532959, 0.006406663917005062, -0.013690953142940998, -0.024895302951335907, 0.03729907050728798, -0.016894284635782242, 0.01847401075065136, 0.013976181857287884, 0.018810434266924858, 0.014297977089881897, -0.004896417260169983, -0.008001016452908516, -0.01598740555346012, -0.009946418926119804, -0.036362938582897186, -0.0055290390737354755, 0.014488129876554012, -0.000754666281864047, 0.005199929233640432, -0.016777269542217255, -0.003687854390591383, -0.005130450706928968, -0.0016610885504633188, -0.007949821650981903, -0.01490500196814537, -0.0167041327804327, 0.016894284635782242, 0.01579725369811058, -0.03267691284418106, -0.0355730764567852, -0.00915655680000782, -0.01630920171737671, 0.014195587486028671, -0.003755504498258233, 0.009668504819273949, -0.015095153823494911, 0.01992209255695343, -0.013376470655202866, -0.008235050365328789, 0.010824044235050678, 0.007642652839422226, -0.009551487863063812, -0.011394500732421875, -0.01867878995835781, 0.19658805429935455, -0.001299068215303123, 0.012615862302482128, 0.023052288219332695, -0.04285736382007599, -0.020521802827715874, 0.004508799407631159, 0.01904446817934513, 0.0012798701645806432, 0.012659743428230286, -0.013398411683738232, -0.012220931239426136, -0.010041494853794575, -0.0016939995111897588, -0.007913254201412201, 0.010897180065512657, -0.04393976926803589, -0.034753959625959396, -0.022657357156276703, -0.009661191143095493, -0.022306308150291443, -0.007072196342051029, -0.002354961121454835, -0.0022013764828443527, 0.00341176800429821, -0.02460275962948799, 0.006242109462618828, 0.00898834504187107, 0.005583890248090029, 0.01553396601229906, -0.02923954650759697, -0.012827955186367035, 0.024163948372006416, -0.010911806486546993, 0.00028911352274008095, 0.004947612062096596, 0.02403230406343937, 0.01793280802667141, 0.034724704921245575, -0.0009224206442013383, 0.011584652587771416, -0.033671554177999496, 0.02097524330019951, -0.0206241924315691, -0.012886463664472103, -0.0003928744117729366, 0.0032216159161180258, -0.016543235629796982, -0.00650174031034112, -0.003040605690330267, -0.03843998536467552, -0.00942715723067522, 0.022496460005640984, -0.007244064938277006, -0.016938166692852974, 0.0065236808732151985, -0.0037628181744366884, 0.025889944285154343, 0.010253587737679482, 0.019965974614024162, 0.002113613998517394, -0.003739049192517996, -0.0034812467638403177, 0.028244905173778534, -0.02242332510650158, 0.02818639576435089, -0.009244319051504135, -0.0032453848980367184, 0.009383276104927063, -0.04215526580810547, -0.006874730810523033, -0.013807970099151134, -0.0023110797628760338, -0.007456157822161913, -0.02909327670931816, -0.025568148121237755, 0.007737729232758284, 0.0202877689152956, 0.027747584506869316, 0.0344906710088253, 0.020156126469373703, 0.02511470764875412, 0.001985626993700862, -0.012535413727164268, -0.005583890248090029, -0.03961015120148659, 0.016192184761166573, -0.036187414079904556, -0.02132629230618477, 0.0072294375859200954, -0.006114122457802296, 0.008022957481443882, 0.008586100302636623, -0.030161052942276, 0.0059568812139332294, -0.0032289293594658375, 0.023944541811943054, -0.010641206055879593, -0.011913762427866459, 0.010663146153092384, -0.023827524855732918, 0.06763564795255661, 0.02223317138850689, -0.027689075097441673, -0.011891821399331093, 0.014063944108784199, -0.013120496645569801, 0.01578262634575367, 0.020785091444849968, -0.01780116558074951, -0.031184948980808258, 0.003982224501669407, -0.009127302095293999, -0.004545367322862148, 0.023081542924046516, 0.027221009135246277, 0.016952794045209885, -0.01796206273138523, 0.022013766691088676, 0.0035982634872198105, 0.010268215090036392, -0.02904939465224743, -0.001903349650092423, 0.037971917539834976, -0.003510500770062208, -0.00017792479775380343, -0.005902029573917389, -0.005938597489148378, -0.03697727620601654, -0.00951492041349411, 0.03241362422704697, -0.007730415556579828, 0.014861120842397213, -0.014297977089881897, 0.005923970136791468, 0.013383784331381321, 0.011109272949397564, -0.022745119407773018, 0.0055985176004469395, -0.00188506580889225, -0.006048300303518772, -0.015592474490404129, 0.02063881978392601, -0.013756775297224522, -0.0027407503221184015, -0.023929914459586143, -0.009302827529609203, -0.002501231851056218, -0.01706981100142002, -0.013712894171476364, 0.015548593364655972, -0.02082897163927555, -0.025217097252607346, -0.012228244915604591, 0.01831311360001564, -0.05005389079451561, -0.005207242909818888, -0.02656278945505619, 0.009551487863063812, 0.00480499817058444, -0.034519925713539124, 0.007891313172876835, 0.003700653091073036, 0.003784758737310767, -0.019995227456092834, -0.0014398539206013083, -0.18945002555847168, 0.03282318264245987, 0.007042942568659782, -0.017888927832245827, 0.013712894171476364, 0.0010275528766214848, -0.027937736362218857, 0.019995227456092834, -0.001903349650092423, 0.005594860762357712, 0.04742101579904556, -0.013873792253434658, -0.010816730558872223, -0.011445695534348488, -0.011950329877436161, -0.015065900050103664, 0.005346200428903103, 0.018766552209854126, 0.03674324229359627, 0.023023035377264023, 0.0197465680539608, -0.032910946756601334, 0.004311333876103163, 0.006487112957984209, -0.010451053269207478, 0.01560710184276104, 0.0033879990223795176, 0.014941569417715073, -0.022876763716340065, -0.017640266567468643, 0.021136140450835228, -0.0035196428652852774, 0.03270616754889488, -2.548312841099687e-05, 0.0004356129211373627, 0.01211854163557291, 0.001934432308189571, -0.00959536898881197, 0.005280378274619579, 0.03879103437066078, 0.008008330129086971, 0.028595954179763794, -0.005232840310782194, 0.002292795805260539, -0.0197465680539608, 0.04151167348027229, -0.007613398600369692, -0.014393053948879242, -0.0011500547407194972, -0.01211854163557291, -0.0017195969121530652, 0.005741131491959095, 0.01921999268233776, 0.007745042443275452, 0.004336931277066469, 0.006958836689591408, 0.01992209255695343, -0.005843521095812321, 0.004340588115155697, 0.004563651047646999, -0.028201023116707802, -0.022467205300927162, 0.0006079383310861886, -0.000975443865172565, -0.01219899021089077, -0.029912393540143967, -0.030804645270109177, 0.016060542315244675, -0.019644178450107574, 0.01021702028810978, -0.025933824479579926, 0.0017131975619122386, -0.005415678955614567, -0.008235050365328789, 0.013252140954136848, 0.019132230430841446, -0.0027919451240450144, 0.011591966263949871, 0.01104345079511404, 0.011957643553614616, -0.0071489885449409485, 0.007686534430831671, 0.005660682450979948, -0.015490084886550903, 0.0006691892049275339, -0.020492548123002052, 0.01813758723437786, 0.0011463979026302695, -0.010641206055879593, -0.006721146404743195, 0.0038469238206744194, -0.004918357823044062, 0.0025250008329749107, 0.001333807478658855, 0.01185525394976139, 0.016821149736642838, 0.016967421397566795, 0.0051706754602491856, -0.011094645597040653, -0.029883138835430145, 0.015022017993032932, -0.012703625485301018, 0.01148226298391819, 0.006351812742650509, 0.007927881553769112, 0.005422992631793022, -0.0085202781483531, 0.0016153788892552257, 0.03337901085615158, -0.0017104549333453178, -0.026869958266615868, 0.013142437674105167, 0.028844615444540977, 0.03770862892270088, -0.004567307885736227, 0.0334082655608654, 0.002974783768877387, -0.02296452596783638, 0.01364707201719284, 0.0075183226726949215, 0.027045484632253647, 0.015724118798971176, -0.005192616023123264, 0.02334483154118061, -0.01883968897163868, -0.018591027706861496, -0.08062450587749481, -0.0036768838763237, 0.016206812113523483, 0.019775820896029472, -0.026840705424547195, 0.021297039464116096, -0.015650983899831772, 0.00744518730789423, -0.003751847892999649, 0.036860257387161255, -0.0009215064928866923, -0.01813758723437786, -0.01497082319110632, -0.011277483776211739, -0.01532918680459261, -0.005156048107892275, -0.001883237506262958, -0.037240564823150635, 0.009207751601934433, 0.02708936482667923, 0.013369157910346985, -0.032004065811634064, -0.0009128216188400984, -0.00569359352812171, 0.013581249862909317, -0.009098048321902752, -0.04089733585715294, 0.023637373000383377, -0.002954671625047922, 0.014992764219641685, 0.00601173285394907, -0.016206812113523483, 0.012542727403342724, -0.005412022117525339, -0.008761624805629253, -0.0170405562967062, 0.0020697328727692366, 0.009039539843797684, 0.015577848069369793, -0.03156525269150734, 0.01185525394976139, 0.0024683210067451, 0.0329987071454525, 0.007072196342051029, -0.005591203924268484, -0.014685595408082008, -0.04569501802325249, -0.003640316193923354, -0.02065344713628292, -0.02783534675836563, 0.0020880165975540876, -0.04832789674401283, 0.002358617726713419, -0.008395947515964508, 0.010641206055879593, -0.04180421307682991, -0.01756713166832924, -0.01049493532627821, -0.007701161317527294, -0.020887481048703194, -0.02942969836294651, -0.005942253861576319, -0.003784758737310767, 0.02315467782318592, 0.00878356583416462, 0.015490084886550903, -0.016791895031929016, 0.0015175603330135345, 0.024471117183566093, -0.015841135755181313, -0.013478860259056091, -0.0010476651368662715, -0.02549501322209835, 0.020068364217877388, -0.025977706536650658, -0.014378426596522331, -0.006918611936271191, -0.01613367721438408, 0.013771402649581432, -0.012045405805110931, 0.007547576911747456, -0.007554890587925911, -0.009127302095293999, -0.023593490943312645, 0.0021995482966303825, -0.00045183984912000597, -0.014020062983036041, 0.012966912239789963, 0.0015522995963692665, -0.02012687176465988, 0.023929914459586143, 0.0017031414899975061, -0.005737474653869867, -0.00637009646743536, -0.03890805318951607, -0.00569359352812171, -0.01464171428233385, -0.002762691117823124, -0.0013959725620225072, 0.011350619606673717, -0.029034767299890518, 0.002923588966950774, -0.07565129548311234, 0.018020570278167725, 0.024163948372006416, -0.02742578834295273, -0.011255543678998947, -0.013837223872542381, -0.005496127996593714, -0.006571218837052584, 0.003678712295368314, 0.020785091444849968, -0.018883569166064262, 0.01758175902068615, -0.005766728892922401, 0.014042003080248833, -0.015446203760802746, -0.029575970023870468, 0.01705518364906311, -0.008118033409118652, 0.02833266742527485, 0.0288738701492548, 0.003982224501669407, 0.02654816210269928, 0.002652987837791443, 0.026094723492860794, -0.007869373075664043, 0.02581680938601494, 0.010824044235050678, 0.00195088773034513, -0.024719776585698128, -0.025597402825951576, 0.008118033409118652, -0.019337009638547897, 0.02189674973487854, 0.008512964472174644, 0.003512329189106822, -0.014159020036458969, 0.012184363789856434, 0.008542219176888466, 0.009083420969545841, 0.017493996769189835, -0.018532518297433853, -0.03513426333665848, 0.018356993794441223, 0.00788399949669838, 0.007342797704041004, -0.0043149907141923904, -0.014714849181473255, 0.006666294764727354, -0.010692400857806206, -0.006417634431272745, 0.033671554177999496, 0.011021509766578674, -0.034578435122966766, -0.03215033560991287, 0.01157733891159296, -0.0202877689152956, -0.0062347957864403725, 0.02245257794857025, -0.009024912491440773, 1.6569747458561324e-05, 0.06792819499969482, -0.001788161345757544, 0.029005512595176697, -0.003349602920934558, 0.011226288974285126, -0.022935273125767708, -0.03966866061091423, 0.0005448589799925685, -0.003879834897816181, 5.936540401307866e-05, -0.013881105929613113, -0.011321364901959896, 0.02098987065255642, 0.013617818243801594, 0.0019691716879606247, -0.014656340703368187, -0.0009041368030011654, 0.0225842222571373, 0.01113852672278881, 0.03106793202459812, 0.030044035986065865, -0.01129211112856865, -0.012330634519457817, 0.008666548877954483, 0.034929484128952026, 0.013888418674468994, -0.006454202346503735, 0.005313289351761341, -0.014751417562365532, 0.0108532989397645, -0.022028392180800438, 0.011548085138201714, -0.007832804694771767, 0.0015577847370877862, -0.018225349485874176, 0.02242332510650158, 0.0029674703255295753, 0.0025414563715457916, 0.03428589180111885, 0.02296452596783638, 0.03750384971499443, 0.011050764471292496, 4.868077303399332e-05, -0.03393484279513359, -0.016777269542217255, 0.0013072958681732416, -0.02154569886624813, -0.019278500229120255, -0.004644100088626146, 0.014414994046092033, 0.008564159274101257, -0.011445695534348488, -0.009990300051867962, 0.01042179949581623, -0.03747459501028061, 0.014473502524197102, -0.008052211254835129, 0.007752356119453907, -0.019278500229120255, 0.037065036594867706, 0.0037408776115626097, 0.01176017802208662, 0.007620712276548147, -0.014656340703368187, 0.02205764688551426, 0.0006970721296966076, 0.00887864176183939, -0.019834330305457115, 0.013742147944867611, -0.01883968897163868, -0.0007299830322153866, 0.007620712276548147, -0.007920567877590656, -0.013669013045728207, -0.00767190707847476, -0.0014883060939610004, 0.0016775440890341997, -0.021487191319465637, 0.0028687373269349337, 0.0889911949634552, 0.012279439717531204, -0.021136140450835228, -0.01255735382437706, -0.015285305678844452, -0.007730415556579828, 0.028449684381484985, 0.029312681406736374, -5.7394176110392436e-05, -0.03536829724907875, 0.0018576401052996516, -0.005134107545018196, 0.01291571743786335, -0.028683718293905258, -0.007423246745020151, 0.00682353600859642, 0.0068820444867014885, -0.0010275528766214848, -0.01815221458673477, 0.0033057215623557568, -0.0002518601540941745, 0.020580312237143517, -0.01598740555346012, -0.010282842442393303, -0.028201023116707802, 0.0022013764828443527, 0.004764773417264223, 0.0033221771009266376, -0.004911044612526894, -0.058771636337041855, 0.00655659195035696, -0.012235558591783047, -0.03396409749984741, -0.017888927832245827, 0.0020532773341983557, 0.010787476785480976, -0.020565684884786606, -0.011255543678998947, 0.00914192944765091, 0.008491024374961853, 0.006834506522864103, 0.027542805299162865, -0.02030239626765251, -0.024661269038915634, -0.0012140482431277633, -0.013120496645569801, -0.027016229927539825, -0.024675896391272545, -0.03931761160492897] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_covid19_risk_estimation_using_a_timevarying_sirmodel.json b/database/embeddings/publications_txt/2020_covid19_risk_estimation_using_a_timevarying_sirmodel.json new file mode 100644 index 0000000000000000000000000000000000000000..04de2eb4e2200306dbef4d8af5d44f5b39c1b92d --- /dev/null +++ b/database/embeddings/publications_txt/2020_covid19_risk_estimation_using_a_timevarying_sirmodel.json @@ -0,0 +1 @@ +[0.003967141266912222, 0.009189661592245102, -0.002376758260652423, -0.0197757575660944, 0.0098878787830472, 0.015699299052357674, -0.014091284945607185, -0.002618313068524003, -0.01868964172899723, -0.0442345030605793, 0.009655139409005642, 0.012842957861721516, -0.014810659922659397, 0.02204672433435917, -0.00396361481398344, 0.0012985775247216225, 0.026800241321325302, -0.008195231668651104, -0.006199318915605545, 0.0022868365049362183, 0.003907192964106798, 0.004742937628179789, -0.021313244476914406, -0.006262793205678463, -0.006671849638223648, 0.03822560980916023, 0.02223009616136551, -0.023203367367386818, 0.023767583072185516, 0.004940412938594818, 0.002967421431094408, -0.015290243551135063, -0.004111721180379391, -0.030072692781686783, -0.016672572121024132, 0.0023996795061975718, 0.013054538518190384, -0.002563654677942395, 0.025192227214574814, -0.033711884170770645, -0.008385654538869858, 0.004129352979362011, 0.010522621683776379, -0.021017031744122505, 0.0028140253853052855, -0.004936886485666037, 0.03390935808420181, -0.02445874735713005, -0.004474935121834278, 0.019719336181879044, 0.0012589060934260488, 0.026715610176324844, -0.026969507336616516, -0.014570868574082851, -0.01771637052297592, -0.013731597922742367, 0.01306864432990551, 0.01466960646212101, -0.017434261739253998, -0.02359831891953945, 0.041272372007369995, -0.021510720252990723, -0.04761979728937149, 0.0027152877300977707, 0.003018553601577878, 2.3182979930425063e-05, -0.025700021535158157, 0.010416830889880657, -0.006104107480496168, 0.0430496521294117, 0.02404968999326229, 0.03162428364157677, -0.001727028749883175, -0.0072290124371647835, 0.01496581919491291, -0.01876016892492771, -0.03365546092391014, -1.9697958123288117e-05, 0.0014863555552437901, 0.010959888808429241, 0.007560489233583212, -0.0038542980328202248, -0.018040794879198074, 0.009210820309817791, 0.02725161425769329, 0.005183731205761433, 0.0007400921895168722, 0.04025678336620331, -0.016108356416225433, -0.005987738259136677, 0.028605731204152107, 0.008844079449772835, 0.013407173566520214, 0.00474646408110857, -0.014697817154228687, 0.014084232039749622, -0.016587939113378525, 0.027463195845484734, 0.01263843011111021, -0.03506600111722946, 0.0030432380735874176, 0.0030432380735874176, -0.031060069799423218, -0.015191505663096905, -0.026080867275595665, -0.030298378318548203, 0.012095372192561626, -0.003893087850883603, -0.006636586040258408, -0.017956161871552467, -0.03585590422153473, 0.028662152588367462, -0.007884913124144077, -0.009478822350502014, 0.0017922661500051618, -0.007341855671256781, 0.018605010583996773, 0.01489529199898243, -0.007497014943510294, -0.00990198366343975, 0.02141198329627514, -0.00035572031629271805, 0.004108194727450609, -0.02200440876185894, 0.023541895672678947, 0.013710439205169678, -0.007098537869751453, -0.034050412476062775, 0.004460829775780439, -0.03523526340723038, 0.011375997215509415, 0.00013664597645401955, -0.0006585454102605581, 0.024896014481782913, -0.011827370151877403, 0.02900068275630474, -0.014796554110944271, 0.009281346574425697, -0.02096061035990715, -0.03145502135157585, 0.0004099379002582282, 0.029536686837673187, -0.019014066085219383, 0.008886395953595638, -0.01957828179001808, 0.022215990349650383, 0.0010217592353001237, 1.757663812895771e-05, 0.015981407836079597, 0.013089802116155624, 0.022215990349650383, -0.015120978467166424, 0.0004817872541025281, 0.017067521810531616, -0.004665357992053032, 0.006428531836718321, -0.011989581398665905, 0.01925385743379593, 0.017843319103121758, -0.021341456100344658, 0.007983651012182236, 0.024261271581053734, -0.012744219973683357, -0.0013417752925306559, -0.003981246612966061, 0.012335163541138172, 0.037887077778577805, 0.0133860157802701, -0.008068283088505268, 0.0056985775008797646, -0.04217511788010597, 0.01543129701167345, -0.005317732226103544, -0.00817407388240099, 0.023019997403025627, 0.03831024095416069, 0.02431769296526909, 0.002745261648669839, -0.004891043994575739, -0.019310278818011284, -0.011961370706558228, 0.017631737515330315, 0.03165249526500702, 0.02311873435974121, -0.004548988305032253, 0.005804368294775486, 0.04728126898407936, -0.006922220345586538, -0.004757042974233627, -0.01361170131713152, 0.02259683609008789, 0.007680384907871485, 0.007877860218286514, -0.00198180740699172, -0.59626305103302, -0.034868523478507996, -0.008731236681342125, -0.012596113607287407, -0.020410500466823578, 0.010487358085811138, 0.000664716528262943, 0.014105390757322311, -0.029028894379734993, 0.05608303099870682, -0.03410683572292328, 0.011023362167179585, 0.004668884444981813, -0.014951713383197784, -0.0016230015316978097, -0.025107594206929207, 0.004809937905520201, 0.0011839711805805564, -0.0006413544761016965, 0.027858145534992218, -0.0132520142942667, 0.01085409801453352, 0.007504067849367857, 0.010021880269050598, 0.0038895613979548216, 0.03698433190584183, 0.0029797637835144997, -0.03794350102543831, 0.03856413811445236, -0.0033835305366665125, -0.030947227030992508, 0.021454298868775368, 0.023965058848261833, -0.014175917021930218, 0.0512307770550251, -0.0337400920689106, -0.018153637647628784, 0.022272411733865738, 0.040933843702077866, 0.05667546018958092, -0.0343325212597847, -0.02833773009479046, 0.01450034137815237, 0.00843502301722765, -0.007807333488017321, -0.007031537126749754, -0.0009247846319340169, -0.01466960646212101, -0.00439382903277874, -0.04319070652127266, -0.0133860157802701, 0.0009767982410266995, -0.01150294579565525, -0.020678501576185226, 0.023739371448755264, -0.01161578856408596, 0.002873973222449422, -0.020974716171622276, 0.020763134583830833, 0.0005421759560704231, -0.0020646764896810055, 0.004824043717235327, 0.008569024503231049, -0.0203681830316782, 0.00960577093064785, 0.03306303545832634, 0.029085315763950348, 0.014098337851464748, 0.010430935770273209, -0.028845522552728653, 0.010247565805912018, 0.0200719702988863, -0.004242196213454008, -0.01524792704731226, 0.016884151846170425, 0.04691452905535698, 0.025178121402859688, -0.008258705958724022, -0.0008150271023623645, -0.014697817154228687, 0.00692574679851532, -0.001900701317936182, -0.002873973222449422, -0.006181687116622925, -0.0019641756080091, -0.00762396352365613, -0.024585695937275887, 0.00895692314952612, -0.006837587803602219, 0.030665118247270584, 0.02096061035990715, 0.024994751438498497, 0.002588339149951935, 0.009415348060429096, 0.017039312049746513, 0.03455820679664612, 0.013914967887103558, -0.0021281507797539234, -0.010586095042526722, -0.020382288843393326, -0.00867481529712677, -0.011806211434304714, 0.010303988121449947, 0.007877860218286514, 0.03878982365131378, 0.016855942085385323, -0.013520016334950924, -0.013463594950735569, 0.020763134583830833, -0.009655139409005642, -0.010931677184998989, -0.01612246036529541, -0.009598718024790287, 0.0033094771206378937, 0.01805489882826805, -0.03182176128029823, 0.03845129534602165, 0.016334041953086853, 0.0027417351957410574, 0.012440954335033894, 0.020241234451532364, 0.010783570818603039, 0.010868202894926071, -0.003528110682964325, -0.010021880269050598, 0.032752715051174164, 0.03467104956507683, -0.01128431223332882, -0.010078301653265953, -0.008872290141880512, 0.02647581696510315, -0.024218956008553505, 0.03898729756474495, -0.024035586044192314, 0.02111576870083809, -0.025192227214574814, 0.021270928904414177, -0.017039312049746513, 0.01750478893518448, -0.02836593985557556, -0.02897247113287449, -0.010762413032352924, 0.005740894004702568, -0.01668667607009411, -0.035686638206243515, -0.026574555784463882, -0.010564937256276608, -0.004048246890306473, 0.03224492073059082, -0.010148828849196434, -0.016094250604510307, 0.010494410060346127, 0.00033742739469744265, 0.005261310841888189, -0.01496581919491291, -0.003570426953956485, -0.0034046885557472706, -0.025305069983005524, -0.027336247265338898, 0.0019447806989774108, -0.0045736730098724365, 0.04135700315237045, -0.013604649342596531, -0.031144702807068825, -0.010057142935693264, 0.003864876925945282, -0.022794310003519058, 0.01678541488945484, 0.007779122795909643, -0.029847005382180214, -0.008632498793303967, -0.010198197327554226, -0.013153276406228542, 0.01193316001445055, 0.0005593668902292848, 0.00012055700790369883, -0.01268074568361044, 0.0009159687906503677, -0.04124416038393974, -0.019465439021587372, 0.0014026047429069877, -0.00012077740393579006, -0.018661431968212128, -0.01306864432990551, 0.03898729756474495, 0.010261671617627144, 0.014768343418836594, -0.0007008615648373961, 0.01278653647750616, 0.012328111566603184, 0.012314005754888058, 0.0070280106738209724, -0.008061230182647705, 0.03060869686305523, 0.023259788751602173, 0.0013003406347706914, -0.003164896974340081, -0.009767983108758926, -0.013689281418919563, 0.024218956008553505, 0.028845522552728653, 0.033486198633909225, 0.0006871969671919942, -0.009563454426825047, -0.008216389454901218, 0.0007691845530644059, 0.044544823467731476, 0.0048698862083256245, 0.03396578133106232, 0.004217511508613825, 0.03819739818572998, 0.0045348829589784145, -0.03247060999274254, -0.002207493642345071, -0.01902817189693451, 0.013858546502888203, -0.0032336607109755278, 0.001466960646212101, -0.03342977538704872, 0.015092767775058746, -0.030806172639131546, -0.00620989827439189, 0.02747729979455471, -0.0041646165773272514, -0.013456542044878006, -0.011326628737151623, 0.020015548914670944, 0.017293209210038185, 0.0270682442933321, -0.030693329870700836, -0.04031320661306381, 0.02804151549935341, 0.023358525708317757, 0.005183731205761433, 0.008272811770439148, 0.007884913124144077, 0.02434590458869934, -0.011573472991585732, 0.030580487102270126, -0.010346303693950176, -0.0057761576026678085, 0.013470647856593132, 0.011982529424130917, -0.03182176128029823, 0.02454337850213051, -0.04361386597156525, 0.03224492073059082, 0.02722340263426304, -0.0012835905654355884, 0.008442075923085213, -0.014979925006628036, 0.01383033487945795, -0.002173993270844221, 0.01821005903184414, 0.019338490441441536, -0.01174979005008936, -0.015205610543489456, -0.00847028661519289, 0.016813624650239944, 0.01318148709833622, 0.01489529199898243, -0.0014219996519386768, 0.013597596436738968, -0.014190022833645344, 0.011199680157005787, -0.019945021718740463, -0.036279063671827316, -0.03630727529525757, -0.007814385928213596, 0.0010958125349134207, 0.0025495493318885565, 0.0045983572490513325, -0.003942456562072039, -0.0015418954426422715, 0.002911000046879053, 0.014070127159357071, -0.006224003620445728, -0.001672370359301567, 0.021976199001073837, 0.008413865230977535, -0.014070127159357071, -0.02452927455306053, 0.011573472991585732, 0.005448207259178162, -0.014345182105898857, -0.014486235566437244, 0.019451333209872246, -0.007013905327767134, -0.029762374237179756, 0.007031537126749754, 0.03131396695971489, 0.004009457305073738, -0.017025206238031387, -0.006213424261659384, -0.029169946908950806, -0.008279863744974136, 0.03354261815547943, -0.013188540004193783, -0.019197436049580574, 0.002374995034188032, 0.00037974354927428067, 0.0029603687580674887, 0.006611901801079512, -0.007525225635617971, 0.040341418236494064, 0.0043726712465286255, 0.01100220438092947, -0.0022233622148633003, -0.019592387601733208, 0.00024662393843755126, -0.002923342166468501, -0.016023723408579826, -0.02933921292424202, -0.008442075923085213, 0.030439432710409164, 0.012617271393537521, -0.0014581447467207909, -0.040115728974342346, 0.004386776592582464, -0.010318093001842499, -0.005423522554337978, -0.02770298719406128, -0.036504749208688736, -0.004150511231273413, 0.0558573454618454, 0.02613728865981102, 0.0019518333720043302, 0.00885818526148796, 0.0010191145120188594, -0.012624324299395084, -0.022921258583664894, -0.011241995729506016, 0.010924625210464, -0.0014422761742025614, -0.01150294579565525, 0.008089441806077957, -0.010783570818603039, 0.013802124187350273, 0.03097543679177761, -0.017406051978468895, 0.017039312049746513, -0.01957828179001808, 0.008583130314946175, -0.006777639966458082, 0.010466199368238449, -0.005740894004702568, 0.01608014479279518, 0.02859162725508213, 0.008893448859453201, -0.03537631779909134, 0.03658938407897949, 0.0331476666033268, -0.004203406162559986, -0.019070487469434738, -0.00173143669962883, 0.030439432710409164, -0.005289521533995867, -0.0005029453313909471, 0.00835744384676218, 0.015487718395888805, 0.03162428364157677, 0.005395311862230301, 0.010691885836422443, -0.000636064971331507, 0.022850733250379562, 0.0198039673268795, 0.008540813811123371, 0.006816430017352104, 0.015459507703781128, -0.04053889214992523, -5.380434959079139e-05, 0.0057373675517737865, -0.001303866971284151, -0.03199102729558945, 0.020763134583830833, 0.010635464452207088, -0.023541895672678947, -0.042654700577259064, 0.02688487432897091, -0.000572590681258589, 0.01957828179001808, -0.02520633302628994, -0.028380045667290688, -0.02237114869058132, -0.02732214145362377, -0.01288527436554432, 0.01671488769352436, 0.007863755337893963, -0.03224492073059082, 0.0072043281979858875, -0.006915167439728975, -0.006146423984318972, -0.024106111377477646, -0.0037731919437646866, 0.02450106292963028, -0.03619443252682686, -0.02654634416103363, 0.006488479673862457, 0.012116529978811741, 0.01753300055861473, 0.008703025989234447, -0.00824460107833147, -0.0029921059031039476, -0.006618954241275787, -0.023175155743956566, -0.02275199443101883, -0.01117146946489811, -0.037097178399562836, 0.01839342899620533, -0.013555279932916164, -0.00968335010111332, -0.02081955596804619, -0.005293047521263361, 0.026518134400248528, -0.007151432801038027, 0.019042277708649635, 0.012426848523318768, -0.0101840915158391, -0.008928712457418442, 0.02546023018658161, 0.016700781881809235, 0.006312162149697542, -0.0069645363837480545, 0.00044365861685946584, 0.021355561912059784, -0.03170891851186752, -0.029198158532381058, -0.03063690848648548, 0.00871007889509201, -0.015473613515496254, 0.006953957490622997, 0.010141775943338871, -0.01782921329140663, -0.00369561230763793, 0.018605010583996773, -0.01263843011111021, 0.021538931876420975, -0.009626928716897964, 0.021087558940052986, -0.005850210785865784, 0.02107345312833786, 0.0040623522363603115, 0.0008357443730346859, -0.030919015407562256, -0.01524792704731226, -0.0031913446728140116, 0.017786897718906403, 0.011686315760016441, 0.002879262901842594, 0.028380045667290688, -0.008808815851807594, -0.011700421571731567, -0.032527029514312744, -0.004154037684202194, 0.0072043281979858875, 0.02182103879749775, -0.023894531652331352, -0.023443158715963364, -0.01850627176463604, -0.007793228141963482, -0.020339973270893097, -0.018717853352427483, -0.008815868757665157, -0.023513685911893845, -0.00792722962796688, -0.0022550993598997593, -0.004146984778344631, 0.006276898551732302, 0.0038789822719991207, -0.02144019305706024, 0.005042677279561758, 0.02393684722483158, 0.01984628476202488, 0.01217295229434967, -0.001974754733964801, 0.0028122621588408947, -0.017208576202392578, 0.0041646165773272514, -0.0025707073509693146, -0.026630977168679237, -0.011566420085728168, 0.014211180619895458, 0.019070487469434738, 0.011834422126412392, 0.05103330314159393, 0.005317732226103544, 0.0016097776824608445, 0.023019997403025627, 0.006678902544081211, 0.004693568684160709, 0.008061230182647705, -0.02141198329627514, 0.0039283512160182, 0.010487358085811138, 0.014570868574082851, 0.0019077541073784232, -0.002935684286057949, 0.00037731920019723475, 0.01868964172899723, -0.0027152877300977707, 0.006224003620445728, -0.024303587153553963, -0.010318093001842499, -0.038028132170438766, -0.008949870243668556, 0.010050090961158276, -0.018788380548357964, 0.0005007413565181196, -0.044544823467731476, -0.0030890805646777153, 0.014740132726728916, -0.002156361471861601, 0.0001742236054269597, 0.012158846482634544, 0.0065061114728450775, -0.008844079449772835, 0.04273933172225952, -0.0074617513455450535, 0.020861871540546417, -0.00017455421038903296, 0.0010702464496716857, -0.02911352552473545, 0.0033517933916300535, 0.020861871540546417, -0.02100292593240738, 0.01802668906748295, 0.009810298681259155, 0.008512603119015694, 0.0013488279655575752, 0.03221671283245087, 0.005218994338065386, -0.017899740487337112, 0.02118629589676857, -0.0011963134165853262, -0.009041555225849152, -0.021609457209706306, -0.0233021043241024, 0.009231978096067905, -0.0033976358827203512, -0.012906432151794434, 0.006389741785824299, 0.010508515872061253, -0.030890805646777153, -0.0183511134237051, 0.025700021535158157, 0.0029162894934415817, 0.02483959309756756, 0.0026553396601229906, 0.02747729979455471, 0.027237508445978165, -0.01616477780044079, -0.009965457953512669, 0.021905671805143356, 0.009133240208029747, 0.009803246706724167, 0.010134723037481308, 0.010938730090856552, -0.03402220085263252, -0.01782921329140663, 0.015290243551135063, 0.028323624283075333, -0.0148529764264822, -0.02200440876185894, 0.01068483293056488, 0.014867081306874752, -0.010938730090856552, -0.028845522552728653, -0.008399760350584984, -0.013752755708992481, 0.014288760721683502, -0.0014493288472294807, -0.010797676630318165, 0.025558967143297195, -0.015981407836079597, 0.02636297419667244, 0.017448367550969124, 0.0032971350010484457, 0.023443158715963364, 0.007976598106324673, -0.04350102320313454, 0.008688920177519321, -0.014366339892148972, -0.01701110042631626, -0.004538409411907196, 0.0023908636067062616, 0.03926940634846687, -0.007652174215763807, 0.006721218582242727, 0.02527686022222042, -0.005747946444898844, 0.01256790291517973, -0.004517251159995794, -0.019705230370163918, 0.03306303545832634, -0.0028563416562974453, -0.02341494895517826, -0.019338490441441536, -0.018139531835913658, -0.002990342676639557, 0.003547505708411336, -0.004175195470452309, -0.0010041274363175035, -0.006633060052990913, -0.0048064119182527065, 0.028309518471360207, 0.013548227027058601, -0.014740132726728916, 0.01873195916414261, 0.012158846482634544, -0.0007934282184578478, 0.004675936885178089, -0.009598718024790287, -0.01660204492509365, -0.018887117505073547, -0.013484753668308258, 0.002292125951498747, 0.0009309557499364018, 0.04759158566594124, 0.02670150436460972, 0.003039711620658636, 0.022357042878866196, 0.02520633302628994, -0.03876161202788353, 0.003080264665186405, 0.00512730935588479, -0.030016271397471428, -0.01042388379573822, 0.002510759513825178, 0.0025724705774337053, -0.014239391312003136, 0.02751961722970009, 0.009147346019744873, -0.028916049748659134, -0.02584107592701912, -0.004471408668905497, 0.013026327826082706, -0.008223442360758781, -0.026574555784463882, 0.010847045108675957, 0.009309557266533375, -0.023654740303754807, -0.006689481437206268, -0.012187057174742222, 0.04341639205813408, 0.004820517264306545, -0.005423522554337978, 0.011904949322342873, -0.022173672914505005, 0.04578609764575958, -0.015727510675787926, 0.03898729756474495, 0.004749990068376064, -0.03272450715303421, -0.017321418970823288, 0.014084232039749622, 0.01898585632443428, -0.019902706146240234, -0.014937608502805233, 0.01750478893518448, -0.01431697141379118, -0.034304309636354446, 0.018901223316788673, -0.006714165676385164, -0.02699771709740162, -0.01170747447758913, -0.015304348431527615, -0.017448367550969124, -0.005871368572115898, 0.00580789428204298, -0.02234293892979622, 0.009894931688904762, 0.0320192351937294, -0.009732719510793686, -0.02713877148926258, 0.0050074136815965176, 0.03526347503066063, 0.04598357155919075, -0.03949509188532829, -0.04917139187455177, -0.007504067849367857, -0.02684255875647068, -0.0052965739741921425, -0.013527069240808487, 0.019634703174233437, 0.016094250604510307, -0.00028078543255105615, -0.004203406162559986, 0.005317732226103544, -0.014824765734374523, -0.004587778355926275, -0.026518134400248528, 0.0017023442778736353, 0.0028563416562974453, 0.008265758864581585, 0.0024137848522514105, 0.01916922628879547, -0.04620926082134247, 0.006728271022439003, 0.03351440653204918, 0.027392668649554253, -0.003970667254179716, 0.013872651383280754, -0.014260550029575825, -0.004414987284690142, -0.021228613331913948, 0.0094576645642519, -0.0005382088129408658, 0.007384171709418297, -0.000554518133867532, -0.02845057286322117, -0.010466199368238449, 0.02136966586112976, -0.00268002413213253, 0.002734682522714138, -0.0005104388110339642, 0.00013631537149194628, 0.010303988121449947, 0.0048769386485219, 0.0008846724522300065, -0.0067705875262618065, 0.019606493413448334, -0.01170747447758913, 0.044290926307439804, 0.011545262299478054, 0.041385214775800705, 0.023541895672678947, 0.004288038704544306, -0.0060088965110480785, -0.004880465101450682, 0.010409777984023094, -0.017434261739253998, 0.0023608896881341934, 0.012589060701429844, -0.009239031001925468, -0.006611901801079512, -0.017180366441607475, 0.005472891498357058, -0.01118557434529066, -0.030693329870700836, -0.007687437813729048, -0.04240080341696739, -0.015882669016718864, 0.014197075739502907, 0.023556001484394073, -0.028055621311068535, -0.010325145907700062, 0.0022039671894162893, -0.013858546502888203, -0.0010217592353001237, -0.006922220345586538, -0.0012068924261257052, -0.016545623540878296, 0.002122861333191395, -0.02531917579472065, 0.009415348060429096, 0.011763895861804485, 0.008893448859453201, 0.003995351959019899, -0.033711884170770645, 0.0043338811956346035, 0.1829186975955963, -0.002417311305180192, 0.011827370151877403, 0.02032586745917797, 0.006354478187859058, -0.004136405885219574, 0.01217295229434967, 0.02323157712817192, -0.002004728652536869, 0.00968335010111332, 0.007102063857018948, 0.008251653052866459, 0.02014249749481678, -0.0002554398088250309, -0.0007299539283849299, 0.01271600928157568, -0.04344460368156433, -0.028380045667290688, -0.02561538852751255, 0.0026888400316238403, 0.005381206516176462, -0.0064355842769145966, -0.03317587822675705, -0.03540452942252159, 0.012222320772707462, -0.01646099053323269, -0.01554413978010416, -0.015868565067648888, 0.03097543679177761, 0.002364416141062975, -0.006520216818898916, 0.016475096344947815, -0.0014246443752199411, 0.009690403006970882, -0.02695540152490139, -0.016968784853816032, 0.007341855671256781, -0.013520016334950924, 0.02393684722483158, -0.00804007239639759, -0.009041555225849152, -0.015501824207603931, -0.013936125673353672, -0.04829685762524605, -0.011608736589550972, 0.014091284945607185, -0.010360409505665302, 0.018675537779927254, 0.011136205866932869, -0.006167581770569086, -0.040679946541786194, -0.023217473179101944, -0.00045578042045235634, 0.011277259327471256, -0.002932158065959811, -0.006541374605149031, 0.004034141544252634, 0.027688881382346153, 0.00270470860414207, -0.002925105392932892, -0.008315127342939377, 0.003505189437419176, -0.014768343418836594, -0.015332559123635292, -0.026010340079665184, 0.032075658440589905, -0.019761651754379272, -0.009126187302172184, -0.008928712457418442, 0.0020311761181801558, -0.004051773343235254, 0.0009023041930049658, -0.014070127159357071, -0.012998117133975029, -0.022610940039157867, -0.008773553185164928, 0.034163255244493484, 0.012031897902488708, 0.031257543712854385, 0.028168464079499245, -0.014091284945607185, 0.007687437813729048, -0.008308075368404388, 0.008420918136835098, -0.012377480044960976, -0.05574450269341469, 0.050017714500427246, -0.009909036569297314, -0.02981879562139511, 0.010642517358064651, -0.02059387043118477, 0.0168700460344553, 0.0017834502505138516, -0.0031225807033479214, -0.007997756823897362, -0.009831457398831844, 0.0069962735287845135, -0.005250731483101845, 0.003632138017565012, -0.00015086155326571316, -0.02089008316397667, 0.06776229292154312, 0.028648048639297485, -0.011072731576859951, 0.0055046286433935165, 0.003769665490835905, -0.00028431176906451583, 0.008766500279307365, 0.02483959309756756, -0.03946688398718834, -0.018224164843559265, -0.016221199184656143, 0.007419435307383537, 0.004298617597669363, 0.005829052533954382, 0.014838870614767075, 0.01782921329140663, -0.0033817673102021217, -0.001445802510716021, -0.006819956470280886, -0.012998117133975029, -0.025869285687804222, -0.016066038981080055, 0.00248078559525311, -0.004041194450110197, -0.004407934378832579, -0.028648048639297485, -0.012730115093290806, -0.03523526340723038, -0.011277259327471256, 0.0343325212597847, 0.001587738050147891, 0.007567542139440775, -0.004513724707067013, 0.016728993505239487, -0.028238991275429726, 0.0050955722108483315, -0.024896014481782913, 0.02144019305706024, 0.010564937256276608, -0.0235701072961092, -0.02404968999326229, -0.004633620847016573, 0.003208976238965988, -0.015656983479857445, -0.01805489882826805, 0.0007422961643896997, 0.0025037068407982588, -0.00824460107833147, 0.006157002877444029, 0.0005487878224812448, -0.024938330054283142, -0.012976959347724915, -0.013329594396054745, 0.022836627438664436, -0.030665118247270584, -0.012462112121284008, -0.02200440876185894, -0.00925313588231802, -0.00696101039648056, -0.010275776498019695, 0.01263843011111021, 0.01189789641648531, 0.003621558891609311, -0.020946504548192024, 0.0030132639221847057, -0.18032331764698029, 0.026687398552894592, 0.02018481306731701, -0.023950953036546707, -0.01193316001445055, -0.01024051383137703, 0.017815107479691505, 0.03303482383489609, -0.016094250604510307, 0.007588699925690889, 0.024853697046637535, 0.018590904772281647, -0.005462312605232, -0.012158846482634544, 0.010169986635446548, 0.009027449414134026, -0.008145863190293312, -0.00715848570689559, 0.0401439405977726, 0.02702592872083187, 0.02136966586112976, -0.06240224838256836, 0.011058625765144825, -0.004647726193070412, 0.003570426953956485, 0.0041011422872543335, -0.007320697419345379, 0.038112763315439224, -0.00917555671185255, -0.033232301473617554, -0.004619515500962734, 0.006992747075855732, 0.017843319103121758, -0.00042161892633885145, 0.003380004083737731, 0.0023344422224909067, -0.016912363469600677, -0.011263154447078705, 0.0023926268331706524, 0.04076457768678665, 0.019789863377809525, 0.023090524598956108, -0.019112804904580116, 5.482368578668684e-06, -0.03740749508142471, 0.010480305179953575, 0.012835904955863953, 0.013893809169530869, -0.0007458225009031594, -0.013167382217943668, -0.004083510488271713, -0.005391785409301519, 0.008011861704289913, -0.008618393912911415, -0.005913685075938702, 0.02781582996249199, -0.010473252274096012, -0.017307313159108162, 0.025629494339227676, -0.0025936285965144634, -0.04144163802266121, -0.015008135698735714, 0.018224164843559265, -0.0019994392059743404, -0.009880825877189636, -0.031483232975006104, -0.02856341563165188, 0.020720819011330605, -0.03681506961584091, 0.014994029887020588, -0.0031613705214112997, 0.014979925006628036, -0.020156603306531906, -0.0022550993598997593, 0.01496581919491291, 0.009097976610064507, -0.026377080008387566, 0.010861150920391083, 0.023739371448755264, -0.017927952110767365, 0.005571629386395216, 0.0466042086482048, 0.0011971950298175216, 0.003115528030321002, 0.016912363469600677, -0.009704508818686008, 0.014443919993937016, 0.006283951457589865, -0.00895692314952612, -0.01791384629905224, 0.0042704069055616856, -0.014373392798006535, 0.010346303693950176, -0.016221199184656143, -0.010832940228283405, -0.006559006404131651, 0.004866359755396843, 0.004668884444981813, 0.003896614070981741, -0.019042277708649635, 0.00897102802991867, -0.007870808243751526, -0.026913084089756012, 0.010127670131623745, 0.025587178766727448, 0.0024878382682800293, -0.02457159012556076, 0.005518733989447355, 0.0276324599981308, -0.007214907091110945, -0.027674775570631027, -0.0035616110544651747, 0.02543201856315136, 0.003082027891650796, -0.023372631520032883, 0.03898729756474495, -0.029734162613749504, -0.008251653052866459, 0.020988820120692253, -0.002575997030362487, 0.030354799702763557, 0.0006735323695465922, 0.0010446804808452725, 0.00802596751600504, -0.003422320354729891, -0.03630727529525757, -0.0919671431183815, -0.013512964360415936, 0.008265758864581585, 0.030411221086978912, -0.027279825881123543, 0.010917572304606438, -0.002427890431135893, -0.006090002134442329, 0.0023838109336793423, 0.014161812141537666, -0.005141414701938629, -0.01275127287954092, 0.001542777055874467, -0.009020397439599037, 0.009182609617710114, -0.008703025989234447, -0.013202645815908909, -0.03402220085263252, -0.007511120289564133, 0.028760891407728195, 0.006929273251444101, -0.04330354928970337, 0.007835544645786285, 0.003022079821676016, 0.014253497123718262, -0.012525586411356926, -0.045109037309885025, 0.0132520142942667, -0.014627289958298206, 0.02602444589138031, 0.000344480067724362, -0.013907914981245995, -0.0008062112028710544, -0.004707674030214548, -0.021764617413282394, -0.004150511231273413, -0.01701110042631626, -0.031737130135297775, 0.015501824207603931, -0.02922636829316616, 0.02856341563165188, 0.005617471877485514, 0.026757925748825073, 0.013675175607204437, -0.015388980507850647, 0.0031225807033479214, -0.02445874735713005, 0.04400881752371788, 0.007567542139440775, -0.026038549840450287, 0.0009485874907113612, -0.0224134661257267, 0.003706191433593631, -0.021059347316622734, 0.020410500466823578, -0.00540941720828414, 0.006735323928296566, 0.015924986451864243, -0.026348868384957314, -0.0024419957771897316, 0.0017508316086605191, -0.011115048080682755, -0.022173672914505005, 0.022159568965435028, 0.019239751622080803, -0.01256790291517973, -0.005021519027650356, -0.00610763393342495, 0.01895764470100403, -0.022625045850872993, -0.00597715936601162, -0.01399959996342659, -0.015953196212649345, -0.015332559123635292, -0.016432778909802437, 0.002766419667750597, -0.005317732226103544, -0.024303587153553963, 0.0043091969564557076, 0.000351312366547063, 0.0038542980328202248, -0.006012422498315573, -0.007913123816251755, -0.0453629344701767, 0.03221671283245087, 0.019409017637372017, -0.019677018746733665, 0.0072043281979858875, 0.007602805271744728, -0.010120617225766182, 0.02629244700074196, 0.01543129701167345, 0.018069004639983177, 0.0004804648633580655, -0.005261310841888189, 0.020424604415893555, -0.009203767403960228, -0.00847028661519289, -0.02788635715842247, 0.017899740487337112, -0.05529313161969185, 0.007616910617798567, -0.06956778466701508, 0.020875977352261543, 0.0041328794322907925, -0.03283734992146492, 0.006798798218369484, 0.000569505151361227, 0.009373031556606293, 0.003207213245332241, -0.0023079945240169764, 0.019338490441441536, -0.02375347726047039, -0.0072360653430223465, -0.0157134048640728, 0.01857679896056652, -0.022103147581219673, -0.0032160289119929075, 0.010268724523484707, -0.0072360653430223465, 0.03481210395693779, 0.01895764470100403, -0.013188540004193783, 0.024233059957623482, 0.004228090867400169, 0.007546383887529373, -0.01832290180027485, 0.02368295006453991, 0.03060869686305523, 0.021764617413282394, -0.032188501209020615, -0.007348908577114344, 0.004929834045469761, -0.009027449414134026, -0.0019077541073784232, 0.023950953036546707, 0.01438749860972166, -0.006118213292211294, 0.037068966776132584, 0.03216028958559036, 0.0297059528529644, 0.013378962874412537, -0.021849250420928, -0.03326050937175751, -0.0003305950958747417, -0.004044720903038979, 0.012511481530964375, 0.013223803602159023, 0.00682348245754838, 0.009358926676213741, 0.009239031001925468, -0.010769465938210487, 0.020396394655108452, -0.0029533160850405693, -0.03512242063879967, -0.03060869686305523, 0.029395634308457375, -0.019155120477080345, 0.019902706146240234, 0.02111576870083809, -0.017180366441607475, -0.016658466309309006, 0.050328031182289124, -0.004457303322851658, 0.01564287766814232, -0.00957050733268261, 0.026645082980394363, -0.009182609617710114, -0.022991785779595375, 0.003801402635872364, -0.019606493413448334, -0.001530434819869697, -0.018590904772281647, -0.014683711342513561, 0.01303338073194027, 0.02784404158592224, 0.0026324184145778418, -0.006365057546645403, 0.0005884592537768185, 0.00680585065856576, -0.00662600714713335, 0.02032586745917797, 0.011608736589550972, -0.006827008910477161, -0.02743498422205448, 0.010783570818603039, 0.015501824207603931, 0.03512242063879967, 0.009203767403960228, 0.031229333952069283, -0.00010342116001993418, 0.017067521810531616, 0.007334803231060505, 0.009154397994279861, -0.005388258956372738, 0.003390583209693432, 0.01003598514944315, 0.009027449414134026, -0.009076818823814392, -0.008216389454901218, 0.03224492073059082, 0.03365546092391014, 0.029311001300811768, -0.007757964543998241, 0.006894009653478861, -0.030467642471194267, -0.05083582550287247, -0.004457303322851658, -0.020988820120692253, -0.020537449046969414, 0.0031313966028392315, -0.011213785037398338, -0.013153276406228542, 0.012793589383363724, -0.010078301653265953, 0.018605010583996773, -0.02118629589676857, 0.007130275014787912, -0.0022568623535335064, -0.0005025045247748494, -0.02479727566242218, 0.03543274104595184, 0.005991264712065458, -0.01694057323038578, 0.014655500650405884, -0.029395634308457375, 0.019352596253156662, -0.001213063602335751, 0.023471370339393616, -0.04003109782934189, 0.031257543712854385, -0.01791384629905224, 0.022060830146074295, 0.0007149669690988958, -0.0024737329222261906, -0.011862633749842644, -0.0133860157802701, -0.005723262205719948, 0.01716626062989235, 0.01962059736251831, 0.014711922034621239, 0.08000577241182327, 0.012292847968637943, -0.014796554110944271, -0.009648087434470654, -0.01596730202436447, 0.012991064228117466, 0.02114398032426834, 0.00023472250904887915, -0.0011416550260037184, -0.04519367218017578, -0.0009300741949118674, -0.009112082421779633, -0.00824460107833147, -0.029762374237179756, -0.01823827065527439, -0.0036074535455554724, 0.01757531613111496, 0.026983611285686493, -0.020297657698392868, 0.002546022878959775, 0.02062208019196987, 0.021355561912059784, 0.012116529978811741, 0.0008890804019756615, -0.01925385743379593, 0.0024684432428330183, 0.03543274104595184, 0.006023001857101917, 0.009866720996797085, -0.0565061941742897, -0.0012730114394798875, 0.017857424914836884, -0.016700781881809235, -0.02629244700074196, -0.008293969556689262, -0.0003204568347427994, 0.0002618313010316342, -0.031483232975006104, 0.04307786375284195, -0.0024860750418156385, 0.010529673658311367, 0.0032795032020658255, -0.015487718395888805, -0.034755680710077286, -0.024952435865998268, 0.004199880175292492, -0.033232301473617554, -0.024402325972914696, -0.039890043437480927] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_demo_abstract_the_intelligent_iot_integrator_data_marketplace__version_1.json b/database/embeddings/publications_txt/2020_demo_abstract_the_intelligent_iot_integrator_data_marketplace__version_1.json new file mode 100644 index 0000000000000000000000000000000000000000..a82362ef62a585f89779f95e85e5c4974b4136c9 --- /dev/null +++ b/database/embeddings/publications_txt/2020_demo_abstract_the_intelligent_iot_integrator_data_marketplace__version_1.json @@ -0,0 +1 @@ +[0.003812505630776286, 0.010162048041820526, -0.0016073690494522452, -0.007395635358989239, -0.023785587400197983, 0.02703855372965336, -0.0206577330827713, 0.0026551999617367983, -0.0022954968735575676, -0.05199187248945236, 0.022214708849787712, 0.024188732728362083, -0.01508320402354002, 0.006432951427996159, -0.01299796812236309, 0.01979583501815796, 0.026107149198651314, -0.014318617060780525, -0.015208317898213863, 0.001751597854308784, 0.008139369077980518, 0.007882189936935902, -0.007472094148397446, 0.001493549905717373, -0.012852001935243607, 0.00677006458863616, 0.031083911657333374, -0.033391572535037994, -0.00838264636695385, 0.002085235435515642, 0.013130033388733864, -0.012601773254573345, -0.019768033176660538, -0.031111713498830795, -0.004709156695753336, 0.002253792015835643, -0.00857031811028719, -0.00620705122128129, 0.02828969433903694, -0.032668691128492355, 0.0014049274614080787, 0.020727241411805153, 0.007889141328632832, -0.01721014454960823, -0.011698171496391296, 0.025717904791235924, 0.0217976626008749, -0.012344594113528728, -0.014443730935454369, 0.011725974269211292, -0.008563367649912834, 0.034587107598781586, -0.032251641154289246, 0.0010513062588870525, -0.00017051144095603377, 0.007277471944689751, 0.021644745022058487, 0.0198514424264431, -0.010933584533631802, -0.015917297452688217, 0.023799488320946693, -0.008876152336597443, -0.033030129969120026, -0.020782846957445145, 0.004726533778011799, -0.028804052621126175, -0.03141754865646362, 0.030805880203843117, 0.007409536745399237, 0.006492033135145903, 0.027233175933361053, 0.036060672253370285, 0.00952257588505745, -0.03163997456431389, 0.016278738155961037, -0.026871735230088234, -0.0062452806159853935, 0.0014066650765016675, -0.015847789123654366, 0.0017646305495873094, -0.002078284742310643, -0.014061437919735909, -0.0013493211008608341, 0.018516890704631805, 0.0156948734074831, 0.03973068669438362, -0.010162048041820526, 0.02136671356856823, -0.00933490414172411, -0.016111919656395912, 0.007305275183171034, -0.002443200908601284, 0.006710982881486416, 0.017807912081480026, -0.01509710494428873, 0.034948546439409256, -0.011941448785364628, 0.03553241491317749, -0.003343327669426799, -0.029999587684869766, 0.006957735866308212, -0.005776102188974619, -0.046681471168994904, -0.023813389241695404, -0.01372780092060566, -0.029638146981596947, 0.0032025743275880814, 0.02938791923224926, 0.020449209958314896, 0.022061791270971298, -0.01679309643805027, 0.022353725507855415, -0.02024068683385849, -0.01987924613058567, -0.014554943889379501, -0.02171425335109234, -0.0014874680200591683, 0.013102229684591293, -0.017724502831697464, -0.009390510618686676, 0.02977716363966465, 0.01873931661248207, 0.005160958040505648, -0.03386422619223595, 0.013825111091136932, 0.018975643441081047, -0.01410314254462719, -0.012469707988202572, 0.009772803634405136, -0.011496598832309246, 0.014582746662199497, 0.018836626783013344, 0.008417400531470776, 0.020129473879933357, -0.008486908860504627, 0.022256413474678993, -0.017349159345030785, 0.021519631147384644, -0.018002532422542572, -0.05738568305969238, 0.008757988922297955, 0.03250187262892723, -0.012400200590491295, -0.0026134951040148735, 0.002043530810624361, 0.011420140042901039, -0.006624098401516676, 0.007346979808062315, 0.0015665332321077585, 0.0111004039645195, -0.014276912435889244, -0.004643124528229237, -0.02436945214867592, 0.020073866471648216, 0.002371955430135131, 0.010405325330793858, -0.0049837129190564156, 0.01184413768351078, 0.017738403752446175, 0.004354666918516159, 0.011420140042901039, -0.0004302970482967794, -0.03230724856257439, 0.0015448119957000017, 0.01682090014219284, 0.03289111331105232, 0.03925803303718567, 0.00439637154340744, 0.001508320332504809, -0.014846877194941044, -0.027413897216320038, 0.009605985134840012, -0.006175772752612829, -0.00015270005678758025, -0.0007185374270193279, 0.031890202313661575, 0.0335305854678154, 0.015319529920816422, -0.0062591820023953915, -0.014402026310563087, 0.010599947534501553, -0.002210349543020129, 0.02019898220896721, 0.018628103658556938, -0.007777928374707699, 0.018920037895441055, 0.012476659379899502, -0.024133125320076942, 0.017293553799390793, -0.020490914583206177, 0.049767620861530304, 0.008507761172950268, 0.007221865467727184, 0.017794009298086166, -0.6076654195785522, -0.003103525610640645, 0.0036734899040311575, -0.01679309643805027, -0.021978382021188736, 0.027399994432926178, 0.014415928162634373, -0.008514711633324623, 0.0029054281767457724, 0.026246163994073868, -0.010683356784284115, 0.018405679613351822, 0.0017133685760200024, -0.0248143021017313, -0.00895261112600565, 0.0025352989323437214, 0.02250664122402668, -0.023507555946707726, -0.0057830531150102615, 0.00234067696146667, -0.006446853280067444, 0.0004239979025442153, 0.01791912317276001, -0.013394162990152836, -0.013498424552381039, 0.01297711580991745, 0.010516537353396416, -0.006829146295785904, 0.019170265644788742, -0.00012391946802381426, -0.023229524493217468, 0.013171738013625145, 0.031834594905376434, 0.008139369077980518, 0.043289490044116974, -0.011385385878384113, -0.013317704200744629, 0.01601460948586464, 0.009668542072176933, 0.03058345429599285, -0.03158436715602875, -0.021922776475548744, 0.0014787794789299369, 0.008674579672515392, 0.006022855173796415, 0.005341678392142057, 0.029943982139229774, 0.0009670279687270522, -0.026440786197781563, -0.01953170634806156, -0.008194975554943085, 0.0016273525543510914, -0.014033635146915913, -0.0017133685760200024, 0.027163667604327202, -0.01875321753323078, 0.013373310677707195, -0.013672194443643093, 0.024147028103470802, 0.00918198749423027, 0.009779755026102066, 0.012546166777610779, -0.008702383376657963, -0.030222013592720032, -0.007086325436830521, 0.01141318865120411, 0.021172091364860535, -0.002568315016105771, 0.014944188296794891, -0.020310193300247192, -0.0006016773404553533, 0.020004360005259514, -0.0043303389102220535, -0.013046623207628727, 0.02484210580587387, 0.019184166565537453, 0.03277990221977234, 0.036477718502283096, -0.02410532347857952, 0.017780108377337456, 0.010002180002629757, -0.019948752596974373, 0.0008501678821630776, -0.033753011375665665, 0.014624452218413353, 0.023160016164183617, -0.01126027200371027, -0.014249109663069248, 0.007409536745399237, 0.012115218676626682, 0.018475186079740524, 0.023493653163313866, 0.0010417489102110267, 0.0013084852835163474, -0.005081024020910263, 0.03550460934638977, 0.010933584533631802, 0.01069030724465847, -0.012455807067453861, -0.0051157777197659016, -0.004219126421958208, -0.0062418049201369286, 0.012872854247689247, 0.0030896239914000034, 0.044485025107860565, 0.03372520953416824, -0.00781963299959898, -0.0019618591759353876, 0.015347333624958992, -0.01789132133126259, -0.02138061448931694, 0.0025995937176048756, -0.042205166071653366, -0.004907254129648209, 0.00899431575089693, -0.029582541435956955, 0.0335305854678154, 0.00973804946988821, -0.003353753825649619, 0.013262097723782063, -0.0043894206173717976, 0.011343681253492832, 0.01903124898672104, 0.0020000883378088474, -0.01182328537106514, 0.025453774258494377, 0.019754130393266678, -0.017404766753315926, -0.008897004649043083, 0.01980973780155182, 0.009258445352315903, -0.010460931807756424, 0.021992284804582596, -0.016292640939354897, 0.03289111331105232, -0.000914897071197629, 0.018155450001358986, -0.036866962909698486, -0.013373310677707195, -0.0244111567735672, -0.008014255203306675, -0.0017411716980859637, 0.006047183182090521, -0.02399411052465439, -0.04006432369351387, -0.0224649365991354, -0.023396342992782593, -0.004844697192311287, -0.0030652962159365416, 0.011559155769646168, -0.031056107953190804, 0.011927546933293343, -0.01164256501942873, 0.012476659379899502, -0.009779755026102066, -0.018141549080610275, 0.02324342541396618, -0.028053369373083115, -0.030055195093154907, -0.007263570558279753, -0.015152711421251297, 0.03964727744460106, -0.0045423381961882114, -0.009494772180914879, 0.004653550684452057, 0.008097664453089237, -0.020782846957445145, 0.025286955758929253, -0.005084499251097441, -0.01755768246948719, -0.017265750095248222, -0.011357583105564117, -0.02936011552810669, -0.0028567726258188486, -0.030611258000135422, 0.018892234191298485, -0.0031000501476228237, -0.004173946566879749, -0.009272347204387188, -0.008493859320878983, -0.0012885017786175013, 0.012122169137001038, -0.008167172782123089, -0.008139369077980518, 0.016125820577144623, -0.0009817983955144882, 0.017849616706371307, -0.01647336035966873, 0.008778841234743595, 0.010495685040950775, -0.0021964481566101313, 0.014846877194941044, 0.015069302171468735, 0.01868371106684208, -0.011795482598245144, 0.005355579778552055, -0.0032182135619223118, -0.017627190798521042, -0.030694667249917984, 0.01672358810901642, 0.04109304025769234, 0.04081501066684723, -0.004764763172715902, -0.015500250272452831, 0.002620446030050516, -0.0183083675801754, 0.02367437444627285, -0.013651342131197453, 0.021241599693894386, 0.010440079495310783, 0.04504108801484108, -0.007986452430486679, -0.008396548219025135, 0.005046269856393337, -0.009029069915413857, 0.023938503116369247, -0.009188937954604626, 0.019712425768375397, -0.03778446838259697, -0.0005951609928160906, -0.005362530704587698, -0.011691220104694366, 0.024925515055656433, -0.01565316878259182, -0.00553977582603693, -0.0061236415058374405, 0.025092333555221558, 0.022784672677516937, -6.434906390495598e-05, -0.013227343559265137, -0.017404766753315926, -0.00439637154340744, 0.015027597546577454, -0.006881277076900005, 0.01433251891285181, -0.019253674894571304, 0.02523135021328926, -0.00657891808077693, 0.02560669183731079, -0.02101917378604412, 0.0061827232129871845, 0.04303926229476929, 0.037172798067331314, -0.04420699179172516, 0.031834594905376434, -0.020796749740839005, 0.00028563381056301296, 0.016598474234342575, -0.027942156419157982, 0.028359202668070793, -0.02667711302638054, 0.018920037895441055, -0.018155450001358986, -0.00761806033551693, 0.04312267154455185, 0.006290460471063852, -0.023882897570729256, -0.015541955828666687, 0.02482820488512516, 0.013866816647350788, 0.0021964481566101313, -0.0038924396503716707, 0.006558065768331289, 0.03211262822151184, -0.0037221454549580812, -0.013755603693425655, -0.010217654518783092, -0.004629222676157951, -0.006353017408400774, -0.03316914662718773, 0.018642006441950798, -0.017015522345900536, -0.022325921803712845, 9.475874685449526e-05, 0.006231378763914108, -0.0011190763907507062, 0.00013847267837263644, 0.003171295626088977, 0.003836833406239748, 0.0328633114695549, -0.03998091444373131, -0.006342591252177954, 0.00973804946988821, 0.009668542072176933, 0.005713545251637697, -0.007889141328632832, -0.018586399033665657, 0.014019733294844627, -0.024313846603035927, 0.0028515595477074385, 0.013102229684591293, 0.00590121652930975, -0.010975290089845657, -0.023451948538422585, -0.012970165349543095, 0.008917856961488724, 0.03344717621803284, -0.004559714812785387, -0.022770771756768227, 0.006829146295785904, 0.021102583035826683, 0.02143622189760208, -0.013081377372145653, -0.00602633086964488, 0.05165823549032211, -0.007048096042126417, 0.0058560362085700035, -0.004219126421958208, 0.006818720139563084, -0.0036804405972361565, 0.011322828941047192, 0.0037673255428671837, -0.02936011552810669, -0.00019777155830524862, 0.036505524069070816, -0.018141549080610275, 0.01828056387603283, -0.004163520410656929, 0.010363620705902576, 0.006214001681655645, -0.0023563161958009005, -0.030361028388142586, -0.027608517557382584, 0.032223839312791824, 0.050156865268945694, 0.02448066510260105, -0.002573528094217181, 0.04087061807513237, -0.003819456323981285, -0.020018260926008224, -0.03995311260223389, -0.0033919832203537226, 0.006106264889240265, 0.016139723360538483, -0.0005921199917793274, 0.0014735664008185267, 0.004034930840134621, -0.0011642564786598086, 0.01721014454960823, -0.014777368865907192, -0.010773716494441032, -0.004469354636967182, 0.020518718287348747, -0.01873931661248207, -0.00400365237146616, -0.027928253635764122, -0.006158395670354366, 0.0032147380989044905, 0.03308573737740517, -0.023118311539292336, 0.04531911760568619, 0.030388832092285156, 0.004337289836257696, 0.000583865970838815, 0.005790004041045904, 0.014638353139162064, 0.021199895069003105, 0.00659977039322257, -0.02398020774126053, 0.038896594196558, 0.03928583860397339, 0.009849262423813343, 0.026941243559122086, 0.03550460934638977, 0.0059151179157197475, 0.005925544071942568, 0.011955350637435913, -0.018489088863134384, -0.007430389057844877, -0.04743215814232826, -0.010050835087895393, 0.023048803210258484, -0.0003646989935077727, -0.01356098148971796, 0.00938356015831232, 0.003996701445430517, -0.031834594905376434, -0.025286955758929253, 0.030694667249917984, 0.017738403752446175, 0.006116691045463085, -0.01128112431615591, -0.017237946391105652, -0.03731181472539902, -0.005463317036628723, -0.01508320402354002, 0.007534651085734367, -0.00994657352566719, -0.018558595329523087, -0.00561623414978385, -0.011941448785364628, 0.013991930522024632, -0.022214708849787712, 0.0217976626008749, 0.009508674032986164, -0.007166259456425905, -0.049406182020902634, -0.0027264454402029514, 0.0057830531150102615, -0.0029645098838955164, 0.026551999151706696, -0.016501164063811302, 0.007944747805595398, 0.0013571408344432712, -0.016153624281287193, -0.03961947560310364, 0.0010730274952948093, -0.03319694846868515, -0.006648425944149494, -0.014005832374095917, -0.010259359143674374, 0.004177421797066927, 0.011156010441482067, 0.025662299245595932, -0.025870822370052338, -0.01755768246948719, 0.007214915007352829, -0.00781963299959898, 0.00352752348408103, 0.01759938709437847, 0.015764379873871803, 0.008167172782123089, -0.0006842178991064429, 0.007645863573998213, 0.00619662506505847, -0.016626277938485146, -0.021589137613773346, -0.04081501066684723, 0.013352458365261555, 0.008194975554943085, -0.0023093982599675655, 0.013442818075418472, -0.020379701629281044, 0.0026378228794783354, 0.019907047972083092, -0.01939268968999386, 0.004952434450387955, -0.00592206884175539, 0.011864989995956421, 0.016237033531069756, 0.0070585221983492374, -0.0015361234545707703, -0.012372397817671299, -0.022756870836019516, -0.027983861044049263, -0.011531352065503597, 0.014582746662199497, 0.014944188296794891, -0.0012885017786175013, 0.03745083138346672, -0.0006368656759150326, -0.013693046756088734, -0.03319694846868515, 0.002502282615751028, -0.003868111874908209, 0.016181427985429764, 0.008528613485395908, -0.032974522560834885, 0.009230642579495907, 0.00725661963224411, -0.007492946460843086, 0.009529526345431805, -0.019448297098279, -0.03656112775206566, 0.0048655495047569275, 0.012733838520944118, 0.0020539569668471813, -0.006787441670894623, 0.004823844879865646, -0.03325255587697029, -0.02560669183731079, 0.009425264783203602, 0.02253444492816925, 0.04509669542312622, -0.006220952607691288, 0.0055328249000012875, -0.014638353139162064, -0.00895261112600565, -0.030666863545775414, -0.03939704969525337, -0.02363266982138157, -0.016556769609451294, 0.027956057339906693, 0.010398374870419502, 0.03177899122238159, 0.017835713922977448, 0.022798575460910797, 0.0015595824224874377, 0.004879450891166925, 0.00861202273517847, 0.019378788769245148, -0.0035188349429517984, -0.009397461079061031, -0.003049656981602311, -0.008452154695987701, 0.013512326404452324, 0.012400200590491295, 0.009307101368904114, 0.009070774540305138, -0.014749566093087196, -0.004618796519935131, -0.007951698265969753, -0.004594468977302313, -0.029499132186174393, -0.0006247017881833017, -0.004531912039965391, 0.00439637154340744, 0.005814331583678722, -0.030666863545775414, -0.003843784099444747, 0.03667234256863594, 0.00861202273517847, -0.005949872080236673, 0.005484169349074364, 0.026426885277032852, -0.019934851676225662, 0.025328660383820534, 0.013185638934373856, 0.0012103054905310273, 0.0016134509351104498, 0.008459105156362057, -0.037200599908828735, -0.005362530704587698, 0.021130386739969254, 0.01757158525288105, 0.01761328987777233, 0.024995023384690285, -0.0024814303033053875, 0.0027907402254641056, 0.0309170912951231, 0.010787618346512318, -0.015597561374306679, -0.012518364004790783, -0.016320442780852318, -0.005525873973965645, -0.006043707486242056, -0.030611258000135422, -0.017488176003098488, 0.005692692939192057, -0.013463670387864113, -0.0006068904185667634, 0.002590905176475644, -0.025286955758929253, -0.016125820577144623, 0.024550173431634903, 0.01299796812236309, 0.025300858542323112, 0.0021199893672019243, 0.03364180028438568, 0.024925515055656433, 0.0005143581074662507, -0.015319529920816422, 0.0006659720675088465, -0.008813595399260521, -0.0008771021966822445, 0.023521456867456436, 0.02439725585281849, -0.012761641293764114, -0.031167320907115936, -0.0012302889954298735, 0.014568845741450787, -0.024160929024219513, -0.02936011552810669, 0.002509233308956027, 0.052492327988147736, -0.010412275791168213, -0.022451035678386688, -0.010759815573692322, -0.018502989783883095, 0.013852914795279503, -0.01570877432823181, -0.008250582031905651, 0.01261567510664463, -0.007527700159698725, 0.014958089217543602, -0.0023910701274871826, -0.0010069949785247445, 0.029888376593589783, 0.017488176003098488, -0.01241410244256258, -0.0025943806394934654, -0.02783094346523285, -0.03708938881754875, 0.0018089418299496174, 0.017043324187397957, -0.007506847847253084, -0.01358878519386053, 0.01600070670247078, 0.040981829166412354, 0.006099313963204622, -0.013060525059700012, -0.0067770155146718025, -0.008354843594133854, 0.028887461870908737, 0.005140105728060007, -0.010912732221186161, 0.006947309710085392, -0.022742968052625656, 0.005602332763373852, -0.005108827259391546, 0.001947957556694746, -0.016250936314463615, -0.004531912039965391, -0.0077848793007433414, 0.002293759025633335, -0.010502636432647705, 0.018475186079740524, 0.002884575864300132, 0.020129473879933357, -0.024619679898023605, 0.00011946661834372208, 0.0015196154126897454, -0.0029645098838955164, -0.004486731719225645, -0.03505976125597954, 0.0014483698178082705, -0.008062910288572311, 0.015792183578014374, 0.010662504471838474, 0.0175020769238472, 0.014832975342869759, 0.01202485803514719, -0.03269649296998978, -0.019309280440211296, 0.00438594538718462, -0.011837187223136425, -0.011795482598245144, -0.007096751593053341, -0.004243454430252314, -0.003503195708617568, 0.028553824871778488, -0.010301063768565655, -0.03900780528783798, -0.017085028812289238, -0.009418313391506672, -0.0033989339135587215, -0.009633787907660007, -0.005452890880405903, 0.010620799846947193, 0.0011546991299837828, -0.015305629000067711, -0.0036839160602539778, -0.01643165573477745, 0.03750643506646156, -0.02983276918530464, -0.0064503285102546215, 0.01563926599919796, -0.014527141116559505, 0.041371073573827744, -0.0038333579432219267, 0.004295585211366415, 0.011329779401421547, -0.05076853558421135, -0.001636040979065001, -0.010530439205467701, 0.04000872001051903, -0.02523135021328926, -0.005025417543947697, 0.008924808353185654, -0.02712196297943592, -0.01684870384633541, -0.006370394490659237, -0.0038542102556675673, 0.00774317467585206, 0.0019340559374541044, 0.0010877979220822453, 0.015138809569180012, -0.0004704812599811703, 0.002472741762176156, -0.028526021167635918, -0.0327242948114872, 0.01866980828344822, -0.02210349589586258, -0.0070446208119392395, 0.00020917518122587353, 0.015847789123654366, -0.005480694118887186, -0.03856295719742775, -0.027775337919592857, -0.03483733534812927, -0.014374223537743092, -0.03422566503286362, -0.010398374870419502, -0.009202839806675911, -0.003438900923356414, -0.004000176675617695, 0.01412399485707283, 0.037256207317113876, -0.011156010441482067, -0.005995051935315132, -0.03344717621803284, -0.007513798773288727, -0.00010697692778194323, -0.004354666918516159, 0.011489647440612316, 0.0011355845490470529, -0.05641257017850876, -0.013658292591571808, 0.009731099009513855, 0.006728359963744879, 0.0019566460978239775, 0.02557888999581337, 0.0023563161958009005, -0.0004081414081156254, -0.004222602117806673, -1.897890069813002e-05, -0.03617188706994057, -0.023424144834280014, 0.028498219326138496, -0.048655495047569275, -0.013679144904017448, -0.011142108589410782, -0.013053574599325657, 0.020755045115947723, 0.00419479887932539, 0.006571967154741287, -0.014777368865907192, 0.01429081428796053, -0.0126087237149477, -0.006558065768331289, -0.005852560978382826, 0.001278075622394681, 0.016959914937615395, -0.01087797898799181, 0.02445286139845848, 0.041343268007040024, -0.008097664453089237, -0.016306541860103607, -0.021644745022058487, 0.03522657975554466, -0.020477013662457466, 0.00969634484499693, 0.027956057339906693, -0.008146320469677448, -0.005320826079696417, -0.03708938881754875, 0.002983624581247568, -0.03047224134206772, -0.007221865467727184, -0.03013860434293747, -0.029610345140099525, -0.014471534639596939, -0.00504279462620616, 0.008890054188668728, -0.014652254991233349, -0.03778446838259697, -0.015833888202905655, 0.003365917596966028, -0.017390863969922066, -0.006255706772208214, -0.019267575815320015, -0.0069264573976397514, -0.015111006796360016, -0.0069681620225310326, -0.007687568198889494, 0.00030431404593400657, -0.007972550578415394, -0.012177775613963604, -0.018224958330392838, -0.005498071201145649, 0.18505769968032837, -0.009015168063342571, -0.005776102188974619, 0.02977716363966465, 0.019587311893701553, 0.02295149303972721, 0.008667629212141037, 0.005894265603274107, -0.014235207810997963, 0.013456719927489758, 0.009202839806675911, 0.011510499753057957, -0.009077725000679493, -0.0070585221983492374, 0.019754130393266678, -0.009689394384622574, -0.03389202803373337, -0.011468795128166676, -0.01570877432823181, -0.007381733972579241, -0.0067770155146718025, -0.02559279091656208, -0.020143374800682068, -0.020324096083641052, -0.004709156695753336, -0.003475392470136285, 0.003282508347183466, -0.010933584533631802, 0.0016082378569990396, 0.01607021503150463, -0.019156362861394882, 0.02628786861896515, 0.010516537353396416, -0.006856949534267187, -0.014554943889379501, -0.01243495475500822, 0.015166613273322582, 0.003080935450270772, 0.0358104445040226, -0.007923894561827183, -0.005317350383847952, -0.0382293164730072, -0.0028741497080773115, -0.030833682045340538, 0.005282596684992313, 0.01908685639500618, -0.01164256501942873, -0.003438900923356414, 0.011496598832309246, 0.0015960739692673087, -0.02285418100655079, 0.007506847847253084, 0.018836626783013344, 0.007152358070015907, -0.022381527349352837, 0.01241410244256258, -0.013039672747254372, 0.01755768246948719, 0.01711283251643181, -0.0025370365474373102, -0.002776838606223464, 0.03425347059965134, -0.00621747737750411, -0.00027629369287751615, 0.0012494035763666034, 0.022395430132746696, -0.0336696021258831, 0.0077084205113351345, 0.006575442850589752, -0.013428917154669762, 0.007833534851670265, -0.018252762034535408, -0.0279004517942667, 0.0007637175149284303, -0.016890408471226692, -0.031834594905376434, 0.033030129969120026, 0.0137486532330513, 0.0328633114695549, 0.04470745101571083, -0.012740788981318474, 0.02218690514564514, -0.014680057764053345, -0.008605072274804115, -0.004594468977302313, -0.025106236338615417, 0.04848867654800415, -0.012073514051735401, -0.0063182637095451355, -0.006516361143440008, -0.025398168712854385, 0.0030722469091415405, 0.001641254173591733, 0.006419050041586161, -0.0020331046544015408, -0.018530793488025665, 0.017682796344161034, -0.013296851888298988, -0.015847789123654366, 0.003259918186813593, -0.01755768246948719, 0.08596730977296829, 0.03430907428264618, 0.0023928077425807714, -0.0039480458945035934, -0.006627573631703854, -0.010266309604048729, 0.018906135112047195, 0.017794009298086166, -0.02252054400742054, -0.006280034314841032, -0.04120425507426262, -0.006029806099832058, 0.0058004301972687244, -0.00994657352566719, 0.019615115597844124, 0.007513798773288727, -0.006891703233122826, 0.004312962293624878, -0.013296851888298988, -0.011142108589410782, -0.012935411185026169, 0.00046526818186976016, 0.007100226823240519, -0.024605778977274895, -0.013894619420170784, -0.006019379943609238, -0.012858952395617962, -0.022214708849787712, 0.006432951427996159, 0.02936011552810669, 0.0014518452808260918, 0.0035170973278582096, 0.010565193369984627, 0.002841133391484618, -0.0025752659421414137, 0.02257614955306053, 0.005091450177133083, 0.01793302595615387, 0.024897711351513863, -0.022993197664618492, -0.01761328987777233, 0.01758548617362976, -0.005258268676698208, -0.001751597854308784, -0.03289111331105232, -0.0043928963132202625, -0.010266309604048729, -0.009077725000679493, -0.02060212753713131, 0.008500809781253338, -0.0045979442074894905, -0.01604241132736206, -0.017710600048303604, 0.03692257031798363, -0.015152711421251297, 0.005181810352951288, -0.020310193300247192, -0.013018820434808731, -0.014089241623878479, -0.016640178859233856, 0.010189850814640522, 0.01905905269086361, 0.021867169067263603, -0.0274973064661026, 0.004705681465566158, -0.177606463432312, 0.025815214961767197, 0.019990457221865654, -0.03667234256863594, -0.008910906501114368, -0.0012450594222173095, 0.027566812932491302, -0.015736578032374382, 0.0033450652845203876, 0.0069681620225310326, 0.03364180028438568, 0.01679309643805027, -0.006061084568500519, -0.00037816615076735616, 0.013845963403582573, 0.009432215243577957, -0.014749566093087196, 0.00973804946988821, 0.02983276918530464, 0.018516890704631805, 0.013018820434808731, -0.03536559268832207, 0.009592083282768726, -0.0240080114454031, 0.00592206884175539, 0.017627190798521042, -0.016946014016866684, 0.025690101087093353, -0.007187111768871546, -0.016209231689572334, 0.009585132822394371, -0.016320442780852318, 0.0398419015109539, 0.02174205519258976, 0.031167320907115936, 0.01647336035966873, -0.007757076062262058, -0.0025839542504400015, -0.02026848867535591, 0.03711719065904617, 0.003355491440743208, 0.03478172793984413, -0.00439637154340744, -0.014680057764053345, -0.0005873413174413145, 0.005887315142899752, 0.0033641799818724394, -0.0018854005029425025, 0.011135158129036427, -0.028831856325268745, 0.02257614955306053, -0.027274880558252335, 0.01942049339413643, -0.002538774162530899, 0.003270344343036413, 0.04670927673578262, -0.01545854564756155, -0.016320442780852318, 0.0020869732834398746, -0.0010243719443678856, 0.0039341445080935955, -0.01261567510664463, -0.007023768499493599, -0.014680057764053345, -0.013227343559265137, -0.041788119822740555, -0.009884016588330269, 0.03898000344634056, -0.017738403752446175, 0.013825111091136932, 0.0032182135619223118, -0.011496598832309246, -0.0023684799671173096, -0.007889141328632832, 0.015194416046142578, 0.001817630254663527, -0.0183083675801754, 0.0252174474298954, 0.030694667249917984, -0.010752864181995392, 0.0036248343531042337, 0.020129473879933357, -0.019559510052204132, 0.027219275012612343, 0.010050835087895393, 0.0018697611521929502, 0.023729979991912842, 0.006363443564623594, -0.009494772180914879, 0.01166341733187437, -0.0017307454254478216, -0.029916178435087204, -0.00620705122128129, -0.013832062482833862, 0.000968765642028302, 0.019184166565537453, -0.0013554031029343605, 0.019587311893701553, -0.014186552725732327, -0.01672358810901642, 0.0003990184923168272, 0.008653727360069752, 0.001552631612867117, 0.024341648444533348, 0.0023945453576743603, 0.015972904860973358, -0.0259542316198349, -0.013595735654234886, 0.022200807929039, -0.009119429625570774, -0.034587107598781586, 0.02409142069518566, 0.02478650026023388, 0.021130386739969254, -0.0029106412548571825, 0.0359494611620903, -0.019267575815320015, -0.010919683612883091, 0.006544163916260004, -0.008292286656796932, 0.021450122818350792, -0.0008432171307504177, -0.00973804946988821, 0.041009631007909775, -0.022687362506985664, -0.02443896047770977, -0.07662545144557953, -0.026468589901924133, 0.03202921897172928, 0.019323183223605156, -0.03733961656689644, 0.014318617060780525, -0.01752988062798977, 0.03152875974774361, 0.0025596267078071833, 0.01545854564756155, -0.027247076854109764, -0.01204571034759283, -0.023048803210258484, -0.011308927088975906, 0.0160980187356472, -0.027733633294701576, -0.01333855651319027, -0.029332313686609268, -0.0022086119279265404, 0.009793655946850777, -0.015750478953123093, -0.022617854177951813, 0.019962655380368233, -0.011183813214302063, -0.008785792626440525, 0.0014631402445957065, -0.03745083138346672, 0.007037669885903597, 0.014415928162634373, 0.00555020198225975, -0.00017854828911367804, -0.01787741854786873, 0.00933490414172411, -0.04089841991662979, -0.011023945175111294, -0.00918198749423027, 0.0022954968735575676, -0.005167908500880003, 0.03469831869006157, -0.01989314705133438, 0.02292368933558464, 0.017794009298086166, 0.041065238416194916, -0.017780108377337456, 0.00021275918697938323, -0.02100527286529541, -0.022784672677516937, 0.036088477820158005, 0.004132241941988468, -0.017043324187397957, -0.01868371106684208, -0.001768974820151925, 0.004796041641384363, -0.012288987636566162, 0.0313897468149662, 0.00936270784586668, 0.016209231689572334, 0.0020522193517535925, -0.03397543728351593, -0.0081810737028718, -0.0067770155146718025, -0.029888376593589783, -0.03152875974774361, 0.01222643069922924, -0.006867375690490007, 0.013060525059700012, -0.01722404547035694, -0.01647336035966873, 0.0010365358320996165, -0.022395430132746696, 0.00027194948052056134, -0.0031261155381798744, -0.015541955828666687, -0.014582746662199497, -0.011767678894102573, -0.006957735866308212, -0.011586958542466164, -0.022770771756768227, 0.015917297452688217, -0.01071115955710411, -0.004625747445970774, -0.01680699922144413, -0.030666863545775414, -0.03016640804708004, 0.008139369077980518, 0.013449769467115402, -0.013373310677707195, 0.01338026113808155, 0.028331400826573372, -0.04609760642051697, 0.020921863615512848, 0.019948752596974373, 0.03747863322496414, 0.008577268570661545, -0.019754130393266678, 0.013505375012755394, 0.015792183578014374, -0.012504462152719498, -0.011545253917574883, 0.0028220186941325665, -0.05493900552392006, 0.01644555665552616, -0.07679226994514465, 0.019378788769245148, -0.006116691045463085, -0.004316437523812056, 0.01105869933962822, -0.010613848455250263, 0.013185638934373856, -0.00859117042273283, 0.013790357857942581, 0.004180897027254105, -0.017641091719269753, -0.0040662093088030815, -0.020115571096539497, 0.026774423196911812, -0.004316437523812056, 0.00032494921470060945, 0.038340531289577484, -0.0046605016104876995, 0.008257532492280006, 0.006801343057304621, 0.011997055262327194, 0.0038159810937941074, -0.0007007259991951287, 0.01754378154873848, -0.019545607268810272, 0.008931758813560009, -0.007701470050960779, -0.0003093099221587181, -0.009988278150558472, 0.006804818753153086, 0.016626277938485146, -0.02056042291224003, -0.019295379519462585, 0.03052784875035286, 0.008125468157231808, -0.004236503504216671, 7.206009468063712e-05, 0.023034902289509773, 0.022270316258072853, 0.0313897468149662, -0.019990457221865654, -0.034948546439409256, 0.03158436715602875, -0.029554737731814384, -0.02329903095960617, -0.008055959828197956, -0.005967249162495136, 0.01257397048175335, 0.0061861989088356495, -0.015208317898213863, 0.0309170912951231, -0.004740435630083084, -0.03325255587697029, -0.02138061448931694, 0.013581833802163601, -0.007930845953524113, 0.006905605085194111, 0.006478131748735905, -0.020532619208097458, -0.007138456217944622, 0.03400323912501335, -0.01912856101989746, -0.0022068743128329515, 0.011732925660908222, 0.015430742874741554, -0.005564103368669748, -0.030444439500570297, -0.0033346391282975674, 0.010231555439531803, 0.007131505291908979, -0.013790357857942581, -0.0328633114695549, 0.010481784120202065, 0.014819073490798473, 0.015875592827796936, -0.011267222464084625, 0.006683179643005133, 0.01089883130043745, 0.01829446665942669, 0.03130633756518364, 0.036811359226703644, 0.018933938816189766, -0.028804052621126175, 0.001356271910481155, 0.030750272795557976, 0.005327776540070772, -0.024981122463941574, 0.0033885077573359013, -0.003687391523271799, -0.0014292552368715405, -0.009216740727424622, 0.01563926599919796, 0.0029992638155817986, -0.003282508347183466, -0.006714458577334881, 0.0035188349429517984, -0.007079374510794878, 0.008841398172080517, 0.01505540031939745, 0.019003447145223618, 0.041732512414455414, -0.007868289016187191, 0.026218362152576447, 0.0016195329371839762, -0.045235708355903625, 0.018433481454849243, -0.009286249056458473, -0.022339822724461555, 0.00562666030600667, 0.017696699127554893, -0.022395430132746696, 0.01793302595615387, -0.0016742703737691045, 0.0030322798993438482, -0.02292368933558464, 0.018906135112047195, 0.00592206884175539, 0.0031834596302360296, -0.03314134478569031, 0.06300191581249237, -0.0012494035763666034, -0.003736047074198723, -0.011538303457200527, -0.020421406254172325, 0.013693046756088734, 0.017071127891540527, 0.002036580117419362, -0.016904309391975403, 0.015124908648431301, -0.0019966131076216698, 0.008660677820444107, 0.01146184466779232, 0.008271434344351292, -0.013130033388733864, -0.010453980416059494, 0.000890569353941828, -0.018141549080610275, 0.014777368865907192, 0.015375136397778988, 0.07734833657741547, 0.02897087298333645, -0.0016838277224451303, 0.005790004041045904, -0.01241410244256258, -0.014318617060780525, 0.001346714561805129, 0.016959914937615395, -0.009195888414978981, -0.012198627926409245, 0.009070774540305138, -0.010203752666711807, -0.009230642579495907, -0.01686260476708412, 0.0035831297282129526, 0.006756163202226162, -0.007611109875142574, 0.036088477820158005, 0.0076528145000338554, 0.02480040118098259, 0.03428127244114876, -0.0070411451160907745, 0.003270344343036413, -0.012469707988202572, -0.03539339825510979, -0.011197715066373348, 0.023118311539292336, 0.002217300469055772, -0.003282508347183466, -0.049767620861530304, 0.0038159810937941074, 0.008306188508868217, -0.030249817296862602, -0.024174829944968224, -0.002199923386797309, 0.026134951040148735, 0.008473007008433342, -0.004104438703507185, 0.018419580534100533, -0.008153270930051804, 0.00469178007915616, 0.023451948538422585, -0.02096356824040413, -0.03250187262892723, -0.008897004649043083, 0.010189850814640522, -0.018961742520332336, -0.011301976628601551, -0.05104656517505646] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_differential_pricing_of_5g_network_slices_for_heterogeneous_customers.json b/database/embeddings/publications_txt/2020_differential_pricing_of_5g_network_slices_for_heterogeneous_customers.json new file mode 100644 index 0000000000000000000000000000000000000000..593c2bfae646f4ccdd91096a6eea1d08f4fecff1 --- /dev/null +++ b/database/embeddings/publications_txt/2020_differential_pricing_of_5g_network_slices_for_heterogeneous_customers.json @@ -0,0 +1 @@ +[0.0013668339233845472, 0.012533813714981079, 0.02246001735329628, -0.01341262087225914, 0.01218084990978241, -0.004073489457368851, -0.0010859036119654775, 0.018613433465361595, -0.03523874282836914, -0.0658673495054245, 0.0099262036383152, 0.05261320248246193, -0.02150917612016201, 0.01619311049580574, 0.003052415791898966, 0.024577800184488297, 0.01944902166724205, -0.00531606562435627, -0.005931951571255922, 0.00018571113469079137, -0.030916739255189896, -0.006936817429959774, -0.004602935165166855, -0.0022654507774859667, -0.011935936287045479, 0.02779049053788185, 0.016365990042686462, -0.013340587727725506, 0.013535077683627605, 0.016610903665423393, 0.007361814379692078, -0.002537376945838332, 0.004239166155457497, -0.011402889154851437, -0.001926893717609346, 0.0005663626943714917, 0.012159239500761032, 0.00019617848738562316, 0.05246913805603981, -0.02761760912835598, 0.008903329260647297, 0.015616843476891518, -0.008046131581068039, -0.00501712691038847, -0.007765201851725578, 0.014586765319108963, 0.01864224672317505, -0.012721100822091103, -0.015184642747044563, 0.011064331978559494, 0.0020097321830689907, 0.030542166903614998, -0.023756619542837143, 0.0048334416933357716, -0.000420945230871439, 0.008175792172551155, 0.022805778309702873, 0.03031165897846222, -0.022676117718219757, -0.023439671844244003, 0.016783785074949265, 0.0029425648972392082, -0.04492003470659256, -0.011892716400325298, -0.026609141379594803, -0.013844821602106094, -0.011518142186105251, 0.02698371559381485, 0.019780375063419342, 0.005020728800445795, 0.02326679229736328, 0.024462547153234482, -0.00633173668757081, -0.02269052527844906, 0.0053412774577736855, -0.01705751195549965, -0.033855702728033066, -0.009119429625570774, -0.004015862476080656, 0.020673589780926704, 0.013888041488826275, -0.008528755977749825, 0.0058887312188744545, 0.012468983419239521, 0.03379807621240616, 0.012793133966624737, -0.028078623116016388, -0.00025729433400556445, -0.003052415791898966, -0.005298057571053505, 0.024894746020436287, 0.0037637457717210054, 0.00690800417214632, -0.009558833204209805, 0.014349055476486683, 0.02459220588207245, -0.017043104395270348, 0.01888716034591198, 0.016855817288160324, -0.018037166446447372, 0.013664738275110722, 0.02078884281218052, -0.041462432593107224, -0.01460117194801569, 0.00037164738751016557, -0.014003295451402664, -0.0030470131896436214, 0.0010156710632145405, 0.019578680396080017, -0.013779991306364536, -0.036304838955402374, 0.0034125829115509987, -0.008910533040761948, -0.024736274033784866, 0.0031262501142919064, -0.007116901222616434, -0.014075328595936298, 0.007621135096997023, -0.013830414973199368, -0.010185523889958858, 0.0381200797855854, -0.0014316639862954617, 0.02016935497522354, -0.017633778974413872, 0.03120487369596958, -0.011107551865279675, -0.013585501350462437, -0.0023572933860123158, -0.00216100225225091, -0.013974481262266636, 0.008924939669668674, -0.008413502015173435, 0.0028002988547086716, 0.03302011638879776, 0.016870224848389626, -0.0005407007993198931, -0.0024275260511785746, 0.003444997826591134, -0.024073565378785133, -0.039560750126838684, -0.0006122839986346662, 0.035123489797115326, -0.02881336398422718, 0.0070088510401546955, -0.02015494927763939, 0.015732096508145332, -0.0014352657599374652, 0.01039442140609026, 0.023540519177913666, 0.0035674546379595995, -0.006551438942551613, 0.011763055808842182, -0.007448254618793726, 0.03057098016142845, -0.0017405073158442974, 0.013124487362802029, -0.007995708845555782, 0.010142304003238678, 0.02627778798341751, -0.020270202308893204, 0.026465075090527534, 0.028208283707499504, -0.02143714390695095, -0.004340013023465872, -0.01222406979650259, 0.020515115931630135, 0.0420675128698349, 0.008240622468292713, -0.004563316702842712, 0.0054565309546887875, -0.02668117545545101, -0.004991915542632341, -0.00805333536118269, -0.015227862633764744, 0.00010557397035881877, 0.013102877885103226, 0.021955784410238266, 0.0017837273189797997, -0.014896509237587452, -0.014478715136647224, 0.006238093599677086, 0.003688110737130046, 0.018109198659658432, 0.02689727582037449, 0.0034522011410444975, 0.003317138645797968, 0.025413386523723602, 0.0019394996343180537, -0.004761408548802137, -0.023871872574090958, 0.0348929837346077, 0.027516763657331467, 0.009126633405685425, 0.0057698762975633144, -0.5910197496414185, -0.014910915866494179, -0.0005073853535577655, -0.02006850764155388, -0.016971072182059288, 0.017489712685346603, 0.017086325213313103, 0.01238254364579916, -0.033625196665525436, 0.03912854939699173, -0.003500823862850666, -0.008413502015173435, 0.00343239214271307, -0.01642361842095852, -0.02525491453707218, -0.011395685374736786, 0.021999003365635872, -0.010315184481441975, -0.01159017626196146, 0.02119223028421402, 0.00294616655446589, 0.012951606884598732, -0.01959308795630932, 0.006918808910995722, 0.0022330356296151876, 0.02397271990776062, 0.015977010130882263, -0.011258821934461594, 0.03667941316962242, 0.01714395172894001, -0.04578443616628647, 0.020774435251951218, 0.014291428960859776, -0.014910915866494179, 0.04777255654335022, 0.006180466618388891, -0.01560243684798479, -0.006998045835644007, 0.030887925997376442, 0.030426912009716034, -0.03872516006231308, -0.02809303067624569, -0.010610521771013737, 0.007808421738445759, -0.014060921967029572, -0.012245680205523968, -0.0009931606473401189, 0.006544235162436962, 0.003915016073733568, -0.01067535113543272, -0.0198524072766304, 0.0015009961789473891, -0.01746089942753315, -0.006122840102761984, 0.025053219869732857, -0.01158297248184681, -0.0019989272113889456, -0.0397048145532608, 0.013052454218268394, -0.005578987766057253, 0.005780681036412716, 0.012116019614040852, -0.002562588546425104, -0.03604551777243614, 0.0066306754015386105, 0.016567684710025787, -0.007649948354810476, 0.0037601441144943237, 0.048464078456163406, -0.006173263303935528, -0.012432966381311417, 0.032011646777391434, -0.006227288395166397, -0.03270316869020462, 0.013066860847175121, 0.03696754574775696, 0.014853289350867271, 0.004505689721554518, -0.011971953324973583, 0.02112019620835781, -0.014341851696372032, -0.013779991306364536, 0.0068611823953688145, -0.012541016563773155, 0.0046317484229803085, -0.00012617102765943855, -0.01563125103712082, 0.001287597231566906, 0.011842292733490467, 0.003574657952412963, 0.023295605555176735, 0.027891336008906364, 0.006360550411045551, -0.022733744233846664, -0.007192536257207394, 0.03457603603601456, 0.011755852960050106, -0.0032162917777895927, -0.02928878553211689, -0.026551514863967896, -0.035728570073843, 0.007621135096997023, 0.01809479296207428, -0.0170719176530838, 0.024232039228081703, 0.019319361075758934, -0.015299896709620953, -0.03667941316962242, 0.04327767342329025, -0.013643127866089344, -0.013866432011127472, -0.02832353673875332, -0.027559982612729073, 0.017821066081523895, 0.02564389444887638, -0.02237357757985592, 0.03953193500638008, -0.00016128730203490704, -0.0047974251210689545, 0.01793631911277771, -0.014709222130477428, 0.023771025240421295, 0.021149009466171265, -0.010019847191870213, -0.007988505065441132, 0.026537109166383743, 0.030599793419241905, -0.028597263619303703, -0.021062569692730904, 0.01642361842095852, 0.01515582948923111, -0.014313038438558578, 0.021336296573281288, -0.02119223028421402, 0.013888041488826275, -0.009277903474867344, 0.013945668004453182, -0.02634982205927372, 0.0023482891265302896, -0.04022345691919327, -0.02022698149085045, 0.00032617629040032625, 0.0015163032803684473, -0.012072799727320671, -0.024793900549411774, 0.016553277149796486, -0.03180995583534241, -0.0007689566700719297, 0.01444990187883377, 0.008082148618996143, -0.017604965716600418, -0.004386834800243378, -0.016610903665423393, -0.002924556378275156, -0.026695581153035164, -0.006097628269344568, 0.015890570357441902, -0.010696961544454098, -0.02247442491352558, -0.010660944506525993, -0.012929997406899929, 0.024635426700115204, -0.019477834925055504, 0.003958235960453749, 0.005438522435724735, 0.015026169829070568, -0.021408330649137497, -0.0009715506457723677, 0.0162795502692461, -0.009198666550219059, -0.021076975390315056, 0.0002478399546816945, 0.0025139660574495792, 0.011438905261456966, -0.009904594160616398, 0.017273612320423126, 0.008795279078185558, 0.0325302891433239, -0.02967776544392109, -0.02110578864812851, -0.015371929854154587, 0.02490915358066559, -0.01721598580479622, -0.0012623855145648122, 0.03157944604754448, 0.03477773070335388, 0.02976420521736145, 0.004271581303328276, 0.0021303880494087934, 0.010999501682817936, 0.00035296371788717806, 0.03760144114494324, -0.02619134820997715, 0.02238798327744007, -0.03149300813674927, 0.015011763200163841, -0.004264377988874912, -0.02682524174451828, -0.011748649179935455, 0.03791838884353638, 0.012721100822091103, 0.023684585466980934, -0.007577914744615555, 0.001223667524755001, 0.023036284372210503, 0.0018962795147672296, 0.02747354283928871, 0.012656270526349545, 0.014795662835240364, 0.01246177963912487, 0.04569799453020096, -0.010754588060081005, -0.01476684957742691, -0.029879458248615265, -0.009069006890058517, 0.0420675128698349, -0.028078623116016388, 0.013513468205928802, -0.028467604890465736, 0.006083221640437841, -0.010495267808437347, -0.003698915708810091, 0.017331238836050034, 0.010581708513200283, -0.021307483315467834, -0.01519904937595129, 0.0034738113172352314, 0.01023594755679369, 0.03665059804916382, -0.03261672705411911, -0.012144832871854305, 0.012656270526349545, 0.00603279797360301, -0.012043986469507217, -0.0023572933860123158, -0.00806053914129734, 0.05494708567857742, -0.021941376850008965, 0.031550634652376175, -0.035526879131793976, 0.019866814836859703, 0.030138779431581497, 0.034259092062711716, -0.03293367475271225, 0.008002911694347858, -0.014305835589766502, 0.006450592074543238, 0.008953752927482128, -0.024577800184488297, 0.012857964262366295, -0.015386336483061314, 0.04422851279377937, -0.013664738275110722, 0.007286179345101118, 0.0420386977493763, 0.0002070960617857054, -0.00030028927722014487, 0.002611211035400629, 0.02349729835987091, 0.005780681036412716, 0.013715161010622978, 0.012843556702136993, 0.0024761485401540995, -0.009256293065845966, 0.0047181881964206696, -0.011258821934461594, -0.011734242551028728, 0.005107169039547443, -0.01432024221867323, -0.0009760527173057199, 0.021365109831094742, -0.03739974647760391, -0.003997854422777891, -0.007779608480632305, 0.010761791840195656, 0.02485152706503868, 0.017028698697686195, -0.002830913057550788, 0.00953001994639635, 0.017576152458786964, -0.025456607341766357, -0.00885290652513504, 0.0002771035360638052, 0.030196405947208405, 0.0075563048012554646, -0.020371047779917717, 0.007513084914535284, -0.00018244712555315346, -0.030340472236275673, 0.018858347088098526, 0.006958427373319864, 0.007981302216649055, -0.03204046189785004, -0.01455795206129551, -0.018382925540208817, 0.008168588392436504, 0.031867582350969315, 0.013448637910187244, -0.023137131705880165, 0.010091881267726421, 0.006562243681401014, 0.02721422351896763, -0.006425380241125822, -0.004750603344291449, 0.07013172656297684, 0.0026130119804292917, -0.017417678609490395, 0.0034053795970976353, 0.012533813714981079, -0.006990842521190643, 0.007549101486802101, -0.024433733895421028, -0.039791256189346313, 0.01770581305027008, 0.04071328416466713, -0.014838882721960545, 0.025672707706689835, -0.013880838640034199, 0.021091382950544357, 0.003362159477546811, 0.004365224856883287, -0.037889573723077774, -0.0348929837346077, -0.0190600398927927, 0.05604199320077896, 0.02817947044968605, -0.0017170964274555445, 0.020774435251951218, 0.002713858848437667, -0.01682700403034687, -0.029389631003141403, 0.018786313012242317, 0.009299512952566147, -0.022171884775161743, -0.013463044539093971, 0.04157768562436104, 0.0073257978074252605, -0.001357829780317843, 0.036074332892894745, 0.00011930533946724609, -0.016250737011432648, -0.003526035463437438, 0.009782137349247932, 0.011330855078995228, 0.010329591110348701, 0.0054601323790848255, -0.013203724287450314, 0.020515115931630135, 0.01361431460827589, -0.006619870662689209, 0.03486417233943939, 0.032011646777391434, 0.011381278745830059, -0.017273612320423126, -0.02802099660038948, 0.006681099068373442, 0.011438905261456966, 0.006230889819562435, -0.005949959624558687, 0.02547101490199566, 0.02793455682694912, 0.005481742788106203, 0.0062020765617489815, 0.0007108797435648739, 0.011950342915952206, 0.01238254364579916, -0.0017828269628807902, -0.02008291520178318, -0.005301658995449543, -0.07422322779893875, -0.007981302216649055, 0.014824476093053818, -0.0031604659743607044, -0.0041383192874491215, 0.021451549604535103, -0.006065213121473789, -0.03690991923213005, -0.01952105388045311, 0.016005823388695717, 0.016394805163145065, 0.003594467183575034, -0.008031724952161312, -0.0074410513043403625, -0.02927437797188759, -0.01039442140609026, -0.00960205402225256, 0.017172764986753464, -0.021494770422577858, -0.01795072667300701, 0.009256293065845966, -0.01578972302377224, -0.010797807946801186, -0.01849818043410778, 0.005787884350866079, -0.00319288088940084, -0.007412238046526909, -0.03690991923213005, 0.020889688283205032, 0.014024904929101467, 0.003165868343785405, 0.017821066081523895, 0.013563890941441059, 0.0032054868061095476, 0.009803746826946735, -0.006738725584000349, -0.01960749365389347, 0.00726096797734499, -0.047426797449588776, -0.013463044539093971, -0.013477451168000698, -0.02485152706503868, -0.006313728634268045, -0.0031154449097812176, 0.01317491102963686, -0.0007914670859463513, -0.016625311225652695, 0.0037421355955302715, -0.0052260239608585835, 0.0029497682116925716, 0.01795072667300701, -0.005200812127441168, 0.010711368173360825, 0.011907123029232025, 0.014752442948520184, 0.01675497181713581, -0.014485918916761875, -0.014882102608680725, -0.0341150239109993, 0.00044368079397827387, -9.724510164232925e-05, -0.007513084914535284, -0.019304953515529633, -0.008982566185295582, 0.01983800157904625, 0.01560243684798479, -0.021365109831094742, 0.007772405166178942, 0.01273550745099783, -0.0021537989377975464, 0.021710870787501335, 0.012958810664713383, -0.0035998697858303785, -0.018757499754428864, 0.00011384655226720497, 0.007214146200567484, -0.012440170161426067, 0.025211693719029427, -0.005222422070801258, -0.003558450611308217, 0.02078884281218052, -0.016221923753619194, -0.044891223311424255, -0.03296248987317085, -0.011323652230203152, 0.003502624575048685, 0.019477834925055504, -0.006789148785173893, -0.04270140454173088, 0.01087704487144947, 0.0008968159672804177, -0.015026169829070568, 0.0029011457227170467, -0.031694699078798294, -0.02175408974289894, -0.009119429625570774, 0.011734242551028728, 0.020371047779917717, 0.00940036028623581, 0.029591325670480728, -0.033135369420051575, -0.01643802411854267, 0.0024653435684740543, 0.010372810997068882, 0.020543929189443588, 0.01079060509800911, 0.023137131705880165, -0.014824476093053818, 0.007534694857895374, -0.012591440230607986, -0.034806545823812485, -0.03016759268939495, -0.011222805827856064, 0.02501000091433525, 0.056474193930625916, 0.052036937326192856, 0.01460837572813034, 0.005859917961061001, 0.033221807330846786, 0.003558450611308217, 0.018065979704260826, 0.006112034898251295, 0.0020133338402956724, 0.0016045442316681147, 0.015660064294934273, 0.005730257835239172, -0.019175294786691666, 0.023194758221507072, 0.004372428171336651, 0.002236637519672513, 0.01967952772974968, -0.004332809709012508, -0.024304073303937912, -0.02260408364236355, -0.027804896235466003, 0.009991033934056759, 0.008600789122283459, -0.010466454550623894, 0.0037277289666235447, -0.03483535721898079, -0.012598644010722637, 0.014824476093053818, -0.00904739648103714, -0.016092263162136078, -0.005085558630526066, 0.014291428960859776, -0.004851450212299824, 0.047196291387081146, -0.002180811483412981, 0.009342733770608902, -0.0018242461374029517, -0.011258821934461594, -0.026767615228891373, -0.014939729124307632, -0.01396727841347456, -0.008341468870639801, 0.03428790345788002, -0.008881719782948494, -0.017345644533634186, -0.010473658330738544, 0.022243916988372803, -0.020572742447257042, -0.030542166903614998, -0.014334648847579956, -0.017043104395270348, -0.029389631003141403, -0.01744649186730385, -0.027876930311322212, -0.0017206980846822262, 0.004790221806615591, 0.004498486407101154, -0.02332441881299019, -0.008413502015173435, -0.023065097630023956, -0.0162795502692461, 0.014442699030041695, 0.001758515601977706, 0.03474891558289528, -0.02610490843653679, 0.03163707256317139, 0.04039633646607399, -0.035353999584913254, -0.003500823862850666, -0.010113490745425224, -0.002679642988368869, -0.007019655779004097, 0.017561744898557663, 0.014982949011027813, -0.014003295451402664, 0.0064649987034499645, -0.039157360792160034, 0.01779225282371044, -0.021725276485085487, -0.03852346912026405, 0.0064325835555791855, 0.007801218423992395, -0.004635349847376347, -0.017345644533634186, -0.009184259921312332, -0.005996781401336193, 0.022359170019626617, -0.005442124325782061, -0.004228361416608095, 0.021797310560941696, -0.022416798397898674, -0.011856699362397194, 0.03855228051543236, 0.006040001288056374, 0.03878278657793999, -0.017244799062609673, -0.025917621329426765, -0.01460117194801569, -0.010819418355822563, -0.027185408398509026, -0.0012857964029535651, 0.004372428171336651, 0.012072799727320671, -0.035526879131793976, 0.004991915542632341, 0.030513353645801544, -0.0024059158749878407, 0.006965630687773228, -0.007794015109539032, -0.006108433473855257, 0.030743859708309174, 0.004613739904016256, -0.00924909021705389, 0.0008954653167165816, -0.020299015566706657, 0.025226101279258728, 0.001537012867629528, 0.002263649832457304, -0.019794780761003494, -0.014867695979773998, -0.020659182220697403, 0.011100349016487598, 0.008305451832711697, -0.0005542070721276104, 0.007866048254072666, 0.021955784410238266, -0.011618989519774914, -0.011799072846770287, 0.01643802411854267, 0.00334235024638474, -0.0024617419112473726, -0.01612107828259468, 0.009767730720341206, -0.01658209040760994, 0.028280317783355713, 0.023756619542837143, 0.008564773015677929, -0.0018926778575405478, 0.02420322597026825, -0.03590145334601402, 0.004692976828664541, 0.012785930186510086, -0.021638836711645126, -0.041087858378887177, 0.0036394880153238773, -0.00868722889572382, -0.01746089942753315, 0.017316831275820732, -0.009407563135027885, -0.03299130126833916, -0.00869443267583847, -0.015616843476891518, 0.0008860109373927116, -0.0045164949260652065, -0.0004979309742338955, -0.004123912658542395, 0.010617724619805813, 0.004851450212299824, -0.0028489213436841965, -0.018555806949734688, 0.023382045328617096, -0.016855817288160324, -0.01880072057247162, 0.02173968404531479, -0.001385742798447609, 0.027026936411857605, -0.010452047921717167, 0.007296984549611807, 0.007055672816932201, -0.02168205752968788, -0.005132380407303572, -0.017403272911906242, 0.033625196665525436, 0.0023140732664614916, 0.012324916198849678, 0.029087090864777565, -0.017504118382930756, -0.017115138471126556, 0.009011379443109035, 0.006090424954891205, -0.0021988197695463896, 0.004678570199757814, -0.01246177963912487, 0.003922219388186932, 0.0038033640012145042, -0.0052584391087293625, -0.031089620664715767, -0.019636306911706924, 0.014795662835240364, -0.030686233192682266, -0.025514233857393265, 0.01456515584141016, 0.048781026154756546, 0.02309391088783741, -0.02617694064974785, -0.03284723684191704, -0.04359462112188339, -0.020255794748663902, -0.02967776544392109, -0.008391892537474632, 0.012101612985134125, -0.0061156367883086205, 0.022877810522913933, -0.019982067868113518, 0.011395685374736786, -0.013787195086479187, 0.00651182048022747, -0.008680026046931744, -0.0027300661895424128, -0.0033819687087088823, 0.0018053373787552118, -0.0028129047714173794, 0.012440170161426067, -0.05788604915142059, -0.02976420521736145, 0.011691022664308548, 0.019074447453022003, 0.02379983849823475, 0.02215747721493244, 0.008903329260647297, 0.008341468870639801, 0.001635158434510231, -0.004123912658542395, -0.016092263162136078, -0.023929499089717865, 0.026004061102867126, -0.04428613930940628, -0.007296984549611807, 0.016841411590576172, -0.009875780902802944, -0.0029641748405992985, 0.014068124815821648, 0.010545691475272179, -0.03149300813674927, 0.01770581305027008, -0.017878692597150803, -0.018454959616065025, 0.0049775089137256145, -0.02022698149085045, 0.01372956857085228, 0.007196137681603432, 0.005906739737838507, 0.02365577220916748, 0.022993065416812897, 0.003796160686761141, -0.007549101486802101, 0.01728801801800728, -0.005251235794275999, -0.01213763002306223, 0.014579562470316887, -0.01317491102963686, 0.0042859879322350025, -0.00561500433832407, 0.01602023094892502, -0.024505766108632088, -0.007621135096997023, -0.028136249631643295, -0.0325591005384922, -0.01800835318863392, 0.022733744233846664, -0.008557569235563278, -0.028510823845863342, -0.004653358366340399, -0.00031357043189927936, 0.016236331313848495, -0.012519407086074352, -0.012058393098413944, 0.015588030219078064, -0.014241005294024944, 0.0056870379485189915, -0.003943829331547022, -0.010682554915547371, 0.012915590777993202, -0.010941875167191029, -0.016135483980178833, -0.014118548482656479, 0.006335338577628136, 0.1729954332113266, 0.020673589780926704, 0.010142304003238678, 0.039416681975126266, 0.022503238171339035, 0.004617341794073582, 0.00015025719767436385, 0.012836353853344917, -0.014694815501570702, 0.026695581153035164, 0.009133836254477501, 0.007462661247700453, -0.013787195086479187, -0.010271964594721794, 0.024332886561751366, 0.001611747546121478, -0.02578796073794365, -0.02356933243572712, -0.002171807223930955, -0.011655005626380444, -0.004048277623951435, -0.0034125829115509987, 0.004444461315870285, -0.020457489416003227, 0.0033207403030246496, -0.012396950274705887, 0.0006010287906974554, -0.029187938198447227, 0.02467864565551281, 0.032904863357543945, -0.016567684710025787, 0.0075202882289886475, -0.005236829165369272, 0.006817962508648634, -0.021566802635788918, 0.009911797009408474, 0.005762672983109951, -0.0035296371206641197, 0.031550634652376175, 0.0018089390359818935, 0.00770037155598402, -0.028381163254380226, 0.011438905261456966, -0.03737093508243561, -0.010444844141602516, -0.0006577550666406751, -0.025499828159809113, 0.013643127866089344, 0.003571056295186281, 0.013866432011127472, -0.02524050697684288, -0.008802482858300209, 0.03636246547102928, 0.022503238171339035, -0.0006622571963816881, 0.009616460651159286, -0.0034395954571664333, 0.020543929189443588, -0.0048802634701132774, 0.016553277149796486, 0.013513468205928802, 0.02538457326591015, -0.01864224672317505, 0.007455457933247089, 0.013484654948115349, 0.02643626183271408, -0.033855702728033066, -0.0006523525808006525, 0.012353730387985706, 0.0037745507434010506, -0.003653894877061248, -0.013009234331548214, -0.020976129919290543, 0.01103551872074604, -0.0325302891433239, -0.020932909101247787, 0.032011646777391434, -0.00142806232906878, 0.042730219662189484, 0.051633547991514206, -0.0005983275477774441, 0.018051572144031525, 0.003398176049813628, 0.01881512627005577, -0.008463925682008266, -0.048291198909282684, 0.04224039241671562, -0.003511628834530711, -0.013427027501165867, -0.005416912492364645, -0.015386336483061314, -0.001010268577374518, -0.00893214251846075, 0.0007284378516487777, 0.004905475303530693, -0.018512586131691933, 0.03276079520583153, -0.013621518388390541, -0.006158856675028801, 0.019794780761003494, -0.017821066081523895, 0.07762320339679718, 0.013354994356632233, -0.0026742403861135244, 0.0025787961203604937, -0.002132188994437456, -0.015775317326188087, 0.015732096508145332, -0.014838882721960545, -0.018282080069184303, -0.005661826115101576, -0.027401508763432503, 0.009522817097604275, -0.0076715582981705666, -0.010149507783353329, 0.018454959616065025, -0.01159017626196146, -0.03348112851381302, 0.01535752322524786, -0.006241695024073124, -0.02737269550561905, -0.03379807621240616, -0.01495413575321436, 0.0032631135545670986, -0.01019272767007351, -0.008399095386266708, -0.004674968309700489, -0.012274493463337421, -0.016971072182059288, -0.012692286632955074, 0.012721100822091103, -0.01975156180560589, 0.0017261005705222487, -0.016884632408618927, 0.00968129001557827, -0.004289589822292328, 0.009436376392841339, -0.0099262036383152, -0.002305069239810109, -0.00809655524790287, -0.02469305321574211, -0.0002928608446381986, -0.001997126266360283, 0.02913031168282032, -0.0009832560317590833, -0.024145599454641342, -0.0011777462204918265, -0.0011687420774251223, -0.011597379110753536, -0.02617694064974785, -0.026537109166383743, -0.02849641814827919, -0.007945285178720951, -0.027905743569135666, 0.008276638574898243, -0.027920149266719818, -0.011266025714576244, -0.03454722464084625, 0.02173968404531479, -0.011330855078995228, -0.013700754381716251, -0.0029263573233038187, 0.0029065480921417475, 0.009710104204714298, -0.021048162132501602, -0.015213456004858017, -0.1849817931652069, 0.04330648481845856, 0.024433733895421028, -0.019160887226462364, 0.004577723331749439, 0.015184642747044563, 0.03518111631274223, 0.005283650476485491, -0.01578972302377224, 0.009436376392841339, 0.0001868366525741294, 0.000579868967179209, -0.004159929696470499, -0.013146097771823406, 0.006248898338526487, 0.021149009466171265, -0.026782022789120674, -0.00999823771417141, -0.0017576152458786964, 0.013873634859919548, 0.027430322021245956, -0.03794720023870468, 0.004728993400931358, 0.006688302382826805, 0.0035098278895020485, 0.015083796344697475, -0.016466837376356125, 0.013996091671288013, -0.03719805181026459, -0.026782022789120674, 0.0004094649339094758, 0.016812598332762718, 0.03094555251300335, -0.002263649832457304, 0.01198635995388031, 0.020673589780926704, -0.016077857464551926, 0.0005231426330283284, -0.010495267808437347, 0.04244208708405495, 0.01365753449499607, 0.03149300813674927, 0.010718571953475475, -0.009270699694752693, -0.012296102941036224, 0.006969232577830553, -0.002052952302619815, 0.005013525485992432, -0.006220085080713034, -0.02643626183271408, 0.020284608006477356, 0.004869458731263876, 0.035123489797115326, 0.014781256206333637, 0.016063449904322624, 0.008874516002833843, 0.009393156506121159, -0.00410590460523963, 0.01816682703793049, -0.008485536091029644, -0.017590558156371117, -0.012231273576617241, 0.007188934367150068, -0.012389746494591236, -0.020284608006477356, -0.0074914745055139065, -0.023554924875497818, 0.01238254364579916, -0.020702403038740158, -0.002969577442854643, 0.008478332310914993, -0.0012047587661072612, 0.033452317118644714, -0.018224453553557396, 0.03595907986164093, 0.020543929189443588, -0.012929997406899929, 0.007419441360980272, 0.01714395172894001, -0.0001463178632548079, 0.006187669932842255, 0.03062860667705536, -0.016452431678771973, 0.004826238378882408, 0.01107873860746622, -0.025298133492469788, 0.02006850764155388, 0.01008467748761177, 0.01515582948923111, -0.012440170161426067, -0.0037781524006277323, -0.007484271191060543, 0.000997662777081132, -0.02117782272398472, 0.01226728968322277, 0.00542051438242197, -0.0049631018191576, -0.02634982205927372, -0.00829824898391962, -0.02142273634672165, 0.0006712613394483924, -0.003535039722919464, -0.01921851374208927, 0.0190600398927927, -0.0036466913297772408, 0.04370987415313721, -0.002865128917619586, 0.013463044539093971, 0.026854055002331734, -0.005834706127643585, -0.02127867005765438, 0.025672707706689835, 0.04304716736078262, 0.001854860340245068, -0.004757806658744812, 0.025744741782546043, -0.01626514457166195, -0.015371929854154587, 0.031147247180342674, -0.0005902237608097494, 0.03486417233943939, 0.011525345966219902, 0.010343997739255428, 0.03434552997350693, -0.008708839304745197, -0.023698993027210236, -0.08632484078407288, -0.03031165897846222, -0.0021844131406396627, 0.03238622099161148, -0.020702403038740158, -0.0034900186583399773, -0.024304073303937912, 0.022330356761813164, -0.010711368173360825, 0.02856845036149025, -0.007239357568323612, -0.004192344378679991, -0.003619678784161806, -0.0012677880004048347, -0.016236331313848495, -0.027804896235466003, -0.02554304711520672, -0.012742710299789906, -0.0021970190573483706, 0.017489712685346603, -0.010142304003238678, -0.01737445779144764, -0.010012644343078136, -0.0008549465565010905, 0.004595731385052204, 0.0045993332751095295, -0.04379631206393242, 0.023050691932439804, 0.006104831583797932, -0.0037853557150810957, 0.012404153123497963, -0.004775815177708864, 0.030830299481749535, -0.024087972939014435, -0.01158297248184681, -0.014154565520584583, 0.007736388128250837, -0.026407448574900627, 0.02921675145626068, -0.032357409596443176, 0.024318479001522064, 0.035037051886320114, 0.00869443267583847, -0.006947622634470463, -0.03616077080368996, 0.02022698149085045, -0.03863872215151787, 0.03397095575928688, 0.015026169829070568, -0.039416681975126266, -0.005791486240923405, -0.025298133492469788, 0.0003052415850106627, -0.020659182220697403, 0.022892218083143234, -0.007822828367352486, -0.02063036896288395, 0.00809655524790287, -0.02342526614665985, -0.037111613899469376, -0.03137775510549545, 0.0099262036383152, -0.02578796073794365, 0.018440553918480873, 0.025427794083952904, 0.002088968874886632, -0.025283727794885635, -0.01715835928916931, 0.0031568643171340227, -0.017115138471126556, -0.022762557491660118, 0.0007793114637024701, -0.020515115931630135, -0.005708647891879082, -0.027415916323661804, -0.011770259588956833, -0.015443962998688221, -0.023454079404473305, 0.0198524072766304, -0.012080002576112747, 0.011885512620210648, -0.016221923753619194, -0.021091382950544357, -0.03454722464084625, 0.01063933502882719, 0.006356948520988226, -0.010099084116518497, 0.014183378778398037, 0.022488830611109734, -0.02881336398422718, 0.024981187656521797, 0.0034287902526557446, 0.009904594160616398, 0.006641480606049299, -0.013383807614445686, 0.016538871452212334, -0.00790206529200077, -0.007880454882979393, -0.006043603178113699, 0.028683703392744064, -0.03748618811368942, 0.020615961402654648, -0.06454193592071533, 0.03120487369596958, 0.014882102608680725, -0.008341468870639801, 0.0027174605056643486, 0.004397639539092779, 0.011006705462932587, -0.011676616035401821, -0.0044012414291501045, 0.0022906623780727386, -0.026565922424197197, 0.002308670897036791, 0.010207134298980236, -0.004332809709012508, -0.03129131346940994, -0.029706578701734543, 0.025658300146460533, -0.012497796677052975, 0.023079505190253258, 0.007621135096997023, -0.021782903000712395, 0.014377868734300137, 0.006529828533530235, 0.006155254784971476, -0.024664239957928658, 0.010862638242542744, -0.0013065059902146459, 0.015127016231417656, -0.011655005626380444, -0.0062344917096197605, 0.02501000091433525, -0.029332004487514496, -0.03183876723051071, 0.00410590460523963, 0.0007766102207824588, -0.004512893036007881, 0.02031342126429081, 0.023943906649947166, 0.029072685167193413, 0.015256676822900772, -0.015991417691111565, -0.02967776544392109, 0.019391393288969994, 0.0074050347320735455, -0.016812598332762718, 0.01202957984060049, -0.01927614025771618, 0.01476684957742691, 0.016798190772533417, 0.020457489416003227, 0.02895743027329445, -0.012260086834430695, -0.010977892205119133, -0.02078884281218052, 0.010696961544454098, -0.012598644010722637, -0.006709912326186895, 0.0023608950432389975, 0.00442645326256752, -0.006392965093255043, 0.03523874282836914, 0.012346526607871056, 0.021408330649137497, -0.027747269719839096, 0.00281830714084208, -0.011172382161021233, -0.02374221198260784, -0.03039809875190258, -0.039964135736227036, -0.008031724952161312, 0.005366489291191101, 0.010855435393750668, 0.00821180921047926, 0.017100730910897255, 0.004498486407101154, 0.01262745726853609, -0.0007158319931477308, -0.015919383615255356, 0.005215218756347895, 0.01881512627005577, 0.045265793800354004, 0.0007626537117175758, -0.015371929854154587, -0.011266025714576244, 0.027084562927484512, 0.02770404890179634, -0.00904019270092249, 0.009738917462527752, 0.004570520017296076, -0.002339285099878907, 0.005035135429352522, 0.005470937583595514, -0.00434361444786191, 0.00531606562435627, -0.0003835779207292944, 0.01960749365389347, -0.009263496845960617, -0.005557377822697163, 0.04172175005078316, 0.015933791175484657, 0.026868462562561035, 0.0060363998636603355, 0.019492240622639656, -0.003535039722919464, -0.05056745558977127, 0.0027786889113485813, -0.009551630355417728, -0.013794397935271263, 0.007837234996259212, -0.0070124524645507336, -0.006223686505109072, 0.011842292733490467, 0.0006996244774200022, 0.015904977917671204, -0.026479482650756836, 0.00979654397815466, 0.009573240764439106, 0.00924909021705389, -0.038206521421670914, 0.018843939527869225, -0.015847349539399147, -0.0007162822294048965, 0.013239741325378418, 0.0057230545207858086, 0.01084102876484394, 0.010063067078590393, 0.022402390837669373, -0.010502471588551998, 0.016769377514719963, -0.031089620664715767, -0.0036160771269351244, -0.009198666550219059, -0.0026130119804292917, -0.01849818043410778, 0.005283650476485491, -0.0007604027050547302, 0.004930687136948109, 0.0014739836333319545, -0.03549806401133537, 0.0794096291065216, 0.008370282128453255, -0.0061192382127046585, -0.011799072846770287, -0.029404038563370705, -3.207737972843461e-05, -0.00785884540528059, -0.000559609557967633, 0.0007986704586073756, -0.025413386523723602, -0.004757806658744812, -0.01649565063416958, -0.021062569692730904, 0.0015532204415649176, -0.0038321774918586016, 0.016365990042686462, -0.01809479296207428, 0.0341150239109993, -0.009522817097604275, -0.0009661481017246842, 0.0396760031580925, 0.004656959790736437, 0.010934671387076378, 0.00999823771417141, -0.002622016239911318, -0.021048162132501602, -0.005535767413675785, -0.0049775089137256145, 0.014644392766058445, -0.06517583131790161, -0.0052260239608585835, 0.013074063695967197, -0.043536994606256485, -0.03264554217457771, -0.005384497344493866, -0.007988505065441132, 0.014579562470316887, 0.007376221474260092, 0.0006802655407227576, -0.009983831085264683, 0.006025594659149647, 0.032731980085372925, -0.009890187531709671, -0.03382689133286476, -0.028842177242040634, 0.00028633279725909233, -0.026061687618494034, 0.014190581627190113, -0.017965132370591164] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_distributed_consensus_for_mobile_devices_using_online_brokers.json b/database/embeddings/publications_txt/2020_distributed_consensus_for_mobile_devices_using_online_brokers.json new file mode 100644 index 0000000000000000000000000000000000000000..cc63cd9c4296fd6363a86e2238e2630382a6b271 --- /dev/null +++ b/database/embeddings/publications_txt/2020_distributed_consensus_for_mobile_devices_using_online_brokers.json @@ -0,0 +1 @@ +[0.0008055269718170166, -0.002176814479753375, 0.00047117387293837965, -0.009087364189326763, -0.010797844268381596, 0.007334650494158268, -0.02612881362438202, 0.009861655533313751, -0.012480168603360653, -0.04167095199227333, 0.023848172277212143, 0.039221376180648804, -0.02227143384516239, 0.02663562260568142, -0.014598910696804523, 0.02127189375460148, 0.017513062804937363, -0.0006194330635480583, -0.0035071878228336573, 0.0044803312048316, 0.0047618914395570755, -0.006447735242545605, -0.026438528671860695, -0.005810704547911882, -0.0017861493397504091, 0.022201044484972954, 0.03739123046398163, -0.02680455707013607, -0.012691338546574116, -0.01085415668785572, 0.025016648694872856, -0.0031182824168354273, -0.008066708222031593, -0.0032062700483947992, 0.0014289194950833917, -0.00027628123643808067, 0.0040403930470347404, -0.013761268928647041, 0.03660286217927933, -0.023383598774671555, 0.007398001849651337, 0.024411294609308243, 0.013789424672722816, -0.01320518646389246, 0.00023140752455219626, -0.011368004605174065, 0.048935212194919586, -0.007616211194545031, -0.01662614569067955, -0.002280639950186014, -0.00477596977725625, 0.010488128289580345, -0.021792780607938766, 0.006732814945280552, -0.012212686240673065, -0.010023552924394608, 0.007595093920826912, 0.02273600921034813, -0.02403118647634983, -0.026720089837908745, 0.0324639230966568, -0.01917426846921444, -0.03477272018790245, -0.0179213248193264, -0.009678641334176064, 0.001014497596770525, -0.03623683378100395, 0.0371941402554512, -0.01438774075359106, 0.0010637707309797406, 0.007728835102170706, 0.029620163142681122, 0.01769607700407505, -0.015021251514554024, 0.019596610218286514, -0.029620163142681122, -0.020877709612250328, 0.006461813114583492, -0.019540296867489815, 0.020230120047926903, -0.013444513082504272, -0.005398922134190798, 0.003663805779069662, 0.0177523884922266, 0.02386225014925003, 0.02170831337571144, -0.0009353087516501546, -0.004867476876825094, -0.018639303743839264, -0.015528060495853424, -0.002935267984867096, 0.02114519290626049, 0.013634566217660904, -0.0028138451743870974, -0.02369331382215023, 0.04473996162414551, -0.01979370228946209, 0.03677180036902428, -0.004937867168337107, -0.010192489251494408, 0.011853696778416634, -0.0038045861292630434, -0.01281100232154131, -0.02166607975959778, -0.002456615213304758, -0.013979477807879448, 0.008151176385581493, 0.01117091253399849, -0.0031411591917276382, -0.004325472749769688, -0.034181442111730576, 0.033167824149131775, -0.011966320686042309, -0.02193356119096279, -0.03139399364590645, -0.024397216737270355, -0.005645287688821554, -0.010903429239988327, -0.01400059461593628, -0.005349649116396904, 0.03240761160850525, -0.004966022912412882, -0.005768470466136932, -0.029085198417305946, 0.015542138367891312, 0.005532663315534592, -0.009917967952787876, -0.016555756330490112, 0.017569374293088913, -0.016781004145741463, 0.028367219492793083, 0.01651352271437645, -0.007204428780823946, 0.0074050407856702805, 0.018287353217601776, 0.031027965247631073, -0.032435767352581024, -0.009101442992687225, -0.0353921540081501, -0.04262825846672058, 0.006753932218998671, 0.05501691997051239, -0.029366757720708847, -0.011283536441624165, -0.016386820003390312, 0.0055045075714588165, -0.015401358716189861, 0.013817580416798592, 0.012381622567772865, -0.001684083603322506, 0.008967701345682144, 0.013507864437997341, -0.00582478241994977, 0.016555756330490112, -0.001596095971763134, 0.010333269834518433, -0.011719955131411552, 0.02024419791996479, 0.024171967059373856, -0.014810081571340561, 0.007714757230132818, 0.023848172277212143, -0.002414381131529808, -0.026382217183709145, -0.011888891458511353, 0.026480764150619507, 0.03240761160850525, 0.011199068278074265, -0.007162194699048996, -0.00595148466527462, -0.026396295055747032, 0.004638709127902985, -0.017428593710064888, -0.016358664259314537, 0.0028807157650589943, 0.03846116364002228, 0.04412052780389786, 0.005127920303493738, -0.004357148427516222, -0.012085983529686928, -0.0036567668430507183, -0.01866745948791504, 0.0317881777882576, 0.03772910311818123, -0.000907152658328414, 0.015612528659403324, 0.026255514472723007, -0.0309434961527586, 0.019976716488599777, -0.007007336709648371, 0.048034217208623886, 0.03682811185717583, 0.01093862485140562, 0.001033854903653264, -0.5955567359924316, -0.008552399463951588, -0.020103419199585915, -0.024186044931411743, -0.025762783363461494, 0.018625225871801376, 0.02488994598388672, 0.013838698156177998, -0.03840484842658043, 0.036039743572473526, -0.008665024302899837, 0.006764490623027086, 0.0005758791812695563, -0.02481955662369728, -0.0009124319185502827, -0.0050293742679059505, 0.010079865343868732, -0.010840078815817833, 0.01878008432686329, 0.013761268928647041, 0.010875273495912552, 0.019976716488599777, -0.004983620718121529, 0.006697619799524546, -0.012367543764412403, 0.003561740042641759, 0.018512601032853127, -0.03240761160850525, 0.017217423766851425, 0.014669300988316536, -0.05788883566856384, 0.02498849295079708, 0.041755419224500656, -0.005923328455537558, 0.04468365013599396, -0.011494706384837627, -0.025481224060058594, 0.017498984932899475, 0.021525299176573753, 0.033224135637283325, -0.028859948739409447, -0.03240761160850525, 0.01748490519821644, 0.003906651865690947, -0.005659365560859442, -0.019019410014152527, 0.025016648694872856, -0.010044670663774014, -0.009354847483336926, -0.019019410014152527, -0.0071023632772266865, -0.006254162173718214, -0.008228604681789875, -0.010818962007761002, 0.003574058413505554, -0.0028332022484391928, 0.030267752707004547, -0.009066247381269932, 0.02200395241379738, 0.005472831893712282, 0.004135419614613056, 0.015190187841653824, 0.006148577202111483, -0.049554646015167236, 0.005222946871072054, -0.0013303732266649604, 0.011621409095823765, 0.01735820434987545, 0.01854075863957405, -0.027522537857294083, 0.003019736148416996, 0.026368139311671257, -0.012452011927962303, -0.015119797550141811, 0.0012767007574439049, 0.01713295467197895, 0.032435767352581024, 0.01696401834487915, -0.018048027530312538, 0.013944283127784729, 0.00046061535249464214, 0.010776727460324764, 0.01139616034924984, -0.04110782966017723, 0.018301431089639664, 0.01125538069754839, -0.022313667461276054, -0.003408641554415226, 0.010072826407849789, 0.0017386359395459294, 0.01291658729314804, 0.014950861223042011, 0.006254162173718214, -0.010086904279887676, 0.00435362895950675, 0.04465549439191818, 0.018977176398038864, 0.012564636766910553, 0.00323794549331069, -0.02590356394648552, -0.0003776869853027165, 0.0044592139311134815, 0.00568048283457756, -0.02137044072151184, 0.03420959785580635, 0.016879551112651825, -7.764909969409928e-05, -0.001487871166318655, 0.018906787037849426, -0.023369520902633667, 0.014781924895942211, -0.01391612645238638, -0.011980398558080196, -0.0033505696337670088, 0.020708773285150528, -0.03817960247397423, 0.030915340408682823, 0.016668381169438362, 0.00016002754273358732, 0.01436662394553423, -0.006680022459477186, 0.011051248759031296, 0.0022753607481718063, 0.003663805779069662, -0.000497570144943893, 0.017667919397354126, 0.0326891727745533, -0.04026314988732338, 0.0004183812707196921, 0.009910929016768932, 0.008714296855032444, -0.019188346341252327, 0.03511059284210205, -0.0037412350066006184, 0.027790019288659096, -0.01215637382119894, 0.024636542424559593, -0.023158349096775055, 0.020033027976751328, -0.024692853912711143, 0.005662885028868914, 0.008376424200832844, -0.009221105836331844, -0.015753308311104774, -0.049498334527015686, -0.03556108847260475, -0.027888566255569458, 0.016654303297400475, 0.002866637660190463, 0.016978096216917038, -0.00620488915592432, 0.02075100690126419, -0.011670681647956371, 0.005388363730162382, -0.009242222644388676, -0.02030051127076149, -0.0028120852075517178, -0.016217883676290512, -0.02618512511253357, -0.00399815896525979, -0.006409020628780127, 0.008805803954601288, -0.01447220891714096, -0.021961716935038567, 0.0018195846350863576, 0.019878169521689415, 0.001144719310104847, 0.01300105545669794, 0.026030266657471657, -0.030746404081583023, -0.007091804873198271, -0.026663778349757195, -0.023369520902633667, 0.020342744886875153, -0.02583317458629608, -0.009425236843526363, -0.00582478241994977, 0.020230120047926903, -0.0027258573099970818, -0.0002677024167496711, -0.00773587403818965, 0.02284863404929638, -0.020553914830088615, -0.026269592344760895, 0.029507538303732872, 0.008524243719875813, 0.017766466364264488, 0.010157294571399689, -0.0013743671588599682, 0.008108941838145256, -0.00789073295891285, 0.01838590018451214, 0.005845899693667889, 0.008812842890620232, -0.010333269834518433, 0.02301757037639618, -0.01219156850129366, -0.00202899519354105, 0.01865338161587715, 0.019089801236987114, 0.044937051832675934, 0.02584725245833397, 0.001812545582652092, -0.02465062029659748, -0.009439315646886826, -0.015880011022090912, 0.025087039917707443, -0.009066247381269932, 0.010678181424736977, 0.012508324347436428, 0.04110782966017723, 0.001723678084090352, -0.025410832837224007, 0.0087072579190135, 0.001011857995763421, 0.01139616034924984, -0.003832742106169462, 0.010579635389149189, -0.02669193409383297, 0.001921650255098939, -0.026325905695557594, -0.039784494787454605, 0.025537535548210144, -0.004307875409722328, -0.010537400841712952, 0.006342149805277586, 0.027001651003956795, 0.018132494762539864, 0.015133876353502274, 0.0030496520921587944, -0.023665158078074455, 0.023031648248434067, 0.02600211091339588, -0.007222026586532593, -0.006859517190605402, -0.033787257969379425, 0.04412052780389786, -0.006525164004415274, 0.016471289098262787, -0.027297288179397583, 0.013733112253248692, 0.04778081551194191, 0.03263286128640175, -0.040460240095853806, 0.03801066428422928, -0.012620948255062103, 0.000732937129214406, 0.00202899519354105, 0.00555378058925271, 0.004948425572365522, -0.024467606097459793, 0.020258277654647827, -0.020314589142799377, 0.004536643158644438, 0.04296613112092018, -0.010586674325168133, -0.017738310620188713, -0.008482009172439575, 0.007313533686101437, -0.003670844715088606, 0.0013462110655382276, 0.01289547048509121, -0.002780409762635827, 0.023116115480661392, 0.0085383215919137, -0.005177193321287632, -0.009727914817631245, 0.009178871288895607, -0.01379646360874176, -0.03634945675730705, 0.001333892811089754, -0.016386820003390312, -0.0026396294124424458, 0.001939247827976942, 0.012121179141104221, 0.006676502991467714, 0.009713836945593357, 0.018864551559090614, 0.022313667461276054, 0.008862116374075413, -0.04350109398365021, 0.0035476621706038713, 0.010213606059551239, 0.01799171417951584, 0.007524704094976187, -0.020455369725823402, 0.0083693852648139, 0.010572596453130245, -0.0179213248193264, -0.002280639950186014, 0.015767386183142662, -0.0014597150729969144, -0.020610228180885315, -0.025087039917707443, -0.015063486061990261, -0.007834420539438725, 0.018681537359952927, -0.0027065002359449863, -0.019554374739527702, -0.006996777839958668, 0.007243143394589424, 0.01679508201777935, -0.002669545356184244, -0.013282615691423416, 0.05667812377214432, -0.02013157494366169, 0.01396539993584156, -0.005743833724409342, 0.013106640428304672, -0.008108941838145256, 0.014950861223042011, 0.00916479341685772, -0.028015268966555595, -0.014993095770478249, 0.030436689034104347, 0.01951214112341404, 0.023651080206036568, 0.016274195164442062, 0.008587595075368881, -0.028578389436006546, -0.0026431491132825613, -0.02572054974734783, -0.029986191540956497, 0.00799631793051958, 0.04426130652427673, 0.034800875931978226, 0.003371686674654484, 0.012839158065617085, 0.009087364189326763, 0.008819881826639175, -0.035195060074329376, -0.016597989946603775, 0.008510165847837925, -0.008615750819444656, 0.005976121407002211, -0.012670221738517284, -0.010171372443437576, 0.004033354111015797, 0.005405961070209742, -0.012635027058422565, -0.006229525897651911, -0.014070984907448292, 0.03150661662220955, -0.030436689034104347, 0.01388093177229166, -0.019920405000448227, 0.0052053495310246944, 0.02555161342024803, 0.020061183720827103, -0.022412214428186417, 0.011917047202587128, 0.0019251698395237327, -0.012860274873673916, -0.0006304315174929798, 0.010727453976869583, 0.014979017898440361, 0.02438313700258732, 0.0047724503092467785, 0.003510707290843129, 0.0366310179233551, 0.0179213248193264, 0.012719495221972466, 0.016809161752462387, 0.026959415525197983, 0.009854616597294807, -0.006683541927486658, 0.010213606059551239, -0.006926388014107943, 0.014908627606928349, -0.05191975459456444, -0.004121341742575169, 0.009629368782043457, -0.006215447559952736, -0.010544439777731895, 0.032323144376277924, -0.00047997263027355075, -0.04440208896994591, -0.032154206186532974, 0.031478460878133774, -0.017400437965989113, -0.00034359178971499205, -0.00022458848252426833, -0.014225843362510204, -0.03649023920297623, -0.004360667895525694, -0.02313019335269928, 0.017161112278699875, -0.005976121407002211, -0.020427212119102478, -0.0010268158512189984, -0.046175919473171234, -0.005944445729255676, -0.017034409567713737, 0.02335544116795063, -0.002884235233068466, 0.012029672041535378, -0.06329479813575745, -0.014908627606928349, 0.005082166753709316, 0.0012793404748663306, 0.02579094097018242, -0.012592792510986328, -0.012043749913573265, 0.02256707288324833, -0.020624306052923203, 0.004205809906125069, 0.0005565218743868172, -0.0344911590218544, -0.007869615219533443, 0.0015872971853241324, -0.013184069655835629, -0.04015052318572998, -0.006440695840865374, 0.035758182406425476, -0.012114140205085278, -0.01252944115549326, -0.011135716922581196, -0.002349270274862647, -0.002604434499517083, 0.02131412923336029, 0.010621869005262852, 0.008665024302899837, 0.006655385717749596, 0.012177490629255772, 0.005356688052415848, -0.0030989251099526882, -0.015809621661901474, -0.02121558226644993, -0.00639142282307148, 0.004997698590159416, -0.008636867627501488, -0.008756531402468681, -0.026734167709946632, 0.002940547186881304, -0.0007364566554315388, -0.016710614785552025, -0.0054200394079089165, -0.003688442287966609, 0.0039840806275606155, 0.019089801236987114, 0.018695615231990814, 0.016034869477152824, 0.008334190584719181, -0.0027522537857294083, -3.827462933259085e-05, 0.009263339452445507, 0.023651080206036568, 0.017681999132037163, 0.011241301894187927, 0.03184448927640915, 0.0021556974388659, -0.04443024471402168, -0.014444053173065186, 0.004930827766656876, -0.0037025203928351402, 0.033899880945682526, -0.01413433626294136, -0.030042503029108047, -0.019779624417424202, 0.017597530037164688, -0.0024918103590607643, -0.011473589576780796, -0.018582992255687714, -0.02556569129228592, 0.005567858461290598, 0.0030056580435484648, 0.002138099865987897, 0.003730676369741559, -0.006363267078995705, -0.028310906141996384, -0.004153016954660416, -0.00020952060003764927, 0.012198608368635178, 0.02534044347703457, -0.016429053619503975, 0.032942578196525574, -0.0061837718822062016, 0.0019110917346552014, -0.016429053619503975, -0.0329144187271595, -0.03398435190320015, -0.007799225393682718, 0.017231501638889313, 0.018751928582787514, 0.01889270916581154, 0.02894441783428192, 0.00789073295891285, 0.013958360999822617, 0.01447220891714096, 0.00019907206296920776, -0.008946584537625313, -0.003864417551085353, -0.015316890552639961, 0.008939545601606369, 0.02131412923336029, -0.0155562162399292, 0.021131115034222603, 0.008650945499539375, 0.004216368310153484, 0.020877709612250328, 0.001017137197777629, -0.0034614342730492353, 0.001506348606199026, -0.008665024302899837, -0.000497130211442709, -0.010255840606987476, 0.00279800733551383, -0.0026202723383903503, -0.04569726809859276, -0.02939491532742977, 0.022750087082386017, -0.00336464773863554, -0.013986516743898392, -0.016316430643200874, 0.013043289072811604, -0.016429053619503975, 0.032998889684677124, 0.01278284564614296, -0.00180902611464262, 0.00020908065198455006, 0.003403362352401018, -0.0340406633913517, -0.021961716935038567, 0.024340903386473656, -0.002560440683737397, 0.020047105848789215, 0.00582478241994977, 0.008890272118151188, -0.004571838304400444, 0.04375449940562248, 0.027747785672545433, -0.015851855278015137, 0.004941386636346579, -0.003670844715088606, -0.015260578133165836, -0.009481549263000488, -0.03722229599952698, 0.0045894356444478035, 0.015711074694991112, 0.0007835300057195127, 0.0017993474612012506, 0.017400437965989113, 0.019469907507300377, -0.023651080206036568, 0.013465629890561104, 0.011888891458511353, 0.023059803992509842, -0.011931125074625015, 0.01261390931904316, 0.015218344517052174, -0.00953082274645567, -0.01799171417951584, 0.0157814659178257, -0.0015600210754200816, -0.003563499776646495, 0.012311232276260853, 0.016034869477152824, -0.017710154876112938, -0.013521942310035229, 0.012825080193579197, 0.015429514460265636, -0.018399978056550026, -0.032379455864429474, 0.024509839713573456, 0.029789099469780922, 0.008045590482652187, -3.791717972490005e-05, -0.013606410473585129, -0.005944445729255676, 0.011403199285268784, -0.02560792677104473, -0.011156833730638027, 0.019371360540390015, -0.001227427739650011, 0.018864551559090614, -0.0006823442527092993, -0.009009935893118382, 0.028972573578357697, -0.008545360527932644, -0.012761728838086128, -0.000756693771108985, 0.003148198127746582, -0.013887970708310604, 0.005881094373762608, -0.015218344517052174, 0.02284863404929638, -0.016429053619503975, 0.002768091391772032, 0.031140590086579323, 0.021919483318924904, -0.006630749441683292, -0.012423856183886528, 0.005508027039468288, 0.029169665649533272, 0.008284917101264, -0.00017718513845466077, 0.007602132856845856, -0.015049408189952374, 0.014866393059492111, 0.0006445095641538501, 0.02669193409383297, -0.010783766396343708, -0.01274765096604824, 0.0010426536900922656, -0.005761431530117989, 0.013106640428304672, 0.011473589576780796, 0.01000947505235672, 0.016752848401665688, -0.03632130101323128, 0.0039840806275606155, -0.007010856177657843, -0.007454313803464174, -0.021567532792687416, -0.020004872232675552, -0.011741071939468384, -0.0160630252212286, 0.022581150755286217, 0.016569834202528, 0.027607005089521408, 0.018301431089639664, 0.02120150439441204, -0.01565476320683956, -0.004592955578118563, -0.0012362265260890126, -0.03851747512817383, -0.02177870273590088, -0.012008554302155972, 0.0015477028209716082, -0.014500364661216736, 0.003408641554415226, 0.01383165828883648, -0.0065286834724247456, -0.006743373349308968, -0.011635486967861652, -0.00534261018037796, 0.001640969654545188, -0.006437176372855902, 0.0019286893075332046, 0.001685843337327242, -0.007855537347495556, -0.027677396312355995, -0.02030051127076149, 0.04980804771184921, -0.02144083008170128, -0.00622248649597168, 0.030577467754483223, -0.009059208445250988, 0.023496221750974655, -0.005912770051509142, 0.01255759783089161, -0.01210710033774376, -0.04626038670539856, -0.007672523148357868, 0.015345046296715736, 0.03823591396212578, -0.023946719244122505, -0.027677396312355995, 0.006563878618180752, -0.02058207057416439, -0.01870969496667385, -0.003037333721294999, 0.0031165226828306913, -0.006440695840865374, 0.022693775594234467, 0.007869615219533443, 0.021074801683425903, -0.006778568495064974, -0.001359409186989069, -0.028634700924158096, -0.024580230936408043, 0.026706011965870857, -0.001054971944540739, -0.010502206161618233, 0.007799225393682718, 0.024636542424559593, -0.006736334413290024, -0.032886262983083725, -0.03556108847260475, -0.019695155322551727, -0.012135257013142109, -0.005430597811937332, 0.005557300057262182, 0.015260578133165836, -0.008918427862226963, 0.01323334313929081, 0.0052475836127996445, 0.0374193899333477, -0.01889270916581154, 0.008594634011387825, -0.008010395802557468, -0.004191731568425894, 0.013303732499480247, 0.001723678084090352, 0.017400437965989113, -0.004223407246172428, -0.06667352467775345, -0.005268700420856476, 0.027733707800507545, 0.016766926273703575, 0.002440777374431491, 0.019821858033537865, -0.002134580397978425, -0.006662425119429827, -0.009432275779545307, -0.022243278101086617, -0.022257355973124504, -0.009242222644388676, 0.0003559100441634655, -0.06464628875255585, -0.00399815896525979, 0.008193410001695156, 0.006658905651420355, 0.00618025241419673, 0.004508487414568663, 0.016133416444063187, -0.007095324341207743, 0.01911795698106289, -0.022482603788375854, -0.029254134744405746, 0.006891192868351936, -0.0012978177983313799, 0.02560792677104473, 0.0035300645977258682, 0.0013074964517727494, 0.030999809503555298, -0.0018688576528802514, -0.01400059461593628, -0.00194452702999115, 0.017118876799941063, -0.02018788643181324, -0.021342284977436066, 0.02183501608669758, -0.01247312966734171, -0.005789587274193764, -0.01249424647539854, -0.008467931300401688, -0.02590356394648552, -0.004635189659893513, -0.018076183274388313, -0.033899880945682526, -0.009122559800744057, 0.015626607462763786, 0.034800875931978226, -0.01747082732617855, -0.03998158872127533, -0.007200909312814474, 1.8284934412804432e-05, -0.009270379319787025, 0.0003893453686032444, -0.005743833724409342, -0.021074801683425903, 0.002217288827523589, -0.018231041729450226, -0.0008820762159302831, 0.01080488320440054, 0.0035898962523788214, -0.009566017426550388, -0.016555756330490112, -0.0028120852075517178, 0.17231501638889313, -0.030042503029108047, 0.020666539669036865, 0.031084276735782623, 0.00782738160341978, -0.005054010543972254, 0.0059796408750116825, 0.006359747610986233, -0.005793106742203236, -0.006169694010168314, -0.002284159418195486, 0.0022120096255093813, -0.003392803715541959, -0.003285458777099848, 0.0315629318356514, 0.008411619812250137, -0.04693613201379776, -0.0356173999607563, -0.013367083854973316, 0.005852938629686832, -0.02307388186454773, -0.005750872660428286, -0.011044209823012352, -0.01274765096604824, 0.005652326624840498, -0.010614830069243908, 0.0004509366990532726, 0.004783008713275194, 0.006824322044849396, 0.031760022044181824, -0.014908627606928349, 0.010882312431931496, 0.011016054078936577, 0.009488588199019432, -0.012290115468204021, -0.019441751763224602, 0.003134120022878051, 0.003130600554868579, 0.015711074694991112, 0.014711535535752773, 0.005617131479084492, -0.03727860748767853, -0.0027311367448419333, -0.03885534778237343, 0.00607818691059947, 0.016837317496538162, -0.0081159807741642, -0.004786528181284666, -0.018526678904891014, 0.0005010896711610258, -0.036039743572473526, 0.013338928110897541, 0.024340903386473656, 0.008291956037282944, -0.017625685781240463, -0.00791184976696968, -0.014810081571340561, 0.031056120991706848, -0.0024935700930655003, -0.010410699062049389, 0.011353926733136177, -0.0009546660003252327, -0.001360289053991437, 0.0021064244210720062, -0.012367543764412403, 0.027550693601369858, -0.03567371144890785, -0.002527005271986127, 0.02425643615424633, -0.015922244638204575, 0.0018864552257582545, -0.0003924249322153628, -0.02108887955546379, -0.004980101250112057, -0.007559898775070906, -0.04969542473554611, -0.004033354111015797, 0.004075588192790747, 0.03919322043657303, 0.029760943725705147, -0.018470367416739464, 0.02403118647634983, -0.01855483651161194, -0.001814305316656828, -0.00559601467102766, -0.04212144762277603, 0.0350542813539505, -0.01408506277948618, 0.006961583159863949, 0.0048604379408061504, -0.022257355973124504, 0.0167387705296278, -0.004131900146603584, 0.0032273870892822742, -7.715417450526729e-05, -0.02939491532742977, -0.0009432276128791273, 0.008869155310094357, -0.011811462230980396, 0.005310934502631426, -0.034237753599882126, 0.07996317744255066, 0.017907246947288513, -0.009713836945593357, -0.016302352771162987, -0.011776267550885677, -0.00395592488348484, 0.0092140669003129, 0.029929880052804947, -0.046964287757873535, -0.012170451693236828, -0.02860654518008232, 0.0007162194815464318, 0.002699461067095399, 0.005990199279040098, 0.0187660064548254, 0.004881554748862982, -0.008805803954601288, 0.007785147521644831, -0.022088419646024704, -0.01354305911809206, -0.025593847036361694, 0.020793242380023003, 0.010396621190011501, -0.009404120035469532, 0.012620948255062103, -0.006789127364754677, -0.0010065786773338914, -0.019582532346248627, -0.008904349990189075, 0.04065733402967453, 0.006032433360815048, 0.01354305911809206, 0.011973359622061253, -0.0006990619003772736, 0.012656143866479397, 0.027452146634459496, -0.013859814964234829, -0.0013664482394233346, 0.010389582253992558, -0.025650160387158394, -0.019864091649651527, 0.007588054984807968, 0.00034865105408243835, -0.02273600921034813, -0.061943307518959045, 0.009157754480838776, -0.015316890552639961, -0.016583912074565887, -0.014352546073496342, 0.00443809712305665, -0.02420012280344963, -0.015359124168753624, -0.029535694047808647, 0.02804342471063137, -0.017147032544016838, 0.004550721496343613, -0.02860654518008232, 0.001941007561981678, 0.0013673281064257026, -0.040066055953502655, 0.011762188747525215, -0.0013453311985358596, -0.023960797116160393, -0.008460892364382744, 0.0008160854340530932, -0.18008609116077423, 0.02528413198888302, 0.023214662447571754, -0.007989278994500637, 0.005219427403062582, -0.010474050417542458, 0.013022172264754772, 0.001788788940757513, -0.00527573935687542, 0.006672983523458242, 0.03727860748767853, 0.008334190584719181, -0.003920729737728834, -0.01816065050661564, 0.008777648210525513, -0.002743454882875085, 9.79962496785447e-05, 0.011726994067430496, 0.02120150439441204, 0.023158349096775055, 0.014993095770478249, -0.02245444804430008, 0.015359124168753624, -0.026776401326060295, -0.011065326631069183, 0.01928689330816269, -0.0005323252989910543, 0.01419768761843443, -0.013958360999822617, -0.022468525916337967, 0.006489969324320555, 0.0006000757566653192, 0.01872377283871174, 0.007545820903033018, 0.026621542870998383, 0.017217423766851425, -0.009368925355374813, -0.0035670194774866104, 0.0009590653935447335, 0.05332755669951439, 0.005515065975487232, 0.04240300878882408, -0.007545820903033018, -0.027212820947170258, 0.0012212685542181134, 0.016837317496538162, -0.003427998861297965, 0.011368004605174065, 0.006394942291080952, -0.012860274873673916, 0.008714296855032444, -0.005170154385268688, 0.006993258371949196, 0.0018266236875206232, 0.015542138367891312, 0.053074151277542114, 0.004494409076869488, -0.02183501608669758, 0.010642985813319683, 0.004508487414568663, -0.020567992702126503, -0.02329912967979908, 0.014922705478966236, -0.025819096714258194, -0.02555161342024803, -0.020596148446202278, -0.02573462761938572, 0.01438774075359106, -0.039953432977199554, 0.014950861223042011, -0.021356362849473953, -0.002702980535104871, 0.01345859095454216, 0.004241004586219788, 0.015908166766166687, 0.003523025428876281, -0.02069469541311264, 0.0315629318356514, 0.011797384358942509, -0.0061837718822062016, 0.012346426956355572, 0.0309434961527586, -0.025298209860920906, 0.020117497071623802, 0.02560792677104473, -0.018456289544701576, 0.011220185086131096, 0.007468391675502062, -0.004645748063921928, -0.0006330711767077446, 0.014612989500164986, -0.016274195164442062, 0.0074895089492201805, -0.004026314709335566, 0.013606410473585129, 0.023383598774671555, -0.005912770051509142, 0.016710614785552025, -0.005103283561766148, 0.00236686784774065, 0.006870075594633818, -0.001967403804883361, -0.001448276685550809, 0.01207190565764904, 0.016485366970300674, 0.023988952860236168, -0.008897311054170132, -0.00034997088368982077, 0.015584372915327549, -0.026846792548894882, -0.03817960247397423, 0.010445893742144108, 0.025030726566910744, 0.051497410982847214, 0.014021712355315685, 0.00874245259910822, -0.016978096216917038, -0.02787448838353157, 0.027790019288659096, -0.014007634483277798, 0.05124400928616524, 0.016105258837342262, -0.009094404056668282, 0.05693152919411659, -0.008221565745770931, -0.03677180036902428, -0.0735999122262001, -0.026325905695557594, 0.00542707834392786, 0.026537075638771057, -0.020314589142799377, 0.015063486061990261, -0.003596935188397765, 0.025030726566910744, 0.014655223116278648, 0.01685139536857605, -0.019385438412427902, -0.029310446232557297, -0.0027065002359449863, -0.02138451859354973, -0.0045647993683815, -0.011579174548387527, -0.015978557989001274, -0.028592467308044434, 0.002954625291749835, 0.032661017030477524, 0.004885074216872454, -0.026537075638771057, 0.005617131479084492, -0.018963098526000977, -0.011016054078936577, -0.012712455354630947, -0.045331235975027084, 0.011635486967861652, 0.00319571141153574, 0.004652786999940872, 0.01973738893866539, -0.027409913018345833, 0.011529901996254921, -0.0001188933165394701, 0.02380593866109848, -0.02215881086885929, -0.010220645926892757, -0.02204618602991104, 0.024777323007583618, -0.023003490641713142, 0.013127757236361504, 0.024045264348387718, 0.04031946137547493, -0.02007526159286499, -0.019835935905575752, 0.004473292268812656, -0.03263286128640175, 0.021356362849473953, 0.0023387118708342314, -0.02534044347703457, -0.017161112278699875, -0.018526678904891014, -0.007989278994500637, -0.026593387126922607, 0.018174728378653526, -0.0167387705296278, -0.01236050482839346, 0.010495167225599289, -0.03908059373497963, -0.0027909683994948864, -0.006472371518611908, -0.022665617987513542, -0.013803502544760704, 0.03733491897583008, 0.004698540549725294, 0.006880634464323521, -0.017907246947288513, -0.024608386680483818, 0.013606410473585129, -0.03958740457892418, -0.009199989028275013, -0.0020166770555078983, -0.026269592344760895, -0.0069721415638923645, -0.017217423766851425, -0.010319191962480545, -0.013043289072811604, -0.013134796172380447, 0.007468391675502062, -0.027550693601369858, -0.015302812680602074, 0.00013286135799717158, 0.0015591412084177136, -0.028353139758110046, 0.006116901524364948, 0.016302352771162987, 0.004596475046128035, 0.013852776028215885, 0.03192896023392677, -0.025030726566910744, 0.03522321581840515, 0.006810244172811508, -0.006042991764843464, -0.0018618187168613076, -0.021187426522374153, -0.001334772678092122, 0.012177490629255772, 0.0005503627471625805, -0.002507647965103388, 0.002377426251769066, -0.05253918468952179, 0.018062105402350426, -0.08852261304855347, 0.03206973895430565, 0.005008256994187832, -0.013050328008830547, 0.007426157593727112, -0.001333892811089754, 0.015711074694991112, -0.010755610652267933, -0.009608251042664051, 0.021806858479976654, -0.020286433398723602, -0.004547202028334141, 0.0002362468367209658, -0.01097381953150034, -0.022299589589238167, -0.0042093293741345406, 0.03195711597800255, -0.015401358716189861, 0.027747785672545433, 0.019258737564086914, -0.0011253620032221079, 0.01323334313929081, 0.024073421955108643, 0.02883179299533367, -0.028916262090206146, 0.01105828769505024, 0.019610688090324402, -0.00992500688880682, -0.024735087528824806, -0.0070143756456673145, -0.008798765018582344, -0.03564555570483208, -0.0070601291954517365, 0.011642525903880596, -0.008615750819444656, 0.007658445276319981, 0.0006110742106102407, 0.0167387705296278, 0.019526218995451927, 0.034857187420129776, -0.011184990406036377, -0.0187660064548254, 0.016471289098262787, -0.014500364661216736, -0.006236564833670855, -0.003447356168180704, -0.013613449409604073, 0.029141509905457497, 0.004300836473703384, -0.015021251514554024, 0.019441751763224602, -0.016696536913514137, -0.012874352745711803, -0.04885074496269226, -0.00241790059953928, -0.0013242141576483846, 0.00727833854034543, 0.010755610652267933, -0.02374962717294693, -0.026325905695557594, 0.026832714676856995, 0.0033752063754945993, 0.0037412350066006184, -0.014711535535752773, 0.020553914830088615, 0.0017139994306489825, -0.01797763630747795, -0.008489048108458519, -0.015387280844151974, -0.006922868546098471, -0.020033027976751328, 0.003304816083982587, 0.00323794549331069, 0.017850935459136963, 0.010565557517111301, -0.012508324347436428, -0.008833959698677063, 0.0046422285959124565, -0.005757912062108517, 0.015739230439066887, 0.027733707800507545, -0.0038081055972725153, -0.030830873176455498, -0.0003297337098047137, 0.014810081571340561, 0.015218344517052174, -0.010481089353561401, 0.020384978502988815, -0.005508027039468288, 0.007390962447971106, -0.011382082477211952, 0.015499904751777649, 0.004719657823443413, 0.014584832824766636, -0.009284457191824913, 0.010016513988375664, -0.017724232748150826, 0.004543682094663382, 0.02528413198888302, 0.013986516743898392, 0.001443877350538969, 0.008306033909320831, 0.030352219939231873, -0.00441346038132906, -0.05186343938112259, 0.013106640428304672, -0.0170766431838274, -0.02155345492064953, 0.00936188641935587, -0.0092140669003129, -0.017893169075250626, 0.028634700924158096, 0.0013514902675524354, 0.013219264335930347, -0.031534772366285324, 0.03679995611310005, 0.001360289053991437, 0.009861655533313751, -0.01854075863957405, 0.032097894698381424, 0.002527005271986127, -0.0031781138386577368, 0.011149794794619083, -0.0004548961587715894, 0.0355047769844532, -0.003574058413505554, 0.02001895010471344, -0.021623844280838966, -0.010283996351063251, 3.4043659979943186e-06, 0.005405961070209742, -0.011529901996254921, -0.014317350462079048, -0.002808565739542246, -0.019582532346248627, -0.013761268928647041, 0.0005024094716645777, -0.004568318836390972, -0.0015406637685373425, 0.07883693277835846, 0.019216502085328102, -0.012501285411417484, -0.007134038954973221, -0.015865933150053024, -0.0014966699527576566, 0.016077103093266487, 0.018048027530312538, 0.026593387126922607, -0.03863009810447693, 0.014444053173065186, 0.01973738893866539, -0.020553914830088615, -0.028634700924158096, -0.001057611545547843, 0.010868234559893608, 0.014429974369704723, 0.007813303731381893, -0.02783225290477276, 0.008306033909320831, 0.011973359622061253, 0.013557136990129948, -0.002416140865534544, -0.004909710958600044, -0.0053637269884347916, -0.00014671940880361944, 0.02137044072151184, -0.008608711883425713, 0.010607791133224964, -0.059521887451410294, 0.00045797572238370776, 0.005430597811937332, -0.04302244260907173, -0.023383598774671555, 0.00992500688880682, 0.010790805332362652, 0.011719955131411552, -0.019258737564086914, 0.016541678458452225, 0.0031147629488259554, -0.014246960170567036, 0.0344911590218544, 0.002085307380184531, -0.0157814659178257, -0.012986977584660053, -0.007982240058481693, -0.026818636804819107, 0.0035934157203882933, -0.05746649578213692] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_edison_a_blockchainbased_secure_and_auditable_orchestration_framework_for_multidomain_software_defined_networks.json b/database/embeddings/publications_txt/2020_edison_a_blockchainbased_secure_and_auditable_orchestration_framework_for_multidomain_software_defined_networks.json new file mode 100644 index 0000000000000000000000000000000000000000..60812ca02f2c89f717672fbfe9bf187172ed343e --- /dev/null +++ b/database/embeddings/publications_txt/2020_edison_a_blockchainbased_secure_and_auditable_orchestration_framework_for_multidomain_software_defined_networks.json @@ -0,0 +1 @@ +[0.006001375149935484, -0.014650311321020126, 0.004620810505002737, -0.022628486156463623, -0.0032047557178884745, 0.0004720182914752513, -0.033133555203676224, -0.0007346450001932681, -0.016041522845625877, -0.045058224350214005, 0.02031453140079975, 0.04321274161338806, 0.002812590217217803, 0.019590532407164574, -0.01308874785900116, 0.025510281324386597, 0.022032251581549644, -0.016509993001818657, -0.010952243581414223, -0.002551737939938903, -0.025751613080501556, -0.0002996695111505687, -0.019335003569722176, 0.008680877275764942, 0.0017549853073433042, 0.010072088800370693, 0.01835547760128975, -0.025084400549530983, -0.016041522845625877, -0.0002575250109657645, 0.02359381504356861, 0.00628174701705575, 0.0035365880466997623, -0.011051615700125694, -0.020939156413078308, 0.0050005544908344746, -0.004578222520649433, -0.029726505279541016, 0.025879377499222755, -0.016737129539251328, 0.02210323140025139, 0.0059552378952503204, -0.005554200150072575, -0.005827473942190409, -0.0039606946520507336, 0.003424794180318713, 0.009844952262938023, -0.009468757547438145, 0.0008739436161704361, 0.012535101734101772, -0.009177738800644875, 0.03168555721640587, -0.004042321816086769, 0.019817668944597244, -0.022287780418992043, -0.010668322443962097, 0.0029385800007730722, 0.020073197782039642, 0.006913470569998026, -0.012421533465385437, 0.011818202212452888, 0.0008522059069946408, -0.03818734362721443, -0.008283388800919056, -0.007012843154370785, 0.00268660020083189, -0.011193576268851757, 0.013017767108976841, -0.02323891408741474, -0.007030588109046221, 0.03372978791594505, 0.018752966076135635, 0.009859148412942886, -0.009454561397433281, 0.0001363041519653052, -0.010128873400390148, 0.00021538052533287555, 0.005770689807832241, -0.010370206087827682, 0.00408491026610136, -0.031174499541521072, -0.007133509498089552, -0.002257170155644417, 0.010774793103337288, 0.010803185403347015, 0.013287492096424103, -0.010895459912717342, -0.006072355434298515, -0.02173413522541523, -0.003279284806922078, 0.016538385301828384, 0.013479138724505901, 0.02335248328745365, -0.005415788851678371, -0.015615642070770264, 0.025425104424357414, -0.012797728180885315, 0.016197679564356804, 0.009553933516144753, 0.006650844123214483, 0.010434088297188282, 0.013883725740015507, -0.011647849343717098, -0.027639687061309814, -0.01466450747102499, -0.02687310054898262, 0.008162721991539001, 0.0033999511506408453, 0.01824191026389599, 0.013755961321294308, -0.02078299969434738, 0.03378657251596451, -0.011754320003092289, -0.02758290246129036, -0.0019004946807399392, -0.004265909548848867, -0.0026493356563150883, 0.003282833844423294, 0.0005119446432217956, 0.0027469333726912737, 0.02850564569234848, 0.006991548929363489, -0.000519486260600388, -0.028690192848443985, 0.011938868090510368, -0.01098063588142395, -0.015331721864640713, -0.025666438043117523, -0.0016183484112843871, -0.028590820729732513, -0.0020282589830458164, -0.007310959976166487, -0.00628174701705575, -0.003896812442690134, 0.006214316003024578, -0.012939688749611378, -0.007403234019875526, -0.00799946766346693, -0.04741476848721504, -0.0397489070892334, 0.0012687708949670196, 0.04343987628817558, -0.04324113205075264, 0.0006419271230697632, -0.018028968945145607, 0.019831866025924683, -0.012123417109251022, 0.008361466228961945, 0.008687975816428661, 0.022245192900300026, 0.004308497533202171, 0.0026227179914712906, -0.02580839768052101, 0.010022402741014957, -0.004681143444031477, 0.033956922590732574, -0.015005212277173996, 0.037846639752388, 0.005028946790844202, -0.007963977754116058, -0.018540026620030403, 0.0030273052398115396, -0.029698112979531288, -0.034780293703079224, -0.0022766897454857826, 0.03270767256617546, 0.017148815095424652, 0.0057848854921758175, 0.0038400283083319664, -0.010178559459745884, -0.024502363055944443, 0.03679613023996353, -0.02475789189338684, -0.0033875296358019114, 0.0019927688408643007, 0.03679613023996353, 0.03946498781442642, 0.005199299193918705, -0.0006157531752251089, -0.007346449885517359, 0.012095024809241295, -0.012769336812198162, 0.021904487162828445, 0.030294345691800117, -0.018270300701260567, 0.01821351796388626, 0.02839207649230957, -0.006931215990334749, 0.00812013354152441, -0.014976820908486843, 0.03460993990302086, 0.01010757964104414, 0.0023281502071768045, 0.015942150726914406, -0.6060004830360413, -0.025510281324386597, 0.004244615323841572, -0.01635383628308773, -0.028179137036204338, 0.01915045641362667, 0.026021338999271393, 0.01168333925306797, -0.03412727639079094, 0.024332009255886078, -0.0029243838507682085, 0.00017334693984594196, 0.004035223741084337, -0.011016125790774822, -0.03730718791484833, -0.005334161221981049, 0.01926402375102043, -0.0126273762434721, 0.052184637635946274, -0.0025677084922790527, 0.009944325312972069, 0.028945721685886383, 0.002711443230509758, -0.01939178816974163, 0.010412794537842274, 0.0005110573838464916, 0.018738770857453346, -0.02533992938697338, 0.02396291308104992, -0.014920036308467388, -0.031117716804146767, 0.01601313054561615, 0.02233036793768406, 0.011477497406303883, 0.050793424248695374, 0.007751036901026964, -0.017801832407712936, 0.019704101607203484, 0.016893286257982254, 0.04020318016409874, -0.018412262201309204, -0.018611006438732147, 0.02032872661948204, 0.01554466225206852, 0.012279572896659374, 0.014792271889746189, 0.01963312178850174, -0.015871170908212662, 0.0009573453571647406, -0.01062573492527008, 0.0014142803847789764, -0.026461414992809296, 0.0021773173939436674, -0.012244082987308502, 0.010277931578457355, -0.018298693001270294, 0.03273606300354004, -0.005483219865709543, 0.02639043517410755, 0.017475323751568794, 0.002684825798496604, 0.001628995407372713, -0.00877315178513527, -0.02710023708641529, 0.009042876772582531, 0.004897633101791143, 0.004010380711406469, 0.012847415171563625, 0.013408157974481583, -0.031174499541521072, 0.007992370054125786, 0.030663443729281425, 0.0036288623232394457, -0.030180778354406357, 0.015615642070770264, 0.04170795902609825, 0.0230401698499918, 0.025609653443098068, -0.025865182280540466, 0.005902003031224012, 0.0007430738769471645, -0.013968901708722115, 0.001769181340932846, -0.04369540512561798, 0.02465851791203022, 0.017730852589011192, -0.004329791758209467, -0.008489230647683144, 0.00014595301763620228, 0.01197435799986124, 0.009610718116164207, 0.01239314116537571, -0.009823658503592014, -0.027724863961338997, -0.006551471538841724, 0.04105494171380997, -0.0015828582691028714, 0.006487589329481125, -0.00686733378097415, -0.027369961142539978, -0.001191579969599843, -0.014359292574226856, 0.006629549898207188, -0.028832154348492622, 0.040146395564079285, 0.03807377442717552, -0.0010558303911238909, 0.005710356403142214, 0.038982320576906204, -0.03072022646665573, 0.008900916203856468, 0.00297939358279109, -0.03106093220412731, 0.018951712176203728, -0.008141428232192993, -0.03086218796670437, 0.009695894084870815, 0.014593527652323246, -0.003037952119484544, 0.005071534775197506, -0.016396423801779747, 0.007474214304238558, -0.019249828532338142, 0.0006995985168032348, -0.006700530182570219, 0.007928487844765186, 0.01356431469321251, -0.04454717040061951, -0.018838142976164818, 0.029612936079502106, -0.015686621889472008, -0.01672293245792389, 0.024374598637223244, -0.006906372494995594, 0.017262382432818413, 0.013230707496404648, 0.01648160070180893, -0.02338087558746338, 0.0034620589576661587, -0.016864893957972527, -0.010277931578457355, 0.007523900363594294, 0.001029212842695415, -0.013805647380650043, -0.039436593651771545, -0.014046980068087578, -0.020044805482029915, 0.017489518970251083, -0.00543708261102438, -0.0018579065799713135, -0.013507530093193054, 0.016282856464385986, -0.020399706438183784, 0.030691834166646004, -0.008262094110250473, -0.012109220959246159, 0.017205597832798958, -0.02580839768052101, -0.008652484975755215, -0.00330235343426466, -0.007346449885517359, 0.04167956858873367, -0.026901492848992348, -0.002283787587657571, 0.008396957069635391, 0.0038400283083319664, -0.00028103720978833735, 0.005646474193781614, 0.01614089496433735, -0.015942150726914406, -0.028093960136175156, -0.008318878710269928, -0.008723465725779533, 0.003602244658395648, -2.2652662664768286e-05, 0.007310959976166487, 0.008304682560265064, -0.003889714600518346, 0.021648958325386047, 0.0018614555010572076, -0.0033520394936203957, 0.015715014189481735, -0.024005500599741936, -0.014295410364866257, 0.03449637442827225, 0.018185125663876534, 0.023182131350040436, 0.008695073425769806, 0.02572322078049183, -0.019136259332299232, -0.01226537674665451, 0.015956347808241844, 0.007247077766805887, 0.01976088620722294, -0.026574984192848206, 0.0038435773458331823, 0.0036945189349353313, -0.008134329691529274, -0.021904487162828445, 0.02022935450077057, 0.031628772616386414, 0.0220890361815691, 0.01104451809078455, -0.0018472594674676657, -0.014345096424221992, -0.019462767988443375, 0.00823370274156332, 0.0018667790573090315, 0.04369540512561798, 0.007779429201036692, 0.035944368690252304, -0.009887540712952614, -0.016084112226963043, -0.0014542066492140293, 0.003124902956187725, 0.030777011066675186, -0.03307677060365677, -0.0003054366388823837, -0.02688729763031006, 0.02301177754998207, -0.009972716681659222, -0.021776722744107246, 0.029982032254338264, -0.0035206174943596125, -0.014394783414900303, 0.0010079187341034412, 0.036966484040021896, -0.0014284764183685184, 0.008560211397707462, -0.028945721685886383, -0.007367744110524654, 0.032196614891290665, 0.01706363819539547, -0.004617261700332165, -0.00918483640998602, 0.02057006023824215, 0.04079941287636757, 0.0007923163939267397, 0.0274693351238966, -0.023792561143636703, 0.019533749669790268, 0.04661979153752327, 0.03236696869134903, -0.029840072616934776, 0.021790919825434685, -0.003705166047438979, 0.007623272482305765, 0.0039429496973752975, -0.006945411674678326, 0.03168555721640587, -0.02210323140025139, 0.01869618333876133, -0.021237272769212723, -0.007921389304101467, 0.03401370719075203, 0.0006255129701457918, -0.007559390272945166, -0.005820375867187977, 0.005493866745382547, 0.023466050624847412, 0.005891356151551008, 0.015147172845900059, 0.006107845343649387, 0.01202404499053955, -0.0026244926266372204, -0.02207483910024166, -0.005770689807832241, -0.013656589202582836, 0.0026670806109905243, -0.011896280571818352, 0.007119313348084688, -0.004933123476803303, -0.004968613386154175, 0.001031874562613666, 0.008837033994495869, 0.007325155660510063, -0.015147172845900059, -0.0054690237157046795, -0.0024754342157393694, 0.006675687152892351, -0.036285072565078735, 0.014707095921039581, 0.02383514866232872, 0.003861322533339262, 0.010377303697168827, -0.029414191842079163, 0.014621919952332973, -0.00356320571154356, -0.019448572769761086, 0.0006215203320607543, 0.013997294008731842, 0.0024559146258980036, -0.005944591015577316, -0.030947363004088402, -0.01906527951359749, -0.005209946073591709, 0.03319033607840538, -0.019604729488492012, -0.022997582331299782, -0.006519530434161425, 0.03211143985390663, 0.016197679564356804, 0.011470398865640163, -0.00686378451064229, 0.058601245284080505, -0.01856841892004013, -0.008162721991539001, -0.0057848854921758175, 0.028832154348492622, -0.012286671437323093, 0.015076193027198315, 0.010093383491039276, -0.022230995818972588, -0.021819310262799263, 0.013408157974481583, 0.004042321816086769, 0.00360934273339808, -0.0002442162367515266, 0.019945433363318443, -0.010022402741014957, -0.004752123728394508, -0.03262249752879143, -0.03106093220412731, 0.017092030495405197, 0.05752234905958176, 0.02582259476184845, 0.00595878716558218, 0.032310184091329575, -0.005941042210906744, -0.008425348438322544, -0.03273606300354004, -0.009546835906803608, 0.008262094110250473, -0.0019022691994905472, 0.00824789796024561, -0.0043688309378921986, -0.0035365880466997623, -0.009156445041298866, 0.011889182031154633, -0.004372379742562771, -0.00505024055019021, -0.005039593670517206, 0.019093671813607216, -0.03409888595342636, 0.014976820908486843, -0.01210212241858244, -0.0022110329009592533, 0.03798859938979149, 0.0227846410125494, -0.024502363055944443, 0.03375817835330963, 0.013450746424496174, -0.01022824551910162, -0.010526362806558609, 0.009447463788092136, 0.016666149720549583, 0.028008783236145973, 0.005252534057945013, -0.017787635326385498, 0.025268947705626488, 0.01871037855744362, 0.02863341011106968, 0.013131335377693176, 0.036625780165195465, 0.024218441918492317, -0.0029030898585915565, 0.008113035932183266, -0.004624359309673309, -0.010029501281678677, -0.05990728363394737, -0.019704101607203484, 0.02863341011106968, 0.00236541498452425, 0.0017452255124226213, 0.021350841969251633, 0.01599893532693386, -0.045256972312927246, -0.025638045743107796, 0.019931238144636154, -0.012911297380924225, 0.012386043556034565, -0.01051926426589489, -0.018596811220049858, -0.028576625511050224, -0.026092318817973137, -0.02593616209924221, 0.014103763736784458, -0.02022935450077057, -0.03390013799071312, -0.008297584019601345, -0.012911297380924225, -0.002519796835258603, -0.0073961359448730946, 0.012996473349630833, -0.009326796978712082, -0.008574407547712326, -0.06297362595796585, 0.0055790431797504425, 0.026461414992809296, 0.003621764248237014, 0.024729499593377113, 0.0016804561018943787, -0.00719029363244772, 0.003130226396024227, -0.014210234396159649, -0.008262094110250473, 0.012080828659236431, -0.040600668638944626, -0.010050795041024685, 0.013017767108976841, -0.012833219021558762, -0.011371026746928692, -0.014621919952332973, 0.014110862277448177, 0.019789276644587517, -0.014196038246154785, -0.000594459124840796, 0.0030308542773127556, 0.004755672998726368, 0.01402568630874157, 0.01822771318256855, 0.01636803150177002, 0.024261029437184334, 0.010221147909760475, 0.010001108981668949, -0.001496794749982655, 0.008340172469615936, -0.03239535912871361, 0.007211587391793728, 0.0016183484112843871, -0.018724573776125908, -0.00806334987282753, -0.012045338749885559, 0.015573054552078247, 0.014905840158462524, -0.0038932636380195618, -0.0015198633773252368, 0.0067644123919308186, 0.009653306566178799, 0.022358760237693787, 0.00958232581615448, -0.0002692810958251357, -0.019221436232328415, 0.02782423608005047, 0.0017620832659304142, 0.0024275225587189198, 0.021450214087963104, 0.02241554483771324, 0.004226870369166136, 0.014792271889746189, -0.002255395520478487, -0.010881263762712479, -0.02876117452979088, 0.024147462099790573, 0.00887962244451046, 0.027185413986444473, -0.014366391114890575, -0.018923319876194, -0.015388505533337593, -0.010568950325250626, 0.008673779666423798, -0.027369961142539978, -0.03168555721640587, -0.03140163794159889, 0.019008494913578033, -0.009901736862957478, 0.016538385301828384, -0.0024488165508955717, 0.006778608541935682, -0.03736397251486778, -0.02326730638742447, 0.0011472173500806093, 0.028661802411079407, 0.02630525827407837, -0.003144422546029091, 0.0036625778302550316, -0.0023423463571816683, 0.0027540314476937056, -0.007559390272945166, -0.041991882026195526, -0.010831577703356743, -0.01800057664513588, 0.03963533788919449, 0.020712019875645638, 0.0229124054312706, 0.004461104981601238, -0.011186478659510612, 0.03003881685435772, 0.011009028181433678, -0.0009786393493413925, -0.003740656189620495, 0.00031342191505245864, -0.005625180434435606, -0.002544639864936471, 0.007012843154370785, -0.011363929137587547, 0.016864893957972527, 0.004929574206471443, 0.001647627679631114, 0.009951422922313213, 0.0124996118247509, -0.012513807974755764, -0.01612669974565506, -0.04040192440152168, -0.001652063918299973, 0.020825589075684547, -0.012031142599880695, -0.01087416522204876, -0.033133555203676224, -0.011896280571818352, 0.011179380118846893, 0.00207262160256505, -0.0038258323911577463, -0.002408002968877554, 0.014550939202308655, -0.01964731700718403, 0.04179313778877258, 0.022259388118982315, 0.006555020809173584, 0.004443360026925802, -0.013976000249385834, -0.040004435926675797, -0.008404054678976536, 0.02745513804256916, -0.0024186500813812017, 0.01133553683757782, -0.010966439731419086, 0.0012412661453709006, 0.013507530093193054, 0.0331619456410408, 0.015104585327208042, -0.004929574206471443, 0.00034602844971232116, -0.03753432631492615, -0.008787347935140133, -0.015203957445919514, -0.03742075711488724, -0.02233036793768406, 0.02335248328745365, -0.005873610731214285, 0.011612359434366226, 0.007807821035385132, -0.008240800350904465, -0.021819310262799263, 0.011378124356269836, 0.013181021437048912, 0.01589956320822239, -0.0037761463318020105, 0.0279094111174345, 0.02467271499335766, -0.003683872055262327, -0.016538385301828384, -0.011860789731144905, -0.003683872055262327, -0.007992370054125786, 0.03625668212771416, 0.00980946235358715, -0.009071268141269684, -0.020158374682068825, 0.00824789796024561, 0.006026218179613352, -0.021223077550530434, -0.015076193027198315, 0.017248187214136124, 0.014494155533611774, -0.001937759225256741, -0.011356830596923828, -0.029272230342030525, 0.00922742486000061, 0.009284209460020065, -0.012769336812198162, -0.007914291694760323, -0.0050431424751877785, -0.008446643128991127, 0.002085043117403984, -0.006413060240447521, -0.01940598525106907, 0.03497903794050217, 0.0012297318316996098, -0.014231528155505657, -0.008808641694486141, 0.0025765809696167707, -0.037335582077503204, -0.004308497533202171, -0.010923851281404495, 0.023309895768761635, 0.0052986713126301765, 4.619257742888294e-05, 0.044575560837984085, 0.01098063588142395, 0.004425615072250366, -0.026674356311559677, -0.004670496564358473, 0.028534037992358208, 0.0016742452280595899, -0.007229332346469164, -0.0026670806109905243, -0.027668079361319542, 0.009028680622577667, -0.0076587628573179245, 0.008837033994495869, 0.0027291884180158377, -0.03225339949131012, -0.0009067719802260399, -0.0011676241410896182, -0.0005731650744564831, 0.022131623700261116, 0.005217044148594141, 0.009135150350630283, -0.02431781403720379, 0.00624980591237545, 0.006750216241925955, -0.001636980683542788, -0.025893574580550194, -0.020754607394337654, 0.0017532107885926962, -0.017702460289001465, 0.010476676747202873, 0.005831022746860981, 0.03409888595342636, -0.0005057338858023286, 0.02650400437414646, -0.02057006023824215, -8.029634045669809e-05, 0.017333362251520157, -0.020598452538251877, -0.010249539278447628, -0.015459486283361912, -0.007779429201036692, -0.0009768649470061064, 0.008595701307058334, 0.0042091254144907, -0.015715014189481735, -0.00397843960672617, -0.023451855406165123, -0.00423751724883914, 0.00605106120929122, 0.0015411573695018888, 0.004950868431478739, -0.0058771600015461445, -0.00010841114999493584, -0.032650887966156006, -0.01763148047029972, 0.03602954372763634, -0.005529357120394707, 0.001955504296347499, 0.03097575530409813, 0.008396957069635391, 0.02152119390666485, -0.002526894910261035, -0.006260452792048454, -0.01730496995151043, -0.03083379566669464, -0.003414147300645709, 0.0012669963762164116, 0.012868708930909634, 0.0038258323911577463, -0.006796353496611118, 0.033474259078502655, -0.026844708248972893, -0.01081028301268816, 9.709868754725903e-05, -0.00787880178540945, 0.0019909944385290146, -0.0014701772015541792, -0.014593527652323246, 0.015743406489491463, 0.0069170198403298855, -0.015260741114616394, -0.03673934563994408, -0.03131645917892456, 0.0006689883302897215, -0.04148082435131073, -0.006523079704493284, 0.017461126670241356, 0.03747754171490669, 0.01091675367206335, -0.021918684244155884, -0.030890580266714096, -0.020981743931770325, -0.021450214087963104, -0.01939178816974163, -0.03338908404111862, 0.024104872718453407, 0.023678991943597794, 0.0074387239292263985, 0.011804006062448025, 0.0039074597880244255, -0.012868708930909634, 0.01414635218679905, -0.023764168843626976, -0.0021702193189412355, 0.00877315178513527, -0.0031692655757069588, -0.013933411799371243, -0.006377570331096649, -0.061270102858543396, -0.016509993001818657, 0.021464409306645393, 0.008531819097697735, 0.007353547960519791, 0.010441185906529427, 4.00095377699472e-05, -0.012073731049895287, -0.01104451809078455, -0.0026120711117982864, -0.001192467170767486, -0.007758134976029396, 0.013684980571269989, -0.05780626833438873, -0.005266730207949877, -0.0046846927143633366, -0.010285030119121075, -0.001959053333848715, 0.00271854130551219, 0.021677350625395775, -0.017560498788952827, 0.018426457419991493, -0.0115200849249959, 0.023920325562357903, 0.004929574206471443, 2.1820864276378416e-05, 0.01929241605103016, 0.0045569282956421375, 0.016098307445645332, 0.04133886471390724, 0.0060404143296182156, -0.007601978722959757, -0.009156445041298866, 0.005011201370507479, -0.02137923426926136, -0.00964620802551508, 0.02370738424360752, -0.014707095921039581, -0.009610718116164207, 0.0013086972758173943, 0.0015118781011551619, -0.017021050676703453, 0.0006086551584303379, -0.005284475162625313, -0.00997981522232294, -0.010994832031428814, 2.1730752450821456e-06, -0.019917041063308716, -0.017446931451559067, -0.037335582077503204, -0.01763148047029972, 0.020115787163376808, -0.0024452675133943558, -0.014132156036794186, 0.012109220959246159, -0.02010159008204937, 0.0007776767015457153, -0.003433666890487075, -0.02126566506922245, 0.014721292071044445, 0.005103475879877806, 0.005571945104748011, -0.000658784934785217, -0.024928243830800056, 0.19908523559570312, -0.012655768543481827, -0.007971075363457203, 0.023906128481030464, 0.004961515311151743, 0.0004261029534973204, 0.003705166047438979, 0.004975711461156607, -0.004152341280132532, 0.02710023708641529, -0.004606614354997873, 0.0032242753077298403, -0.012016946449875832, -0.0069702547043561935, 0.004056517966091633, 0.014948428608477116, -0.02641882747411728, -0.01997382566332817, -0.007630370557308197, -0.0065088835544884205, -0.006405962165445089, -0.011307144537568092, -0.017333362251520157, -0.01501940842717886, 0.004737928044050932, -0.013017767108976841, -0.015175565145909786, 0.007857507094740868, 0.005302220117300749, 0.03225339949131012, -0.022174211218953133, 0.010767695493996143, 0.0027912959922105074, 0.0009848502231761813, -0.0036909698974341154, -0.02125146985054016, 0.022245192900300026, 0.002984717022627592, 0.018724573776125908, 0.0039606946520507336, 0.01951955258846283, -0.031032539904117584, -0.02289821021258831, -0.037931814789772034, 0.008964798413217068, 0.0035490095615386963, -0.026802120730280876, -0.006445001345127821, -0.027739059180021286, -0.012542200274765491, -0.03458154946565628, 0.006743118166923523, 0.02349444292485714, 0.0026457866188138723, -0.012762238271534443, 0.009490051306784153, -0.0025890024844557047, 0.035944368690252304, 0.01856841892004013, -0.01202404499053955, 0.01004369743168354, 0.008808641694486141, -0.00683539267629385, -0.0018224164377897978, -0.009333895519375801, 0.02698666974902153, -0.030947363004088402, 0.015814386308193207, 0.024587538093328476, -0.013585608452558517, -0.0025907771196216345, -0.01058314647525549, -0.02932901494204998, 0.0014240400632843375, -0.011612359434366226, -0.014621919952332973, 0.03267928212881088, 0.0157576035708189, 0.029641328379511833, 0.032423753291368484, -0.02057006023824215, 0.024033892899751663, -0.0021950623486191034, 0.005270279478281736, -0.020016415044665337, -0.03500743210315704, 0.021904487162828445, -0.030549874529242516, -0.01237894594669342, 0.004042321816086769, -0.030578266829252243, 0.023451855406165123, -0.0020247099455446005, 0.008049153722822666, 0.002681276760995388, -0.012492514215409756, 0.021805115044116974, -0.013869529590010643, -0.0012882904848083854, 0.0006574540166184306, -0.027966195717453957, 0.07308120280504227, 0.015516269952058792, -0.012762238271534443, -0.01004369743168354, -0.004787614103406668, -0.0011614133836701512, 0.001796686090528965, 0.004294301848858595, -0.03145842254161835, -0.0020300333853811026, -0.0011605261825025082, 0.006626001093536615, -0.009042876772582531, -0.0025091497227549553, 0.01727657951414585, -0.008318878710269928, -0.010135971009731293, 0.025609653443098068, -0.02570902556180954, -0.008865426294505596, -0.03588758409023285, -0.009078366681933403, 0.0008903577690944076, -0.006693432107567787, 0.0030202071648091078, -0.004787614103406668, 0.0069347647950053215, -0.04020318016409874, -0.015388505533337593, 0.038499657064676285, -0.004635006655007601, 0.0282927043735981, -0.0007630370673723519, 0.009362286888062954, 0.01010048110038042, 0.014976820908486843, -0.002837433246895671, 0.013635294511914253, -0.004343987908214331, -0.005284475162625313, -0.002966972067952156, -0.004155890084803104, 0.017929596826434135, -0.012251181527972221, -0.037818245589733124, 0.013649490661919117, -0.019093671813607216, -0.007424528244882822, -0.023565424606204033, -0.008510525338351727, -0.015118780545890331, 0.023395070806145668, -0.03509260714054108, 0.018185125663876534, -0.0392378494143486, -0.00569616025313735, -0.04449038580060005, -0.012059534899890423, 0.007403234019875526, -0.04125368595123291, 0.00777233112603426, 0.015402701683342457, -0.0026227179914712906, -0.014416077174246311, 0.0022234544157981873, -0.1823907047510147, 0.005756493657827377, 0.019235631451010704, -0.009142248891294003, 0.014991016127169132, 0.00034602844971232116, 0.006725373212248087, 0.002374287461861968, -0.012968081049621105, -0.008105938322842121, 0.016098307445645332, 0.01906527951359749, -0.003534813644364476, -0.02147860638797283, 0.006086551584303379, 0.018596811220049858, 0.0017762792995199561, 0.02335248328745365, 0.004070714116096497, 0.008766054175794125, 0.02255750447511673, -0.03248053416609764, 0.005209946073591709, -0.02756870724260807, 0.0015952797839418054, -0.006494687404483557, -0.0219612717628479, 0.012236985377967358, -0.02115209773182869, -0.013344275765120983, 0.0023015327751636505, -0.0036448328755795956, 0.034666724503040314, 0.009951422922313213, 0.007367744110524654, 0.021365037187933922, 0.015289133414626122, -0.004950868431478739, 0.00015948362124618143, 0.04454717040061951, 0.0067892554216086864, 0.021436018869280815, -0.0072328816168010235, -0.007573586422950029, 0.0020335824228823185, -4.500033173826523e-05, -0.0006942750187590718, 0.006132688373327255, 0.010313421487808228, -0.017219794914126396, 0.021436018869280815, 0.014054077677428722, 0.012485415674746037, 0.011385222896933556, 0.0050431424751877785, 0.03460993990302086, -0.0005554200033657253, 0.011498791165649891, -0.005983630195260048, 0.004734378773719072, -0.01882394775748253, -0.017830224707722664, -0.006402413360774517, -0.020115787163376808, -0.01871037855744362, -0.0136707853525877, -0.0165809728205204, 0.009156445041298866, -0.02152119390666485, 0.018596811220049858, -0.013003570958971977, -0.021663155406713486, -0.0032597652170807123, -0.0024896301329135895, 0.030209170654416084, -0.0015597897581756115, -0.028136547654867172, 0.0136707853525877, -0.010249539278447628, -0.01646740548312664, 0.009908834472298622, 0.020825589075684547, -0.001960827736184001, -0.004450458101928234, 0.005532905925065279, -0.0017372402362525463, -0.0093977777287364, 0.004581771325320005, 0.00324024586006999, 0.013181021437048912, 0.005802630912512541, -0.028207527473568916, 0.004613712430000305, -0.0048550451174378395, 0.005671317223459482, -0.0018419360276311636, 0.02312534675002098, -0.008858327753841877, -0.014238626696169376, 0.00910675898194313, -0.012059534899890423, -0.003550784196704626, 0.007545194588601589, 0.023863540962338448, 0.014231528155505657, 0.016765521839261055, -0.027526117861270905, 0.011200673878192902, 0.026802120730280876, -0.016325443983078003, -0.03384335711598396, 0.02417585253715515, 0.02850564569234848, 0.02666015923023224, -0.015715014189481735, 0.003431892255321145, -0.020967548713088036, -0.016779717057943344, 0.003281059442088008, 0.017830224707722664, 0.04863562807440758, 0.03015238605439663, 0.0021773173939436674, 0.02711443416774273, -0.00721868546679616, -0.0260781217366457, -0.08159882575273514, -0.021691545844078064, 0.014692899771034718, 0.015587249770760536, -0.012996473349630833, 0.01524654496461153, 0.00045649136882275343, 0.01660936512053013, 0.005873610731214285, 0.02230197563767433, -0.018611006438732147, -0.017120422795414925, -0.00023800545022822917, 0.0026404631789773703, 4.15899557992816e-05, -0.026489807292819023, -0.016538385301828384, -0.01554466225206852, -0.007971075363457203, 0.041651178151369095, -0.006782157346606255, -0.022230995818972588, 0.01577179878950119, -0.018752966076135635, -0.013223609887063503, 0.012677062302827835, -0.05689772218465805, 0.030549874529242516, -0.0021737683564424515, -0.001054055872373283, 0.03387174755334854, -0.014735488221049309, -0.0011472173500806093, 0.0017727302620187402, 0.007296763826161623, -0.024119069799780846, 0.0013583834515884519, -0.018738770857453346, 0.0041771843098104, -0.037931814789772034, 0.005319965537637472, 0.012236985377967358, 0.04099815711379051, -0.01232925895601511, 0.004212674219161272, 0.0038222833536565304, -0.0281649399548769, 0.025638045743107796, 0.0066543929278850555, -0.0198744535446167, -0.039209458976984024, -0.012059534899890423, 0.00683539267629385, 0.004755672998726368, 0.019704101607203484, 0.006743118166923523, 0.008070447482168674, 0.008915112353861332, -0.03128806874155998, -0.015473681502044201, 0.003266863292083144, -0.00039260918856598437, -0.0026227179914712906, 0.011796907521784306, 0.0007679169648326933, -0.004546281415969133, -0.026021338999271393, -0.007545194588601589, -0.012364749796688557, -0.02805137261748314, -0.027753254398703575, -0.007687154691666365, -0.014245724305510521, -0.0008393407915718853, -0.03233857452869415, -0.024346206337213516, -0.014430273324251175, -0.013706275261938572, 0.015061996877193451, 0.006963156629353762, -0.017035245895385742, -0.016282856464385986, 0.015800191089510918, -0.01695006899535656, 0.005508062895387411, 0.012762238271534443, -0.0034656079951673746, 0.003451411845162511, 0.022529112175107002, -0.03412727639079094, 0.03435441479086876, -0.013393961824476719, 0.016765521839261055, 0.01396180409938097, -0.00812723208218813, -0.0019945434760302305, -0.002812590217217803, 0.001642304239794612, -0.013869529590010643, 0.03486546874046326, -0.038613226264715195, 0.011775613762438297, -0.08699332177639008, 0.02372157946228981, 0.00038617660175077617, -0.01836967281997204, 0.01554466225206852, -0.0010922077344730496, 0.0068992748856544495, -0.012797728180885315, -0.011555574834346771, 0.006299491971731186, -0.033928532153367996, 0.0009112082188948989, 0.020981743931770325, 0.006359825376421213, -0.01554466225206852, -0.02464432269334793, 0.031004147604107857, -0.010249539278447628, 0.014061176218092442, 0.014692899771034718, -0.0021365038119256496, 0.009057072922587395, 0.014039882458746433, 0.04613712430000305, -0.029868464916944504, 0.011470398865640163, 0.009461659938097, -0.017134618014097214, -0.011654947884380817, -0.008489230647683144, 0.008134329691529274, -0.03730718791484833, -0.003580950666218996, 0.020967548713088036, -0.005653572268784046, -0.013322982005774975, 0.008546015247702599, 0.011945966631174088, 0.00789299700409174, 0.02396291308104992, -0.009766874834895134, -0.06450679898262024, -0.00816982053220272, -0.012783532962203026, 0.008219506591558456, -0.0021471509244292974, -0.02255750447511673, 0.01973249390721321, -0.006643746048212051, 0.0042233215644955635, 0.030123993754386902, -0.010441185906529427, -0.027540314942598343, -0.039692122489213943, 0.013947607949376106, -0.010611538775265217, 0.02559545636177063, 0.016311248764395714, -0.019107867032289505, 0.0028196880593895912, 0.041196905076503754, -0.009497149847447872, 0.02536831982433796, -0.01893751509487629, 0.021805115044116974, -0.028548233211040497, -0.04079941287636757, 0.0113284382969141, 0.0015855199890211225, -0.016907481476664543, -0.009369385428726673, -0.02981168031692505, 0.01578599400818348, 0.023210523650050163, 0.008837033994495869, -0.0014471086906269193, 0.005011201370507479, 0.026319455355405807, -0.007545194588601589, 0.020754607394337654, 0.013713372871279716, -0.018838142976164818, -0.014054077677428722, 0.010448284447193146, 0.008311780169606209, 0.008886720053851604, -0.01612669974565506, -0.00010303218732587993, 0.002858727239072323, 0.015317525714635849, -0.01591375842690468, 0.023664796724915504, 0.0017345783999189734, -0.008283388800919056, 0.007264822721481323, 0.01198145654052496, 0.003320098388940096, 0.0016077012987807393, 0.030464697629213333, 0.01541689783334732, 0.01939178816974163, 0.020981743931770325, 0.01740434393286705, -0.010384402237832546, -0.03310516104102135, 0.03673934563994408, -0.007914291694760323, -0.014444469474256039, -0.00017301422485616058, -0.0240480899810791, -0.02536831982433796, 0.01385533344000578, 0.0043510859832167625, 0.015076193027198315, -0.02336667850613594, 0.03600115329027176, -0.0025978749617934227, -0.0020353570580482483, -0.03676773980259895, 0.0279094111174345, 0.011761417612433434, 0.0010993056930601597, 0.017006853595376015, -0.0045746732503175735, 0.019022691994905472, 0.01191757433116436, 0.02406228519976139, -0.0413956493139267, 0.012307965196669102, -0.01198145654052496, 0.0023192777298390865, 0.01868198625743389, -0.0003997072053607553, -0.011243262328207493, -0.02874697744846344, -0.015331721864640713, -0.015061996877193451, -0.018667791038751602, 0.008240800350904465, 0.08409733325242996, 0.042020272463560104, -0.026816315948963165, 0.008666681125760078, -0.01809994876384735, -0.0075664883479475975, 0.007609076797962189, 0.012293769046664238, 0.01337976660579443, -0.021989664062857628, 0.02302597463130951, 0.014778075739741325, -0.04307078197598457, -0.014565135352313519, 0.0026156201492995024, -0.005429984536021948, 0.0041771843098104, 0.04241776093840599, -0.021223077550530434, 0.005032495595514774, 0.02313954196870327, 0.017588891088962555, 0.002525120275095105, -0.006661491002887487, -0.028548233211040497, -0.03299159184098244, 0.04698888584971428, 0.00637402106076479, 0.010639931075274944, -0.06939023733139038, -0.006988000124692917, -0.0026067474391311407, -0.035234566777944565, -0.012528004124760628, 0.001043408876284957, 0.018909122794866562, 0.02666015923023224, -0.015331721864640713, 0.015587249770760536, -0.011541379615664482, 0.0157576035708189, 0.03742075711488724, -0.0036945189349353313, -0.033928532153367996, 0.00388616556301713, -0.0006893951212987304, -0.018497437238693237, -0.0071973917074501514, -0.026972472667694092] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_enhancing_the_reliability_of_iot_data_marketplaces_through_security_validation_of_iot_devices.json b/database/embeddings/publications_txt/2020_enhancing_the_reliability_of_iot_data_marketplaces_through_security_validation_of_iot_devices.json new file mode 100644 index 0000000000000000000000000000000000000000..91cbee10faa84bee8011912c2313a472b7834fd1 --- /dev/null +++ b/database/embeddings/publications_txt/2020_enhancing_the_reliability_of_iot_data_marketplaces_through_security_validation_of_iot_devices.json @@ -0,0 +1 @@ +[0.006712356582283974, 0.010259423404932022, 0.007069839630275965, -0.01063426025211811, 0.005192184820771217, 0.010377427563071251, -0.03295787796378136, 0.0034845946356654167, -0.0035574794746935368, -0.05119993910193443, 0.012216905131936073, 0.020005181431770325, -0.02440604381263256, 0.016451172530651093, -0.004897174425423145, 0.028251593932509422, 0.030153542757034302, -0.010051180608570576, -0.008475477807223797, -0.018533600494265556, -0.0049041155725717545, 0.010148361325263977, -0.026613418012857437, -0.0014446837594732642, -0.0009605194791220129, 0.002063338179141283, 0.030986513942480087, -0.03898303210735321, 0.00030737489578314126, 0.00024924048921093345, 0.00726767024025321, -0.006764417048543692, -0.01545160822570324, -0.0166871827095747, -0.006767887622117996, -0.0024069384671747684, 0.004650753457099199, -0.011717122979462147, 0.024822529405355453, -0.03531796112656593, -0.011939248070120811, 0.023073291406035423, 0.009516691789031029, -0.0173396747559309, -0.008114524185657501, 0.019130563363432884, 0.034124039113521576, -0.014070264995098114, -0.014479809440672398, 0.02104639634490013, -0.013681545853614807, 0.020449433475732803, -0.014229917898774147, 0.0015635555610060692, -0.010564845986664295, 0.003744897898286581, 0.020088478922843933, 0.015548788011074066, -0.005018649157136679, -0.02186548337340355, 0.014042499475181103, 5.4501018894370645e-05, -0.03379084914922714, -0.01074532326310873, 0.006000860594213009, -0.02411450445652008, -0.02193489857017994, 0.02572491578757763, -0.005563550628721714, 0.0011236428981646895, 0.021143576130270958, 0.032319266349077225, 0.014354863204061985, -0.015396077185869217, 0.024891944602131844, -0.028182178735733032, -0.005442075897008181, -0.016062453389167786, -0.0007353570545092225, 0.009072440676391125, -0.010287189856171608, -0.012015603482723236, -0.006132747512310743, 0.0017223407048732042, 0.012723629362881184, 0.02179607003927231, -0.018741842359304428, 0.01137005165219307, -0.007232963107526302, -0.010432959534227848, 0.015618202276527882, -0.0035574794746935368, -0.0021501060109585524, -0.003977435640990734, -0.02149064652621746, 0.02812664769589901, -0.01924162544310093, 0.029820354655385017, -0.007163548842072487, -0.013521892949938774, 0.0015036858385428786, -0.005133182741701603, -0.040260255336761475, -0.026613418012857437, -0.016006922349333763, -0.026793893426656723, -0.000355964875780046, 0.004723638761788607, 0.01059955358505249, 0.002301081782206893, -0.026557885110378265, 0.03131970390677452, -0.02323988638818264, -0.008704544976353645, 0.00601127278059721, -0.01893620379269123, -0.015770914033055305, 0.0068928333930671215, -0.02178218588232994, -0.007850749418139458, 0.04714614897966385, 0.0028442481998354197, 0.009370921179652214, -0.033846382051706314, 0.009273741394281387, -0.009329273365437984, -0.01944986917078495, -0.020060714334249496, 0.019199976697564125, -0.007767452858388424, 0.006708885543048382, 0.0013292825315147638, 0.022476328536868095, 0.011314519681036472, 0.0058550904504954815, 0.02104639634490013, -0.016645533964037895, 0.018408654257655144, -0.00943339429795742, -0.060584742575883865, 0.0030472849030047655, 0.02032448723912239, -0.02718261443078518, -0.0028043349739164114, 0.008614306338131428, 0.01139781717211008, -0.0006815610104240477, 0.02791840396821499, 0.004432098940014839, 0.009343155659735203, -0.009377863258123398, -0.004300212021917105, -0.019866352900862694, 0.037705812603235245, 0.0032884993124753237, 0.015285014174878597, -0.012640331871807575, 0.031736187636852264, 0.021101927384734154, -0.03823335841298103, 0.014576989226043224, -0.004147500265389681, -0.027446387335658073, -0.0023132292553782463, -0.012001721188426018, 0.019727524369955063, 0.030181309208273888, 0.011967013590037823, 0.006868538446724415, -0.007226021960377693, -0.011939248070120811, 0.01792275533080101, -0.0014967444585636258, 0.005980036221444607, 0.0010299336863681674, 0.026682831346988678, 0.037344858050346375, 0.014604754745960236, -0.0051366533152759075, -0.014882411807775497, 0.0029900181107223034, -0.0075383856892585754, 0.009711051359772682, 0.03692837059497833, -0.0023080231621861458, 0.0343739278614521, 0.016964837908744812, -0.005622553173452616, 0.004071144852787256, -0.020935332402586937, 0.055920105427503586, 0.01137005165219307, -0.011120160110294819, 0.009780465625226498, -0.6183975338935852, -0.019935768097639084, 0.0050637684762477875, 0.0036754836328327656, -0.031097576022148132, 0.012473737820982933, 0.019144445657730103, 0.018839024007320404, -0.02862643077969551, 0.04345330968499184, -0.012182198464870453, 0.013896729797124863, 0.00029349204851314425, -0.018047701567411423, -0.01638175919651985, 0.005716262385249138, 0.022823400795459747, -0.02694660611450672, 0.012098900973796844, 0.015770914033055305, -0.007031661923974752, 0.02062991075217724, 0.010321896523237228, -0.010717557743191719, 0.010259423404932022, 0.02857089787721634, 0.0251279529184103, -0.016145750880241394, 0.004091969225555658, -0.004164854064583778, -0.029459400102496147, 0.024017324671149254, 0.03254139423370361, 0.03243032842874527, 0.054753948003053665, -0.01893620379269123, -0.021115809679031372, 0.029015149921178818, 0.02441992796957493, 0.037122733891010284, -0.03212490677833557, -0.036095403134822845, 0.011668533086776733, -0.0036199523601680994, 0.001969628967344761, -0.00955139845609665, 0.028959618881344795, -0.014910177327692509, -0.03251362591981888, -0.010134478099644184, -0.0182975921779871, -0.018339240923523903, -0.012647273018956184, -0.0018741843523457646, 0.011210398748517036, -0.008815607987344265, 0.006976130418479443, -0.029764823615550995, 0.014202152378857136, 0.006452052854001522, 0.016353992745280266, 0.009738816879689693, -0.005983506795018911, -0.036039870232343674, -0.008072875440120697, 0.015562671236693859, 0.016950955614447594, -0.003208672860637307, -0.0020858978386968374, -0.009606930427253246, 0.015909742563962936, 0.010988273657858372, -0.013813432306051254, -0.029681526124477386, 0.0182975921779871, 0.04423075169324875, 0.039232924580574036, 0.01858913153409958, -0.014965708367526531, 0.013376123271882534, 0.01084944512695074, -0.0017770043341442943, 0.003644247306510806, -0.021754421293735504, 0.008704544976353645, 0.01046072505414486, -0.017756160348653793, -0.024156153202056885, 0.01034966204315424, 0.0022906698286533356, 0.027016019448637962, 0.01581256277859211, -0.0032624690793454647, -0.010134478099644184, -0.003541861195117235, 0.033846382051706314, -0.0036095401737838984, 0.011717122979462147, 0.0057301451452076435, -0.021657241508364677, -0.011668533086776733, -0.003163553774356842, 0.01800605282187462, -0.010321896523237228, 0.031458530575037, 0.03798346966505051, 0.0008338384795933962, -0.000999565003439784, 0.01293881330639124, -0.02659953385591507, 0.002920603845268488, 0.01754791848361492, -0.03534572944045067, 0.0035713622346520424, 0.009329273365437984, -0.03323553502559662, 0.043897561728954315, 0.004654224496334791, -0.002061602659523487, 0.009641637094318867, 0.006861596833914518, -0.0023097586818039417, 0.0021518412977457047, -0.0034047681838274, -0.025114070624113083, 0.014299332164227962, 0.016353992745280266, -0.016950955614447594, 0.0019262449350208044, 0.021171340718865395, 0.01489629503339529, -0.03354095667600632, 0.025322312489151955, -0.013035993091762066, 0.021990429610013962, 0.004504983779042959, 0.016006922349333763, -0.03623422980308533, -0.006320165935903788, -0.022462446242570877, -0.028904087841510773, -0.003031666623428464, 0.006625588517636061, -0.0065110549330711365, -0.028681961819529533, -0.01756180077791214, -0.0233231820166111, 0.003418650943785906, 0.005969624035060406, 0.013348356820642948, -0.025586087256669998, 0.02272622101008892, -0.011342286132276058, 0.005108887795358896, -0.006792182568460703, -0.0040468499064445496, 0.01835312321782112, -0.024308864027261734, -0.024739233776926994, -0.014313215389847755, -0.018963968381285667, 0.04028801992535591, -0.021476764231920242, -0.01675659604370594, 0.009225151501595974, 0.0007045544916763902, -0.0049145277589559555, 0.026932721957564354, 0.0034203864634037018, -0.026419056579470634, -0.0009813436772674322, -0.01771451160311699, -0.01988023705780506, 0.014826880767941475, -0.010037298314273357, 0.02594703994691372, -0.009259859099984169, -0.009273741394281387, 0.0015635555610060692, 0.004886762239038944, -0.0036373059265315533, 0.017436856403946877, -0.01111321896314621, -0.00841300468891859, 0.01271668728441, -0.0032520568929612637, 0.025599969550967216, -0.01958869770169258, 0.00746897142380476, 0.01574314758181572, -0.0005878517986275256, 0.01084944512695074, 0.01220302190631628, 0.026363525539636612, -0.016520587727427483, 0.004730579908937216, -0.011196515522897243, -0.019408220425248146, -0.02973705716431141, 0.012286319397389889, 0.04173183813691139, 0.030708856880664825, 0.011529704555869102, -0.007170490454882383, -0.009461159817874432, -0.0001890453277155757, 0.02200431190431118, -0.009565281681716442, 0.027376974001526833, 0.013605189509689808, 0.03845548629760742, -0.020935332402586937, -0.029598228633403778, 0.0023809082340449095, -0.002764421980828047, 0.034707117825746536, -0.012508444488048553, 0.017686747014522552, -0.04581339284777641, 0.014701934531331062, -0.013744018040597439, -0.02010236121714115, 0.031208639964461327, -0.0071913148276507854, -0.010065063834190369, 0.010648143477737904, 0.02550278976559639, 0.020421667024493217, 0.02192101441323757, -0.010988273657858372, -0.01981082186102867, 0.0021761362440884113, 0.035151369869709015, 0.0075592100620269775, 0.008468536660075188, 0.0018898025155067444, 0.03504030406475067, -0.008690661750733852, 0.04056567698717117, -0.017686747014522552, 0.02469758503139019, 0.0431201234459877, 0.03556785359978676, -0.04325895011425018, 0.02601645514369011, -0.00491799833253026, 0.0066082351841032505, 0.014340980909764767, -0.010432959534227848, 0.02317047119140625, -0.017311910167336464, 0.03476264700293541, -0.014104972593486309, -0.00021485875186044723, 0.03218043968081474, -0.0093986876308918, -0.015257248654961586, -0.011321461759507656, 0.015993040055036545, 0.0028650725726038218, 0.014729700051248074, 0.00537613220512867, 0.006663766223937273, 0.02461428754031658, -0.0018967438954859972, -0.010273306630551815, -0.011432524770498276, -0.010002590715885162, 0.004782640840858221, -0.03240256384015083, 0.0020494551863521338, -0.010828620754182339, -0.002601298503577709, 0.008031226694583893, 0.0047548748552799225, 0.014084148220717907, -0.00014197379641700536, -0.0017180022550746799, 0.0023253767285495996, 0.023517541587352753, -0.04728497564792633, -0.0098012899979949, 0.0034238570369780064, 0.013153997249901295, 0.0026741833426058292, -0.007906281389296055, -0.015715382993221283, 0.02375355176627636, -0.02848760224878788, -0.0011939248070120811, 0.02318435348570347, 0.01323035266250372, -0.007344026118516922, -0.02491970919072628, -0.015632085502147675, 0.00797569565474987, 0.03962164372205734, -0.021101927384734154, 0.0018620368791744113, 0.008760076016187668, 0.024447692558169365, 0.018533600494265556, -0.01828370988368988, -0.004633400123566389, 0.05131100118160248, -0.018089348450303078, 0.01216831523925066, -0.005254657473415136, 0.019213860854506493, -0.006674178410321474, 0.007739686872810125, 0.002998695010319352, -0.00957916397601366, -0.013056817464530468, 0.031652890145778656, -0.009134912863373756, 0.01888067089021206, -0.004272446036338806, 0.006951835472136736, 0.005445546470582485, 0.005438605323433876, -0.03329106792807579, -0.009273741394281387, 0.024392161518335342, 0.06769276410341263, 0.02083815261721611, 0.0018047700868919492, 0.018478069454431534, 0.005122770555317402, -0.021088045090436935, -0.03715049847960472, -0.004317565355449915, 0.013320591300725937, 0.0057822056114673615, -0.01045378390699625, 0.00577179342508316, 0.01009282935410738, 0.011786537244915962, 0.01857524923980236, -0.011057687923312187, 0.0043973918072879314, -0.000609977578278631, 0.005834266543388367, -0.009863762184977531, 0.0069657182320952415, -0.015243365429341793, 0.012452913448214531, 0.0071913148276507854, 0.044258516281843185, -0.0191027969121933, 0.0599183663725853, 0.03592880815267563, 0.015493256971240044, -0.012869399040937424, 0.006264634430408478, 0.022462446242570877, 0.008697603829205036, -0.00772580411285162, -0.01690930686891079, 0.054615117609500885, 0.02447545900940895, 0.01227937825024128, 0.017062019556760788, 0.03823335841298103, 0.021324053406715393, 0.015618202276527882, 0.017062019556760788, 0.002799128880724311, -0.003088933415710926, -0.0583079569041729, 0.01574314758181572, 0.024530990049242973, -0.02761298231780529, -0.02032448723912239, 0.010287189856171608, 0.008218645118176937, -0.03534572944045067, -0.0365951843559742, 0.030653325840830803, -0.0007370923995040357, -0.0024624699726700783, -0.012737511657178402, -0.02099086344242096, -0.03365201875567436, -0.003182642627507448, -0.016201281920075417, 0.012244670651853085, -0.0025596499908715487, -0.022129258140921593, -0.004473747219890356, -0.02915397845208645, -0.006972659844905138, -0.019852470606565475, 0.00712190056219697, 0.002255962695926428, 0.007545327302068472, -0.03615093231201172, -0.0019123621750622988, 0.007788277231156826, 0.008246410638093948, 0.021018629893660545, 0.0012728834990411997, -0.012064194306731224, -0.006216044537723064, -0.027043785899877548, -0.013237294740974903, -0.0029900181107223034, -0.029931416735053062, -0.011182633228600025, 0.004560515284538269, -0.020130127668380737, -0.0074759130366146564, 0.004675048869103193, 0.014743583276867867, -0.012862457893788815, -0.010884151794016361, -0.0035887158010154963, -0.010370486415922642, 0.013903670944273472, 0.03387414664030075, 0.00943339429795742, 0.011689356528222561, 0.004963117651641369, 0.007920163683593273, 0.0020303663332015276, -0.00878090038895607, -0.012584800831973553, -0.03156959265470505, 0.011272871866822243, 0.016742713749408722, -0.01230714377015829, 0.016284579411149025, 0.005528843961656094, 0.022989993914961815, 0.011890658177435398, -0.011321461759507656, 0.002580474130809307, -0.0022785221226513386, -0.003458564169704914, 0.02047719992697239, 0.01377178356051445, -0.004834701307117939, -0.006781770847737789, -0.01075226441025734, -0.03251362591981888, -0.01402861624956131, 0.012591741979122162, 0.027307558804750443, 0.014216034673154354, 0.01690930686891079, -0.01595139130949974, -0.020949216559529305, -0.03140299767255783, 0.003689366625621915, 0.0026759186293929815, 0.025752680376172066, -0.00438697962090373, -0.037622515112161636, 0.00020281971956137568, 0.0013770048972219229, -0.01654835417866707, 0.012112784199416637, -0.012994344346225262, -0.03892750293016434, 0.00524771586060524, -0.007788277231156826, 0.00039999952423386276, -0.005737086292356253, 0.018408654257655144, -0.031652890145778656, -0.022476328536868095, 0.018380889669060707, 0.022545743733644485, 0.040982164442539215, -0.015132303349673748, 0.012612566351890564, -0.024530990049242973, -0.001978305634111166, -0.03356872498989105, -0.0356789156794548, -0.033402130007743835, -0.007024720311164856, 0.029625995084643364, 0.008440771140158176, 0.02222643792629242, 0.01953316479921341, 0.012883282266557217, 0.00562602374702692, 0.012577858753502369, 0.002318435348570347, 0.004456393886357546, 0.006646412890404463, 0.003514095675200224, 0.01938045397400856, 0.003921904135495424, -0.0027418623212724924, -0.00032234235550276935, 0.005744027905166149, 0.0011036862852051854, -0.006750534288585186, -0.0006685458356514573, -0.028820790350437164, -0.01271668728441, -0.02833488956093788, 0.01413967926055193, -0.01086332742124796, 0.002700213808566332, 0.009308448992669582, -0.04337001219391823, -0.013459419831633568, 0.0220181941986084, 0.003939257934689522, -0.005101946182549, 0.004373096860945225, 0.02054661326110363, -0.024433810263872147, 0.016701065003871918, 0.00903773307800293, 0.00386290205642581, -0.004668107256293297, -0.004091969225555658, -0.028987383469939232, -0.0010924064554274082, 0.01270974613726139, 0.008475477807223797, 0.025530554354190826, -0.0011852480238303542, -0.0037587806582450867, -0.013396946713328362, 0.04162077605724335, 0.02237914875149727, -0.03009801171720028, -0.005435134284198284, -0.02819606103003025, -0.003196525387465954, -0.014188269153237343, -0.03162512555718422, 0.002413880079984665, 0.007614741567522287, -0.011286754161119461, 0.0010004326468333602, 0.006372226867824793, -0.018019935116171837, -0.025974806398153305, 0.01842253841459751, 0.018339240923523903, 0.013029051944613457, -0.002512795152142644, 0.02775181084871292, 0.019685877487063408, 0.00686506787315011, -0.014674169011414051, 0.013105407357215881, -0.005868973676115274, -0.0056329648941755295, 0.028154414147138596, 0.001248588552698493, -0.023198237642645836, -0.04964505881071091, 0.011494996957480907, -0.007600858807563782, -0.018311474472284317, -0.019838588312268257, 0.01771451160311699, 0.030708856880664825, -0.006382638588547707, -0.01180041953921318, -0.008947494439780712, -0.0072121387347579, 0.0009787407470867038, -0.006125806365162134, 0.008142289705574512, 0.003290234599262476, -0.00530324736610055, 0.011210398748517036, 0.019422102719545364, -0.008058992214500904, 0.04486935958266258, -0.00012917554704472423, -0.023711903020739555, -0.005789147224277258, -0.00047461982467211783, -0.02069932408630848, -0.010807796381413937, 0.006417345721274614, 0.006410404574126005, -0.01187677588313818, 0.01764509826898575, 0.02178218588232994, 0.004928410518914461, -0.0003913227410521358, -0.012591741979122162, 0.0019401278113946319, 0.02979259006679058, -0.005334483925253153, -0.012050311081111431, 0.005573962815105915, -0.024822529405355453, -0.0072746118530631065, -0.003939257934689522, 0.004872879013419151, -0.020380018278956413, -0.011828185059130192, -0.0165344700217247, -0.004234268330037594, 0.01518783438950777, 0.012133607640862465, 0.01764509826898575, 0.016201281920075417, -0.024017324671149254, 0.015645967796444893, 0.013973085209727287, -0.0008008667500689626, 0.002526678144931793, -0.02267068810760975, 0.007219080347567797, -0.018117114901542664, 0.023420361801981926, 0.008940553292632103, 0.010592612437903881, 0.01516006886959076, 0.009981767274439335, -0.017145315185189247, -0.00866983737796545, 0.016340110450983047, -0.011675474233925343, -0.012765277177095413, -0.021226873621344566, 0.00386290205642581, 0.005219950340688229, 0.02819606103003025, -0.003984377253800631, -0.044924892485141754, -0.029598228633403778, -0.016451172530651093, -0.008461595512926579, -0.021393466740846634, -0.021310169249773026, 0.011529704555869102, -0.012911047786474228, -0.02325376868247986, -0.014299332164227962, -0.02505853772163391, 0.04575786367058754, -0.029764823615550995, 0.01516006886959076, 0.021157458424568176, -0.019977416843175888, 0.018825139850378036, -0.016742713749408722, -0.0006177866598591208, 0.005664201453328133, -0.04756263270974159, -0.002379172947257757, -0.01814488135278225, 0.013723193667829037, -0.02169889025390148, -0.0230177603662014, 0.011613001115620136, -0.011862892657518387, -0.020532730966806412, 0.009169620461761951, -0.010835561901330948, 0.002738391514867544, 0.013778725638985634, -0.009100206196308136, 0.024378279224038124, 0.014229917898774147, -0.010960507206618786, -0.04953399673104286, -0.02069932408630848, 0.014382629655301571, -0.022531859576702118, -0.021685006096959114, -0.007055956870317459, 0.02834877371788025, -0.0003993487625848502, -0.042509276419878006, -0.04686849191784859, -0.033263299614191055, -0.01763121597468853, -0.02128240466117859, -0.01205725222826004, -0.006153571885079145, -0.0182975921779871, 0.006264634430408478, 0.011390876024961472, 0.04195396229624748, 0.0046160463243722916, 0.004348801914602518, -0.016950955614447594, -0.014493691734969616, -0.003283293219283223, 0.005455958656966686, 0.022393031045794487, -0.001313664368353784, -0.06702638417482376, -0.0032381739001721144, 0.014000850729644299, 0.01016918569803238, 0.011585235595703125, 0.012765277177095413, -0.0033440308179706335, -0.016992604359984398, 0.004404332954436541, 0.015701498836278915, -0.0178394578397274, -0.011092394590377808, 0.005150536075234413, -0.049867186695337296, -0.0015522758476436138, -0.014812997542321682, -0.001221690559759736, 0.007649448700249195, -0.0014446837594732642, 0.013632955960929394, -0.013417771086096764, 0.004102381411939859, -0.008711486123502254, 0.008704544976353645, 0.005088063422590494, 0.0027973935939371586, 0.015784796327352524, 0.00823252834379673, 0.020782621577382088, 0.039371754974126816, -0.010974390432238579, -0.009301506914198399, -0.015618202276527882, 0.015757031738758087, -0.021448997780680656, 0.00464381230995059, 0.02565550059080124, -0.016645533964037895, -0.01191842369735241, -0.013306709006428719, 0.027710162103176117, -0.02237914875149727, -0.004456393886357546, -0.025239014998078346, -0.02354530803859234, -0.016923191025853157, 0.01114792563021183, 0.006976130418479443, -0.01270974613726139, -0.03148629516363144, -0.018394771963357925, 0.0018047700868919492, -0.011967013590037823, -0.016576118767261505, -0.009662461467087269, -0.025627736002206802, -0.011349227279424667, -0.005733615718781948, -0.006604764144867659, 0.009516691789031029, -6.415393727365881e-05, -0.001211278373375535, -0.011904541403055191, 0.0005475047510117292, 0.18425314128398895, -0.014618637971580029, -0.001941863214597106, 0.021671123802661896, 0.017145315185189247, -0.00787157379090786, 0.023656370118260384, -0.0035540086682885885, -0.0003071579849347472, -0.00626810546964407, 0.01125898864120245, 0.007906281389296055, 0.002396526513621211, -0.004383509047329426, 0.00797569565474987, 0.011633825488388538, -0.03009801171720028, -0.021379584446549416, -0.005036002490669489, 0.0016407789662480354, -0.010252482257783413, -0.014507574960589409, -0.030209073796868324, -0.01713143289089203, 0.013862022198736668, -0.004449452273547649, 0.007566151674836874, -0.006792182568460703, 0.010113653726875782, 0.027779577299952507, -0.008725369349122047, 0.023767434060573578, 0.009960942901670933, -0.011751829646527767, -0.018019935116171837, -0.015465491451323032, 0.008093699812889099, -0.0012832956854254007, 0.027057668194174767, -0.010953566059470177, 0.006771358661353588, -0.027140965685248375, -0.003689366625621915, -0.03431839868426323, 0.0036199523601680994, 0.028459835797548294, -0.025905391201376915, -0.004293270409107208, -0.005969624035060406, -0.0071913148276507854, -0.02214314043521881, 0.006996954791247845, 0.012702804990112782, 0.004567456431686878, -0.013348356820642948, 0.00590020976960659, -0.008336649276316166, 0.01084944512695074, 0.007732745725661516, 0.001053360989317298, 0.004150971304625273, 0.008190879598259926, -0.0106064947322011, 0.013903670944273472, -0.017575684934854507, 0.005685025826096535, -0.023267650976777077, -0.004574398044496775, 0.005591316614300013, -0.00693795271217823, -0.00046854608808644116, -0.010280247777700424, -0.01974140852689743, -0.014549223706126213, -0.02265680581331253, -0.030153542757034302, 0.019491516053676605, 0.006018213927745819, 0.01398696843534708, 0.03987153619527817, -0.008794783614575863, 0.03637306019663811, -0.00033882822026498616, -0.012411264702677727, -0.010613436810672283, -0.023781316354870796, 0.03073662333190441, -0.01711755059659481, -0.01439651194959879, -0.007149666082113981, -0.02548890747129917, 0.02543337456882, -0.00023904527188278735, -0.005868973676115274, -0.008468536660075188, -0.024308864027261734, 0.028001701459288597, -0.014979591593146324, -0.003925374709069729, 0.002552708378061652, -0.015465491451323032, 0.07996519654989243, 0.023059409111738205, -0.007101076189428568, -0.0007188711315393448, -0.011786537244915962, -0.008406063541769981, 0.016728829592466354, 0.00798263680189848, -0.02323988638818264, 0.0006390447961166501, -0.03426286578178406, -0.0008824284304864705, -0.004060732666403055, -0.0026030337903648615, 0.026918839663267136, 0.01660388521850109, 0.004890232812613249, 0.008586540818214417, -0.01139781717211008, -0.009426453150808811, -0.013042934238910675, 0.011314519681036472, 0.010391310788691044, -0.008329708129167557, -0.009766582399606705, -0.013605189509689808, -0.017825575545430183, -0.02768239565193653, -0.010668967850506306, 0.0356789156794548, -0.0023080231621861458, 0.013931436464190483, 0.0034377400297671556, 0.028515366837382317, -0.013563541695475578, 0.02172665484249592, -0.002967458451166749, 0.028084998950362206, 0.009329273365437984, -0.013980026356875896, -0.021823834627866745, 0.0034602994564920664, 0.005105416756123304, -0.004300212021917105, -0.03140299767255783, 0.0015757031505927444, 5.0732043746393174e-05, -0.002571797464042902, -0.023850731551647186, 0.024586521089076996, -0.002219520043581724, -0.019255507737398148, -0.03534572944045067, 0.016159633174538612, -0.019144445657730103, -0.004598692990839481, -0.018991734832525253, -0.003894138615578413, -0.00242255674675107, -0.0246281698346138, 0.018033817410469055, 0.0330689400434494, 0.008961377665400505, -0.028459835797548294, -0.012334909290075302, -0.1781446933746338, 0.025627736002206802, 0.008850314654409885, -0.031014280393719673, -0.004761816468089819, 0.012029486708343029, 0.025100186467170715, 0.003217349760234356, 0.0017101932317018509, 0.014993474818766117, 0.03531796112656593, 0.01988023705780506, -0.023475894704461098, -0.004234268330037594, 0.0038351365365087986, 0.023128822445869446, -0.020810388028621674, 0.002530148718506098, 0.025738798081874847, 0.02046331577003002, 0.022268086671829224, -0.03073662333190441, 0.013251177035272121, -0.0238229651004076, -0.003550538094714284, 0.007670273073017597, -0.026099752634763718, 0.018269825726747513, -0.012452913448214531, -0.012286319397389889, 0.014799114316701889, -0.011807361617684364, 0.03987153619527817, 0.020310604944825172, 0.022240320220589638, 0.02092145010828972, -0.02572491578757763, -0.01019695121794939, -0.009475043043494225, 0.04428628087043762, 0.004706284962594509, 0.03765027970075607, -0.010682850144803524, -0.012015603482723236, 0.009974825195968151, 0.021379584446549416, 0.004803465213626623, -0.01257091760635376, 0.010273306630551815, -0.02630799449980259, 0.018130997195839882, -0.004439040087163448, 0.012112784199416637, -0.007940988056361675, 1.3089735148241743e-05, 0.0336797870695591, -0.011210398748517036, -0.013542717322707176, 0.016284579411149025, -0.015021240338683128, -0.005837737116962671, -0.012064194306731224, 0.009752700105309486, -0.02827935852110386, -0.011842068284749985, -0.040537912398576736, -0.008857255801558495, 0.016145750880241394, -0.023503659293055534, 0.02056049555540085, 0.0006789579638279974, -0.01603468880057335, 0.007885457016527653, -0.022906696423888206, 0.0233231820166111, 0.012737511657178402, -0.002143164398148656, 0.02646070532500744, 0.024461576715111732, -0.015465491451323032, 0.014882411807775497, 0.020060714334249496, -0.022240320220589638, 0.023378713056445122, 0.020352253690361977, -0.01086332742124796, 0.0212129894644022, 0.013653779402375221, -0.005004766397178173, 0.02543337456882, 0.012591741979122162, -0.014271566644310951, 0.004189149010926485, -0.020380018278956413, 0.005601728800684214, 0.00458828080445528, 0.006000860594213009, 0.011349227279424667, -0.01049543172121048, 0.010953566059470177, 0.0013900200137868524, -0.009509749710559845, -0.007857691496610641, 0.006611705757677555, 0.008406063541769981, 0.01770062930881977, -0.0009518426959402859, 0.0018516246927902102, 0.015271131880581379, -0.009301506914198399, -0.03765027970075607, 0.02529454603791237, 0.013903670944273472, 0.018242061138153076, -0.01205725222826004, 0.03476264700293541, -0.021837718784809113, -0.012133607640862465, 0.011050745844841003, -0.015618202276527882, 0.03248586133122444, -0.0015869829803705215, -0.0015297161880880594, 0.02995918318629265, -0.03295787796378136, -0.03876090794801712, -0.06946976482868195, -0.012126666493713856, 0.023739667609333992, 0.015243365429341793, -0.030209073796868324, 0.01373013574630022, -0.0009475043043494225, 0.01689542457461357, 0.0015462021110579371, 0.019630344584584236, -0.026780011132359505, -0.008732310496270657, -0.009086322970688343, -0.005049885716289282, -0.007035132497549057, -0.03134746849536896, -0.006264634430408478, -0.02112969197332859, -0.005237304139882326, 0.02286504954099655, -0.01677047833800316, -0.027779577299952507, 0.025919275358319283, -0.015687616541981697, -0.014993474818766117, -0.003180907340720296, -0.04653530195355415, 0.007684155832976103, -0.0016668093157932162, 0.0038698434364050627, -0.006795653607696295, -0.010363545268774033, 0.006590881384909153, -0.024794764816761017, -0.008336649276316166, -0.012577858753502369, -0.0017327527748420835, 0.005108887795358896, 0.02834877371788025, -0.026127517223358154, 0.030042480677366257, 0.015507140196859837, 0.05269928649067879, -0.00983599666506052, -0.008732310496270657, -0.013292825780808926, -0.03251362591981888, 0.021115809679031372, -0.005674613639712334, -0.018408654257655144, -0.017464620992541313, -0.017367441207170486, 0.0012494561960920691, -0.013945319689810276, 0.018769608810544014, 0.00301431305706501, 0.004525808151811361, 0.017756160348653793, -0.034651584923267365, -0.015146185643970966, 0.0014811261789873242, -0.02157394401729107, -0.023656370118260384, 0.0010472872527316213, 0.0008563981391489506, 0.005095004569739103, -0.012605625204741955, -0.005980036221444607, 0.005164418835192919, -0.005921034142374992, -0.0011973954970017076, -0.008676779456436634, -0.0238229651004076, -0.00568155525252223, -0.025100186467170715, -0.021254638209939003, -0.015645967796444893, -0.01424380112439394, 0.01908891461789608, -0.025336194783449173, -0.0016026011435315013, -0.014688052237033844, -0.006073745433241129, -0.037705812603235245, 0.013667662627995014, 0.016215164214372635, -0.011307578533887863, 0.012043369933962822, 0.0233231820166111, -0.028015585616230965, 0.02076873928308487, 0.012244670651853085, 0.03601210564374924, 0.013674603775143623, -0.014549223706126213, 0.00411973474547267, -0.01336918119341135, -0.015548788011074066, -0.004806935787200928, 0.0020008652936667204, -0.040482379496097565, 0.014854646287858486, -0.07130230218172073, 0.03226373717188835, -0.003522772341966629, -0.005112358368933201, -0.005875914823263884, -0.003264204366132617, 0.015562671236693859, -0.009780465625226498, 0.015271131880581379, 0.002207372570410371, -0.02396179363131523, -0.0018065054900944233, -0.018672429025173187, 0.007420381531119347, -0.003052490996196866, 0.0071149589493870735, 0.018547482788562775, -0.010301072150468826, 0.0028963088989257812, 0.00349674210883677, 0.006240339484065771, 0.019186094403266907, -0.009009967558085918, 0.03612316772341728, -0.018603013828396797, 0.010911917313933372, -0.012445972301065922, -0.006420816760510206, -0.015146185643970966, 0.0053483666852116585, 0.012293260544538498, -0.041565243154764175, -0.022420797497034073, 0.021115809679031372, -0.01045378390699625, -0.001931451028212905, -0.01046072505414486, 0.01917221210896969, 0.03159736096858978, 0.0280433502048254, -0.02440604381263256, -0.03215267136693001, 0.005462900269776583, -0.011987837962806225, -0.016145750880241394, -0.009357038885354996, -0.006712356582283974, 0.006382638588547707, 0.00336832576431334, -0.015076771378517151, 0.022254202514886856, -0.005032531917095184, -0.01895008608698845, -0.00758003443479538, 0.013306709006428719, 0.007003896404057741, 0.01946375146508217, 0.0023080231621861458, -0.011411700397729874, -0.023281533271074295, 0.03978823870420456, -0.026405174285173416, 0.012751394882798195, 0.0035088895820081234, 0.02258739247918129, 0.0006212574080564082, -0.024003442376852036, -0.005646848119795322, -0.0023809082340449095, 0.0033336186315864325, -0.012140549719333649, -0.005789147224277258, 0.005671143066138029, 0.015618202276527882, 0.010918859392404556, -0.001997394487261772, -0.0027887169271707535, -0.007017779164016247, 0.0136190727353096, 0.016631649807095528, 0.024933593347668648, 0.0013995644403621554, -0.02061602659523487, -0.0073370845057070255, 0.034929241985082626, 0.010773088783025742, -0.022045960649847984, 0.01137005165219307, -0.012543152086436749, 0.0035088895820081234, -0.0178394578397274, 0.011973955668509007, 0.0030924042221158743, -0.0027140965685248375, 0.005112358368933201, 0.02215702272951603, -0.008024285547435284, -0.00027960920124314725, 0.019047265872359276, 0.008440771140158176, 0.03798346966505051, -0.013070700690150261, 0.013806491158902645, -0.0027331854216754436, -0.03970494121313095, 0.025849860161542892, -0.018019935116171837, -0.02346201054751873, 0.0030924042221158743, 0.00021041189029347152, -0.012480678968131542, 0.02973705716431141, 0.001635572873055935, 0.003550538094714284, -0.02578044682741165, 0.005206067580729723, 0.0014958766987547278, -0.003383943811058998, -0.019199976697564125, 0.058974333107471466, 0.001508024288341403, -0.0004021687200292945, 0.0008308016113005579, -0.032902345061302185, 0.022170906886458397, 0.027307558804750443, -0.0016520587960258126, -0.02396179363131523, 0.018839024007320404, -0.022851165384054184, 0.025849860161542892, 0.013278942555189133, 0.009766582399606705, -0.006098040379583836, -0.023934027180075645, 0.0028702786657959223, -0.006344460882246494, 0.0003845982428174466, 0.006514525972306728, 0.07785500586032867, 0.0336797870695591, 0.0008724501240067184, -0.0016616032226011157, -0.018922319635748863, -0.008912787772715092, 0.009058557450771332, 0.020893683657050133, -0.027376974001526833, -0.028223827481269836, 0.0009535780409350991, -0.006202161777764559, -0.0049041155725717545, -0.02491970919072628, -0.013049876317381859, -0.004463335033506155, 0.014993474818766117, 0.02783510833978653, -0.009169620461761951, 0.01857524923980236, 0.02965376153588295, 0.0007271140930242836, 0.007802159991115332, -0.0070524862967431545, -0.031069811433553696, -0.017228612676262856, 0.016784362494945526, -0.004577868618071079, 0.012751394882798195, -0.04872879385948181, 0.003383943811058998, 0.01579868048429489, -0.02833488956093788, -0.01975529082119465, -0.00918350275605917, -0.0016954427119344473, 0.01771451160311699, -0.02368413656949997, 0.013390005566179752, 0.004105851985514164, 0.006792182568460703, 0.016853775829076767, -0.01034272089600563, -0.029625995084643364, -0.008558775298297405, 0.006986542604863644, -0.02303164266049862, -0.007656389847397804, -0.025599969550967216] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_fast_and_accurate_streaming_cnn_inference_via_communication_compression_on_the_edge.json b/database/embeddings/publications_txt/2020_fast_and_accurate_streaming_cnn_inference_via_communication_compression_on_the_edge.json new file mode 100644 index 0000000000000000000000000000000000000000..467ff3424a414a7ed6b5aabe76757d23d25d1c0b --- /dev/null +++ b/database/embeddings/publications_txt/2020_fast_and_accurate_streaming_cnn_inference_via_communication_compression_on_the_edge.json @@ -0,0 +1 @@ +[-0.017129290848970413, 0.019151201471686363, 0.02291024848818779, -0.017926665022969246, 0.020190635696053505, 0.008073406293988228, -0.01113475114107132, -0.0016045360825955868, -0.002468653954565525, -0.04912390187382698, 0.022241024300456047, 0.054876379668712616, 0.001172032207250595, 0.0035330052487552166, -0.024633144959807396, 0.024334128946065903, 0.022084398195147514, 0.008671436458826065, -0.008806705474853516, -0.017442544922232628, -0.0007377484580501914, 0.007190600037574768, -0.027267325669527054, -0.00359174027107656, -0.023195024579763412, 0.016388872638344765, 0.03719177842140198, -0.031581684947013855, -0.028306758031249046, -0.010216347873210907, 0.022753622382879257, -0.025501713156700134, -0.011561915278434753, -0.020788665860891342, 0.0038088823202997446, -0.004129255656152964, -0.0038871956057846546, -0.017129290848970413, 0.05086103826761246, -0.024604666978120804, 0.022468846291303635, 0.014509349130094051, -0.0020842060912400484, -0.008436496369540691, -0.004072300158441067, 0.018254157155752182, 0.038017626851797104, -0.00405094213783741, -0.013811647891998291, 0.0065071373246610165, 0.0036077590193599463, 0.017300156876444817, -0.012679662555456161, 0.004065180663019419, -0.030300192534923553, -0.0018510455265641212, -0.008614481426775455, 0.03414466977119446, 0.005862830672413111, -0.023607950657606125, 0.03946998715400696, 0.0051152934320271015, -0.05405053123831749, -0.0021767583675682545, -0.019421739503741264, -0.012530154548585415, -0.014046587981283665, 0.01761341094970703, 0.011220184154808521, -0.00013304389722179621, 0.03647983819246292, 0.02859153412282467, -0.021059203892946243, -0.021856576204299927, 0.02367914468050003, -0.0274666678160429, -0.023109592497348785, -0.002351183909922838, -0.005257681477814913, 0.00790966022759676, -0.007439779117703438, 0.002885139314457774, -0.006350510288029909, 0.0304995346814394, 0.017656126990914345, 0.013989632949233055, -0.012921721674501896, 0.007503854110836983, 0.004923069383949041, -0.0009789182804524899, 0.023081114515662193, 0.007824227213859558, 0.03502747789025307, -0.0036113187670707703, -0.0010901590576395392, 0.0197492316365242, -0.026868637651205063, 0.024462278932332993, -0.004965785890817642, 0.011355452239513397, 0.014395439065992832, 0.005254121497273445, -0.01417473703622818, -0.012530154548585415, -0.003734128549695015, -0.03679309040307999, -0.002424157690256834, 0.028135892003774643, 0.009782063774764538, 0.003684292547404766, -0.024006636813282967, 0.02947434037923813, -0.014096423983573914, -0.0274666678160429, 0.002116243354976177, -0.02114463597536087, 0.00359174027107656, -0.011803975328803062, -0.002918956568464637, -0.008842302486300468, 0.021244307979941368, 0.008963332511484623, 0.014623260125517845, -0.01771308295428753, 0.009112839587032795, -0.00424316618591547, -0.0124020054936409, -0.022084398195147514, 0.02597159333527088, -0.014260170049965382, 0.013854363933205605, -0.0077174361795187, -0.010914049111306667, 0.013156662695109844, -0.004214688204228878, 0.011376811191439629, 0.004581337794661522, -0.025487473234534264, -0.027267325669527054, -0.03733416646718979, -8.165068720700219e-05, 0.031837984919548035, -0.04456748068332672, -0.02204168029129505, -0.016773320734500885, 0.033603597432374954, -0.004983584396541119, 0.0014594782842323184, 0.005232763476669788, 0.01912272535264492, -0.002014791825786233, -0.015719648450613022, -0.01872403733432293, 0.030727356672286987, 0.007461137603968382, 0.04633309319615364, -0.0013375583803281188, 0.02252580039203167, -0.014032348990440369, -0.0217711441218853, -0.002142941113561392, 0.023266218602657318, -0.015748126432299614, -0.020546605810523033, -0.0031165198888629675, 0.02847762405872345, 0.029303474351763725, 0.014025229960680008, -0.006389666814357042, -0.011917885392904282, 0.0052790394984185696, 0.0197492316365242, -0.01279357261955738, -0.014132020995020866, 0.011882288381457329, 0.011355452239513397, 0.043855540454387665, 0.01450223010033369, -0.003282046178355813, -0.01342008076608181, 0.012957318685948849, 0.021059203892946243, 0.020090963691473007, 0.01621800661087036, -0.016773320734500885, 0.025843443349003792, 0.0035330052487552166, -0.025231175124645233, -0.0026751167606562376, -0.024519234895706177, 0.0336320735514164, 0.0170865748077631, -0.008066287264227867, -0.0058984276838600636, -0.5896007418632507, -0.022867532446980476, 0.0091840336099267, -0.01808329112827778, 0.0022212546318769455, 0.02469010092318058, 0.0072297570295631886, -0.010864213109016418, -0.01157615426927805, 0.018809471279382706, -0.010906930081546307, -0.0006176084862090647, 0.0021607396192848682, -0.026555383577942848, -0.0244338009506464, -0.006268636789172888, 0.016517022624611855, 0.0006812381907366216, -0.013875721953809261, -0.00879958551377058, 6.118239252828062e-05, 0.014665976166725159, -0.00923386961221695, -0.00046543116332031786, -0.006268636789172888, -0.0093691386282444, 0.023750338703393936, -0.021956248208880424, 0.024334128946065903, 0.008180197328329086, -0.03420162573456764, 0.0170865748077631, 0.03112604282796383, 0.00531819649040699, 0.04977888613939285, -0.010985243134200573, -0.01493651419878006, 0.022426128387451172, 0.005257681477814913, 0.04115016758441925, -0.054392263293266296, -0.03380294144153595, -0.001484396168962121, -0.001351797254756093, -0.013961154967546463, 0.00879958551377058, 0.015463349409401417, 0.0008276309235952795, -0.0022532918956130743, -0.038672614842653275, -0.017656126990914345, -0.011989079415798187, -0.011661587283015251, 0.0026679974980652332, 0.012224020436406136, -0.003041766118258238, 0.030983654782176018, -0.0038088823202997446, 0.022440368309617043, 0.0019026612862944603, 0.0019969933200627565, 0.020859859883785248, -0.007226197049021721, -0.03428705781698227, -0.017656126990914345, 0.015534544363617897, -0.004527942277491093, -0.014003871940076351, 0.0288478322327137, -0.019051531329751015, -0.0033443409483879805, 0.028320997953414917, 0.006831069942563772, -0.027310041710734367, 0.01795514114201069, 0.019948575645685196, 0.02164299413561821, 0.0038409195840358734, -0.02114463597536087, 0.023707622662186623, 0.003869397100061178, -0.007866943255066872, 0.00762488367035985, -0.01580508053302765, -0.005944704171270132, 0.009497287683188915, -0.0028424228075891733, -0.008464973419904709, -0.004221807699650526, -0.015064663253724575, 0.013192259706556797, 0.0347142219543457, -0.00854328740388155, -0.019791949540376663, 0.0016490324633195996, 0.02276786044239998, 0.009582720696926117, 0.017527977004647255, -0.008828063495457172, -0.012359288521111012, 0.0034564717207103968, -0.015107379294931889, 0.012309453450143337, -0.013605184853076935, 0.025117265060544014, 0.027039503678679466, -0.023992398753762245, 0.000151621105032973, 0.008521929383277893, 0.0009753586491569877, -0.02127278596162796, -0.0056528085842728615, -0.0154348723590374, -0.0170865748077631, 0.0040117851458489895, -0.026655055582523346, 0.02950281836092472, 0.02050388976931572, 0.011732781305909157, -0.00683462992310524, -0.02063203789293766, -0.01823991909623146, -0.00041537283686921, 0.01976347155869007, -0.002102004596963525, 0.010387212969362736, 0.018012097105383873, -0.019848903641104698, -0.006813271436840296, 0.011739900335669518, 0.015164335258305073, -0.0016730604693293571, 0.02732427977025509, 0.00012592448911163956, 0.029417386278510094, 0.0014479091623798013, 0.024020876735448837, -0.02365066669881344, -0.008194436319172382, -0.04505160078406334, -0.009290824644267559, 0.01000276580452919, 0.011341214179992676, -0.014680215157568455, -0.030072370544075966, -0.005054778419435024, -0.01963532157242298, 0.012430482544004917, 0.013555348850786686, 0.004634733311831951, -0.02087409794330597, -0.008436496369540691, -0.000674563692882657, 0.00522208446636796, 0.0018296873895451427, -0.025003353133797646, -0.002018351573497057, -0.02820708602666855, -0.02609974332153797, -0.025117265060544014, -0.010572317987680435, 0.028506102040410042, -0.019578365609049797, -0.0012022897135466337, 0.012451841495931149, 0.01386148389428854, -0.009362018667161465, 0.01722896285355091, 0.002157180104404688, -0.013697736896574497, -0.004357076250016689, -0.019464455544948578, 0.006421704310923815, 0.018197201192378998, 0.0024508554488420486, 0.0015760584501549602, 0.0009842579020187259, 0.005104613956063986, -0.018425023183226585, -0.010622153989970684, -0.0009566702065058053, 0.015790842473506927, -0.016858752816915512, -0.026227891445159912, 0.04240318387746811, 0.010166511870920658, 0.03605267032980919, -2.8241238396731205e-05, -0.011006602086126804, 0.004862554371356964, 0.016858752816915512, 0.032350581139326096, -0.00796661525964737, 0.02087409794330597, -0.01334888581186533, 0.013719094917178154, 0.015648454427719116, -0.008614481426775455, -0.005079696420580149, 0.018667083233594894, 0.042089927941560745, 0.01875251531600952, -0.0058984276838600636, 0.01987738162279129, -0.010906930081546307, 0.010102436877787113, 0.012964438647031784, -0.0005824564141221344, 0.026541145518422127, -0.0013740453869104385, 0.035483118146657944, -0.024618906900286674, -0.025117265060544014, -0.006585450377315283, -0.005631450098007917, 0.034372493624687195, 0.005022740922868252, 0.022938726469874382, -0.021301262080669403, 0.01177549734711647, -0.02947434037923813, -0.01722896285355091, 0.013911318965256214, 0.011690064333379269, -0.005207845475524664, -0.0033888372126966715, 0.018638605251908302, 0.017271678894758224, 0.03414466977119446, -0.026655055582523346, -0.031980372965335846, 0.043741632252931595, 0.030983654782176018, -0.0039227926172316074, -0.0018314671469852328, 0.002466874197125435, 0.04365619644522667, 0.00830122735351324, 0.034344013780355453, -0.008329705335199833, 0.01833958923816681, 0.022952964529395103, 0.03206580504775047, -0.024134786799550056, 0.017670365050435066, 0.006115569733083248, 0.012394885532557964, 0.019678037613630295, -0.0019364784238860011, 0.0015627095708623528, -0.007258234545588493, 0.03773285076022148, -0.023195024579763412, 0.006432383321225643, 0.03357511758804321, -0.0053359949961304665, 0.005314636509865522, -0.0046845693141222, 0.022867532446980476, 0.02545899525284767, 0.008343943394720554, 0.009924451820552349, 0.02216983027756214, -0.009411854669451714, -0.014409678056836128, -0.029702162370085716, 0.004125695675611496, -0.02202744223177433, -0.00537871103733778, -0.011462243273854256, 0.003940591122955084, -0.024348368868231773, 0.02076018787920475, -0.03630897030234337, 0.027423951774835587, 0.008885018527507782, 0.016517022624611855, 0.00017464792472310364, 0.01119170617312193, 0.022426128387451172, -0.033603597432374954, -0.02823556400835514, 0.01670212671160698, 0.015392155386507511, 0.005599412601441145, -0.011248661205172539, -0.024775533005595207, 0.010202108882367611, -0.016104096546769142, -0.009917332790791988, 0.010337377898395061, 0.011376811191439629, -0.012950199656188488, -0.014680215157568455, -0.03542616590857506, 3.4429001971147954e-05, 0.035767894238233566, -0.01480836421251297, -0.017898187041282654, 0.0029100573156028986, 0.01989161968231201, 0.019934337586164474, -0.00904876459389925, 0.013633662834763527, 0.046646349132061005, -0.02313806861639023, 0.0033283222001045942, -0.015862036496400833, 0.005827233660966158, -0.0035632627550512552, 0.01883794739842415, -0.016161052510142326, -0.023251980543136597, 0.007845585234463215, 0.02609974332153797, 0.0011631329543888569, 0.007553689647465944, -0.009604078717529774, 0.01114187017083168, -0.0050939349457621574, 0.005111733451485634, -0.017257440835237503, -0.020831381902098656, 0.00015529204392805696, 0.033119477331638336, 0.032094281166791916, 0.004994263406842947, 0.015235529281198978, -0.010871333070099354, -0.02506030909717083, -0.03921368718147278, 0.01372621487826109, 0.013263453729450703, 0.0012512356042861938, -0.003041766118258238, 0.01745678298175335, 0.012807811610400677, -0.0115263182669878, 0.011625990271568298, -0.012067393399775028, -0.006268636789172888, -0.024106308817863464, -0.0013313288800418377, -0.007902540266513824, -0.00023293806589208543, -0.009803421795368195, 0.01910848543047905, 0.007788630202412605, 0.018182963132858276, -0.015320961363613605, 0.0038017628248780966, 0.03277774527668953, -0.0011978400871157646, -0.0003599749761633575, 0.02431989088654518, 0.0075109731405973434, 0.022212546318769455, -0.00899180956184864, -0.003112960373982787, 0.03890043497085571, 0.016645170748233795, 0.015748126432299614, 0.024604666978120804, 0.01606138050556183, 0.030186280608177185, 0.018923381343483925, 0.0017193366074934602, 0.001973855309188366, 0.005343114025890827, -0.04986431822180748, 0.012316572479903698, 0.020703231915831566, -0.012964438647031784, -0.004467427264899015, 0.04667482525110245, -0.0003664269170258194, -0.04938020184636116, -0.01373333390802145, 0.00835818238556385, 0.009753585793077946, -0.006094211712479591, -0.006831069942563772, 0.008949093520641327, -0.019336307421326637, -0.005820114631205797, -0.01069334801286459, 0.002388560678809881, -0.01833958923816681, -0.01138393022119999, -0.0007395282736979425, -0.019336307421326637, 0.011170348152518272, -0.013377363793551922, 0.005706204101443291, -0.023109592497348785, -0.0052790394984185696, -0.05974605679512024, -0.013562468811869621, 0.0017718421295285225, 0.009540003724396229, 0.03252144530415535, -0.013519751839339733, -0.008956212550401688, 0.011262900196015835, -0.011889408342540264, -0.0037448075599968433, -0.020162157714366913, -0.04681721329689026, -0.00449590478092432, -0.03101213276386261, 0.001039433293044567, -0.027922309935092926, -0.005154449958354235, 0.010543840005993843, 0.011298497207462788, -0.00892773550003767, -0.0003059119626414031, -0.006211681757122278, 0.013448557816445827, 0.022995680570602417, 0.011220184154808521, 0.01796938106417656, 0.019834665581583977, 0.00026052576140500605, 0.026014309376478195, 0.0006776784430257976, -0.024775533005595207, -0.019848903641104698, -0.005442786030471325, 0.010714706033468246, 0.0007462027133442461, 0.0022532918956130743, -0.0036558150313794613, 0.010572317987680435, 0.014431036077439785, -0.010081078857183456, 0.009248108603060246, -0.009226750582456589, 0.026412995532155037, 0.033119477331638336, 0.01304275169968605, -0.0035650425124913454, -0.015392155386507511, 0.004168412182480097, 0.007575048133730888, -0.0093691386282444, 0.016289200633764267, -0.0037626060657203197, 0.007874063216149807, 0.04166276380419731, -0.006962778978049755, -0.03357511758804321, -0.04710198938846588, 0.01821144111454487, -0.0010910489363595843, 0.04331446439027786, 0.014623260125517845, -0.03656527027487755, -0.035255298018455505, -0.02394968271255493, 0.006083532236516476, 0.0024010196793824434, -0.018937619403004646, -0.025758011266589165, -0.0048661138862371445, -0.018681321293115616, 0.005852151662111282, -0.0130925877019763, 0.004421151243150234, -0.028919028118252754, -0.012886124663054943, 0.02276786044239998, 0.016246484592556953, 0.0214009340852499, -0.00796661525964737, 0.011455124244093895, -0.011148990131914616, -0.006638845894485712, -0.021742666140198708, -0.03169559687376022, -0.03366055339574814, 0.019777709618210793, 0.01646006666123867, 0.01926511339843273, 0.05026300624012947, 0.03354664146900177, 0.0007688958430662751, 0.01947869546711445, 0.013655020855367184, 0.008016451261937618, 0.01710081286728382, -0.015036185272037983, -0.008671436458826065, 0.005770278628915548, 0.028890550136566162, -0.007639122661203146, 0.01896609738469124, 0.017371350899338722, 0.009981406852602959, -0.009397615678608418, -0.006101330742239952, -0.02090257592499256, -0.009418973699212074, -0.01732863485813141, 0.011654467321932316, 0.005837913136929274, -0.0009709090227261186, -0.0019952135626226664, -0.03317643329501152, -0.017784276977181435, 0.04414031654596329, 0.009554242715239525, 0.009575600735843182, 0.002742751268669963, 0.013576706871390343, -0.014516469091176987, 0.012444721534848213, 0.016032902523875237, 0.005457024555653334, -0.0018332470208406448, -0.013064109720289707, -0.03585333004593849, -0.0035347850061953068, 0.018439261242747307, -0.0024864524602890015, 0.0016267843311652541, 0.007240436039865017, 0.01000988483428955, -0.008052048273384571, 0.04046670347452164, 0.0002987925836350769, -0.026868637651205063, -0.013946915976703167, -0.01886642538011074, -0.028933266177773476, -0.03383141756057739, -0.03146777302026749, -0.010522481985390186, 0.015264006331562996, 0.002107344102114439, -0.025259653106331825, 0.0017433644970878959, 0.0031360983848571777, 0.004737964831292629, -0.002773008542135358, 0.02202744223177433, 0.01923663541674614, 0.0003530780377332121, 0.016474304720759392, 0.026740489527583122, -0.022981442511081696, -0.008201555348932743, 0.01220978144556284, 0.020034007728099823, -0.004513703286647797, 0.014402558095753193, 0.013946915976703167, -0.002792587038129568, -0.009824780747294426, 0.0011604632018133998, 0.01734287291765213, -0.02634180150926113, -0.01963532157242298, 0.021813860163092613, 0.051060378551483154, 0.006172525230795145, -0.02061779983341694, -0.03972628712654114, -0.0003575276641640812, 0.01710081286728382, -0.023992398753762245, -0.012800691649317741, -0.010864213109016418, -0.009895974770188332, -0.00011724772048182786, 0.028534580022096634, -0.005560256075114012, 0.01935054548084736, -0.006667323876172304, -0.02478977106511593, 0.01322785671800375, -0.0017246761126443744, -0.01771308295428753, 0.0027018145192414522, -0.011319855228066444, 0.02380729280412197, -0.015862036496400833, 0.012067393399775028, 0.03798915073275566, 0.00664240587502718, -0.012708139605820179, -0.0029901505913585424, 0.0077174361795187, 0.03408771753311157, -0.007019734475761652, -0.022468846291303635, -0.019037291407585144, -0.02823556400835514, 0.03773285076022148, -0.014210334047675133, 0.009774944745004177, -0.02050388976931572, -0.0009201831999234855, 0.01411778200417757, 0.0075109731405973434, 0.004670330323278904, 0.011376811191439629, -0.012587109580636024, 0.01608985848724842, -0.00737570459023118, -0.017029618844389915, 0.0075109731405973434, -0.0070695700123906136, -0.03807458281517029, -0.01050824299454689, -0.007874063216149807, -0.018254157155752182, 0.01398251298815012, 0.0260855033993721, 0.0016436928417533636, 0.017527977004647255, 0.020916813984513283, -0.023123830556869507, -0.0004029138945043087, 0.029075654223561287, -0.028705444186925888, -0.021101919934153557, 0.008635839447379112, -0.0018546052742749453, -0.002059288090094924, 0.027623295783996582, -0.008820944465696812, -0.02908989228308201, -0.011398169212043285, -0.020589321851730347, 0.014288648031651974, 0.01883794739842415, -0.006813271436840296, 0.019151201471686363, 0.006966338958591223, -0.01936478354036808, -0.03064192272722721, -0.017527977004647255, 0.023494040593504906, -0.028178609907627106, -0.00639678630977869, 0.02900446020066738, -0.013526871800422668, 0.030186280608177185, -0.02138669602572918, -0.0007929238490760326, 0.02076018787920475, -0.031040610745549202, -0.01960684359073639, -0.015207051299512386, 0.01069334801286459, -0.014416797086596489, -0.0014968551695346832, 0.037391118705272675, -0.022112874314188957, -0.03317643329501152, 0.002347624162212014, -0.022981442511081696, -0.01050824299454689, 0.004809158854186535, -0.007219077553600073, -0.0001449466508347541, -0.0015386816812679172, -0.016801798716187477, -0.03989715129137039, 0.0022532918956130743, 0.020973769947886467, -0.01849621720612049, -0.009824780747294426, 0.007639122661203146, 0.022127114236354828, -0.0016463625943288207, -0.005161569453775883, -0.04126407578587532, -0.026484189555048943, -0.022511562332510948, -0.02758057974278927, -0.009255227632820606, 0.020162157714366913, -0.021087680011987686, 0.0008601132431067526, 0.009212511591613293, 0.04240318387746811, -0.00474152434617281, 0.008436496369540691, -0.010465526953339577, -0.009839018806815147, -0.025017593055963516, 0.01435984205454588, -0.01119170617312193, -0.00797373428940773, -0.04357076436281204, -0.018795231357216835, 0.00610489072278142, 0.01107779610902071, 0.00024161483452189714, 0.04590592905879021, -0.013213617727160454, -0.01808329112827778, 0.029303474351763725, -0.02265395037829876, -0.0008957102545537055, -0.03460031375288963, 0.011974841356277466, -0.04656091704964638, -0.010800139047205448, 0.026797443628311157, -0.00762488367035985, 0.0021482808515429497, -0.0007252895156852901, 0.0026626577600836754, 0.009461690671741962, 0.007130085024982691, -0.01202467642724514, 0.003112960373982787, 0.004200449679046869, -0.03400228172540665, 0.004951546899974346, 0.006215241272002459, -0.0007292941445484757, 0.02998693846166134, 0.022426128387451172, 0.00874263048171997, -0.02125854603946209, 0.02696830965578556, -0.038188494741916656, 0.0052719200029969215, 0.02507454715669155, -0.01607561856508255, -0.0008890358149074018, -0.023237740620970726, 0.0247043389827013, -0.03964085131883621, -0.01064351201057434, -0.011063557118177414, 0.002728512277826667, -0.01557726040482521, 0.011533437296748161, -0.004940867889672518, -0.02483248896896839, -0.002744531026110053, 0.00019633986812550575, 0.00278368778526783, -0.019435977563261986, -0.006176084745675325, -0.0003047995560336858, -0.03180950507521629, -0.01721472293138504, 0.010472645983099937, -0.01695842482149601, -0.009938690811395645, -0.02355099469423294, 0.0020948853343725204, -0.02276786044239998, 0.0014674875419586897, 0.1840793639421463, -0.012081632390618324, 0.006019457709044218, 0.023508278653025627, 0.007418421097099781, -0.012964438647031784, 0.0004538621287792921, 0.01732863485813141, -0.005620771087706089, 0.025359325110912323, -0.016047140583395958, -0.006457301322370768, -0.012565751560032368, -0.011063557118177414, 0.0084080183878541, 0.013519751839339733, -0.0374765545129776, -0.03320490941405296, -0.019663799554109573, 0.008564645424485207, -0.017556454986333847, -0.014544946141541004, -0.01108491513878107, -0.007268913555890322, 0.0009575600852258503, -0.021742666140198708, 0.00892773550003767, -0.013327527791261673, 0.022582756355404854, 0.020546605810523033, -0.025159981101751328, 0.015506066381931305, 0.01785547100007534, 0.006873786449432373, -0.04357076436281204, 0.007582167629152536, 0.014260170049965382, 0.0005544237210415304, 0.011932124383747578, 0.005812995135784149, 0.013783169910311699, -0.03853022679686546, 0.01785547100007534, -0.026868637651205063, -0.006542734336107969, -0.001973855309188366, -0.023337412625551224, -0.015862036496400833, -0.010558078996837139, 0.004980024415999651, -0.020347261801362038, 0.022354934364557266, -0.0013767151394858956, 0.009112839587032795, -0.012316572479903698, 0.005353793501853943, -0.019706515595316887, 0.01246607955545187, 0.04314360022544861, 0.0054926215671002865, -0.0025896839797496796, 0.022340696305036545, -0.002885139314457774, 0.0009744687122292817, -0.005154449958354235, 0.0248040109872818, -0.031097564846277237, -0.003048885613679886, 0.015904752537608147, -0.012686781585216522, -0.010828616097569466, -0.013711975887417793, -0.019521411508321762, -0.01044416893273592, -0.032834701240062714, -0.02215559221804142, 0.018695559352636337, 0.014665976166725159, 0.035625506192445755, 0.043229032307863235, -0.00023605280148331076, 0.01499346923083067, 0.009411854669451714, 0.002214135369285941, -0.02555866725742817, -0.01833958923816681, 0.04072300344705582, -0.024903682991862297, -0.015648454427719116, -0.012074512429535389, -0.01898033730685711, -0.01922239549458027, -0.016616692766547203, 0.0030916021205484867, -3.2565720175625756e-05, -0.011127631179988384, 0.0024063591845333576, -0.01594746857881546, 0.009212511591613293, 0.019649561494588852, -0.018282635137438774, 0.06327728182077408, 0.04063757136464119, -0.02063203789293766, 0.0059625026769936085, -0.00673851789906621, -0.018168723210692406, 0.034514881670475006, 0.024604666978120804, -0.027879593893885612, -0.012117229402065277, -0.02669777162373066, -0.0026626577600836754, 0.005072576925158501, -0.008614481426775455, 0.020219113677740097, 0.010800139047205448, 0.007076689507812262, 0.00170865748077631, -0.010358735918998718, -0.011056437157094479, -0.02478977106511593, -0.019663799554109573, 0.02053236775100231, -0.029161086305975914, -0.008657197467982769, -0.015335200354456902, 0.013320408761501312, -0.039042823016643524, -0.005414308048784733, 0.03203732520341873, 0.008286988362669945, 0.027908071875572205, 0.0023084674030542374, 0.0038444793317466974, -0.003727009054273367, 0.01265830360352993, -0.010073959827423096, 0.010686228051781654, 0.014445275068283081, -0.01435984205454588, -0.0098746158182621, 0.010394332930445671, 0.004599136300384998, -0.003979748114943504, -0.02316654659807682, 0.017513738945126534, 0.006371868308633566, 0.005866390652954578, -0.0197492316365242, 0.003191273659467697, -0.02014791965484619, 0.005649248603731394, -0.01658821664750576, 0.012387766502797604, -0.02252580039203167, -0.011049318127334118, -0.03442944586277008, -0.01660245470702648, 0.006339831277728081, -0.019977053627371788, -0.01912272535264492, 0.018524695187807083, -0.007866943255066872, -0.021828098222613335, -0.01304275169968605, -0.1822567880153656, 0.019720755517482758, 0.014964991249144077, -0.014203215017914772, 0.003201952902600169, 0.02517421916127205, 0.016673648729920387, 0.0020023328252136707, -0.005937584675848484, -0.015420633368194103, 0.012224020436406136, 0.003365699201822281, 0.015605738386511803, -0.01925087347626686, -0.001847485895268619, 0.02226950228214264, -0.013555348850786686, 0.024234458804130554, 0.008272749371826649, 0.02316654659807682, 0.025886159390211105, -0.02646995149552822, 0.011419527232646942, -0.0009557802695780993, -0.013548229821026325, 0.015534544363617897, -0.005709763616323471, 0.005958942696452141, -0.016047140583395958, -0.036195058375597, -0.004595576785504818, -0.016915708780288696, 0.03280622139573097, 0.011846691370010376, 0.016004424542188644, 0.016616692766547203, -0.01798361912369728, 0.004250285215675831, -0.031069088727235794, 0.049807365983724594, 0.012437602505087852, 0.03710634261369705, -0.012515915557742119, 0.004036703146994114, -0.004339277744293213, -0.010828616097569466, 0.0038302403409034014, -0.01372621487826109, 0.024974877014756203, -0.012309453450143337, 0.004104337655007839, -0.0293889082968235, 0.02440532296895981, -0.00785270519554615, 0.005357353016734123, 0.01937902346253395, -0.004463867750018835, -0.001252125483006239, 0.007987973280251026, -0.022098636254668236, -0.012067393399775028, 0.0036219977773725986, 0.016004424542188644, -0.005994539707899094, -0.022354934364557266, -0.04807022958993912, -0.015534544363617897, 0.013498393818736076, -0.011148990131914616, 0.02621365338563919, -0.030727356672286987, -0.023337412625551224, -0.00022503997024614364, -0.02343708463013172, 0.017556454986333847, 0.022696666419506073, -0.016417350620031357, 0.022440368309617043, 0.013939796946942806, 0.010992363095283508, 0.022596994414925575, 0.0448237806558609, -0.03736264258623123, 0.015548782423138618, 0.01138393022119999, -0.0314108207821846, 0.03089822269976139, 0.02404935285449028, -0.001039433293044567, 0.0008529938058927655, 0.017314394935965538, -0.012046035379171371, 0.008756869472563267, 0.003057784866541624, 0.0003056894929613918, 0.005097494926303625, -0.004275203216820955, -0.009696630761027336, 0.014623260125517845, -0.0026270607486367226, -0.01171854231506586, 0.003915673121809959, -0.016986902803182602, 0.043086644262075424, 0.019393261522054672, 0.02961672842502594, -0.014395439065992832, -0.0068987044505774975, 0.021457890048623085, -0.008080526255071163, -0.009532884694635868, 0.007033973000943661, 0.010671989992260933, 0.0027178332675248384, 0.0007430880214087665, 0.00727959256619215, -0.019279351457953453, -0.007454018108546734, 0.013220736756920815, -0.01607561856508255, 0.050433870404958725, 0.00630067428573966, -0.02950281836092472, 0.023479800671339035, -0.02048964984714985, -0.015890514478087425, -0.08765412867069244, -0.03189493715763092, 0.01584779843688011, 0.05746784433722496, -0.012565751560032368, 0.004250285215675831, -0.005891308654099703, 0.016986902803182602, -0.016289200633764267, 0.022198308259248734, -0.009611197747290134, -0.008002212271094322, -0.015477588400244713, 0.002475773449987173, -0.012302333489060402, -0.026356041431427002, -0.016374634578824043, -0.015904752537608147, -0.025843443349003792, 0.053623367100954056, -0.022725144401192665, -0.02204168029129505, 0.013768930919468403, -0.025658339262008667, -0.003734128549695015, -0.009518645703792572, -0.02947434037923813, 0.009034526534378529, 0.02343708463013172, -0.00532175600528717, 0.03223666921257973, -0.019806187599897385, 0.014822603203356266, -0.008393779397010803, -0.0030666841194033623, -0.008258511312305927, 0.0027979265432804823, -0.0168160367757082, 0.019934337586164474, -0.016175290569663048, 0.0075323316268622875, 0.04368467628955841, 0.028292519971728325, 0.007902540266513824, -0.024718577042222023, -0.01392555795609951, -0.04357076436281204, 0.030784310773015022, -0.013833005912601948, -0.02390696480870247, -0.007774391211569309, -0.029445862397551537, -0.013598065823316574, 0.007347227074205875, 0.012629826553165913, -0.009362018667161465, 0.02014791965484619, 0.006286435294896364, -0.019094247370958328, -0.021158874034881592, -0.01962108351290226, -0.007610645145177841, -0.0009362018899992108, 0.016232246533036232, 0.02732427977025509, -0.015733886510133743, -0.035141389816999435, -0.005987420678138733, 0.005845032166689634, -0.004834076855331659, -0.014374081045389175, 0.005122412461787462, 0.007105167023837566, 0.006863107439130545, -0.04872521385550499, -0.032948609441518784, 0.007130085024982691, -0.01976347155869007, 0.015164335258305073, 0.018951859325170517, -0.010415690951049328, -0.02430565282702446, -0.00924098864197731, -0.026740489527583122, 0.006339831277728081, -0.0012334370985627174, -0.0016089857090264559, -0.014594782143831253, -0.003997546620666981, -0.03274926915764809, 0.018780993297696114, 0.0005348453996703029, 0.01583355851471424, 0.003134318394586444, -0.022753622382879257, 0.02558714523911476, -0.018553171306848526, -0.005040539428591728, -0.009091481566429138, 0.027438189834356308, -0.044225748628377914, 0.00879246648401022, -0.07854128628969193, 0.015021946281194687, 0.0004850095428992063, -0.013697736896574497, 0.017798515036702156, -0.021087680011987686, -0.007162122521549463, -0.015477588400244713, 0.003235769923776388, 0.02051812782883644, -0.020603561773896217, 0.0024811129551380873, -0.0009575600852258503, 0.02127278596162796, 0.006631726864725351, -0.002335165161639452, 0.021600278094410896, -0.027922309935092926, 0.008244272321462631, 0.004157733172178268, -0.0022604113910347223, 0.020674755796790123, 0.012672542594373226, 0.018311113119125366, -0.023636428639292717, -0.005812995135784149, 0.0015618196921423078, 0.01031601894646883, -0.01537791732698679, 0.009945809841156006, -0.0036451357882469893, -0.039042823016643524, 0.01888066530227661, 0.0027552100364118814, 0.017912425100803375, -0.004196889698505402, -0.006403905805200338, 0.018012097105383873, 0.01246607955545187, 0.016659410670399666, -0.0291183702647686, -0.03838783875107765, -0.005247002001851797, 0.01006683986634016, -0.02605702541768551, -0.00468812882900238, 0.015463349409401417, -0.011127631179988384, 0.0138686029240489, 0.019065769389271736, 0.037020910531282425, -0.00022826595522928983, -0.012779333628714085, -0.02849186211824417, 0.004058061633259058, 0.004862554371356964, 0.020959531888365746, -0.012765094637870789, -0.00439623324200511, -0.0027997063007205725, 0.03662222623825073, -0.0003448462230153382, 0.021443650126457214, 0.003773285076022148, 0.03368902951478958, 0.001989874057471752, -0.02478977106511593, -0.0019097806653007865, -0.023009920492768288, -0.003862277837470174, 0.01050112396478653, -0.02419174090027809, 0.01386148389428854, 0.012266736477613449, 0.00405094213783741, 0.013740453869104385, 0.0020058925729244947, -0.005467704031616449, 0.008116123266518116, 0.0077672721818089485, 0.01569117046892643, -0.014922275207936764, -0.012537273578345776, -0.0130925877019763, 0.036907002329826355, 0.01986314356327057, -0.022312218323349953, 0.02570105530321598, -0.007055331487208605, -0.004367755725979805, -0.017257440835237503, 0.010323138907551765, 0.016132574528455734, 0.014964991249144077, 0.004488785285502672, 0.030528012663125992, -0.013313288800418377, 0.022696666419506073, 0.012330811470746994, 0.016417350620031357, 0.03596723824739456, 0.005635010078549385, -0.009988526813685894, -0.0230526365339756, -0.03180950507521629, -0.002034370321780443, -0.0069805774837732315, -0.031980372965335846, -0.015064663253724575, 0.01347703579813242, -0.0039014345966279507, 0.025914637371897697, -0.010031242854893208, 0.004830516874790192, -0.025159981101751328, 0.03579637408256531, -0.005535338073968887, -0.014893797226250172, -0.028919028118252754, 0.02255427837371826, 0.01646006666123867, -0.009725108742713928, 0.009668153710663319, -0.0009682392119430006, 0.008614481426775455, 0.040950823575258255, 0.018382307142019272, -0.03394532948732376, 0.018126007169485092, -0.007923899218440056, -0.00341909471899271, 0.011547676287591457, 0.01304275169968605, 0.0019151201704517007, -0.019920097663998604, -0.012665423564612865, 0.0014140920247882605, 0.005812995135784149, -0.013583826832473278, 0.10343073308467865, 0.01480836421251297, 0.004175531677901745, -0.01557726040482521, -0.01366925984621048, -0.0203899797052145, 0.0031716953963041306, 0.018681321293115616, 0.0030844826251268387, -0.02544475719332695, -0.01799785904586315, 0.007931018248200417, -0.03633744642138481, -0.0247043389827013, -0.013498393818736076, -0.012117229402065277, 0.010906930081546307, 0.03280622139573097, -0.02810741402208805, -0.006428823806345463, 0.0037092105485498905, 0.009903093799948692, -0.01063639298081398, -0.010978124104440212, -0.02621365338563919, -0.0018056593835353851, 0.02659810148179531, 0.01947869546711445, -0.016759082674980164, -0.06640981882810593, 0.011739900335669518, 0.017285916954278946, -0.04012497141957283, -0.02037573978304863, -0.00674207741394639, 0.016502782702445984, 0.005983860697597265, -0.000133933819597587, 0.0008387550478801131, -0.005261240992695093, 0.013256333768367767, 0.03582485020160675, -0.03317643329501152, -0.02621365338563919, 0.002831743797287345, -0.0031841543968766928, -0.02440532296895981, -0.020304545760154724, -0.0400395393371582] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_intermobiledevice_distance_estimation_using_network_localization_algorithms_for_digital_contact_logging_applications.json b/database/embeddings/publications_txt/2020_intermobiledevice_distance_estimation_using_network_localization_algorithms_for_digital_contact_logging_applications.json new file mode 100644 index 0000000000000000000000000000000000000000..7bf4d82853796750bc9e50c030e0db2a9e26f39e --- /dev/null +++ b/database/embeddings/publications_txt/2020_intermobiledevice_distance_estimation_using_network_localization_algorithms_for_digital_contact_logging_applications.json @@ -0,0 +1 @@ +[0.002169968793168664, 0.026792867109179497, 0.010123001411557198, -0.005892178043723106, -0.011925148777663708, 0.01914781890809536, -0.012509439140558243, -0.0028334548696875572, -0.018246745690703392, -0.03795773535966873, 0.010798806324601173, 0.023723583668470383, -0.018936630338430405, 0.032748401165008545, -0.00251667108386755, 0.009820296429097652, 0.028538696467876434, -0.031058888882398605, -0.004653201438486576, 0.005807702429592609, 0.00013859289174433798, 0.014741004444658756, -0.005839380901306868, 0.0026416245382279158, -0.007370502222329378, 0.012699509039521217, 0.020443111658096313, -0.015304175205528736, 0.004519448149949312, -0.024878084659576416, 0.017753969877958298, -0.0006872447556816041, -0.003248793538659811, -0.03342420607805252, -0.017965158447623253, -0.01104519423097372, -0.0007312425295822322, -0.024286754429340363, 0.02953832596540451, -0.024751370772719383, -0.004466651007533073, 0.016698023304343224, -0.002472673309966922, -0.022681716829538345, -0.0024075566325336695, 0.016655785962939262, 0.03970356658101082, -0.022780273109674454, -0.026792867109179497, 0.0319318026304245, -0.023329364135861397, 0.024216359481215477, -0.007722484413534403, -0.00263986480422318, -0.028637252748012543, -0.0073212250135838985, 0.003994995262473822, 0.014825480058789253, -0.018922550603747368, -0.02055574581027031, 0.017359750345349312, -0.020372716709971428, -0.04536343365907669, -0.03015781380236149, 0.00036342136445455253, -0.00939087849110365, -0.022414211183786392, 0.035507939755916595, -0.004962945822626352, 0.01367097906768322, 0.01773989014327526, 0.010953678749501705, 0.017261195927858353, -0.010193397291004658, 0.002265003975480795, -0.03573320806026459, -0.009404958225786686, 0.009700622409582138, -0.009447195567190647, 0.007504255510866642, -0.0026521841064095497, -0.02766578271985054, -0.009996287524700165, 0.01521969959139824, 0.012291209772229195, 0.026891421526670456, 0.0075464933179318905, -0.002706741215661168, -0.013473869301378727, -0.013628741726279259, 0.013762494549155235, 0.00353389885276556, -0.005353645421564579, 0.0022878828458487988, -0.016402360051870346, 0.01390328723937273, -0.009243045933544636, 0.0264127254486084, 0.009003698825836182, -0.03131231665611267, 0.01243200246244669, 0.0015856787795200944, -0.024005169048905373, -0.021147076040506363, -0.009482393972575665, -0.036211904138326645, 0.009939970448613167, -5.2687300922116265e-05, 0.01675434224307537, 0.008525002747774124, -0.03142495080828667, 0.017810286954045296, 0.006582062691450119, -0.00608576787635684, -0.0028440142050385475, -0.03666244074702263, -0.0003480221494100988, 0.0015452008228749037, -0.004237862769514322, -0.010538339614868164, 0.028496459126472473, 0.0027542589232325554, 0.013135966844856739, -0.03336789086461067, 0.002685622312128544, 0.024145962670445442, -0.011066312901675701, -0.018528331071138382, -0.007300105877220631, -0.017387907952070236, 0.002632825169712305, -0.004463131073862314, 0.006054089870303869, 0.01156612765043974, 0.013361235149204731, 0.014191912487149239, -0.011361978016793728, -0.0038190041668713093, -0.01717671938240528, -0.02889067865908146, 0.0033860665280371904, 0.05744345486164093, -0.01432566624134779, -0.0012380965054035187, 0.003885880811139941, 0.026623915880918503, 0.0042695412412285805, -0.0016639947425574064, 0.008391249924898148, 0.02724340371787548, -0.004544087219983339, -0.013769534416496754, -0.015543523244559765, 0.010496102273464203, -0.01512114517390728, 0.011728039011359215, -0.0015056028496474028, 0.03435343876481056, 0.04184361547231674, -0.03305814415216446, -0.0037908456288278103, 0.038830649107694626, -0.021034441888332367, -0.02130194753408432, -0.0006357674137689173, 0.03370579332113266, 0.04161834716796875, 0.0095527907833457, -0.016346042975783348, 0.012636152096092701, -0.04322338476777077, 0.015247858129441738, -0.009799177758395672, -0.01830306276679039, -0.012115218676626682, 0.027792494744062424, 0.047165583819150925, 0.010974797420203686, -0.020471271127462387, -0.011671721935272217, -0.000872475269716233, 0.003664132207632065, 0.02138642407953739, 0.02766578271985054, -0.011059273034334183, 0.031678374856710434, 0.019077422097325325, -0.00987661350518465, 0.008250457234680653, -0.007074837572872639, 0.050347499549388885, 0.006198402494192123, 0.013748415745794773, 0.017486464232206345, -0.615433394908905, -0.01741606742143631, -0.0009089934173971415, -0.0156139200553298, -0.016514994204044342, 0.04111149162054062, 0.031115205958485603, 0.0015856787795200944, -0.026849184185266495, 0.038605380803346634, -0.007194511126726866, 0.006117446348071098, 0.012516478076577187, -0.007504255510866642, -0.0156420785933733, -0.024413468316197395, 0.028637252748012543, -0.03590216115117073, 0.02172432653605938, 0.02583547681570053, 0.0026926619466394186, 0.012882540002465248, -0.0014114476507529616, 0.0004852951387874782, -0.009658385068178177, 0.010925520211458206, 0.029510168358683586, -0.016064457595348358, 0.020541667938232422, -0.02087957039475441, -0.03914039582014084, 0.015092986635863781, 0.04161834716796875, -0.000687684747390449, 0.04012594372034073, -0.019232293590903282, -0.019077422097325325, 0.025244146585464478, 0.02438531070947647, 0.028524618595838547, -0.04713742434978485, -0.034437913447618484, -0.006071688607335091, 0.025258226320147514, -0.01357946451753378, -0.011580206453800201, 0.022766193374991417, -0.00041247886838391423, -0.030777303501963615, -0.024793609976768494, -0.013459790498018265, -0.015022589825093746, -0.008700993843376637, -0.012776944786310196, 0.011467572301626205, -0.010763607919216156, 0.018134111538529396, -0.008194140158593655, 0.010826964862644672, 0.010453864000737667, 0.011347898282110691, 0.008595399558544159, 0.002483232645317912, -0.029200423508882523, 0.006955163553357124, 0.0010946638649329543, 0.014980352483689785, 0.013164125382900238, 0.0024920322466641665, -0.02311817556619644, 0.004188585560768843, 0.026384567841887474, -0.003980915993452072, -0.018978867679834366, 0.013276759535074234, 0.025765080004930496, 0.03731008619070053, 0.017908841371536255, -0.01284734159708023, 0.008363091386854649, -0.0022122066002339125, 0.0052550905384123325, 0.011256382800638676, -0.02200591191649437, 0.024962561205029488, -0.010221555829048157, -0.02154129557311535, -0.01652907207608223, 0.021921437233686447, 0.00036958104465156794, 0.020527588203549385, 0.016402360051870346, -0.022034071385860443, -0.01709224469959736, -0.014966272749006748, 0.02144274115562439, -0.011171907186508179, 0.0025958670303225517, -0.0061209662817418575, -0.014853638596832752, -0.008370131254196167, 0.011178947053849697, 0.004068911541253328, -0.005445160903036594, 0.023090016096830368, 0.014044079929590225, -0.01779620721936226, 0.015459047630429268, 0.025553889572620392, -0.0029672079253941774, 0.010130041278898716, -0.007483136374503374, -0.017430147156119347, 0.0009327522129751742, 0.00805334746837616, -0.02814447693526745, 0.02023192308843136, 0.0020045372657477856, 0.018359379842877388, 0.02138642407953739, 0.013403473421931267, 0.018190428614616394, 0.008532042615115643, -0.006089287810027599, -0.009214887395501137, 0.024005169048905373, 0.04344865307211876, -0.03767614811658859, -0.011270462535321712, -0.008039267733693123, 0.004501849412918091, -0.005374764557927847, 0.023568712174892426, -0.009679503738880157, 0.03094625473022461, 0.003625414101406932, 0.015670236200094223, -0.033452365547418594, -3.965296855312772e-05, -0.00303056463599205, -0.019725069403648376, -0.0012996933655813336, 0.004663760773837566, -0.019091501832008362, -0.03502924367785454, -0.040942542254924774, -0.004501849412918091, 0.012263051234185696, -0.0006300476961769164, 0.002481472911313176, -0.012607993558049202, 0.011699880473315716, -0.014980352483689785, 0.006441270001232624, 0.00428362051025033, -0.01638828031718731, 0.02154129557311535, -0.020119288936257362, -0.028200794011354446, -0.019274532794952393, -0.007856237702071667, 0.028918838128447533, -0.0037380484864115715, -0.02154129557311535, -0.0035215795505791903, 0.0014686447102576494, -0.010721370577812195, 0.010291952639818192, 0.011699880473315716, -0.028862521052360535, -0.0028545737732201815, -0.007250828202813864, -0.012424963526427746, 0.0011210625525563955, -0.021569455042481422, 0.002141810255125165, -0.005550755653530359, -0.003092161612585187, -0.012833261862397194, 0.0021347706206142902, -0.001062985509634018, 0.02154129557311535, -0.022667638957500458, -0.012910698540508747, 0.0243008341640234, 0.007120594847947359, 0.03384658694267273, -0.017852524295449257, -0.0076872860081493855, 0.013910327106714249, -0.013143006712198257, -0.017289353534579277, -0.0036324537359178066, 0.029988862574100494, -0.018514251336455345, 0.02041495405137539, 0.009714702144265175, -0.012734707444906235, 0.002963688224554062, 0.014022961258888245, 0.0197532270103693, 0.039253029972314835, 0.007785840891301632, -0.007567611988633871, 0.003748607821762562, -0.013727296143770218, 0.026046665385365486, -0.004220263566821814, 0.022315656766295433, 0.00851796381175518, 0.029003312811255455, -0.011270462535321712, -0.014086318202316761, -0.003393106162548065, -0.002796496730297804, 0.0014184872852638364, -0.015895504504442215, 0.0003462622407823801, -0.01685289666056633, 0.021639851853251457, -0.002694421913474798, -0.02144274115562439, 0.035930316895246506, -0.028946995735168457, -0.02194959484040737, -0.0042132241651415825, 0.03759167343378067, 0.03319893777370453, 0.0095527907833457, -0.0018012677319347858, -0.0187817569822073, 0.021921437233686447, 0.024976639077067375, -0.002734899753704667, -0.0052762096747756, -0.015698395669460297, 0.02748275175690651, -0.013445710763335228, 0.03632453829050064, -0.018528331071138382, 0.010749529115855694, 0.047024790197610855, 0.044124457985162735, -0.034015536308288574, -0.002689142245799303, -0.011882911436259747, 0.014769162982702255, 0.01675434224307537, 0.004572245758026838, 0.0312278401106596, -0.022245259955525398, 0.020583905279636383, -0.023427918553352356, 0.005286769010126591, 0.02438531070947647, -0.004343457520008087, -0.022442370653152466, -0.005223412532359362, 0.013769534416496754, 0.009925891645252705, 0.015839187428355217, 0.010566498152911663, 0.0038542025722563267, 0.01703592762351036, 0.014001842588186264, -0.0266802329570055, -0.01586734689772129, -0.011347898282110691, 0.001504722866229713, -0.02472321316599846, 0.01217153575271368, -0.0027436993550509214, -0.004290659911930561, -0.0100385257974267, 0.0246246587485075, 0.018739519640803337, 0.02706037275493145, -0.004068911541253328, 0.01826082356274128, 0.023244889453053474, -0.01745830476284027, 6.20918144704774e-05, 0.0033983858302235603, 0.01820450648665428, 0.0010445064399391413, -0.003973876126110554, 0.0077436030842363834, 0.018795836716890335, -0.028383824974298477, 1.4395512152987067e-05, 0.007250828202813864, 0.012446082197129726, -0.0026803426444530487, -0.025201909244060516, -0.033593159168958664, -0.006303996779024601, 0.021935515105724335, -0.007511294912546873, -0.015740633010864258, 0.01695145107805729, -0.0023952373303472996, 0.011157828383147717, 0.009975168853998184, 0.0007792000542394817, 0.053304146975278854, -0.008250457234680653, 0.021696168929338455, -0.01628972589969635, 0.0190492644906044, -0.0059801735915243626, 0.010608736425638199, -0.005955534987151623, -0.006353274453431368, -0.0005939695402048528, 0.028172636404633522, 0.000738282164093107, 0.021879198029637337, -0.0023864377290010452, 0.01586734689772129, -0.019922178238630295, -0.011960347183048725, -0.0451381653547287, -0.024005169048905373, 0.011629483662545681, 0.02504703588783741, 0.02822895348072052, 0.0074057006277143955, 0.015163382515311241, -0.003808444831520319, -0.015416810289025307, -0.03170653432607651, 0.006634859833866358, 0.006891806609928608, -0.01638828031718731, -0.015979981049895287, 0.011418295092880726, -0.004589844960719347, 0.00014860238297842443, 0.01957019791007042, 0.006106887012720108, 0.0057021076790988445, 0.0037310088519006968, 0.01643051765859127, -0.011009995825588703, 0.010489062406122684, -0.0380985289812088, 0.000553491641767323, 0.006546864286065102, 0.01886623352766037, -0.025877714157104492, 0.025018878281116486, -0.004385695327073336, 0.0010110682342201471, -0.006448309402912855, 0.011411255225539207, 0.03767614811658859, 0.02714484930038452, -0.012291209772229195, -0.014269348233938217, 0.0561763197183609, 0.027313800528645515, 0.02438531070947647, 0.023850297555327415, 0.013093728572130203, 0.03139679133892059, 0.0033297494519501925, -0.00030556434649042785, -0.008855866268277168, 0.018134111538529396, -0.052177805453538895, -0.01289661880582571, 0.029622802510857582, 0.012347526848316193, -0.015078906901180744, 0.03314262256026268, 0.01135493814945221, -0.014994431287050247, -0.029904387891292572, 0.02561020664870739, 0.008130783215165138, 0.005680989008396864, -0.006420150864869356, -0.014318626374006271, -0.024962561205029488, 0.003998515196144581, -0.015374572016298771, 0.013466829434037209, -0.003085121978074312, -0.021316027268767357, 0.00456520589068532, -0.032748401165008545, -0.018922550603747368, -0.03159390017390251, 0.009693583473563194, -0.0022509247064590454, -0.008039267733693123, -0.04277284815907478, -0.005628191400319338, 0.012629113160073757, -0.010425705462694168, 0.015416810289025307, -0.009531671181321144, -0.009883653372526169, 0.011967387050390244, -0.02289290726184845, -0.026933658868074417, 0.0012204974191263318, -0.03094625473022461, -0.009700622409582138, 0.010756568983197212, -0.00830677431076765, -0.017444226890802383, -0.0034071854315698147, 0.028003685176372528, -0.014191912487149239, -0.0006036490667611361, 0.011467572301626205, -0.008525002747774124, 0.02168208919465542, 0.03243865817785263, 0.020062971860170364, -0.004371616058051586, 0.004698959179222584, 0.025736920535564423, -0.0041287485510110855, -0.030185973271727562, -0.017021847888827324, -0.013586503453552723, 0.011178947053849697, 0.006867168005555868, -0.0015786391450092196, 0.0008777549955993891, -0.017486464232206345, 0.011854752898216248, 0.019823623821139336, -0.017064085230231285, -0.0003370227350387722, 0.012340487912297249, -0.0008258376619778574, 0.018922550603747368, 0.013234522193670273, -0.014177833683788776, -0.004998143762350082, -0.013121887110173702, -0.018415696918964386, 0.006096327677369118, 0.016022218391299248, 0.023047778755426407, 0.00975694041699171, 0.025821397081017494, -0.00938383862376213, -0.02087957039475441, -0.02738419733941555, 0.015571681782603264, 0.008630597963929176, 0.016782499849796295, -0.02027416042983532, -0.01421303115785122, -0.012819183059036732, -0.00040895905112847686, -0.003723969217389822, -0.0018637444591149688, -0.011312699876725674, -0.022766193374991417, 0.0023723584599792957, 0.00607520854100585, 0.006969242822378874, 0.010897361673414707, 0.01807779259979725, -0.029369374737143517, -0.008982579223811626, 0.004357536789029837, 0.012720627710223198, 0.03511372208595276, 0.009306402876973152, 0.024892164394259453, -0.0006538064917549491, -0.010059644468128681, -0.03294550999999046, -0.018922550603747368, -0.028623173013329506, 0.002968967892229557, 0.028383824974298477, 0.024174120277166367, 0.034015536308288574, 0.008349011652171612, 0.0011720999609678984, 0.022259339690208435, 0.012755826115608215, 0.014262309297919273, -0.009271204471588135, 0.01034826971590519, -0.0026187459006905556, 0.011270462535321712, 0.004058352205902338, 0.0022227661684155464, 0.004192105028778315, 0.006363833788782358, -0.013192283920943737, -0.0005108138429932296, 0.014994431287050247, -0.015881426632404327, 0.010876243002712727, -0.03849274665117264, -0.0007893195725046098, 0.006677097640931606, -0.009207848459482193, 0.014726925641298294, -0.03919671103358269, -0.018598726019263268, 0.0246246587485075, 0.0014052879996597767, -0.027651702985167503, -0.03010149672627449, 0.01821858622133732, -0.008834747597575188, 0.039168551564216614, 0.009285284206271172, -0.019344927743077278, -0.00403723306953907, -0.002974247559905052, -0.03243865817785263, 0.005712667014449835, 0.009207848459482193, -0.005723226815462112, 0.02369542606174946, 0.013164125382900238, 0.011080391705036163, -0.0034318240359425545, 0.035226356238126755, 0.020062971860170364, -0.010228595696389675, -0.013516107574105263, 0.004635602235794067, -0.01256575621664524, -0.01731751300394535, -0.023104095831513405, -0.01592366397380829, 0.0064835078082978725, 0.0034934210125356913, 0.008496844209730625, 0.010742489248514175, -0.0121222585439682, -0.018176348879933357, 0.004477210342884064, 0.005698587745428085, -0.002057334640994668, -0.013164125382900238, 0.009334561415016651, 0.0242445170879364, -0.02059798501431942, -0.022442370653152466, 0.022301577031612396, 0.008454606868326664, 0.01357946451753378, 0.010658013634383678, 0.017613178119063377, -0.024174120277166367, -0.014304546639323235, 0.015036669559776783, 0.024371230974793434, -0.013797692954540253, -0.02832750789821148, 0.02387845702469349, 0.05183990299701691, 0.0030886416789144278, -0.030833620578050613, -0.03652164712548256, -0.0004615363432094455, -0.0020714139100164175, -0.015754712745547295, 0.00858835969120264, -0.0010585857089608908, 0.015022589825093746, -0.0018883831799030304, 0.007342343684285879, -0.003308630548417568, 0.029341217130422592, -0.006944604218006134, -0.005156535655260086, 0.012016664259135723, -0.013100768439471722, -0.01334011647850275, 0.016838816925883293, -0.00251667108386755, 0.029003312811255455, -0.022597242146730423, 0.005902737379074097, 0.033311571925878525, 0.025582049041986465, 0.009404958225786686, -0.025722840800881386, 0.0065961419604718685, 0.03379026800394058, -0.002660983707755804, -0.0132063627243042, 0.002113651717081666, -0.024314913898706436, 0.014741004444658756, -0.0005715307197533548, 0.00380492489784956, 0.006504626478999853, -0.02575100027024746, -0.003921078983694315, 0.01620524935424328, 0.015036669559776783, 0.004522968083620071, -0.008813627995550632, 0.011404215358197689, -0.0346350260078907, 0.008651716634631157, 0.004593364428728819, -0.018274903297424316, -0.016909213736653328, -0.023160412907600403, -0.018134111538529396, 0.009158570319414139, 0.015444968827068806, 0.018669122830033302, 0.02317449264228344, 0.015247858129441738, 0.022400131449103355, -0.029791753739118576, 0.012586874887347221, 0.002069653943181038, -0.03609926998615265, -0.0361555851995945, -0.02023192308843136, -0.005916816648095846, -0.022259339690208435, 0.019316770136356354, 0.011178947053849697, -0.02729972079396248, -0.017627255991101265, -0.005378284491598606, -0.0025483493227511644, -0.014600211754441261, -0.021330107003450394, -0.016655785962939262, 0.007419779896736145, 0.00044041743967682123, -0.00429417984560132, -0.01703592762351036, 0.04494105651974678, -0.008243417367339134, 0.0017915881471708417, 0.0339873768389225, 0.011995545588433743, 0.03263576701283455, -0.029228581115603447, 0.005709147546440363, 0.015374572016298771, -0.022273417562246323, -0.009869574569165707, 0.017866604030132294, 0.029482008889317513, -0.019274532794952393, -0.01628972589969635, -0.002242125105112791, -0.012319368310272694, -0.02434307150542736, 0.021935515105724335, 0.006761573255062103, -0.0038436430040746927, 0.005167094990611076, -0.004677840042859316, 0.010453864000737667, 0.013164125382900238, -0.007166352588683367, -0.005885138176381588, -0.024709133431315422, 0.013311957940459251, -0.012234892696142197, -0.008496844209730625, 0.012650231830775738, 0.028707649558782578, 0.0256524458527565, -0.017810286954045296, -0.04733453318476677, -0.03601479530334473, -0.017627255991101265, -0.03139679133892059, -0.0156139200553298, -0.0004940946819260716, -0.01338939368724823, -0.0012037783162668347, -0.016838816925883293, 0.017641335725784302, -0.01914781890809536, 0.017204878851771355, -0.0035268592182546854, -0.010165238752961159, 0.01444533932954073, 0.016557231545448303, -0.0033807866275310516, -0.005110777914524078, -0.051192257553339005, -0.005001663696020842, 0.016416437923908234, 0.0038788411766290665, 0.013720257207751274, 0.013762494549155235, -0.009897733107209206, -0.0076380083337426186, 0.003584936261177063, -0.024554261937737465, -0.005592993460595608, -0.007335304282605648, -0.0029601682908833027, -0.04246310517191887, -0.013065570034086704, 0.0038154844660311937, 0.019035184755921364, 0.023470157757401466, -0.007370502222329378, 0.005262130405753851, -0.0047728754580020905, 0.023484235629439354, -0.018711360171437263, -0.0246246587485075, 0.011277502402663231, -0.011052233166992664, 0.018640965223312378, -0.020766936242580414, 0.0001478324265917763, 0.018359379842877388, -0.0059801735915243626, 0.00938383862376213, -0.019274532794952393, 0.0021224513184279203, -0.015064828097820282, -0.004396254662424326, 0.0007567612337879837, -0.009559829719364643, -0.014290467835962772, -0.03702850267291069, 0.017204878851771355, -0.022667638957500458, -0.009503512643277645, -0.015346413478255272, -0.0374508798122406, -0.020795093849301338, 0.019161898642778397, 0.02448386512696743, -0.012917738407850266, -0.009841416031122208, 0.0022174862679094076, -0.003864761907607317, -0.0003242633829358965, 0.0017247116193175316, -0.0015196821186691523, -0.026018505915999413, -0.012671350501477718, -0.004558166489005089, -0.012326408177614212, 0.009165610186755657, 0.004839751869440079, -0.018950708210468292, -0.023512395098805428, -0.0019323809538036585, 0.17401988804340363, -0.014825480058789253, 0.013037411496043205, 0.01540273055434227, -0.02214670553803444, 0.008806589059531689, 0.016064457595348358, -0.004192105028778315, 0.008391249924898148, 0.01578287035226822, 0.010869203135371208, -0.012769905850291252, -0.004170986358076334, -0.008363091386854649, 0.0198095440864563, 0.008961460553109646, -0.04592660441994667, -0.015416810289025307, -0.028918838128447533, 0.008665795437991619, -0.029848070815205574, -0.004769355524331331, -0.028637252748012543, -0.017613178119063377, 0.010981837287545204, -0.029341217130422592, -0.00033746269764378667, 0.006684137508273125, 0.017148561775684357, 0.011939228512346745, -0.013002214021980762, 0.001946460222825408, 0.004987584426999092, 0.0050333421677351, -0.00710651557892561, -0.004920708015561104, 0.009672463871538639, -0.0006221281364560127, 0.027975525707006454, 0.009454235434532166, -0.003417744766920805, -0.035085562616586685, 0.00703259976580739, -0.05243123322725296, 0.0012477760901674628, 0.019682832062244415, 0.005452200770378113, -0.0005882498808205128, 0.002717300783842802, 0.012671350501477718, -0.02794736810028553, -0.018838074058294296, 0.03857722133398056, 0.009285284206271172, -0.006173763424158096, -0.012143377214670181, -0.008560201153159142, 0.014642450027167797, 0.012537597678601742, -0.009918851777911186, 0.016261566430330276, 0.010439785197377205, 0.001913021900691092, -0.010770647786557674, -0.010643934831023216, 0.01750054396688938, -0.026159299537539482, -0.02045719139277935, 0.009278244338929653, -0.02102036215364933, 0.0041287485510110855, -0.006198402494192123, -0.010446825064718723, -0.004068911541253328, -0.02551165223121643, -0.03956277295947075, 0.02476545050740242, 0.023061858490109444, 0.03088993765413761, 0.033874742686748505, -0.015416810289025307, 0.00037618071655742824, -0.004878470208495855, -0.007905514910817146, -0.007176912389695644, -0.03829563781619072, 0.037619832903146744, -0.018035555258393288, -0.027736177667975426, 0.0007655607769265771, -0.02883436158299446, 0.016782499849796295, -0.0056176320649683475, 0.0019411805551499128, 0.0019675791263580322, -0.016022218391299248, 0.00854612234979868, -0.011925148777663708, -0.004920708015561104, 0.02903147228062153, -0.026835104450583458, 0.06589101999998093, 0.0197532270103693, -0.016543151810765266, -0.015740633010864258, -0.014543894678354263, 0.006691176909953356, 0.010221555829048157, 0.029059629887342453, -0.012023704126477242, -0.009651345200836658, -0.021991832181811333, -0.000928352412302047, -0.005543715786188841, -0.008419408462941647, 0.02144274115562439, 0.0007418019813485444, -0.014895876869559288, 0.025455335155129433, -0.009883653372526169, 0.0009160330519080162, -0.0332270972430706, -0.004449051804840565, 0.024328993633389473, 0.00239347736351192, 0.005202293395996094, -0.0068742078728973866, -0.009447195567190647, -0.01699368841946125, -0.009228967130184174, 0.02925674058496952, 0.00015773191989865154, 0.014332705177366734, 0.01596590131521225, 0.004558166489005089, -0.010981837287545204, 0.011066312901675701, -0.014515736140310764, 0.018753599375486374, -0.00530084827914834, -0.021611692383885384, -0.028862521052360535, 0.006962202955037355, -0.0001266035105800256, -0.007567611988633871, -0.04862982779741287, -3.266832572990097e-05, -0.00731418514624238, -0.03136863186955452, -0.01620524935424328, 0.0006128886016085744, -0.04218151792883873, 0.002175248460844159, -0.03390290215611458, 0.03632453829050064, -0.022442370653152466, -0.010207477025687695, -0.0368032343685627, -0.003181916894391179, -0.011509810574352741, -0.021569455042481422, 0.004512408748269081, 0.020330477505922318, 0.00501926289871335, -0.01512114517390728, -0.003579656593501568, -0.18156637251377106, 0.03832379728555679, 0.018190428614616394, -0.0076028103940188885, -0.022386053577065468, 0.003868281841278076, 0.012579835020005703, 0.0029056111816316843, -0.027088532224297523, 0.005860499572008848, 0.02996070496737957, -0.00760984979569912, -0.01689513400197029, -0.0166698656976223, 0.006022411398589611, 0.012326408177614212, -9.679504000814632e-05, 0.007750642951577902, 0.0058429003693163395, 0.010242675431072712, -0.0001544320839457214, -0.03722561150789261, 0.010510181076824665, -0.012417923659086227, -0.01493811421096325, 0.024328993633389473, -0.005512037314474583, 0.008405329659581184, -0.016416437923908234, -0.009144491516053677, 0.003345588454976678, 0.001923581468872726, 0.018331220373511314, 0.014283427968621254, 0.030495716258883476, 0.011467572301626205, -0.020583905279636383, -0.009461275301873684, 0.002442754805088043, 0.04798218235373497, -0.003977396059781313, 0.049643535166978836, -0.018457934260368347, -0.019908100366592407, -0.014149675145745277, 0.008341972716152668, -0.0035321388859301805, 0.0020221364684402943, 0.025258226320147514, -0.027257483452558517, 0.008525002747774124, -0.005835860967636108, 0.02009112946689129, -0.011875871568918228, 0.01132677961140871, 0.050206705927848816, -0.009095214307308197, -0.006106887012720108, 0.02210446633398533, -0.0037028503138571978, -0.022315656766295433, -0.030749144032597542, 0.010080763138830662, -0.010101882740855217, -0.023582791909575462, -0.024413468316197395, -0.03314262256026268, 0.018655043095350266, -0.036915868520736694, 0.023104095831513405, -0.019682832062244415, -0.018669122830033302, 0.001800387748517096, -0.010334189981222153, 0.028918838128447533, 0.0006678857607766986, -0.007504255510866642, 0.008116704411804676, 0.016275646165013313, -0.013720257207751274, 0.0034511832054704428, 0.03497292846441269, -0.012023704126477242, -0.0016877534799277782, 0.021034441888332367, -0.025018878281116486, 0.011228224262595177, 0.006223041098564863, 0.004111149348318577, -0.004361056722700596, 0.005508517846465111, -0.020119288936257362, 0.023723583668470383, -0.023090016096830368, -0.0003759607207030058, 0.01586734689772129, -0.0058992174454033375, 0.005497958045452833, 0.001001388649456203, -0.0023864377290010452, 0.010608736425638199, -0.0009837895631790161, 0.00327695207670331, 0.005072060041129589, 0.011509810574352741, -0.0006604061345569789, -0.016303803771734238, 0.001163300359621644, 0.016740262508392334, -0.018049634993076324, -0.03108704648911953, 0.01462837029248476, 0.016458677127957344, 0.033452365547418594, -0.023146333172917366, 0.023892534896731377, -0.0410270169377327, -0.02341384068131447, 0.0253286212682724, -0.01681065931916237, 0.0253286212682724, 0.00036276140599511564, 0.005114297848194838, 0.031481266021728516, -0.016233408823609352, -0.02822895348072052, -0.05637343227863312, -0.028454221785068512, 0.0048291925340890884, 0.02335752360522747, -0.019204135984182358, 0.009376799687743187, 0.00021041920990683138, 0.00833493284881115, 0.000989949214272201, 0.01966875232756138, 0.002129490952938795, 0.002442754805088043, 0.000587369897402823, -0.011946267448365688, 0.015304175205528736, -0.02021784335374832, -0.04251942038536072, -0.02748275175690651, 0.005417002364993095, 0.019879940897226334, -0.00628287810832262, -0.03207259625196457, -0.002807056065648794, -0.012305289506912231, -0.005621151998639107, 0.007074837572872639, -0.04953090101480484, 0.01681065931916237, 0.011235264129936695, 0.001353370607830584, 0.013889208436012268, -0.014487577602267265, 0.007680246606469154, -0.005022782366722822, -0.00756057258695364, 0.0010383467888459563, -0.005424042232334614, -0.013706177473068237, 0.037479039281606674, -0.029341217130422592, 0.009214887395501137, 0.017064085230231285, 0.02059798501431942, -0.024680975824594498, -0.02190735749900341, -0.0019658191595226526, -0.017472384497523308, 0.03015781380236149, 0.013642820529639721, -0.030298607423901558, -0.0009213127777911723, -0.03201627731323242, 0.0015416810056194663, -0.021752486005425453, 0.0075183347798883915, -0.019865861162543297, -0.008665795437991619, 0.002560668857768178, -0.025736920535564423, -0.017852524295449257, -0.016261566430330276, -0.0232730470597744, -0.021175235509872437, 0.02742643468081951, 0.03601479530334473, 0.0065961419604718685, -0.030129656195640564, 0.0032593528740108013, 0.018950708210468292, -0.010460903868079185, -0.010756568983197212, 0.00365709257312119, -0.022723956033587456, -0.007201550994068384, -0.027173006907105446, 0.0031748772598803043, -7.963591633597389e-05, -0.011059273034334183, 0.01282622292637825, -0.02617337927222252, 0.0029091308824718, -0.0030182453338056803, -0.01088328193873167, -0.012558716349303722, 0.015177462249994278, 0.002416356233879924, -0.005846420302987099, 0.02242829091846943, 0.015501285903155804, -0.02383621782064438, 0.02784881182014942, 0.011481651104986668, 0.021879198029637337, 0.0030041660647839308, -0.008862906135618687, -0.003945717588067055, -0.009996287524700165, -0.01393144577741623, -0.016500914469361305, 0.019218215718865395, -0.043842874467372894, 0.00579362316057086, -0.08779837936162949, 0.03201627731323242, 0.010735449381172657, -0.022315656766295433, -0.017725812271237373, -0.01844385452568531, 0.004896068945527077, -0.016838816925883293, 0.01331899780780077, 0.020161526277661324, -0.007483136374503374, -0.00987661350518465, -0.00886994507163763, 0.026905501261353493, -0.004959425888955593, -0.01868320256471634, 0.03722561150789261, -0.00863763689994812, 0.011017035692930222, 0.028820283710956573, -0.014769162982702255, 0.003048163838684559, 0.021555375307798386, 0.02742643468081951, -0.004783434793353081, 0.011713959276676178, 0.0061772833578288555, -0.015557602979242802, -0.030636509880423546, -0.006479987874627113, 0.007190991658717394, -0.03364947438240051, 0.004846791736781597, 0.012460161000490189, 0.013762494549155235, -0.009461275301873684, 0.00760984979569912, 0.019823623821139336, 0.0063743931241333485, 0.02401924878358841, -0.007532414048910141, -0.02583547681570053, 0.015135223977267742, 0.00402667373418808, -0.028285270556807518, 0.00326463277451694, 0.0010647454764693975, 0.015599840320646763, 0.00851796381175518, -0.004667280707508326, 0.04291364178061485, -0.009602067992091179, -0.017444226890802383, -0.025258226320147514, 0.036352697759866714, -0.0001404627982992679, 0.033255256712436676, 0.01490995567291975, -0.006311036646366119, -0.006300477311015129, 0.03362131863832474, 0.007222669664770365, 0.006768613122403622, -0.008461646735668182, 0.004734157584607601, -0.007286026608198881, -0.010665053501725197, -0.001163300359621644, -0.01717671938240528, -0.0067369346506893635, -0.005807702429592609, -0.00025804678443819284, 0.004456091672182083, 0.022738033905625343, 0.00982733629643917, 0.006251199636608362, -0.008968500420451164, 0.017824366688728333, -0.0029548886232078075, 0.014501656405627728, 0.042012568563222885, 0.015374572016298771, -0.02542717754840851, -0.0014668848598375916, 0.021330107003450394, 0.018598726019263268, -0.01533233467489481, 0.005976653657853603, 0.0022667639423161745, 0.01107335276901722, -0.01928861066699028, 0.025905871763825417, 0.012368646450340748, 0.015895504504442215, -0.016317883506417274, 0.0010383467888459563, -0.00709243630990386, -0.005251571070402861, 0.019218215718865395, 0.02625785395503044, 0.013551305048167706, 0.0191055815666914, 0.02251276560127735, -0.03297366946935654, -0.03942197933793068, 0.024328993633389473, -0.016346042975783348, -0.009679503738880157, 0.0013903287472203374, -0.011207105591893196, -0.005895697977393866, 0.0277080200612545, 0.0074901762418448925, 0.010700251907110214, -0.044068142771720886, 0.006497587077319622, -0.009426076896488667, 0.018049634993076324, -0.03711297735571861, 0.04615187644958496, 0.004695439245551825, -0.006103367079049349, 0.0021682088263332844, -0.01620524935424328, 0.015557602979242802, -0.00048793500172905624, 0.0063180760480463505, -0.03297366946935654, 0.01619116961956024, -0.012263051234185696, -0.005307888146489859, -0.0014334465377032757, -0.0008429968147538602, -0.016937371343374252, -0.02410372532904148, 0.015177462249994278, -0.00276129855774343, -0.01685289666056633, -0.011136708781123161, 0.10103290528059006, 0.03198812156915665, -0.009968128986656666, -0.006384952925145626, -0.011784356087446213, -0.007363462820649147, 0.022526845335960388, 0.012586874887347221, -0.01703592762351036, -0.021752486005425453, -0.004748236853629351, -0.019119659438729286, -0.01933084987103939, -0.01947164162993431, -0.010869203135371208, 0.00760984979569912, -0.008067426271736622, 0.021738406270742416, -0.011770276352763176, -0.005114297848194838, 0.017585018649697304, 0.02490624412894249, -0.01188995037227869, 0.009693583473563194, -0.012551676481962204, -0.008046307601034641, 0.02021784335374832, 0.007764722220599651, 0.01685289666056633, -0.05935823917388916, 0.0332270972430706, 0.0126643106341362, -0.048798780888319016, -0.011896990239620209, 0.01576879248023033, 0.004906628746539354, 0.014881797134876251, -0.00018875033129006624, 0.021597612649202347, -0.005856979638338089, 0.0038788411766290665, 0.025117432698607445, 0.006328635849058628, -0.03015781380236149, -0.01081288605928421, -0.011805474758148193, -0.032466817647218704, -0.001594478264451027, -0.0527128167450428] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_mabsta_collaborative_computing_over_heterogeneous_devices_in_dynamic_environments.json b/database/embeddings/publications_txt/2020_mabsta_collaborative_computing_over_heterogeneous_devices_in_dynamic_environments.json new file mode 100644 index 0000000000000000000000000000000000000000..93b4de4ab110eea4aa863f4d8882ddf1f896f428 --- /dev/null +++ b/database/embeddings/publications_txt/2020_mabsta_collaborative_computing_over_heterogeneous_devices_in_dynamic_environments.json @@ -0,0 +1 @@ +[-0.016146281734108925, -0.0088975103572011, 0.007312730420380831, -0.016643745824694633, -0.005894956178963184, 0.00507058622315526, -0.012010217644274235, 0.023281345143914223, -0.032861094921827316, -0.035220496356487274, 0.0010926455724984407, 0.01934426836669445, -0.018946297466754913, 0.019358482211828232, -0.001346707926131785, 0.003189103677868843, 0.0344245545566082, 0.017581822350621223, -0.025512829422950745, -0.0054792179726064205, -0.00838583242148161, 0.003132250625640154, -0.016132067888975143, 0.004018803592771292, -0.016572680324316025, 0.012877227738499641, 0.024247849360108376, -0.028938230127096176, -0.006101048551499844, 0.0029865645337849855, 0.02768746204674244, -0.014127995818853378, -0.019699599593877792, -0.014056929387152195, -0.007398010231554508, -0.029080362990498543, 0.005425917915999889, -0.027047863230109215, 0.028995081782341003, -0.01277773454785347, -0.010475183837115765, 0.020993009209632874, 0.020211277529597282, 0.004850280471146107, -0.00371677172370255, 0.013495505787432194, 0.018676243722438812, -0.01780923455953598, -0.013950330205261707, 0.0321788564324379, 0.006801052484661341, 0.01618892140686512, -0.018605178222060204, 0.007533036172389984, 0.0025246331933885813, 0.015236631967127323, 0.003979717381298542, 0.01608942821621895, -0.013694491237401962, -0.020168637856841087, 0.002444683341309428, 0.0015261505031958222, -0.031240779906511307, 0.014419368468225002, 0.0017073696944862604, 0.0002991450310219079, -0.04064996913075447, 0.025967655703425407, 0.013239666819572449, 0.01410667598247528, 0.027474261820316315, 0.010162492282688618, 0.0148670868948102, -0.007611209060996771, 0.020666103810071945, -0.01874731108546257, -0.038034725934267044, 0.008954363875091076, -0.010148278437554836, 0.028099646791815758, -0.0027040757704526186, -0.002190621104091406, -0.010169599205255508, 0.019486401230096817, 0.02137676626443863, 0.014383834786713123, 0.009082282893359661, -0.02156153880059719, -0.019557466730475426, -0.003997483756393194, 0.02394936978816986, 0.029592040926218033, 0.018505685031414032, -0.00015057188284117728, -0.006758412811905146, 0.02437576837837696, -0.03280423954129219, 0.005962469149380922, 0.024503687396645546, -0.010752343572676182, 0.02079402282834053, 0.019799092784523964, -0.02019706554710865, -0.024830592796206474, -0.022329056635499, 0.004519821610301733, -0.012237630784511566, 0.015094499103724957, 0.008712737821042538, 0.007213237229734659, -0.02854025736451149, 0.03610172122716904, 0.0006196100148372352, -0.008009180426597595, -0.010382797569036484, -0.024333128705620766, 0.006374654360115528, -0.014568607322871685, -0.0014577490510419011, -0.006808158941566944, 0.027062077075242996, 0.005962469149380922, 0.00911781657487154, 0.003197987098246813, 0.01628841459751129, 0.009544214233756065, -0.02350875735282898, -0.007788875140249729, -0.0005885184509679675, -0.021263061091303825, 0.025967655703425407, 0.00037176598561927676, -0.011384833604097366, 0.0057350569404661655, -0.0088975103572011, 0.0033081399742513895, -0.00902543030679226, -0.027232635766267776, -0.022357482463121414, -0.04320835694670677, -0.0051842923276126385, 0.04889366775751114, -0.03109864704310894, -0.02070874348282814, -0.032008297741413116, 0.0031180374789983034, 0.02846919186413288, 0.01933005452156067, -0.008876190520823002, 0.022115856409072876, -0.013658957555890083, -0.01574830897152424, -0.022798094898462296, 0.028739243745803833, -0.004892920143902302, -0.0038020513020455837, -0.0016762781888246536, 0.026095574721693993, 0.0033738764468580484, -0.013040680438280106, -0.005806123372167349, 0.03220728412270546, -0.002624126151204109, -0.009736093692481518, 0.004747234284877777, 0.03635755926370621, 0.005194952245801687, -0.004253322724252939, 0.0026063595432788134, -0.00953710824251175, 0.001077543944120407, 0.02325291931629181, -0.0022154944017529488, -0.009103602729737759, -0.0028124519158154726, 0.03465196490287781, 0.021874232217669487, 0.021760525181889534, -0.003855351125821471, -0.004356368910521269, 0.02410571649670601, 0.010915795341134071, 0.005713736638426781, 0.01188229862600565, 0.009394975379109383, 0.017596036195755005, 0.020225491374731064, 0.014035609550774097, 0.019742239266633987, -0.005639117211103439, 0.05656883865594864, 0.02343769185245037, -0.007987860590219498, 0.012557429261505604, -0.5944560170173645, 0.0022918907925486565, 0.00920309592038393, -0.006214754655957222, -0.027758527547121048, 0.010787876322865486, 0.022130070254206657, 0.004402562044560909, -0.004992413334548473, 0.034794099628925323, -0.004747234284877777, 0.005806123372167349, 0.018761523067951202, -0.03706822171807289, -0.026877304539084435, -0.014191956259310246, 0.015876229852437973, -0.015591963194310665, 0.03058696910738945, 0.002668542554602027, -0.017340196296572685, 0.014369621872901917, -0.00393707724288106, 0.0015448053600266576, -0.016331054270267487, -0.007710702251642942, 0.006729986052960157, -0.009565535001456738, -0.00502439308911562, 0.013609211891889572, -0.022087430581450462, 0.0327189601957798, 0.030899660661816597, 0.016231561079621315, 0.05548862740397453, -0.0016238667303696275, -0.027204209938645363, 0.04363475739955902, 0.015591963194310665, 0.02350875735282898, -0.01554932352155447, -0.022883374243974686, 0.006427953951060772, -0.005465004593133926, 0.002943924628198147, -0.0028302185237407684, 0.017937153577804565, 0.01269956212490797, -0.02137676626443863, -0.035817455500364304, -0.017567608505487442, 0.008030501194298267, -0.011661992408335209, -0.013154386542737484, 0.007952327840030193, -0.008193953894078732, 0.00817974004894495, -0.01975645311176777, 0.00818684697151184, -0.0037309848703444004, 0.01103660836815834, 0.008208166807889938, -0.0024837700184434652, -0.04559618979692459, -0.01594729535281658, 0.01601836085319519, -0.008961470797657967, 0.005496984347701073, 0.004406115505844355, -0.022442761808633804, 0.008869084529578686, -0.0017189180944114923, -0.015520896762609482, -0.017397049814462662, 0.02214428409934044, 0.03928549587726593, 0.015989935025572777, 0.01227316353470087, -0.013751344755291939, 0.010844729840755463, 0.015535110607743263, 0.006818818859755993, -0.010397011414170265, -0.03220728412270546, 0.030871234834194183, 0.01175437867641449, -0.012415296398103237, -0.0013067330000922084, 0.013175706379115582, 0.005930489394813776, 0.025868162512779236, 0.02173209935426712, 0.005425917915999889, -0.012102603912353516, 0.010404117405414581, 0.03601644188165665, 0.012344229966402054, 0.001434652484022081, 0.00041596038499847054, -0.04642055928707123, -0.029165642336010933, -0.002727172337472439, 0.024304701015353203, -0.022016363218426704, 0.03843269869685173, 0.025072218850255013, -0.011484326794743538, -0.0032015403266996145, 0.020168637856841087, -0.009224415756762028, 0.005777696613222361, 0.008876190520823002, -0.01227316353470087, 0.006143688224256039, 0.03885909542441368, -0.04190073534846306, 0.043236784636974335, 0.010446758009493351, 0.007803088519722223, 0.015066072344779968, 0.0005743051879107952, -0.016316840425133705, 0.012983827851712704, -0.002528186421841383, -0.01533612422645092, 0.019216349348425865, 0.024859018623828888, -0.041872311383485794, -0.010624423623085022, 0.02761639468371868, -0.0026152427308261395, -0.014710740186274052, 0.021064074710011482, 0.0007506386027671397, 0.026465119794011116, 0.00810156762599945, -0.0020627016201615334, -0.026038721203804016, 0.01422748900949955, -0.041787032037973404, -0.03740934282541275, -0.005130992736667395, 0.012813268229365349, -0.0077959815971553326, -0.04659111797809601, -0.025171712040901184, -0.018789950758218765, 0.006765519268810749, 0.00470814760774374, 0.0027413854841142893, -0.0186478178948164, 0.0130833201110363, -0.0045660147443413734, 0.002107118023559451, 0.011349300853908062, -0.014995005913078785, -0.011320874094963074, -0.010112745687365532, -0.03595958650112152, -0.004651294555515051, -0.015023432672023773, 0.0019774220418184996, -0.013879263773560524, -0.01625998690724373, -0.014149315655231476, 0.016657959669828415, -0.00933101586997509, 0.015023432672023773, -0.012074178084731102, -0.04104794189333916, -0.0079665407538414, -0.017354410141706467, 7.051117336231982e-06, 0.027587968856096268, -0.014852873049676418, 0.013573678210377693, -0.004505608230829239, 0.007088871207088232, -0.04150276631116867, -0.01670059934258461, -0.014263021759688854, 0.02812807261943817, -0.003858904354274273, -0.022172709926962852, 0.04184388369321823, 0.008044714108109474, 0.033884450793266296, -0.0028373252134770155, -0.019813306629657745, 0.010539144277572632, 0.001998741878196597, 0.03243469446897507, 0.002817781874909997, 0.007596995681524277, -0.01925898902118206, 0.01341733243316412, -0.0029350414406508207, -0.004043676890432835, 0.008570604957640171, 0.04607943817973137, 0.03885909542441368, 0.02862553671002388, -0.0009576194570399821, 0.0025814862456172705, 0.006260947789996862, -0.02990473248064518, 0.015606177039444447, -0.01762446202337742, 0.025683389976620674, -0.011903618462383747, 0.02129148691892624, -0.02241433598101139, -0.015080285258591175, -0.010397011414170265, 0.0135097187012434, 0.018079286441206932, -0.03465196490287781, 0.025455977767705917, -0.012713775038719177, 0.019543254747986794, -0.031752459704875946, 0.008549285121262074, 0.04224185645580292, -0.004672614391893148, -0.000191546103451401, -0.023835662752389908, 0.04372003674507141, 0.01975645311176777, 0.030444836243987083, -0.001966762123629451, -0.0025495062582194805, 0.017098570242524147, 0.021945297718048096, -0.0019809752702713013, 0.017070144414901733, -0.03249154984951019, 0.022769667208194733, 0.0067441994324326515, 0.05358405038714409, -0.025697601959109306, 0.009423402138054371, 0.01043965108692646, 0.03414028882980347, -0.010873155668377876, 0.03576060011982918, -0.009956399910151958, -0.005930489394813776, 0.00011159642599523067, 0.0037984978407621384, 0.015151351690292358, -0.046306852251291275, 0.012209204025566578, -0.03368546441197395, 0.01146300695836544, 0.027474261820316315, -0.017084358260035515, 0.0066766864620149136, 0.00415027653798461, 0.018974723294377327, 0.013197026215493679, 0.0001271421933779493, 0.024318914860486984, -0.00030447501922026277, -0.003544435603544116, -0.005923382472246885, -0.02154732681810856, 0.00030958291608840227, -0.0037487514782696962, 0.00015234855527523905, -0.0246173944324255, -0.0022332610096782446, -0.021860018372535706, -0.0024304701946675777, -0.025072218850255013, 0.02947833389043808, 0.0070675513707101345, -0.005788356531411409, 0.009764520451426506, 0.020495543256402016, 0.002439353382214904, -0.04369160905480385, -0.024006223306059837, 0.021831590682268143, 0.002442906843498349, 0.007398010231554508, -0.008570604957640171, 0.013324946165084839, -0.001718029729090631, -0.04610786586999893, -0.0031535704620182514, -0.01034726481884718, 0.010574677027761936, -0.006651813164353371, -0.013410225510597229, -0.01967117376625538, -0.01628841459751129, 0.02122042141854763, 0.0050492663867771626, -0.0088193379342556, -0.00911070965230465, 0.0013706927420571446, 0.012138137593865395, -0.002439353382214904, -0.007831514813005924, 0.045624613761901855, -0.007987860590219498, -0.014298555441200733, -0.006914758589118719, -0.0014151092618703842, 0.01188229862600565, 0.002910168142989278, -0.01925898902118206, -0.010681277140974998, -0.007405116688460112, 0.028483403846621513, 0.01473916694521904, 0.02060925029218197, -0.02326713316142559, 0.022769667208194733, -0.01269245520234108, 0.0007426436641253531, -0.021746311336755753, -0.00393707724288106, 0.02292601391673088, 0.05548862740397453, 0.014796020463109016, -0.021092500537633896, -0.00299189449287951, 0.007724915165454149, 0.006928971968591213, -0.04713122174143791, 0.0010073658777400851, 0.018875230103731155, 0.009665027260780334, -0.006200541742146015, -0.013495505787432194, 0.014064036309719086, -0.007405116688460112, 0.014639673754572868, -0.01960010640323162, 0.0007000038167461753, -0.008151313289999962, 0.014995005913078785, 0.014277235604822636, 0.0042853024788200855, -0.0031269206665456295, 0.007639635819941759, 0.02751690149307251, 0.018789950758218765, -0.018349338322877884, -0.010908689349889755, -0.0025654963683336973, -0.004125403240323067, -0.036755532026290894, 0.01753918267786503, 0.013850837014615536, 0.018932083621621132, -0.005770590156316757, 0.005500537808984518, 0.02359403856098652, 0.01103660836815834, 0.01197468489408493, -0.000485472206491977, 0.026010295376181602, 0.025768669322133064, -0.009508681483566761, -0.0006555873551405966, 0.019472187384963036, 0.022044790908694267, -0.03561846911907196, -0.004224896430969238, 0.02035341039299965, -0.011477219872176647, -0.013580785132944584, 0.042128149420022964, -0.009231522679328918, -0.014326982200145721, -0.023139212280511856, 0.008229486644268036, -0.002801791997626424, -0.008279233239591122, -0.01291276142001152, 0.003128697397187352, -0.0424124151468277, -0.013495505787432194, -0.02913721464574337, 0.014469115063548088, 0.0008647890063002706, -0.004523375071585178, -0.003670578356832266, -0.06009373068809509, -0.028483403846621513, -0.011136101558804512, 0.0014044493436813354, -0.011619352735579014, -0.019813306629657745, -0.06668868660926819, -0.012884334661066532, 0.020125998184084892, 0.01299804076552391, 0.027644820511341095, 0.0038802241906523705, -0.02122042141854763, 0.02079402282834053, -0.014724954031407833, 0.007469076197594404, -0.012337123043835163, -0.05648355931043625, 0.02011178433895111, -0.007273643743246794, 0.017269130796194077, -0.01196757797151804, -0.015407190658152103, 0.016757452860474586, 0.007817301899194717, 0.004672614391893148, -0.029933158308267593, -0.006228968035429716, 0.023039719089865685, 0.013268092647194862, 0.016316840425133705, 0.015961509197950363, 0.01372291799634695, 0.002577932784333825, 0.025925014168024063, -0.028312845155596733, -0.0297341737896204, -0.012813268229365349, 0.005138099193572998, 0.01628841459751129, -0.01473916694521904, -0.012500575743615627, -0.025853948667645454, -0.011832552030682564, 0.019102642312645912, -0.01688537187874317, 0.011775698512792587, -0.004669060930609703, 0.021064074710011482, 0.02318185195326805, 0.009586854837834835, -0.005315765272825956, -0.0073909033089876175, 0.0050492663867771626, 0.003965504001826048, -0.0014399824431166053, 0.0050776926800608635, 0.033884450793266296, -0.01043965108692646, 0.026038721203804016, 0.00033845362486317754, -0.0321788564324379, -0.024489473551511765, -0.012024431489408016, -0.0016283084405586123, 0.033173784613609314, -0.003990377299487591, -0.034964658319950104, -0.030359556898474693, -0.005969575606286526, -0.0003504460910335183, 0.016558466479182243, 0.003139357315376401, -0.026905730366706848, -0.011910725384950638, 0.022385910153388977, -0.016117854043841362, -0.007231004070490599, 0.009473148733377457, -0.02896665595471859, -0.0265930388122797, -0.0018184109358116984, -0.0078883683308959, 0.028781883418560028, -0.016999077051877975, 0.01719806343317032, 0.003039864357560873, -0.003098494140431285, -0.03405500948429108, -0.040678396821022034, -0.03760832920670509, 0.002933264710009098, 0.0366702526807785, 0.026365626603364944, 0.034026581794023514, 0.009167563170194626, 0.010517824441194534, 0.007767555303871632, 0.01796558126807213, -0.00751882279291749, -0.01359499804675579, -0.0034733691718429327, 0.0019010256510227919, -0.004619314800947905, 0.02852604351937771, 0.002320317318663001, 0.02011178433895111, -0.00669089937582612, 0.011718845926225185, 0.013602104969322681, -0.0019045789958909154, -0.023793023079633713, -0.013552358373999596, -0.01239397656172514, 0.01495236624032259, -0.01873309724032879, -0.01422038208693266, 0.006353334058076143, -0.05571604147553444, -0.027659034356474876, 0.021334126591682434, 0.0026720957830548286, 0.0070284646935760975, 0.00383403105661273, 0.017866088077425957, -0.016316840425133705, 0.014710740186274052, 0.04312307760119438, 0.005059926304966211, -0.0022012810222804546, -0.0214762594550848, -0.0321788564324379, 0.00028693050262518227, 0.0067051127552986145, 0.015634603798389435, -0.004288855940103531, -0.0006151683628559113, -0.014305662363767624, -0.0005925159202888608, 0.037267208099365234, 0.0007843951461836696, 0.00847821868956089, -0.008293446153402328, -0.004750787280499935, -0.013218346051871777, -0.019017362967133522, -0.020651889964938164, -0.005500537808984518, 0.0006298258085735142, 0.0004288411873858422, -0.00012514344416558743, 0.009743200615048409, -0.013161493465304375, -0.005884296260774136, 0.008847763761878014, 0.01065285038203001, 0.02676359750330448, -0.014241701923310757, 0.007838621735572815, 0.03314536064863205, -0.002858645049855113, -0.005703076720237732, -0.0034413894172757864, -0.004303069319576025, 0.004637081176042557, 0.02454632706940174, 0.040934234857559204, -0.018704671412706375, -0.011484326794743538, 0.023636678233742714, 0.015350338071584702, -0.03374231606721878, -0.018605178222060204, 0.015492470934987068, 0.03058696910738945, 0.021845804527401924, -0.023622464388608932, -0.01299093384295702, 0.004146723076701164, 0.0007590777822770178, -0.0097503075376153, 0.007476183120161295, 0.0009074287954717875, -0.008741164579987526, -0.009466041810810566, -0.00809446070343256, -0.001111300545744598, 0.01924477517604828, 0.0022119409404695034, -0.005919829476624727, 0.012244736775755882, 0.009089389815926552, -0.02248540148139, 0.004871600307524204, 0.013516825623810291, 0.03166717663407326, -0.003915757406502962, 0.011008181609213352, 0.02359403856098652, 0.009075176902115345, -0.012173670344054699, 0.004690380766987801, 0.01625998690724373, 0.023395052179694176, 0.006296481005847454, -0.011626459658145905, -0.014199062250554562, 0.004406115505844355, 0.010659956373274326, -0.010198025032877922, 0.017524968832731247, -0.008073140867054462, 0.002116001443937421, 0.010766556486487389, -0.003915757406502962, 0.0064492737874388695, 0.0020182852167636156, -0.006218308117240667, 0.010148278437554836, -0.024930085986852646, -0.011555393226444721, -0.0028124519158154726, -0.01832091249525547, -0.035049937665462494, -0.02231484279036522, -0.0025708263274282217, -0.025925014168024063, 0.02274124138057232, 0.005038606468588114, 0.028739243745803833, 0.016657959669828415, 0.021604178473353386, -0.0190742164850235, 0.020651889964938164, 0.010937116108834743, -2.1063131043774774e-06, -0.010759449563920498, 0.015364550985395908, 0.008407152257859707, -0.011633566580712795, 0.008129993453621864, -0.008243699558079243, -0.00838583242148161, -0.022257989272475243, -0.015591963194310665, 0.0033187998924404383, 0.008257913403213024, -0.008051821030676365, 0.025328056886792183, -0.0019525487441569567, -0.011008181609213352, -0.0067726257257163525, -0.009473148733377457, 0.015279271639883518, -0.0028781883884221315, 5.9795696870423853e-05, 0.026195067912340164, -0.013957437127828598, 0.04539720341563225, -0.013765557669103146, 0.00266143586486578, -0.0025495062582194805, -0.05688152834773064, -0.008343192748725414, -0.007209684234112501, 0.03342962637543678, -0.01994122564792633, -0.010887369513511658, 0.0048218537122011185, -0.012415296398103237, -0.037181928753852844, -0.010787876322865486, 0.002405596897006035, 0.0027858021203428507, 0.023494545370340347, -0.010930009186267853, 0.014255915768444538, -0.0008683422929607332, -0.016501612961292267, -0.017141209915280342, 0.0010375691344961524, 0.022130070254206657, -0.027374768629670143, -0.00547211105003953, 0.002577932784333825, 0.030302703380584717, -0.009508681483566761, -0.026820451021194458, -0.03993930667638779, -0.02453211322426796, -0.04337891936302185, -0.008954363875091076, -0.0014941706322133541, 0.004729467444121838, 0.003288596635684371, 0.014611247926950455, 0.005120332818478346, 0.026877304539084435, -0.00962949451059103, -0.021860018372535706, -0.011057928204536438, 0.0016842731274664402, 0.010972648859024048, -0.012472149915993214, -0.0017500096000730991, -0.012429509311914444, -0.0574500598013401, -0.017354410141706467, 0.025626536458730698, -0.002958138007670641, 0.0027147356886416674, 0.01601836085319519, 0.0027413854841142893, -0.005955362692475319, 0.005482770968228579, 0.0031517939642071724, -0.01299804076552391, -0.005500537808984518, 0.02599608153104782, -0.051935311406850815, -0.014170635491609573, 0.019017362967133522, -0.016316840425133705, -0.005564497318118811, -0.012088390998542309, 0.034907806664705276, -0.010027466341853142, 0.0023753936402499676, -0.0031127072870731354, -0.031752459704875946, 0.01035437174141407, -0.0093239089474082, 0.024660034105181694, 0.009402082301676273, 0.012337123043835163, 0.0313260592520237, 0.010574677027761936, -0.01711278408765793, -0.023992009460926056, 0.012244736775755882, -0.01731177046895027, -0.01226605661213398, 0.012145244516432285, -0.03320221230387688, 0.011015288531780243, -0.003965504001826048, 0.01235844288021326, -0.0023736171424388885, -0.006761965807527304, -0.0390012301504612, -0.023665104061365128, -0.012152350507676601, 0.022357482463121414, 0.014383834786713123, -0.02154732681810856, -0.02777274139225483, -0.01077366340905428, -0.002906614914536476, 0.003659918438643217, -0.009565535001456738, 0.0011912501649931073, -0.037096649408340454, 0.007334050256758928, 0.0018850356573238969, -0.02854025736451149, 0.011569606140255928, 0.008847763761878014, 0.005042159464210272, -0.021504687145352364, 0.0016105418326333165, 0.1971665620803833, -0.018107714131474495, -0.007127957884222269, 0.019813306629657745, 0.0022847841028124094, -0.02564075030386448, 0.01823563314974308, -0.004871600307524204, 0.005447237752377987, 0.01350261177867651, 0.007952327840030193, 0.0037309848703444004, 0.01824984699487686, -0.002652552677318454, 0.015392977744340897, 0.023892516270279884, -0.018519898876547813, -0.029165642336010933, -0.022087430581450462, -0.0027893553487956524, -0.0032441802322864532, 0.012415296398103237, -0.008940150029957294, -0.011640672571957111, 0.004235556349158287, -0.026735171675682068, -0.004022357054054737, -0.024816378951072693, 0.0078883683308959, 0.032320987433195114, -0.028028579428792, 0.026720957830548286, 0.004143170081079006, 0.016046788543462753, -0.022627534344792366, -0.006573639810085297, -0.00021752974134869874, -0.0010082542430609465, 0.01653003878891468, 0.023636678233742714, -0.017567608505487442, -0.002039605053141713, -0.009060963056981564, -0.017866088077425957, -0.004381242208182812, 0.022712815552949905, -0.013474185019731522, -0.013282306492328644, -0.012173670344054699, -0.009245735593140125, -0.00971477385610342, -0.01402139663696289, 0.033969730138778687, -0.004214236047118902, -0.013019360601902008, 0.012813268229365349, -0.009785840287804604, 0.03007529117166996, -0.0002842655230779201, 0.009359441697597504, -0.01465388759970665, 0.006719326134771109, -0.015080285258591175, 0.01103660836815834, -0.00014501983241643757, 0.015890441834926605, -0.02070874348282814, 0.018363552168011665, 0.012941187247633934, -0.0088975103572011, 0.003105600830167532, -0.005230485461652279, -0.017055930569767952, -0.0025743795558810234, -0.013701598159968853, -0.04309465363621712, 0.01014117244631052, 0.0021693012677133083, 0.027417408302426338, 0.026450905948877335, -0.00847821868956089, 0.006523893680423498, -0.01687115803360939, -0.00826501939445734, -0.040593113750219345, -0.03141133859753609, 0.0355900414288044, -0.0020218384452164173, -0.025527043268084526, -0.012216310948133469, -0.027076290920376778, 0.015492470934987068, -0.009423402138054371, 0.008705631829798222, 0.009139136411249638, 0.008918830193579197, 0.005486324429512024, -0.008229486644268036, 0.00029425922548398376, 0.01482444629073143, -0.03365703672170639, 0.0728856772184372, 0.021788951009511948, -0.0002019839739659801, 0.0017553395591676235, -0.003848244436085224, -0.02411992847919464, 0.014248808845877647, 0.0067548593506217, -0.015066072344779968, -0.012557429261505604, -0.025370696559548378, -0.009700560942292213, -0.006015768740326166, 0.0029385946691036224, 0.04821143299341202, 0.010269091464579105, 0.017354410141706467, 0.02718999609351158, -0.0148670868948102, -0.0029865645337849855, -0.0407068207859993, -0.00464418763294816, -0.00818684697151184, 0.0026010293513536453, -0.014469115063548088, -0.0040294635109603405, -0.014078249223530293, -0.03772203251719475, -0.029592040926218033, 0.02077980898320675, 0.008066033944487572, 0.03934234753251076, -0.013047787360846996, -0.022798094898462296, 0.006040642037987709, 0.01671481318771839, -0.023579824715852737, -0.0162031352519989, 0.00022941114730201662, -0.02470267377793789, -0.013545251451432705, 0.015179778449237347, 0.021589966490864754, 0.006502573844045401, -0.05452212691307068, 0.009466041810810566, -0.013602104969322681, -0.0016238667303696275, -0.027730101719498634, -0.00011087465827586129, -0.034822527319192886, -0.002327424008399248, -0.018960509449243546, 0.027133142575621605, -0.017354410141706467, 0.0028231118340045214, -0.035049937665462494, 0.001731354626826942, -0.004900026600807905, -0.025683389976620674, -0.00758278276771307, 0.03556161746382713, -0.00736958347260952, -0.014852873049676418, -0.008535072207450867, -0.1822710484266281, 0.01227316353470087, 0.02369352988898754, -0.020168637856841087, 0.0016736132092773914, 0.0021444279700517654, 0.01218077726662159, 0.011271127499639988, -0.019401121884584427, -0.0276021808385849, 0.01634526625275612, 0.020509757101535797, -0.003890884341672063, -0.010510717518627644, 0.008925937116146088, 0.010780769400298595, -0.0083929393440485, -0.007625422440469265, 0.011917831376194954, -0.0011832552263513207, 0.023821450769901276, -0.0274458359926939, -0.00911781657487154, -0.012863014824688435, -0.0018210759153589606, 0.012315803207457066, -0.014284342527389526, 0.030387982726097107, -0.03883066773414612, -0.024915872141718864, 0.01634526625275612, -0.020765595138072968, 0.01651582680642605, -0.004615761339664459, 0.02565496228635311, 0.033344343304634094, 0.0029687979258596897, -0.027246849611401558, -0.001941888825967908, 0.056284572929143906, 0.009466041810810566, 0.0472165010869503, -0.008719844743609428, -0.008364512585103512, -0.006207648199051619, 0.027460047975182533, 0.01363053172826767, 0.0005711960257031024, 0.030871234834194183, -0.032917946577072144, 0.006459933705627918, 0.0015590187394991517, 0.022357482463121414, -0.0039619505405426025, 0.007596995681524277, 0.020339198410511017, 0.01625998690724373, -0.012408189475536346, 0.011484326794743538, -0.00517363240942359, -0.008854870684444904, -0.03254840150475502, 0.01154828630387783, -0.0025228564627468586, -0.022215349599719048, -0.026450905948877335, -0.026180854067206383, 0.024489473551511765, -0.03007529117166996, 0.0072843036614358425, -0.023139212280511856, -0.015179778449237347, 0.00455890828743577, 0.0013342712773010135, 0.012791948392987251, 0.01235844288021326, -0.00455890828743577, 0.006367547437548637, 0.019884372130036354, -0.010340157896280289, 0.012465042993426323, 0.03360018506646156, -0.014014289714396, 0.0010437874589115381, 0.04317993298172951, -0.010027466341853142, 0.020225491374731064, -0.0012054634280502796, -0.006317800842225552, -0.007056891452521086, 0.012067071162164211, -0.001702039735391736, 0.002279454143717885, -0.008428472094237804, 0.004935559816658497, 0.019045788794755936, -0.013367585837841034, -0.01516556553542614, 0.010674170218408108, -0.025541257113218307, -0.008435579016804695, 0.0008634565165266395, -0.011860978789627552, 0.009466041810810566, 0.03647126629948616, 0.018875230103731155, -0.025256991386413574, 0.008286340162158012, 0.026124000549316406, -0.03459511324763298, -0.02171788550913334, 0.017681315541267395, 0.013609211891889572, 0.023210279643535614, 0.00019754232198465616, 0.027076290920376778, -0.0072167906910181046, -0.02905193530023098, 0.030814381316304207, -0.0047543407417833805, 0.05273125320672989, 0.01847725920379162, -0.014305662363767624, 0.027886446565389633, -0.019401121884584427, -0.023210279643535614, -0.09466041624546051, -0.022954439744353294, -0.0026561059057712555, 0.005571604240685701, -0.016160493716597557, 0.013367585837841034, -0.0028675284702330828, 0.019315842539072037, -0.013246772810816765, 0.014049823395907879, -0.0006706889253109694, -0.01400718279182911, -0.007483289577066898, -0.02129148691892624, 0.00040307961171492934, 0.0025317396502941847, -0.001566125312820077, -0.015236631967127323, 0.020751383155584335, 0.030046865344047546, 0.011896511539816856, -0.03996773064136505, 0.003766518086194992, -0.008293446153402328, -0.0022332610096782446, 0.02402043528854847, -0.02623770758509636, 0.011924938298761845, 0.013623424805700779, 0.01618892140686512, 0.02326713316142559, -0.01359499804675579, 0.005500537808984518, 0.000710663793142885, 0.019230561330914497, -0.008798018097877502, -0.016984865069389343, -0.012621388770639896, 0.02804279327392578, -0.01687115803360939, 0.0032246368937194347, 0.018036646768450737, 0.02394936978816986, -0.01688537187874317, -0.00014690753596369177, 0.01043965108692646, -0.010276198387145996, 0.02640826627612114, 0.005297998432070017, -0.04329363629221916, 0.010986861772835255, -0.030814381316304207, -0.002064478350803256, -0.026621464639902115, -0.0006698006181977689, -0.0017126997699961066, -0.009736093692481518, 0.024844806641340256, -0.03041641041636467, -0.008705631829798222, -0.0007191029144451022, -0.018278272822499275, -0.01941533386707306, -0.004757894203066826, 0.010148278437554836, -0.015961509197950363, -0.02838391251862049, -0.003428952768445015, 0.016757452860474586, -0.022783881053328514, -0.013069107197225094, 0.00583454966545105, -0.014476221054792404, -0.017752381041646004, -0.03840427100658417, -0.01610364206135273, 0.0008874413906596601, -0.012109710834920406, 0.029165642336010933, 0.011804125271737576, -0.017667101696133614, -0.010468077845871449, -0.016785878688097, -0.007994967512786388, 0.013623424805700779, 0.013410225510597229, -0.015193991363048553, 0.00664470624178648, 0.0088975103572011, -0.019813306629657745, 0.008009180426597595, 0.023025507107377052, -0.0076467422768473625, -0.017667101696133614, -0.016061002388596535, -0.00568531034514308, 0.007049784995615482, -0.013396012596786022, -0.0022332610096782446, 0.014966579154133797, -0.024006223306059837, 0.019912799820303917, -0.08471112698316574, 0.02352297119796276, 0.015890441834926605, -0.015634603798389435, -0.012813268229365349, -5.418811269919388e-05, 0.009970612823963165, 0.0028053452260792255, -0.008165527135133743, -0.005756376776844263, -0.024148356169462204, -0.010851835831999779, 0.011235594749450684, -0.0013404896017163992, -0.002245697658509016, 0.01359499804675579, 0.020921941846609116, -0.022556468844413757, 0.016999077051877975, 0.009785840287804604, -0.024731099605560303, 0.02113514021039009, 0.02879609726369381, 0.011093461886048317, -0.0010242442367598414, -0.0031748905312269926, -0.0097503075376153, 0.008371619507670403, -0.010446758009493351, 0.0083929393440485, 0.0014355408493429422, -0.015435617417097092, -0.014199062250554562, 0.022798094898462296, -0.01627420075237751, 0.017994007095694542, -0.000799940899014473, 0.0020609248895198107, 0.004438095260411501, 0.05929778516292572, -0.0028160051442682743, -0.020595036447048187, -0.00019143505778629333, -0.010112745687365532, -0.020978795364499092, 0.005269572138786316, -0.001813080976717174, 0.022329056635499, 0.005294445436447859, -0.004054336808621883, 0.010290411300957203, -0.019116856157779694, -0.011569606140255928, -0.04173017665743828, 0.006292928010225296, -0.017325982451438904, 0.010382797569036484, 0.0065167867578566074, -0.008158420212566853, -0.029449908062815666, 0.015051859430968761, -0.0015430287458002567, 0.032065149396657944, 0.01495236624032259, -0.0030860574916005135, -0.004672614391893148, -0.011320874094963074, 0.019955439493060112, -0.00923862960189581, -0.012955401092767715, 0.010205131955444813, -0.0025157497730106115, 0.0010295741958543658, 0.011626459658145905, 0.019884372130036354, 0.010105638764798641, -0.006765519268810749, 0.004690380766987801, 0.0058025699108839035, 0.022854946553707123, 0.012024431489408016, -0.023451905697584152, -0.013374692760407925, 0.00012192325812065974, 0.015051859430968761, 0.016984865069389343, -0.007405116688460112, 0.018519898876547813, -0.0049710930325090885, -0.0015199321787804365, -0.007994967512786388, 0.003032757667824626, -0.019742239266633987, 0.0025672728661447763, -0.005337085109204054, 0.036243852227926254, -0.017922941595315933, -0.0016300850547850132, 0.026223493739962578, 0.03721035644412041, 0.017837660387158394, 0.006051301956176758, -0.009956399910151958, -0.03163875266909599, -0.027118930593132973, 0.005241145379841328, -0.00019376692944206297, -0.009743200615048409, -0.004374135751277208, 0.0072416639886796474, 0.003496465738862753, 0.030188998207449913, -0.0013200580142438412, 0.012003111653029919, -0.014796020463109016, 0.0366702526807785, -0.00588074279949069, -0.018192993476986885, -0.02956361323595047, 0.04138905927538872, 0.012287376448512077, -0.021447833627462387, 0.01329651940613985, -0.004072103649377823, 0.023665104061365128, 0.026280347257852554, 0.03874538838863373, -0.03715350106358528, 0.021064074710011482, -0.029762599617242813, -0.0002782692899927497, 0.004146723076701164, -0.014390941709280014, -0.006399527192115784, -0.01660110615193844, -0.0022350375074893236, 0.019998079165816307, -0.012074178084731102, -0.03843269869685173, 0.09033957868814468, 0.016757452860474586, 0.002913721604272723, 0.007675169035792351, -0.009451827965676785, -9.80493932729587e-05, 0.02657882496714592, 0.013793984428048134, -0.0030203210189938545, -0.028227565810084343, -0.021831590682268143, 0.005237591918557882, -0.005703076720237732, -0.03792101889848709, -0.011953365057706833, -0.0017331313574686646, -0.01533612422645092, 0.039143361151218414, -0.01866203173995018, 0.0029119448736310005, 0.03453826159238815, 0.008236593566834927, 0.010553357191383839, -0.001710923039354384, -0.01035437174141407, 0.00715638417750597, 0.01282037515193224, 0.0028231118340045214, 0.008634565398097038, -0.06015058234333992, 0.006634046323597431, -0.0016096534673124552, -0.05506223067641258, -0.024603180587291718, 0.005152312573045492, -0.01762446202337742, 0.014682313427329063, -0.0019134622998535633, 0.027985939756035805, 0.00962238758802414, 0.018690457567572594, 0.009636600501835346, -0.007895474322140217, -0.042980946600437164, -0.002551282988861203, 0.0032850434072315693, -0.02770167402923107, -0.0033898663241416216, -0.03928549587726593] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_mobile_encounterbased_social_sybil_control.json b/database/embeddings/publications_txt/2020_mobile_encounterbased_social_sybil_control.json new file mode 100644 index 0000000000000000000000000000000000000000..9d6a3cafc46ed6b38489b5f4c120e5d7bc1481cb --- /dev/null +++ b/database/embeddings/publications_txt/2020_mobile_encounterbased_social_sybil_control.json @@ -0,0 +1 @@ +[-0.015979532152414322, 0.01434415951371193, -0.005228342022746801, -0.013886809349060059, -0.024946363642811775, 0.009555843658745289, -0.02107967808842659, 0.004258205648511648, -0.028632881119847298, -0.03376074507832527, 0.020899510011076927, 0.03209765627980232, -0.013089911080896854, 0.023047668859362602, -0.002416678937152028, 0.021897364407777786, 0.030295973643660545, -0.012979038991034031, -0.0067078000865876675, 0.0021446943283081055, -0.016242854297161102, -0.004379472695291042, -0.014981677755713463, 0.009826095774769783, -0.03060087189078331, 0.0128889549523592, 0.023421863093972206, -0.037114646285772324, -0.010435895062983036, -0.019804641604423523, 0.01081009116023779, -0.002016497775912285, -0.00023365560628008097, -0.0025656642392277718, -0.030545435845851898, -0.004684372805058956, 0.015494463965296745, -0.010221079923212528, 0.04357298091053963, 0.0033279142808169127, 0.00607721135020256, 0.025528445839881897, 0.010228008963167667, -0.016949668526649475, -0.0007336655980907381, 0.003126957453787327, 0.02604123204946518, -0.023033808916807175, -0.018654337152838707, 0.01751789078116417, -0.0044764862395823, 0.014157061465084553, -0.0322362445294857, 0.004580429755151272, -0.02353273704648018, -0.0071443612687289715, 0.011627777479588985, 0.025667035952210426, -0.011253581382334232, -0.01783665083348751, 0.014385736547410488, -0.004497275222092867, -0.03628310188651085, -0.017725776880979538, 8.494107169099152e-05, -0.015702350065112114, -0.014524327591061592, 0.023505019024014473, -0.005273384042084217, 0.030517717823386192, 0.01930571347475052, 0.006645434070378542, 0.015217281877994537, -0.021245986223220825, 0.024932503700256348, -0.04581815376877785, -0.008752016350626945, 0.012403886765241623, -0.005955944303423166, 0.011613918468356133, -0.009826095774769783, -0.008668861351907253, -0.01090017519891262, 0.01690809056162834, 0.024433577433228493, 0.028258686885237694, -0.005647579673677683, -0.009334097616374493, -0.013138418085873127, -0.013103770092129707, -0.0008198518771678209, 0.012265295721590519, 0.010491332039237022, 0.0007804400520399213, -0.03498034551739693, 0.022424008697271347, -0.015771646052598953, 0.034259673207998276, 0.0012897616252303123, -0.01737930066883564, 0.0170605406165123, -0.015688490122556686, -0.025265123695135117, -0.029159527271986008, -0.0071997977793216705, -0.012708785943686962, 0.005089750979095697, 0.010955611243844032, 0.0071443612687289715, 0.016949668526649475, -0.037364110350608826, 0.03456457331776619, 0.004538852255791426, -0.028133954852819443, -0.00343532208353281, -0.009590490721166134, -0.006447941996157169, -0.009230154566466808, -0.01949974149465561, 0.002427073195576668, 0.03872229903936386, 0.006326674949377775, 0.00019586793496273458, -0.020261991769075394, 0.015605336055159569, 0.0032724777702242136, -0.013796725310385227, -0.033344972878694534, 0.012098986655473709, -0.017088258638978004, 0.012098986655473709, -0.006641969550400972, -0.00013101172226015478, 0.02609666809439659, 0.020844072103500366, 0.016076546162366867, -0.013678922317922115, -0.025722471997141838, -0.022784344851970673, -0.036449410021305084, -0.00607721135020256, 0.04579043760895729, -0.013637345284223557, 0.010047840885818005, 0.0013451980194076896, 0.009091563522815704, -0.003107901196926832, 0.005401580594480038, -0.009396463632583618, 0.01107341330498457, 0.0004456563910935074, -0.017212990671396255, -0.013263150118291378, 0.00687064416706562, 0.0033868153113871813, 0.013727429322898388, 0.004039925057440996, 0.022257700562477112, 0.022964512929320335, -0.019347291439771652, -0.009888461790978909, 0.03777988255023956, -0.012597913853824139, -0.029519863426685333, 0.0057619172148406506, 0.030878053978085518, 0.023948509246110916, 0.019458163529634476, -0.027801336720585823, -0.005640650168061256, -0.04379472881555557, 0.01398382242769003, -0.010193360969424248, -0.018391013145446777, -0.013734359294176102, 0.0415218360722065, 0.04501432552933693, -0.003717701183632016, -0.0002986201143357903, -0.027898350730538368, -0.001691675279289484, -0.0005989726050756872, 0.030240535736083984, 0.04024679958820343, -0.015175704844295979, 0.0138452323153615, 0.00935488659888506, -0.023629749193787575, 0.015161845833063126, -0.009167788550257683, 0.028314122930169106, 0.03040684573352337, -0.0005504657747223973, 0.010955611243844032, -0.6120174527168274, -0.016824936494231224, -0.0009129676036536694, -0.0038285739719867706, -0.006517237517982721, 0.009791447781026363, 0.024613745510578156, -0.006503378506749868, -0.04310177266597748, 0.03378846496343613, -0.015120267868041992, -0.006323210429400206, 0.0026592130307108164, -0.013540332205593586, -0.014621340669691563, -0.01302061602473259, 0.010692289099097252, -0.025278981775045395, 0.03908263519406319, 0.020968804135918617, -0.009292520582675934, 0.026262978091835976, 0.0041785161010921, 0.004157727118581533, -0.012251436710357666, 0.014676777645945549, 0.005020455922931433, -0.01618741825222969, 0.016741782426834106, 0.0005872789770364761, -0.040274519473314285, 0.015272717922925949, 0.04897802695631981, -0.009923108853399754, 0.042270228266716, -0.0029935636557638645, 0.00120227609295398, 0.026581736281514168, 0.017947522923350334, 0.0370037741959095, -0.031293828040361404, -0.03384390100836754, -0.007677936460822821, 0.011586200445890427, 0.0015452886000275612, -0.0022157221101224422, 0.02635999023914337, -0.0023092711344361305, -0.010927893221378326, -0.028910063207149506, -0.026858918368816376, -0.015674632042646408, -0.016034968197345734, -0.02676190435886383, 0.01717141456902027, 0.002499833470210433, 0.020802496001124382, -0.017795072868466377, 0.021717196330428123, 0.007671006955206394, -0.0007340987212955952, 0.01613198220729828, 0.008578777313232422, -0.02651244029402733, 0.0027059875428676605, 0.005443158093839884, 0.007975907064974308, 0.009826095774769783, -0.0013729161582887173, -0.01625671423971653, 0.0027631563134491444, 0.027912208810448647, -0.012549406848847866, -0.016769500449299812, -0.0009597420576028526, 0.026152104139328003, 0.010422036051750183, 0.0025587347336113453, -0.025944218039512634, 6.399002450052649e-05, 0.01606268621981144, 0.011052625253796577, -0.00819072313606739, -0.026193682104349136, 0.025985796004533768, -0.00104116415604949, -0.021315282210707664, 0.0061430418863892555, 0.024696899577975273, 0.008703509345650673, 0.016007250174880028, 0.012306872755289078, -0.009923108853399754, -0.009458829648792744, 0.004712090827524662, 0.02834184095263481, -0.009271731600165367, -0.004663584288209677, -0.01110113225877285, -0.02186964638531208, 0.006330139935016632, 0.00862035434693098, 0.009548913687467575, -0.005325355567038059, 0.03428738936781883, 0.015244999900460243, -0.02411481738090515, -0.0059143672697246075, 0.03187590837478638, -0.018737491220235825, 0.012674138881266117, -0.007303740829229355, -0.0063370694406330585, 0.005353074055165052, 0.0023958904203027487, -0.03739182651042938, 0.028993219137191772, 0.01725456863641739, 0.013588838279247284, 0.02101038210093975, 0.003776602214202285, 0.012625631876289845, -0.015383590944111347, -0.011295159347355366, -0.007092389743775129, 0.03434282913804054, 0.023408005014061928, -0.037447262555360794, -0.012674138881266117, 0.023158540949225426, 0.010622993111610413, -0.01816926896572113, 0.026013514026999474, -0.010747725144028664, 0.017795072868466377, -0.007047347724437714, 0.036449410021305084, -0.02430884540081024, 0.013665063306689262, 0.002077131299301982, -0.00832238420844078, -0.007428472861647606, -0.005921296775341034, -0.008897536434233189, -0.025126531720161438, -0.019984809681773186, -0.014579763635993004, 0.018391013145446777, -0.008107568137347698, -0.002472115447744727, -0.002264228882268071, 0.01665862649679184, 0.008724297396838665, 0.005741128232330084, 0.0035375328734517097, -0.01664476841688156, -0.008904465474188328, -0.026664890348911285, -0.01236230880022049, -0.013450248166918755, -0.008551059290766716, 0.031349264085292816, -0.014967817813158035, -0.026554018259048462, 0.0007327994098886847, 0.0018952307291328907, 0.004455697722733021, 0.02405938133597374, 0.0067874896340072155, -0.03944297134876251, 0.0014179582940414548, -0.008052132092416286, -0.02213296853005886, 0.028106236830353737, -0.011814874596893787, 0.006520702503621578, -0.002472115447744727, 0.0009528124937787652, -0.018654337152838707, -0.0017774284351617098, 0.0021533563267439604, 0.016215136274695396, -0.012202929705381393, -0.02016497775912285, 0.019846217706799507, -0.0033868153113871813, 0.019929373636841774, 0.0024807772133499384, 0.011544622480869293, 0.011704002507030964, -0.006167295388877392, -0.0017306540394201875, 0.004777921829372644, 0.03741954639554024, -0.019790781661868095, 0.018391013145446777, 0.0027458323165774345, -0.0038597567472606897, 0.013637345284223557, 0.03251342847943306, 0.03032369166612625, 0.02834184095263481, 0.008384750224649906, -0.009500406682491302, -0.014247145503759384, -0.028771473094820976, 0.014330299571156502, -0.018917659297585487, 0.03226396441459656, -0.002212257357314229, 0.0346200093626976, -0.0041334740817546844, -0.006056422833353281, 0.005519383121281862, -0.008045202121138573, 0.015452886000275612, -0.0043378956615924835, 0.007546274922788143, -0.03384390100836754, 0.005730734206736088, -0.0016275770030915737, -0.02451673150062561, 0.004039925057440996, -0.012778081931173801, -0.009167788550257683, 0.012209858745336533, 0.04274143651127815, 0.02663717232644558, -0.006680082064121962, -0.0014049652963876724, -0.021731054410338402, 0.019776923581957817, 0.02213296853005886, -0.004091896582394838, -0.011925747618079185, -0.007158220279961824, 0.023366427049040794, -0.019139405339956284, 0.0282864049077034, -0.01758718676865101, -0.0015357604715973139, 0.05271998047828674, 0.03389933705329895, -0.03170960023999214, 0.019527459517121315, -0.00033738225465640426, 0.0038251089863479137, 0.009701363742351532, -0.0002557435363996774, 0.014995536766946316, -0.03073946386575699, 0.011572340503334999, -0.018931517377495766, 0.007081995252519846, 0.03899948298931122, -4.385102874948643e-05, -0.01791980490088463, -0.0017999494448304176, 0.01081009116023779, 0.007511627394706011, 0.0019922442734241486, 0.006434082984924316, -0.005016990937292576, 0.009839954786002636, 0.004091896582394838, -0.02483549155294895, -0.012972109019756317, -0.01011713594198227, 0.003939446527510881, -0.03680974617600441, -0.003492490854114294, -0.018862223252654076, -0.009216295555233955, 0.00272677605971694, 0.033206380903720856, -0.00961820874363184, 0.011648565530776978, -0.004919977393001318, 0.0021533563267439604, 0.015161845833063126, -0.04493117332458496, -0.020469877868890762, 0.013166136108338833, 0.012577124871313572, 0.013380952179431915, -0.019513599574565887, -0.004067643079906702, -0.003026478923857212, -0.01690809056162834, -0.01791980490088463, 0.029575299471616745, 0.010546768084168434, -0.018252423033118248, -0.027981504797935486, -0.014912381768226624, -0.0020702017936855555, 0.026678750291466713, -0.0037939262110739946, -0.005055103451013565, 0.0214815903455019, -0.005301102064549923, 0.014018470421433449, -0.010865527205169201, -0.02267347276210785, 0.048395946621894836, -0.023435723036527634, -0.0007873696158640087, -0.01718527264893055, -0.001291494001634419, -0.02703908644616604, 0.024946363642811775, 0.018751349300146103, -0.04077344387769699, -0.020442159846425056, 0.0319867804646492, 0.02333870902657509, 0.02979704551398754, -0.0011312483111396432, 0.009902320802211761, -0.010602204129099846, -0.009846883825957775, -0.03719779849052429, -0.039886463433504105, -0.0003973661223426461, 0.050391655415296555, 0.03484175354242325, 0.018293999135494232, 0.013062193058431149, -0.004424514714628458, -0.00352713861502707, -0.04861769080162048, -0.019776923581957817, 0.0025032982230186462, -0.016506176441907883, -0.015286576934158802, 0.009493477642536163, -0.005841606762260199, 0.012473181821405888, 0.006818672642111778, -0.012930531986057758, 0.002712917048484087, -0.0004681774298660457, 0.03204221650958061, -0.016076546162366867, 0.017337722703814507, -0.02688663639128208, 0.001398035790771246, 0.02015111781656742, 0.02399008721113205, -0.02281206287443638, 0.023643609136343002, 0.01724070869386196, -0.007158220279961824, -0.02155088633298874, 0.0070508127100765705, 0.020705481991171837, 0.018792927265167236, -0.002796071581542492, -0.0064895194955170155, 0.03503578156232834, 0.04105062782764435, 0.0455964095890522, 0.012376167811453342, 0.016007250174880028, 0.024890927597880363, 0.01618741825222969, 0.007518556900322437, -0.008668861351907253, 0.014690636657178402, -0.03766901046037674, -0.0047051613219082355, 0.013872950337827206, 0.01664476841688156, -0.016880372539162636, 0.03060087189078331, 0.008835170418024063, -0.02042829990386963, -0.03243027254939079, 0.014261004514992237, -0.0021637505851686, 0.019666049629449844, -0.0007033488363958895, -0.028230968862771988, -0.004247811157256365, -0.007747231982648373, -0.02683120034635067, 0.025625459849834442, -0.0189730953425169, -0.024170255288481712, -0.004673978313803673, -0.020968804135918617, -0.014468890614807606, -0.018931517377495766, 0.033206380903720856, -0.012570195831358433, -0.018543463200330734, -0.03403792902827263, -0.0010792766697704792, 0.010699218139052391, -0.008183793164789677, 0.03270745277404785, -0.024544449523091316, -0.004247811157256365, 0.008266948163509369, -0.024225691333413124, -0.016755640506744385, 0.008204582147300243, -0.03927666321396828, -0.007331459317356348, 0.011558481492102146, -0.009687504731118679, -0.028327981010079384, -0.021398436278104782, 0.039165791124105453, 9.549779497319832e-05, -0.006898362655192614, -0.0013893739087507129, -0.008745086379349232, 0.02591650001704693, 0.015286576934158802, -0.006181154400110245, 0.021245986223220825, 0.006472195498645306, 0.015203422866761684, 0.005013525951653719, -0.02656787820160389, -0.010470543056726456, -0.019250277429819107, 0.008980690501630306, -0.0014777255710214376, -0.01202276162803173, 0.0032205062452703714, -0.01764262281358242, 0.013228502124547958, 0.023310991004109383, -0.019804641604423523, -0.010228008963167667, 0.0044210501946508884, 0.018155409023165703, 0.013671993277966976, 0.006964193191379309, 0.0020979198161512613, 0.006447941996157169, -0.03409336507320404, -0.017268426716327667, 0.0025275517255067825, 0.00947961863130331, 0.03661571815609932, 0.011274370364844799, 0.008897536434233189, -0.015050972811877728, -0.024225691333413124, -0.03389933705329895, 0.006617716047912836, -0.0032222387380898, 0.012244506739079952, -0.011149638332426548, -0.018280141055583954, -0.019679909572005272, -0.002799536334350705, -0.008474834263324738, -0.015037113800644875, -0.006319745443761349, -0.014455031603574753, -0.006621180567890406, 0.000929425295908004, 0.017614904791116714, -0.006298956926912069, 0.004833357874304056, -0.03847283497452736, -0.00703695323318243, 0.00352713861502707, 0.011759438551962376, 0.026401568204164505, -0.004372543189674616, 0.014482749626040459, -0.005585213657468557, 0.016755640506744385, -0.020927228033542633, -0.040357671678066254, -0.04157727211713791, 0.01364427525550127, 0.04091203585267067, 0.024156395345926285, 0.023158540949225426, 0.013595768250524998, 0.007317599840462208, 0.01809997297823429, 0.00964592769742012, 0.019776923581957817, -0.01189802959561348, 0.012570195831358433, -0.028383418917655945, 0.016700204461812973, 0.008405538275837898, -0.01106648426502943, 0.019070109352469444, 0.010706148110330105, 0.00816300418227911, 0.008668861351907253, -0.0006258245557546616, -0.010657641105353832, 0.0071443612687289715, -0.023574313148856163, 0.006025239825248718, 0.005945549812167883, -0.006832531653344631, 0.0003038172726519406, -0.06236590817570686, -0.01579936407506466, 0.006208872888237238, 0.007927400059998035, -0.017143694683909416, 0.000266137853031978, 0.008502552285790443, -0.016270572319626808, 0.015009395778179169, -0.0027423675637692213, 0.0016163164982572198, -0.021758772432804108, -0.0021221733186393976, -0.04412734508514404, -0.008107568137347698, 0.018557323142886162, 0.00011152237129863352, 0.016838794574141502, 0.011212004348635674, 0.006652363575994968, -0.005114004481583834, 0.046899162232875824, 0.018737491220235825, -0.01094175223261118, 0.0005617262795567513, -0.005172905512154102, -0.023380286991596222, -0.012466251850128174, -0.037253238260746, -0.005256060045212507, -0.008911395445466042, 0.0069122216664254665, 0.003797390963882208, 0.01909782737493515, -0.0011988113401457667, -0.017614904791116714, 0.018210845068097115, 0.009181647561490536, 0.028133954852819443, 0.007677936460822821, 0.024946363642811775, 0.02849429100751877, -0.011509975418448448, 0.0017297877930104733, 0.029519863426685333, 0.014316440559923649, 0.0009172986028715968, 0.025154249742627144, 0.028036940842866898, -0.025098813697695732, -0.019277995452284813, 0.014926240779459476, 0.027510294690728188, -0.026249118149280548, -0.02663717232644558, 0.03093349188566208, 0.024946363642811775, 0.0026748045347630978, -0.010823950171470642, -0.018917659297585487, -0.013561120256781578, -0.0013287403853610158, -0.01776735484600067, 0.00785810500383377, 0.015605336055159569, 0.017420876771211624, 0.0008557988912798464, -0.004580429755151272, 0.0026540160179138184, 0.018460309132933617, 0.008904465474188328, -0.029658455401659012, 0.00736610684543848, 0.00736610684543848, -0.01571621000766754, 0.00014552046195603907, -0.014288722537457943, 0.028632881119847298, -0.037696726620197296, 0.006780560128390789, 0.03146013617515564, 0.0073383888229727745, 0.022091390565037727, 0.005515918135643005, 0.0077195134945213795, 0.029242681339383125, 0.0043517546728253365, -0.009936967864632607, 0.0057203397154808044, -0.02076091803610325, 0.026845058426260948, -0.004919977393001318, 0.006881038658320904, -0.008301595225930214, -0.02907637320458889, 0.0037384897004812956, 0.02299223095178604, 0.029713891446590424, -0.002813395345583558, -0.005290708038955927, 0.004784851334989071, -0.03348356485366821, 0.007009235210716724, 0.01604882813990116, -0.009666715748608112, -0.014552045613527298, -0.004414120689034462, -0.007608640938997269, -0.019458163529634476, 0.031293828040361404, 0.019735345616936684, 0.021065818145871162, 0.021578604355454445, 0.032014500349760056, -0.02723311446607113, -0.002142961835488677, 0.003752348944544792, -0.020248131826519966, -0.014759931713342667, -0.005945549812167883, 0.00329673127271235, -0.002676537027582526, 0.025750191882252693, -0.0035895046312361956, -0.02094108611345291, -0.032873764634132385, 0.0016215136274695396, -0.005041244439780712, -0.0015686758561059833, -0.02155088633298874, 0.011558481492102146, 0.01064378209412098, 0.006305886432528496, -0.019915513694286346, -0.004999666940420866, 0.0341210812330246, -0.02041444182395935, -0.012001972645521164, 0.02644314616918564, -0.0003503751358948648, 0.028522009029984474, -0.00561986118555069, -0.0002871430478990078, 0.010914034210145473, -0.04631708189845085, -0.008925254456698895, 0.01047747302800417, 0.015300435945391655, -0.023505019024014473, -0.022950654849410057, 0.003132154466584325, -0.009008409455418587, -0.02418411336839199, 0.010248797945678234, 0.0017557735554873943, -0.01206433866173029, 0.013956104405224323, -0.00416119210422039, 0.008079850114881992, 0.009264802560210228, -0.002295411890372634, -0.006437547970563173, -0.015965672209858894, 0.0012040084693580866, -0.015757786110043526, -0.006953798700124025, -0.011017977260053158, 0.03190362825989723, 0.006375181954354048, -0.004729414824396372, -0.035257525742053986, -0.01902853138744831, -0.03279060870409012, -0.013713570311665535, -0.00054093764629215, 0.009507336653769016, 0.006472195498645306, 0.001530563342384994, 0.005630255676805973, 0.019596755504608154, -0.0020650045480579138, 0.0014422116801142693, -0.030185099691152573, -0.010879386216402054, 0.008169934153556824, 0.0043621486984193325, 0.013256220147013664, -0.002721579046919942, -0.06757692992687225, 0.0032343652565032244, 0.01295132003724575, 0.002090990310534835, -0.004802174866199493, 0.032014500349760056, -0.02313082292675972, -0.023227836936712265, 0.0025050307158380747, -0.0010576219065114856, 0.0011442411923781037, -0.023962367326021194, 0.01990165375173092, -0.04872856289148331, 0.0008913127821870148, 0.01132980640977621, 0.023380286991596222, 0.005820818245410919, -0.00815607514232397, 0.004233952146023512, -0.008544129319489002, 0.023629749193787575, -0.015286576934158802, -0.020192695781588554, 0.004535387735813856, -0.013082982040941715, 0.03060087189078331, 0.01732386276125908, 0.01732386276125908, 0.013866020366549492, 0.00184672384057194, 0.004874935373663902, -0.01014485489577055, 0.052969444543123245, 0.008377820253372192, -0.008121427148580551, 0.018252423033118248, -0.01804453693330288, 0.0065934625454247, -0.025542303919792175, 0.013581909239292145, -0.025195827707648277, -0.006614251062273979, -0.009216295555233955, -0.007871964015066624, -0.011191216297447681, 0.02293679490685463, 0.02999107353389263, -0.03065630979835987, -0.018252423033118248, -0.0014144934248179197, -0.02128756418824196, 0.002813395345583558, -0.0073383888229727745, -0.0005002265679650009, -0.005169440992176533, 0.031959064304828644, 0.0004807372170034796, 0.00661078654229641, 0.021966658532619476, 0.008419397287070751, 0.0009952560067176819, -0.02060846798121929, -0.00019056249584537, 0.18027906119823456, -0.019319573417305946, 0.020982664078474045, 0.022035954520106316, -0.005183300003409386, -0.005020455922931433, 0.0015253662131726742, -0.00272677605971694, -0.0037003771867603064, -0.009070775471627712, -0.016935808584094048, 0.009029197506606579, -0.004507669247686863, 0.00038134155329316854, 0.017601044848561287, 0.0023317921441048384, -0.046289362013339996, -0.014184779487550259, -0.00869657937437296, -0.018792927265167236, -0.02247944474220276, -0.00547087611630559, -0.021190550178289413, -0.026526300236582756, 0.007262163795530796, -0.02246558666229248, -0.006163830868899822, -0.019804641604423523, 0.011205075308680534, 0.016672486439347267, -0.0233941450715065, 0.005266454536467791, -0.00184672384057194, 0.004497275222092867, -0.007241374813020229, -0.01073386613279581, -0.011634706519544125, 0.013685852289199829, 0.03694833815097809, 0.014468890614807606, 0.007629429455846548, -0.03639397397637367, -0.0037211659364402294, -0.03811249881982803, -0.0072829523123800755, 0.001967991003766656, -0.0013278741389513016, 0.0002535780658945441, 0.0015989926178008318, -0.0009181647910736501, -0.02102424018085003, 0.008391679264605045, 0.03996961936354637, 0.001576471608132124, 0.002998760901391506, -0.01739315874874592, 0.01645074039697647, 0.03032369166612625, 0.005010061431676149, -0.02048373594880104, 0.016935808584094048, -0.0009770658798515797, 0.022784344851970673, 0.010879386216402054, -0.006319745443761349, 0.023962367326021194, -0.020317427814006805, 0.013990752398967743, 0.02742714062333107, -0.0173100046813488, -0.01943044550716877, -0.02206367254257202, -0.011676284484565258, -0.00035427301190793514, -0.019790781661868095, -0.036310818046331406, 0.010255726985633373, 0.004604682791978121, 0.018682055175304413, 0.04362841695547104, 0.0019385403720661998, 0.012473181821405888, 0.009881531819701195, -0.006343998946249485, -0.014884663745760918, -0.043905600905418396, 0.01699124462902546, -0.00722058629617095, -0.020857932046055794, 0.0018190057016909122, -0.02993563562631607, 0.008807452395558357, -0.0031200279481709003, -0.011503045447170734, 0.007809597533196211, -0.022562600672245026, 0.010068629868328571, 0.010172572918236256, -0.020871790125966072, 0.015369731932878494, -0.01869591325521469, 0.06741061806678772, 0.017129836603999138, -0.010830879211425781, -0.0022486376110464334, 0.002224384108558297, 0.01185645256191492, 0.010823950171470642, 0.019458163529634476, -0.03021281771361828, -0.011710931546986103, -0.02444743551313877, -0.00449381023645401, 0.015439026989042759, -0.002356045413762331, 0.027441000565886497, 0.01690809056162834, 0.0022503698710352182, -0.0014188244240358472, -0.00217414484359324, -0.006468730513006449, -0.03351128101348877, 0.0014196906704455614, 0.011821804568171501, 0.009043056517839432, 0.008294666185975075, -0.02988019958138466, -0.016159700229763985, -0.016492318361997604, -0.01272264588624239, 0.03245799243450165, 0.014101625420153141, 0.008869818411767483, -0.00738689536228776, -0.0069953761994838715, -0.0010654176585376263, 0.03708692640066147, -0.011669354513287544, 0.005803494248539209, 0.00607721135020256, -0.01685265451669693, 0.0009969883831217885, 0.0044175852090120316, 0.0005457017105072737, -0.030961209908127785, -0.05255367234349251, -0.002854972844943404, -0.0029346623923629522, -0.007968977093696594, -0.01123972237110138, -0.005723804701119661, -0.011509975418448448, -0.00547087611630559, -0.022548740729689598, 0.02703908644616604, -0.017725776880979538, -0.01804453693330288, -0.0334281288087368, -0.0028116630855947733, -0.004760597832500935, -0.03536840155720711, 0.008828241378068924, 0.0016041897470131516, -0.005460481625050306, -0.017725776880979538, -0.0001952182938111946, -0.17695286870002747, 0.020650045946240425, 0.016007250174880028, -0.0233941450715065, 0.01758718676865101, 0.01758718676865101, -0.0067424476146698, 0.003915193025022745, -0.018293999135494232, 0.009902320802211761, 0.03689289838075638, 0.0029935636557638645, -0.006524167023599148, -0.019790781661868095, -0.0017878226935863495, 0.009895390830934048, 0.00559907266870141, 0.017199132591485977, 0.027718182653188705, 0.027011368423700333, 0.02081635408103466, -0.04579043760895729, 0.005540171638131142, -0.011613918468356133, 0.0036068283952772617, 0.010616064071655273, 0.009375674650073051, 0.015965672209858894, -0.02735784463584423, -0.008592636324465275, 0.026262978091835976, 0.012999827042222023, 0.013692782260477543, 0.0062123374082148075, 0.006205407902598381, 0.04091203585267067, -0.009458829648792744, -0.014482749626040459, -0.0005192828248254955, 0.03586732596158981, 0.009306379593908787, 0.013374023139476776, -0.021135114133358, -0.03808478266000748, -0.016034968197345734, 0.02551458589732647, 0.0003211411240044981, 0.018612759187817574, -0.002356045413762331, -0.028120094910264015, 0.008266948163509369, 0.007497768383473158, 0.015840940177440643, -0.003144281217828393, 0.021245986223220825, 0.03708692640066147, 0.009895390830934048, -0.024170255288481712, 0.011579270474612713, 0.005332285072654486, -0.022784344851970673, -0.0153974499553442, 0.016270572319626808, -0.007227515801787376, -0.018862223252654076, -0.01556375902146101, -0.022049814462661743, 0.0170605406165123, -0.03193134441971779, 0.016935808584094048, -0.03290148079395294, -0.002104849321767688, -0.019970949739217758, -0.00329673127271235, 0.024211831390857697, 0.0009424181771464646, -0.01699124462902546, 0.008578777313232422, -0.0017627031775191426, -0.03775216266512871, 0.0025015659630298615, 0.03140470013022423, -0.015314295887947083, -0.010297304950654507, 0.03808478266000748, -0.022701190784573555, 0.00836396124213934, 0.018293999135494232, 0.0025067629758268595, -0.005353074055165052, -0.0009883263846859336, -0.018141550943255424, 0.0024929039645940065, -0.02193894051015377, 0.02141229622066021, 0.00033954772516153753, -0.015342013910412788, 0.006971122696995735, 0.006863714661449194, -0.017296144738793373, 0.0068463911302387714, -0.00611532386392355, 0.015646914020180702, 0.006496449001133442, 0.019860077649354935, 0.01955517753958702, -0.014829227700829506, -0.001981850014999509, 0.025722471997141838, -0.011357525363564491, -0.038750018924474716, 0.006950334180146456, 0.01103183627128601, 0.020178835839033127, -0.0015522182220593095, 0.014870804734528065, -0.01869591325521469, -0.024904785677790642, 0.02333870902657509, 0.007192868273705244, 0.05174984410405159, 0.025486867874860764, 0.013838302344083786, 0.035645581781864166, -0.01427486352622509, -0.033206380903720856, -0.09313309192657471, -0.02227155864238739, -0.006371716968715191, 0.019264135509729385, -0.011821804568171501, 0.019277995452284813, -0.0028237898368388414, 0.02372676320374012, -0.000770911923609674, 0.012403886765241623, -0.014413454569876194, -0.016963526606559753, -0.004531922750174999, -0.02393464930355549, -0.014815367758274078, -0.0019887795206159353, -0.013235432095825672, -0.02458602748811245, 0.01506483182311058, 0.024572167545557022, -0.004379472695291042, -0.024336563423275948, 0.004892258904874325, -0.01758718676865101, -0.002343918662518263, 0.0004157727234996855, -0.0331786647439003, 0.008135286159813404, -0.007289881817996502, 0.016423022374510765, 0.016409164294600487, -0.028203250840306282, 0.016575472429394722, -0.0173100046813488, 0.005522847641259432, -0.0015158380847424269, -0.004881864879280329, -0.006891433149576187, 0.020178835839033127, -0.040357671678066254, 0.006946869194507599, 0.008966831490397453, 0.03073946386575699, -0.008218441158533096, -0.006316280923783779, 0.010200290940701962, -0.02570861391723156, 0.014718354679644108, 0.005193694494664669, -0.034453701227903366, -0.03656028211116791, -0.023574313148856163, -0.005353074055165052, -0.022313136607408524, 0.018293999135494232, -0.020719340071082115, -0.01302061602473259, 0.013062193058431149, -0.01888994127511978, -0.006084140855818987, -0.004663584288209677, -0.014690636657178402, -0.003780066967010498, 0.010130995884537697, 0.014191709458827972, 0.007989766076207161, -0.022257700562477112, -0.009798377752304077, 0.04132780805230141, -0.015134126879274845, -0.0062123374082148075, -0.0007124438998289406, -0.018224705010652542, 0.004452232737094164, -0.0189730953425169, 0.0007600845419801772, 0.002160285832360387, -0.01139910239726305, 0.01278501097112894, -0.03012966364622116, -0.006808278616517782, -0.012549406848847866, -0.004469556733965874, -0.00753241591155529, 0.021135114133358, 0.00690875668078661, 0.0006033035460859537, 0.029907917603850365, 0.003974094521254301, -0.015979532152414322, 0.042131636291742325, -0.001999173779040575, 0.020982664078474045, -0.01578550413250923, -0.013692782260477543, 0.002638424513861537, -0.0038597567472606897, -0.00947961863130331, -0.009548913687467575, 0.030185099691152573, -0.043656136840581894, -0.0017791608115658164, -0.08753401786088943, 0.019804641604423523, 0.008765875361859798, -0.022978372871875763, 0.004770991858094931, -0.011392172425985336, 0.015092549845576286, -0.006052957847714424, 0.00022012133558746427, 0.017864368855953217, -0.02260417677462101, 0.005813888739794493, 0.0022399756126105785, 0.0008298130705952644, -0.02762116864323616, -0.010622993111610413, 0.020261991769075394, 0.0002635392884258181, 0.018349437043070793, 0.016700204461812973, -0.010685359127819538, -0.0009095028508454561, 0.021911222487688065, 0.01697738654911518, -0.02954758144915104, 0.039941899478435516, -0.0016613585175946355, -0.011558481492102146, -0.023879213258624077, -0.009839954786002636, -0.0044314442202448845, -0.039886463433504105, 0.013568050228059292, 0.02523740381002426, 0.003535800613462925, 0.013803654350340366, 0.008412468247115612, 0.009888461790978909, 0.01331858616322279, 0.034536853432655334, 0.002983169397339225, -0.028466572985053062, 0.008225370198488235, -0.0038562919944524765, -0.005443158093839884, 0.006849855650216341, 0.0016163164982572198, 0.018945377320051193, 0.013325516134500504, -0.006153436377644539, 0.013110700063407421, -0.002350848400965333, -0.032679736614227295, -0.033012352883815765, 0.014482749626040459, -0.00080555968452245, -0.011904959566891193, 0.02246558666229248, -0.013408670201897621, -0.020178835839033127, 0.03423195332288742, -0.001593795488588512, 0.01990165375173092, -0.024281127378344536, 0.005207553505897522, 0.008959902450442314, -0.031349264085292816, 0.0002434002817608416, -0.0034768993500620127, -0.02074705995619297, -0.0334281288087368, -0.011412961408495903, -0.0064444774761796, 0.014995536766946316, 0.00024578231386840343, -0.001343465643003583, -0.01139910239726305, 0.02868831902742386, 0.009202436544001102, 0.023893073201179504, 0.016284432262182236, -0.011842593550682068, -0.02034514583647251, -0.008045202121138573, 0.03204221650958061, 0.01843259111046791, -0.0025847204960882664, 0.014579763635993004, -0.01057448610663414, 0.01523114088922739, -0.0021914688404649496, -0.0048576113767921925, 0.004646260291337967, 0.0005916099180467427, 0.0001389157259836793, 0.015577618032693863, -0.0018501885933801532, 0.0012672406155616045, 0.03204221650958061, 0.0064306179992854595, 0.0257779099047184, 0.0028636346105486155, 0.01269492693245411, -0.005883184261620045, -0.041078343987464905, -0.0050065964460372925, -0.011336736381053925, -0.019652191549539566, 0.006108394358307123, -0.007092389743775129, -0.01410855446010828, 0.03775216266512871, -0.006950334180146456, 3.261758683947846e-05, -0.028660599142313004, 0.025750191882252693, 0.011135779321193695, 0.002929465379565954, -0.043323516845703125, 0.04207620024681091, 0.013256220147013664, 0.005089750979095697, 0.02532055974006653, -0.01948588155210018, 0.03276289254426956, -0.011156568303704262, 0.019083967432379723, -0.019804641604423523, -0.003786996705457568, -0.017947522923350334, 0.006784025114029646, -0.010512120090425014, 0.0005942085408605635, -0.008814381435513496, -0.03542383760213852, -0.002090990310534835, -0.021523168310523033, -0.01460748165845871, -0.0030039579141885042, 0.08941885828971863, 0.035590145736932755, -0.0003388980694580823, 0.0019021602347493172, -0.026748046278953552, -0.008772804401814938, 0.03348356485366821, 0.02107967808842659, -0.014427313581109047, -0.028910063207149506, 0.008946043439209461, -0.0007003172067925334, 0.006413294468075037, -0.02723311446607113, -0.013117630034685135, -0.0023976226802915335, -0.015827082097530365, 0.016880372539162636, -0.012168281711637974, 0.010761584155261517, 0.00036206876393407583, 0.020303567871451378, 0.005003131926059723, 0.002021694788709283, -0.025667035952210426, -0.009389533661305904, 0.003949841018766165, 0.0011615650728344917, -0.012334590777754784, -0.04587358981370926, -0.0011182554299011827, -0.007470049895346165, -0.03689289838075638, -0.010581416077911854, 0.013782866299152374, 0.00932023860514164, 0.004251276142895222, -0.005380792077630758, 0.008807452395558357, 0.011121920309960842, 0.01189802959561348, 0.013117630034685135, 0.0054743411019444466, -0.044044189155101776, -0.012133633717894554, -0.014815367758274078, -0.020982664078474045, -0.0012360577238723636, -0.04421050101518631] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_parkingjson_an_open_standard_format_for_parking_data_in_smart_cities.json b/database/embeddings/publications_txt/2020_parkingjson_an_open_standard_format_for_parking_data_in_smart_cities.json new file mode 100644 index 0000000000000000000000000000000000000000..5bf5163e2c35bdbf34f3218fdcb3f715fd5418ca --- /dev/null +++ b/database/embeddings/publications_txt/2020_parkingjson_an_open_standard_format_for_parking_data_in_smart_cities.json @@ -0,0 +1 @@ +[0.020412152633070946, 0.01080240122973919, 0.012982074171304703, -0.009527498856186867, -0.0053120944648981094, 0.003608797211199999, -0.013674359768629074, -0.010240348055958748, -0.010651606135070324, -0.0447998084127903, 0.008883193135261536, 0.025785936042666435, -0.013598962686955929, 0.009733128361403942, -0.019260626286268234, 0.007197031285613775, 0.029583226889371872, -0.015819760039448738, -0.003197538200765848, 0.005922128912061453, 0.006144893821328878, 0.011528958566486835, -0.02898004651069641, 0.0036602045875042677, 0.02248215489089489, 0.01778009533882141, 0.008348556235432625, -0.01675194688141346, -0.004383334890007973, -0.004917971324175596, -0.0028942348435521126, -0.004126298241317272, -0.006563007365912199, -0.01686161570250988, -0.0004298941057641059, -0.025923021137714386, -0.01103544794023037, -0.01794459857046604, 0.026608454063534737, -0.0336683988571167, 0.0015473617240786552, 0.00405090069398284, -0.0021436873357743025, -0.029583226889371872, -0.005456035491079092, 0.011953926645219326, 0.030405744910240173, -0.01369492243975401, -0.007951006293296814, 0.018876785412430763, -0.003447720780968666, 0.018684864044189453, -0.026389114558696747, -0.009287597611546516, -0.010377434082329273, 0.0033089208882302046, 0.0054286178201437, 0.031666938215494156, -0.004780885297805071, -0.02740355394780636, 0.019219500944018364, -0.007594581693410873, -0.0340796560049057, 0.0009656017064116895, 0.009219055064022541, -0.036821383982896805, -0.021769307553768158, 0.015984265133738518, -0.009116239845752716, -0.010391142219305038, 0.01416101586073637, 0.031529851257801056, 0.009897631593048573, -0.013742903247475624, 0.006011235062032938, -0.036245621740818024, -0.024511033669114113, -0.006521881558001041, 0.0005085045704618096, -0.002596072154119611, -0.012454291805624962, -0.017972014844417572, 0.00046994900912977755, 0.024195734411478043, 0.015093202702701092, 0.01761559210717678, -0.036684297025203705, 0.029638061299920082, -0.005510869901627302, -0.01686161570250988, 0.007395806722342968, 6.329532334348187e-05, -0.0019808972720056772, -0.010912070982158184, -0.009835942648351192, 0.029665477573871613, -0.010000446811318398, 0.018383273854851723, 0.015751216560602188, -0.020316191017627716, 0.008136073127388954, -0.0045752557925879955, -0.026635870337486267, -0.02189268358051777, 0.0044792951084673405, -0.02867845632135868, 0.006179165560752153, 0.01440777163952589, 0.009644022211432457, 0.02900746464729309, -0.014599692076444626, 0.03808257728815079, -0.013235683552920818, -0.010589918121695518, -0.015627840533852577, -0.01740996167063713, -0.001495097647421062, -0.00361907877959311, -0.020987914875149727, 0.0013742903247475624, 0.03926151990890503, 0.0022293662186712027, 0.009116239845752716, -0.02178301475942135, 0.006638404913246632, 0.0007278426201082766, 0.0003487133071757853, -0.02747209742665291, -0.006412212271243334, -0.007539747282862663, 0.004989941604435444, 0.030076736584305763, -0.0005170724471099675, 0.018246188759803772, -0.002333894604817033, 0.020275065675377846, -0.01180998608469963, 0.005641101859509945, -0.03514892980456352, -0.05691823735833168, 0.0034802788868546486, 0.02911713346838951, -0.03536826744675636, 0.007094216533005238, 0.00697426637634635, 0.00031187135027721524, -0.00204944028519094, 0.01104915700852871, 0.011905946768820286, 0.015943137928843498, 0.012865550816059113, -0.007423223927617073, -0.02758176624774933, 0.020028309896588326, -0.01778009533882141, 0.004506712779402733, 0.011069719679653645, 0.03237978741526604, 0.015298832207918167, -0.007765939459204674, 0.011556376703083515, 0.018314732238650322, -0.024277986958622932, -0.0008276586304418743, 0.00019052856077905744, 0.02213943935930729, 0.03890509530901909, 0.003855552524328232, -0.003404881339520216, 0.007018819451332092, -0.025703683495521545, 0.020837118849158287, -0.0290622990578413, 0.0032352369744330645, -0.003978930413722992, 0.06097599118947983, 0.04723994433879852, 0.013379624113440514, -0.00705994525924325, -0.012043032795190811, 0.010130678303539753, 0.006415639538317919, 0.026512492448091507, 0.027362428605556488, 0.0028942348435521126, 0.018054267391562462, 0.030926672741770744, -0.026320572942495346, 0.010350016877055168, 0.003612224478274584, 0.05642472580075264, 0.004595818463712931, -0.01732771098613739, 0.012467999942600727, -0.6237975358963013, -0.014023929834365845, 0.011186243034899235, -0.007800211198627949, -0.00837597344070673, 0.036437541246414185, 0.020275065675377846, 0.0071353428065776825, -0.026910044252872467, 0.01610764116048813, -0.008012695237994194, 0.010713295079767704, 0.003728747833520174, -0.021508842706680298, -0.009616605006158352, 0.007436932530254126, 0.024744080379605293, -0.031200844794511795, 0.011796277016401291, 0.02726646699011326, 0.005483452696353197, 0.030433161184191704, -0.0015961987664923072, -0.006741219665855169, 0.011254786513745785, 0.011186243034899235, 0.010843527503311634, -0.021344339475035667, 0.007128488272428513, -0.0007484055822715163, -0.04060496762394905, 0.009856506250798702, 0.03451833501458168, 0.005507442634552717, 0.04723994433879852, -0.002352743875235319, -0.002284200629219413, 0.024373946711421013, 0.04101622477173805, 0.04477239027619362, -0.012097867205739021, -0.019781555980443954, -0.0065767159685492516, 0.006741219665855169, 0.004979660268872976, -0.012467999942600727, 0.025964148342609406, -0.0065424442291259766, -0.02895263023674488, -0.02837686613202095, -0.005401200614869595, -0.009253325872123241, -0.006977693177759647, -0.020713742822408676, 0.02338692545890808, -0.02324983850121498, 0.01736883632838726, -0.003123854286968708, 0.009575478732585907, 0.014133598655462265, 0.019685594365000725, -0.00705309072509408, 0.004561547189950943, -0.018328439444303513, 0.004846001043915749, 0.02192010171711445, 0.02375705912709236, -0.01410618145018816, 0.0060249436646699905, -0.03287329897284508, 0.0012663347879424691, 0.006994829047471285, -0.00290451617911458, -0.02264665998518467, 0.010356871411204338, 0.02279745414853096, 0.026389114558696747, 0.020439568907022476, -0.029884817078709602, 0.005195571109652519, 0.004876845516264439, -0.004208549857139587, -0.0027999880257993937, -0.02326354756951332, 0.002897661877796054, 0.015010951086878777, -0.013311080634593964, 0.0014445470878854394, 0.02837686613202095, -0.0039240955375134945, 0.027170507237315178, 0.006011235062032938, 0.00433878181502223, 0.005144163966178894, -0.02936388924717903, 0.04416920989751816, 0.009870214387774467, 0.011995052918791771, -0.006963984575122595, -0.01669711247086525, -0.01374975685030222, -0.01388684380799532, 0.01671082153916359, -0.006802908144891262, 0.0289252121001482, 0.025360967963933945, 0.0008884907001629472, 0.01398965809494257, 0.00862958375364542, 0.00018367424490861595, -0.012865550816059113, 0.015230289660394192, -0.01632698066532612, 0.01775267720222473, -0.0027571485843509436, -0.036382708698511124, 0.012749027460813522, 0.0008160919533111155, -0.008650146424770355, 0.025854479521512985, -0.00809494685381651, 0.0068200440146028996, -0.0035008417908102274, 0.021769307553768158, -0.01163862831890583, 0.010500811971724033, 0.03309263661503792, -0.020316191017627716, -0.020905662328004837, 0.008835213258862495, 0.003389459103345871, -0.012618795037269592, 0.03375064954161644, -0.018890494480729103, 0.026978585869073868, 0.01757446490228176, 0.011714025400578976, -0.02323612943291664, 0.0017598455306142569, -0.027006004005670547, -0.004211977124214172, 0.0014368359697982669, 0.0009715992491692305, -0.029747730121016502, -0.023729640990495682, -0.012803861871361732, -0.034490916877985, 0.015696382150053978, -0.007937297224998474, 0.006114049814641476, -0.023853018879890442, 0.0016313270898535848, -0.015052077360451221, 0.01110399141907692, -0.030158989131450653, -0.011823694221675396, 0.021248377859592438, -0.014695652760565281, -0.000951893103774637, 0.01126849465072155, -0.007779648527503014, 0.009424683637917042, -0.02209831401705742, -0.02867845632135868, -0.007203885819762945, 0.00364306871779263, -0.018410691991448402, 0.02241361141204834, 0.01749221421778202, -0.01734141819179058, -0.012687338516116142, -0.01688903383910656, -0.023798184469342232, -0.005397773813456297, -0.019150957465171814, 0.025594014674425125, 0.00012969650560989976, -0.019329169765114784, -0.0076836878433823586, -0.0077179595828056335, -0.00043910459498874843, 0.02222169190645218, -0.019904932007193565, 0.0018558059819042683, 0.01673823967576027, 0.0004622379201464355, 0.02278374508023262, 0.009931903332471848, 0.0004922255175188184, -0.008108655922114849, 0.01410618145018816, 0.009129948914051056, -0.0018678010674193501, 0.024716662243008614, -0.01743737980723381, 0.010480248369276524, -0.013365915976464748, -0.01682049036026001, -0.02238619513809681, 0.031420182436704636, 0.014627109281718731, 0.04137264937162399, -0.0033945997711271048, -0.0027040275745093822, 0.008595312014222145, -0.004774030763655901, 0.012906676158308983, -0.020110562443733215, 0.024894874542951584, 0.0001348372461507097, 0.036656878888607025, -0.0005509156035259366, -0.03240720555186272, 0.006381367798894644, 0.019342878833413124, 0.03265396133065224, -0.015202872455120087, 0.005500588566064835, -0.031475018709897995, 0.0050653391517698765, -0.0027228768449276686, -0.011864820495247841, 0.014887574128806591, -0.018863076344132423, -0.030734751373529434, 0.011782568879425526, 0.012454291805624962, 0.03575211018323898, 0.02239990420639515, -0.01658744364976883, -0.02848653681576252, 0.019891224801540375, 0.00211112922988832, 0.0014719642931595445, 0.01150154136121273, -0.007779648527503014, 0.03344906121492386, -0.0169027429074049, 0.043374110013246536, -0.013146577402949333, 0.026101233437657356, 0.042277418076992035, 0.03893251344561577, -0.026814082637429237, 0.020357318222522736, -0.021810432896018028, 0.011487833224236965, 0.02911713346838951, -0.01464081835001707, 0.019164666533470154, -0.02344175986945629, 0.01417472492903471, -0.00880779605358839, -0.0013254532823339105, 0.036190785467624664, 0.013674359768629074, -0.010219784453511238, -0.01650519296526909, 0.0287881251424551, 0.005610257387161255, 0.00440047075971961, -0.0038761154282838106, 0.01100117713212967, 0.02856878750026226, -0.004794593900442123, -0.01721804030239582, -0.018492944538593292, -0.01743737980723381, 0.019891224801540375, -0.012255516834557056, -0.0026252029929310083, -0.03246203809976578, -0.025073086842894554, 0.007813920266926289, -0.0037698736414313316, 0.009897631593048573, -0.0068200440146028996, -0.010535082779824734, 0.019932350143790245, 0.01386628020554781, -0.00549716129899025, 0.012063595466315746, 0.001141243614256382, 0.013043763116002083, 0.0033140615560114384, -0.005795323755592108, -0.012337768450379372, 0.00555199570953846, -0.0032455185428261757, -0.0064807552844285965, 0.01780751161277294, 0.021878976374864578, -0.007155905477702618, -0.018383273854851723, -0.023729640990495682, 0.018794532865285873, 0.042058080434799194, -0.01422955933958292, -0.018588904291391373, 0.001073557185009122, 0.024182025343179703, 0.013845717534422874, -0.002016882412135601, -0.016217311844229698, 0.05286048352718353, -0.0027108818758279085, 0.00015475759573746473, -0.004530702717602253, 0.0005800464423373342, -0.015298832207918167, -0.003670486155897379, -0.007841337472200394, -0.030542830005288124, -0.006031797733157873, 0.013708631508052349, -0.015134328976273537, 0.03221528232097626, 0.007361534982919693, 0.012550252489745617, -0.01399651262909174, -0.01643664948642254, -0.03912443295121193, -0.01111770048737526, 0.02911713346838951, 0.053024984896183014, 0.0236336812376976, 0.011857965961098671, 0.011837403289973736, -0.01761559210717678, -0.006117476616054773, -0.03824708238244057, -0.00814292673021555, 0.0014359791530296206, -0.0030741605442017317, -0.004729477688670158, 0.008718689903616905, 0.00712163420394063, -0.0045444113202393055, 0.018547778949141502, -0.020453277975320816, -0.010850382037460804, -0.024483615532517433, 0.0339425727725029, -0.021440299227833748, 0.01156323030591011, -0.027554349973797798, 0.004678070545196533, 0.01657373458147049, 0.04186616092920303, -0.020275065675377846, 0.037397146224975586, 0.02773256041109562, -0.00867756363004446, -0.0228111632168293, 0.019987184554338455, 0.020891955122351646, 0.023962687700986862, -0.0028154102619737387, -0.03937118873000145, 0.027362428605556488, 0.048418886959552765, 0.013777174986898899, 0.04161940515041351, 0.04076946899294853, 0.02889779582619667, -0.009541206993162632, -0.00219680811278522, 0.0018472380470484495, 0.011672900058329105, -0.04655451327562332, -0.0015902012819424272, 0.020192813128232956, 0.00808809231966734, -0.019246919080615044, 0.00445530517026782, 0.0064807552844285965, -0.024031231179833412, -0.021481424570083618, 0.019658178091049194, -0.0047568948939442635, 0.0007124204421415925, -0.01374975685030222, -0.004962524399161339, -0.02856878750026226, -0.007217594422399998, -0.025854479521512985, -0.019932350143790245, -0.023880435153841972, -0.041701655834913254, -0.0025703683495521545, -0.026800373569130898, -0.007272428832948208, -0.014627109281718731, 0.010631043463945389, 0.020192813128232956, -0.009047696366906166, -0.05033809319138527, -0.0033860320691019297, 0.004986514803022146, -0.014805321581661701, 0.02881554327905178, -0.019767846912145615, 0.025182755663990974, 0.013468730263411999, -0.020028309896588326, -0.020466987043619156, 0.0026748967356979847, -0.02908971533179283, -0.0009536066791042686, 0.009596042335033417, -0.0068234712816774845, -0.006347096525132656, 0.01457227487117052, 0.04186616092920303, -0.007464349735528231, -0.0004926539259031415, 0.003814426716417074, 0.00552800577133894, 0.004116016440093517, 0.01776638627052307, 0.010960050858557224, 0.006384795065969229, 0.0005903279525227845, -0.012577669695019722, 0.005630820523947477, -0.003499128157272935, 0.0020031738094985485, -0.03314746916294098, 0.006412212271243334, 0.018657447770237923, -0.0059632547199726105, 0.0004947959096170962, 0.008581602945923805, 0.018821951001882553, -0.004126298241317272, -0.015668965876102448, -0.010843527503311634, 0.005524578504264355, 0.0039583672769367695, -0.0014479742385447025, -0.0018386702286079526, -0.0030981507152318954, 0.0001580776588525623, -0.012749027460813522, -0.02239990420639515, -0.02760918438434601, 0.01723174937069416, 0.020124271512031555, 0.014901282265782356, 0.012200681492686272, 0.004249675665050745, -0.01180313155055046, -0.03950827568769455, -0.0034819922875612974, 0.01735512726008892, 0.02859620563685894, 0.0037698736414313316, -0.013427603989839554, 0.0002964491432067007, -0.00897229928523302, -0.00590156577527523, -0.0115083958953619, -0.015202872455120087, -0.026156067848205566, -0.007663125172257423, 0.005216134246438742, 0.005250405985862017, -0.008177198469638824, -0.014777904376387596, -0.030487995594739914, -0.02353771962225437, 0.0026440522633492947, 0.010672169737517834, 0.03882284462451935, -0.009520644322037697, 0.02261924184858799, 0.013722339645028114, 0.0005050773615948856, -0.02277003601193428, -0.030104154720902443, -0.027197925373911858, -0.012618795037269592, 0.03391515463590622, 0.01111770048737526, 0.01769784279167652, 0.013619525358080864, -0.00549716129899025, 0.00896544475108385, 0.0032729357481002808, -0.0018043986055999994, -0.018287314102053642, -0.0028428274672478437, -0.010953196324408054, 0.008362265303730965, 0.006295688915997744, 0.011247931979596615, 0.020782284438610077, -0.0012312064645811915, -0.008821504190564156, -0.00022619242372456938, -0.00897229928523302, -0.0032986393198370934, -0.0013237397652119398, -0.025895604863762856, -0.002205376047641039, 0.01638181507587433, 0.011412435211241245, -0.0054697440937161446, -0.03331197425723076, -0.00832799356430769, 0.02207089588046074, -0.009801671840250492, -0.0034305849112570286, 0.015970556065440178, 0.00892431940883398, -0.03484734147787094, 0.0218515582382679, 0.009123094379901886, 0.007807065732777119, 0.0109943225979805, 0.005480025429278612, -0.036766547709703445, -0.00697426637634635, 0.01732771098613739, 0.004739759489893913, 0.02774626947939396, 0.024579575285315514, 0.013269955292344093, 0.009123094379901886, 0.03251687437295914, 0.0012766163563355803, -0.0036567773204296827, 0.000337146659148857, -0.015545587986707687, -0.014942408539354801, -0.01377032045274973, -0.026855207979679108, -0.025772226974368095, -0.016025390475988388, -0.013708631508052349, 0.005346366204321384, 0.011782568879425526, -0.030213823541998863, -0.010260910727083683, 0.025991564616560936, 0.0028325458988547325, 0.03520376607775688, 0.0065458714962005615, 0.02375705912709236, 0.02196122705936432, -0.008951736614108086, -0.011323329992592335, 0.023729640990495682, -0.0044792951084673405, 0.00021783872216474265, 0.014777904376387596, -0.009273889474570751, -0.005421763751655817, -0.048720475286245346, 0.007008537650108337, 0.005270968656986952, -0.025840770453214645, -0.03333939239382744, 0.007642562035471201, 0.02773256041109562, -0.019041288644075394, -0.010466540232300758, -0.010439123027026653, -0.024771496653556824, 0.0013948532287031412, -0.00884892139583826, 0.001745280111208558, -0.0006704377592541277, 0.0013425890356302261, -0.00023925845744088292, 0.020658908411860466, -0.010370579548180103, 0.029857398942112923, 0.0024024376180022955, -0.018794532865285873, -0.0025549461133778095, -0.012481709010899067, -0.02357884682714939, 0.009452101774513721, 0.006939994636923075, 0.0017152924556285143, -0.014860155992209911, 0.01394167821854353, 0.0357246920466423, 0.01387998927384615, -0.012433729134500027, -0.009808525443077087, 0.004798021167516708, 0.026622161269187927, -0.004599245730787516, -0.0038418439216911793, 0.036437541246414185, -0.006350523326545954, -0.014421479776501656, -0.014777904376387596, 0.010610480792820454, -0.025594014674425125, -0.024634409695863724, -0.005476598162204027, 0.002121410798281431, 6.11533469054848e-05, 0.0038418439216911793, -0.0038452711887657642, 0.012790152803063393, -0.02286599762737751, 0.0019157812930643559, 0.01647777482867241, -0.005325803067535162, -0.01174829714000225, -0.02333209104835987, -0.007827628403902054, -0.016093933954834938, 0.01749221421778202, 0.007272428832948208, 0.01723174937069416, 0.013742903247475624, 0.029857398942112923, -0.01757446490228176, -0.015271415002644062, 0.006593851838260889, -0.00408174516633153, -0.02260553278028965, -0.01111770048737526, -0.01723174937069416, -0.014202142134308815, 0.027430972084403038, 0.00833484809845686, -0.030954089015722275, -0.005260687321424484, 0.006463619880378246, 0.006706947926431894, -0.02186526730656624, 0.0007938154158182442, 0.004708915017545223, 0.010151241905987263, -0.007299846038222313, -0.00834170263260603, -0.03320230543613434, 0.03937118873000145, -0.021536260843276978, -0.00221565761603415, 0.02183784916996956, -0.002709168242290616, 0.024223152548074722, 0.01720433309674263, -0.007094216533005238, 0.003017612500116229, -0.03863092511892319, -0.0336683988571167, 0.0020939933601766825, 0.029994485899806023, -0.02747209742665291, -0.006096913944929838, 0.02829461544752121, -0.031228262931108475, -0.02917196787893772, 0.01808168552815914, 0.0008764956146478653, -0.006371086463332176, 0.008992861956357956, 0.011069719679653645, 0.02318129502236843, 0.013681214302778244, -0.009232763200998306, -0.03290071710944176, -0.013962240889668465, -0.012474854476749897, -0.029638061299920082, -0.015243997797369957, -0.008471934124827385, 0.02238619513809681, 0.020576655864715576, -0.036684297025203705, -0.03588919714093208, -0.018506651744246483, -0.015956846997141838, -0.006861169822514057, -0.006696666590869427, -0.005788469687104225, 0.012344622984528542, 0.00892431940883398, 0.00040440462180413306, 0.01435293722897768, 0.011981343850493431, 0.019260626286268234, -0.012454291805624962, -0.010891507379710674, -0.011789423413574696, 0.0029113704804331064, 0.005586267448961735, -0.0005924699362367392, -0.03506667912006378, -0.01658744364976883, 0.008060675114393234, 0.005024213343858719, 0.013742903247475624, 0.02840428426861763, -0.007601436227560043, -0.005918701644986868, -0.021138709038496017, 0.014133598655462265, -0.02351030334830284, -0.013784028589725494, 0.012145847082138062, -0.047788288444280624, -0.01703982800245285, 0.009232763200998306, -0.015860887244343758, 0.031447600573301315, -0.00843766238540411, 0.012858696281909943, -0.0004802304902113974, 0.0017247172072529793, -0.0070667993277311325, -0.01180313155055046, 0.006134612485766411, -0.0007042809156700969, 0.031146010383963585, 0.003745883470401168, -0.0021094155963510275, 0.025552889332175255, -0.0025378104764968157, -0.0034340121783316135, -0.01666969619691372, 0.026635870337486267, -0.0172454584389925, 0.019877515733242035, 0.020891955122351646, -0.007149051409214735, -0.0023715931456536055, -0.00856104027479887, 0.02760918438434601, -0.02355142869055271, 0.004102307837456465, -0.026306863874197006, -0.0276228915899992, -0.013379624113440514, 0.0029147977475076914, 0.002919938415288925, -0.02884295955300331, -0.015970556065440178, -0.004869991447776556, -0.0007184179848991334, -0.003231809940189123, -0.02230394259095192, -0.004616381600499153, -0.020672615617513657, -0.015024660155177116, -0.014448897913098335, -0.01650519296526909, 0.010953196324408054, 0.008232032880187035, -0.002974773058667779, -0.030213823541998863, -0.007498621474951506, 0.17415446043014526, -0.01440777163952589, 0.015696382150053978, 0.025278715416789055, -0.0051647271029651165, 0.004530702717602253, 0.018684864044189453, -0.019493672996759415, -0.019726719707250595, -0.0003904817858710885, -0.0051030381582677364, 0.012152701616287231, 0.015202872455120087, -0.007553455885499716, 0.011995052918791771, -0.005757625214755535, -0.037122972309589386, -0.02917196787893772, -0.01714949868619442, -0.0035196910612285137, -0.008938027545809746, -0.036711715161800385, -0.02333209104835987, 0.0008015265339054167, -0.009835942648351192, -0.012940947897732258, 0.019808972254395485, -0.007574019022285938, 0.01433922816067934, 0.030049320310354233, 0.004640371538698673, -0.0027691435534507036, 0.004109162371605635, -0.014366645365953445, -0.015312541276216507, -0.023962687700986862, 0.02287970669567585, -1.4123638720775489e-05, 0.023976396769285202, 0.005229842849075794, 0.007971568964421749, -0.03832933306694031, 0.012529688887298107, -0.04929623752832413, -0.00558284018188715, 0.0056548104621469975, -0.00436962628737092, 0.005264114588499069, -0.011247931979596615, -0.004095453768968582, -0.027321303263306618, -0.0066109877079725266, 0.03221528232097626, 0.01110399141907692, 0.0015722087118774652, -0.006090059410780668, 0.0028839532751590014, 0.02227652631700039, 2.2035554138710722e-05, -0.011549522168934345, 0.02357884682714939, 0.008896902203559875, -0.011844257824122906, 0.0016510332934558392, -0.021508842706680298, -0.004287374671548605, -0.02908971533179283, -0.007395806722342968, -0.004561547189950943, -0.0047911666333675385, 0.00549030676484108, -0.005168153904378414, -0.01672453060746193, 0.0035196910612285137, -0.02334580011665821, -0.03235236927866936, 0.02333209104835987, 0.015422210097312927, 0.01767042651772499, 0.04647225886583328, -0.024730371311306953, 0.01433922816067934, 0.01716320589184761, -0.014791613444685936, -0.007464349735528231, -0.042496755719184875, 0.03210561349987984, -0.026005273684859276, 0.0007359821465797722, -0.001134389196522534, -0.026252029463648796, -0.001747850445099175, 0.003247232176363468, -0.00850620586425066, -0.01761559210717678, -0.03235236927866936, 0.0048220111057162285, -0.01709466427564621, -0.0038726883940398693, 0.012625649571418762, -0.01616247557103634, 0.0676109716296196, 0.031584687530994415, -0.012029323726892471, -0.01128905825316906, -0.006535590160638094, -0.00832799356430769, 0.007011964917182922, 0.009013425558805466, -0.01617618463933468, -0.004294228740036488, -0.020096853375434875, -0.004225685726851225, -0.011549522168934345, -0.0033757505007088184, 0.017917180433869362, 0.00815663579851389, -0.01140558160841465, 0.013413895852863789, -0.006713801994919777, -0.025360967963933945, -0.03934377059340477, -0.007197031285613775, -0.004376480355858803, 0.004061182029545307, -0.0016219024546444416, -0.024812621995806694, 0.01646406576037407, -0.0171083714812994, -0.011645481921732426, 0.02815752848982811, 0.009698856621980667, 0.023866727948188782, 0.00891746487468481, 0.010336307808756828, 0.007011964917182922, 0.004122870974242687, -0.007978423498570919, 0.020754868164658546, 0.010260910727083683, -0.015435919165611267, -0.015175455249845982, 0.013187703676521778, 0.0051304553635418415, 0.005524578504264355, -0.02782852202653885, 0.0006327390437945724, -0.03281846269965172, 0.0011917941737920046, -0.01719062402844429, 0.0015482185408473015, -0.020590364933013916, -0.020782284438610077, -0.021125001832842827, 0.02357884682714939, -0.020562946796417236, 0.01754704862833023, -0.02807527780532837, 0.004259957000613213, -0.0031289951875805855, -0.025086795911192894, 0.01720433309674263, 0.021769307553768158, 0.009267034940421581, -0.018520360812544823, -0.003529972629621625, -0.1749221384525299, 0.03520376607775688, 0.020795993506908417, -0.031721774488687515, -0.002090566325932741, 0.01104230247437954, 0.025278715416789055, -0.01377032045274973, -0.0017924035200849175, 0.015079494565725327, 0.03885026276111603, 0.003889824263751507, -0.018821951001882553, -0.0015447913901880383, 0.0003266509738750756, 0.0023390352725982666, 0.010829818435013294, 0.014256976544857025, 0.012241807766258717, 0.00827315915375948, 0.01712208054959774, -0.024031231179833412, 0.01606651581823826, -0.030542830005288124, -0.0017212900565937161, 0.019000163301825523, -0.01672453060746193, 0.01605280674993992, -0.01714949868619442, -0.00862272921949625, 0.029994485899806023, -0.01111770048737526, 0.030049320310354233, 0.0017992578214034438, 0.031529851257801056, 0.00815663579851389, -0.006463619880378246, 2.5717070457176305e-05, -0.018273605033755302, 0.04893981292843819, 0.007001683581620455, 0.02815752848982811, -0.009390412829816341, -0.019164666533470154, 0.007882462814450264, 0.010439123027026653, -0.010939488187432289, 0.004520421382039785, 0.01709466427564621, -0.01387313473969698, 0.001723860390484333, -0.031310513615608215, 0.03887767717242241, 0.011412435211241245, 0.002501825336366892, 0.025251299142837524, -0.00555885024368763, 0.011789423413574696, -0.00017103659047279507, 0.0016159049700945616, -0.014736779034137726, -0.026868917047977448, -0.00012209250417072326, -0.0021916674450039864, -0.013914261013269424, -0.026800373569130898, -0.008040112443268299, 0.007697396446019411, -0.025292424485087395, 0.02334580011665821, -0.01643664948642254, -0.0059324102476239204, 0.020014602690935135, -0.007423223927617073, 0.009205345995724201, -0.003432298544794321, -0.005216134246438742, 0.0225369893014431, 0.024757787585258484, 0.0042325397953391075, -0.007299846038222313, 0.029912233352661133, -0.018547778949141502, 0.008232032880187035, 0.010212930850684643, -0.0015362234553322196, 0.015079494565725327, -0.001052994281053543, -0.008465079590678215, 0.020727450028061867, -0.0011361028300598264, -0.016093933954834938, 0.0033329110592603683, -0.005517723970115185, 0.003978930413722992, -0.003163266694173217, 0.0024230005219578743, 0.03841158375144005, -0.019630759954452515, -0.013461875729262829, 0.007567164488136768, -0.0032729357481002808, -0.005572558846324682, -0.0001013689034152776, 0.01120680570602417, 0.0276228915899992, -0.0022859142627567053, 0.0012971792602911592, 0.0331200547516346, 0.0013168853474780917, -0.026320572942495346, 0.024853749200701714, 0.01776638627052307, 0.010665315203368664, -0.014421479776501656, 0.029775148257613182, -0.0276228915899992, -0.011604356579482555, 0.013592108152806759, -0.0021865267772227526, 0.02242732048034668, -0.0042976560071110725, -0.0020888526923954487, 0.020288774743676186, 0.013379624113440514, -0.041674237698316574, -0.0757264792919159, -0.03446349874138832, 0.01669711247086525, 0.024661827832460403, -0.014023929834365845, 0.019754137843847275, -0.0013323075836524367, 0.0074095153249800205, -0.003358614630997181, 0.027184216305613518, -0.024277986958622932, -0.02305791713297367, 0.0019449121318757534, -0.0027468670159578323, -0.0028017014265060425, -0.020645199343562126, -0.025031961500644684, -0.015230289660394192, -0.025319842621684074, 0.036711715161800385, 0.006439629476517439, -0.018753407523036003, -0.009177928790450096, -0.009431538172066212, -0.026622161269187927, 0.0011909373570233583, -0.05061226710677147, 0.01713578961789608, 0.0042325397953391075, -0.005322376266121864, 0.004328500479459763, -0.01111084595322609, 0.010027864016592503, -0.01605280674993992, 0.005586267448961735, -0.009883923456072807, 0.004592391662299633, -0.01376346591860056, 0.036656878888607025, -0.020754868164658546, 0.013126014731824398, 0.008471934124827385, 0.04619808867573738, -0.02331838198006153, 0.006840607151389122, -0.00410573510453105, -0.03942602500319481, 0.04940590634942055, 0.018246188759803772, -0.014215851202607155, -0.020946789532899857, -0.00868441816419363, 0.0029850543942302465, -0.009458955377340317, 0.026772957295179367, -0.00546631682664156, 0.004948815796524286, 0.01679307408630848, -0.02296195738017559, -0.005007077474147081, -0.012337768450379372, -0.015545587986707687, -0.024195734411478043, 0.04096139222383499, 0.004211977124214172, 0.031831443309783936, -0.010048426687717438, -0.026334280148148537, -0.0009578906465321779, -0.015737509354948997, -0.01764300838112831, -0.013290517963469028, -0.021138709038496017, -0.012947802431881428, 0.006696666590869427, -0.012879258953034878, -0.004760322161018848, -0.0028513954021036625, 0.012762735597789288, -0.018821951001882553, -0.012680483981966972, -0.018986454233527184, -0.014147307723760605, -0.013016345910727978, 0.024730371311306953, 0.019137250259518623, -0.002016882412135601, 0.007320409175008535, 0.020083144307136536, -0.024552159011363983, 0.014832738786935806, 0.019466256722807884, 0.042441923171281815, 0.0030039038974791765, -0.01790347322821617, 0.0019329170463606715, -0.005390919279307127, -0.0039892117492854595, -0.013173994608223438, 0.013023199513554573, -0.048473719507455826, 0.007519184146076441, -0.0722719058394432, 0.016148768365383148, 0.003930950071662664, -0.024044940248131752, 0.0027382990811020136, -0.005120174027979374, 0.00587757583707571, -0.015655256807804108, 0.01405134703963995, 0.0016861616168171167, -0.02207089588046074, 0.0057199266739189625, 0.0007805352215655148, -0.007560310419648886, -0.020713742822408676, 0.0034699973184615374, 0.0218515582382679, 0.009479518979787827, -0.010843527503311634, 0.004674643278121948, 0.0005963254370726645, 0.0006991401896812022, 0.023798184469342232, 0.02278374508023262, -0.0226740762591362, 0.01363323349505663, -0.0179308895021677, 0.01636810600757599, -0.012234953232109547, -0.00729299196973443, 0.007471204269677401, -0.018671156838536263, -0.006066069472581148, 0.015298832207918167, 0.002611494390293956, -0.0019397713476791978, 0.01629956252872944, 0.0017735541332513094, 0.009164219722151756, 0.030405744910240173, -0.026896335184574127, -0.04641742631793022, 0.0010075843892991543, -0.01653260923922062, -0.031475018709897995, -0.01629956252872944, 0.00687487842515111, 0.019617050886154175, 0.0048254383727908134, -0.015394792892038822, 0.01636810600757599, -0.0038178537506610155, -0.036437541246414185, -0.02854137122631073, 0.0233595073223114, 0.0005577699630521238, -0.0059598274528980255, 0.02851395308971405, -0.025237590074539185, 0.012790152803063393, 0.05110577866435051, -0.01610764116048813, 0.015326250344514847, -0.007909880019724369, 0.019534800201654434, -0.006751501001417637, -0.02870587445795536, 0.005222988780587912, -0.012091012671589851, 0.007848191075026989, -0.015518170781433582, -0.010247201658785343, 0.024894874542951584, 0.041948411613702774, 0.01627214625477791, -0.015710091218352318, 0.00697426637634635, -0.005175008438527584, 0.010219784453511238, 0.015285124070942402, 0.024620702490210533, 0.0065801432356238365, -0.02738984487950802, -0.007361534982919693, 0.03959052637219429, 0.011145117692649364, -0.01643664948642254, 0.012557106092572212, 0.0036019429098814726, 0.02357884682714939, -0.01719062402844429, 0.019233210012316704, -0.006696666590869427, -0.007882462814450264, 0.00827315915375948, 0.006388222333043814, -0.010295182466506958, 0.01087094470858574, 0.020288774743676186, 0.029254218563437462, 0.020878246054053307, -0.007642562035471201, 0.021138709038496017, -0.012296642176806927, -0.03523118421435356, -0.010212930850684643, -0.036958470940589905, -0.013852572068572044, -0.0067583550699055195, 0.0020734304562211037, -0.00717646861448884, 0.02747209742665291, -0.0020819983910769224, 0.004777458030730486, -0.018725991249084473, 0.030158989131450653, 0.01782122068107128, 0.00815663579851389, -0.02837686613202095, 0.04019370675086975, 0.0028428274672478437, -0.012838133610785007, 0.004794593900442123, -0.012824424542486668, 0.013180849142372608, 0.018534069880843163, 0.0028394002001732588, -0.028239781036973, 0.011604356579482555, -0.03295554965734482, 0.014983533881604671, -0.009952466003596783, -0.001876368885859847, -0.011823694221675396, -0.030926672741770744, 0.006336814723908901, -0.025059377774596214, 0.01629956252872944, 0.014202142134308815, 0.09053180366754532, 0.01169346272945404, -0.006892014294862747, -0.003560817101970315, 0.011247931979596615, -0.02179672382771969, 0.012310351245105267, 0.015710091218352318, -0.013283663429319859, -0.02933647111058235, 0.009260180406272411, -0.011714025400578976, -0.012207536026835442, -0.03331197425723076, 0.00419141398742795, -0.0025977855548262596, -0.020302483811974525, 0.021248377859592438, -0.0006914290715940297, 0.018054267391562462, 0.031392764300107956, 0.020535530522465706, -0.0015088062500581145, 0.0034134492743760347, -0.026718122884631157, -0.01104230247437954, 0.0226740762591362, -0.006100340746343136, 0.007395806722342968, -0.03997436910867691, 0.012029323726892471, 0.0166285689920187, -0.0343538299202919, -0.01747850514948368, 0.015285124070942402, 0.010377434082329273, 0.01657373458147049, -0.02928163670003414, 0.010343162342905998, -0.015093202702701092, 0.014887574128806591, 0.036464959383010864, -0.014215851202607155, -0.03460058569908142, -0.0034528614487499, 0.0032557998783886433, -0.003334624692797661, 0.002709168242290616, -0.06262102723121643] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_poster_centralized_vs_decentralized_contact_tracing_do_gdp_and_democracy_index_influence_privacy_choices.json b/database/embeddings/publications_txt/2020_poster_centralized_vs_decentralized_contact_tracing_do_gdp_and_democracy_index_influence_privacy_choices.json new file mode 100644 index 0000000000000000000000000000000000000000..576ef1813e2a0fd293effdc5928c308641323ff4 --- /dev/null +++ b/database/embeddings/publications_txt/2020_poster_centralized_vs_decentralized_contact_tracing_do_gdp_and_democracy_index_influence_privacy_choices.json @@ -0,0 +1 @@ +[0.010764257982373238, 0.017096174880862236, 0.027213169261813164, -0.03700653463602066, 0.013282953761518002, 0.021289309486746788, -0.02393464371562004, -0.002465929603204131, -0.015618727542459965, -0.0357682928442955, 0.012417592108249664, 0.021444089710712433, -0.010053676553070545, 0.0050690509378910065, -0.012741222977638245, 0.028254417702555656, 0.03734423592686653, -0.023414019495248795, -0.008878753520548344, 0.00250990130007267, -0.028198134154081345, 0.02836698479950428, -0.018376627936959267, -0.016842897981405258, -0.0028018730226904154, 0.03528987988829613, 0.02614377997815609, -0.018010783940553665, 0.0025749793276190758, -0.0015319719677791, 3.2566498703090474e-05, -0.012790471315383911, -0.0024008515756577253, 0.0013596031349152327, -0.00581832742318511, -0.03098417818546295, 0.00742241321131587, -0.018376627936959267, 0.015337308868765831, -0.007999321445822716, 0.012635691091418266, 0.010503945872187614, -0.0188409686088562, -0.004105192609131336, 0.01515438687056303, 0.015210670419037342, 0.03610599413514137, -0.028465481474995613, -0.010285846889019012, 0.014549336396157742, 0.012178385630249977, 0.026312630623579025, -0.028901681303977966, 0.005174582824110985, -0.023090388625860214, -0.014647833071649075, 0.002043801825493574, -0.010102923959493637, -0.019825933501124382, 0.002562667243182659, 0.031744007021188736, -0.015041818842291832, -0.045786790549755096, 0.009364200755953789, -0.015323237515985966, 0.0014888797886669636, -0.012234669178724289, 0.013247775845229626, -0.00494944816455245, 0.018883181735873222, 0.047672294080257416, 0.028563978150486946, 0.004805221222341061, -0.002117674332112074, 0.0025872914120554924, -0.025257311761379242, -0.002641816157847643, -0.0006868370692245662, -0.02299189195036888, 0.009617477655410767, -0.0075842286460101604, -0.012340201996266842, 0.019277168437838554, 0.00014180854486767203, -0.003697135718539357, 0.01815149374306202, 0.018601763993501663, 0.017307238653302193, 0.010468768887221813, -0.018601763993501663, -0.005361022427678108, 0.009737079963088036, 0.009040569886565208, 0.01974150910973549, -0.01566093973815441, -0.0011089647887274623, 0.005304738879203796, 0.019009821116924286, 0.005294185597449541, -0.007612370420247316, -0.0029003694653511047, 0.00039288660627789795, -0.027480516582727432, -0.02361101284623146, -0.01630820333957672, -0.0024993480183184147, 0.03610599413514137, -0.005652994383126497, -0.002480000490322709, 0.00185032666195184, -0.016153423115611076, 0.016758471727371216, -0.0027156886644661427, -0.03483961150050163, -0.00749276764690876, -0.00161463872063905, -0.00405594427138567, -0.0016524542588740587, -0.006944001652300358, -0.012283917516469955, 0.022091353312134743, -0.012987463735044003, 0.020487267524003983, -0.0007796172285452485, 0.01909424550831318, -0.0013499293709173799, -0.03377022221684456, -0.01716652885079384, 0.002909163711592555, 0.0023674331605434418, -0.005065533332526684, 0.010095888748764992, 0.004284597001969814, 0.02321702614426613, -0.0038695044349879026, 0.0076545835472643375, -9.486881754128262e-05, -0.004439376760274172, -0.022471267729997635, -0.051499586552381516, 0.006054015830159187, 0.03126559779047966, 0.010968286544084549, 0.013268882408738136, 0.005195689387619495, 0.04134037718176842, -0.0017870075535029173, 0.012065818533301353, 0.01789821684360504, 0.027564942836761475, -0.007520909421145916, -0.01785600371658802, 0.0002893334021791816, 0.012502017430961132, -0.002249589189887047, 0.01789821684360504, 0.01844698376953602, 0.028451411053538322, 0.005832398775964975, -0.017644939944148064, -0.041227810084819794, 0.015351379290223122, -0.012051747180521488, -5.2601077186409384e-05, 0.008097817189991474, 0.05062719061970711, 0.007739008869975805, 0.031659580767154694, -0.003500142600387335, -0.0012356031220406294, -0.03413606435060501, 0.005635405424982309, -0.015182528644800186, -0.008013391867280006, 0.007534980308264494, 0.02549651637673378, 0.016462983563542366, 0.01416942197829485, -0.01020845677703619, -0.02777600660920143, -0.012994499877095222, 0.023498445749282837, 0.0195023026317358, 0.020191777497529984, 0.0004682979779317975, 0.008639547973871231, 0.029548943042755127, 0.016336344182491302, 0.00749276764690876, -0.0039187525399029255, 0.007017874158918858, -0.008182243444025517, 0.0022460713516920805, 1.6200801837840118e-05, -0.6042618155479431, -0.03275711461901665, 0.0012857308611273766, -0.007295774761587381, -0.0370909608900547, 0.026242276653647423, 0.013902074657380581, 0.017701223492622375, -0.014478982426226139, 0.032363127917051315, -0.0030621851328760386, 0.005167547147721052, -0.004741901997476816, -0.014260882511734962, -0.03185657411813736, -0.00909685343503952, 0.006880682427436113, -0.01163665484637022, 0.04817884787917137, 0.018081139773130417, -0.036837682127952576, 0.02072647400200367, 0.02137373574078083, -0.00875211600214243, -0.013458840548992157, 0.0041262987069785595, 0.03196914121508598, -0.022513480857014656, 0.019375665113329887, 0.020487267524003983, -0.03734423592686653, 0.00958933588117361, 0.028169993311166763, 0.007788257207721472, 0.04772857949137688, 0.001128312316723168, -0.004622298758476973, 0.0159001462161541, 0.010715009644627571, 0.012312059290707111, -0.04981107637286186, -0.02994292974472046, 0.009230527095496655, 0.018728401511907578, 0.001799319637939334, 0.01788414642214775, -0.0028177027124911547, -0.00279131974093616, -0.0013209080789238214, -0.029098672792315483, -0.003575773909687996, -0.005452483426779509, -0.027311665937304497, 0.0033365681301802397, 0.034248631447553635, -0.002902128268033266, 0.0017263266490772367, -0.03146258741617203, 0.033348094671964645, 0.011193420737981796, 0.012593477964401245, 0.004819292109459639, 0.013705081306397915, -0.02453969419002533, -0.018418841063976288, 0.014106102287769318, 0.0024096460547298193, 0.009364200755953789, 0.0009955179411917925, -0.015492089092731476, 0.01373322308063507, 0.019066104665398598, 0.0018169082468375564, -0.0262000635266304, 0.011073818430304527, 0.023371806368231773, 0.04086196795105934, -0.002020936692133546, -0.02999921329319477, 0.0005390923470258713, -0.005596710368990898, -0.011242669075727463, 0.018221847712993622, -0.012143208645284176, -0.0013965393882244825, -0.010447662323713303, -0.007837505079805851, -0.0010711492504924536, 0.016955465078353882, -0.0035194901283830404, 0.00613140594214201, 0.04038355499505997, -0.004826327320188284, 0.007373164873570204, 0.0019963125232607126, 0.024145707488059998, 0.012677904218435287, -0.015393592417240143, -0.0017870075535029173, -0.001866156468167901, 0.009962215088307858, -0.0049705542623996735, 0.008688796311616898, 0.010215491987764835, 0.02518695592880249, 0.019544515758752823, -0.028296630829572678, 0.024117566645145416, 0.054651472717523575, -0.0009462697198614478, -0.01020845677703619, -0.0209797490388155, -0.011249705217778683, -0.001176681136712432, 0.036190420389175415, -0.029408233240246773, 0.03579643368721008, 0.01147483941167593, -0.0187706146389246, 0.011510017327964306, 0.014591549523174763, 0.0035845681559294462, 0.008252597413957119, -0.003104398027062416, -0.006054015830159187, 0.024933679029345512, 0.015801649540662766, -0.037766363471746445, -0.0011889932211488485, 0.0009102129843086004, -0.010131066665053368, -0.00246417080052197, 0.027874503284692764, 0.0019294756930321455, 0.03354508429765701, 0.016519267112016678, 0.006391718052327633, -0.019994784146547318, -0.024075353518128395, -0.0323912687599659, -0.009434555657207966, -0.009012428112328053, 0.013979464769363403, -0.014521194621920586, -0.028212204575538635, -0.010630584321916103, -0.02228834666311741, 0.02999921329319477, 0.005832398775964975, -0.009976286441087723, 0.0030375609640032053, 0.009448626078665257, 0.0024325111880898476, 0.015055890195071697, 0.001702581997960806, 0.0004507093399297446, 0.018728401511907578, -0.008512909524142742, -0.014450840651988983, -0.012537194415926933, 0.00796414352953434, 0.040327273309230804, -0.006391718052327633, -0.01213617343455553, -0.0036021568812429905, -0.012333165854215622, -0.003697135718539357, 0.014605620875954628, 0.009350130334496498, -0.029436375945806503, -8.909754251362756e-05, -0.0184751246124506, -0.0013596031349152327, 0.03163143992424011, -0.01272715162485838, 0.017039891332387924, 0.00891393143683672, -0.011868825182318687, 0.0005439292290247977, -0.02195064350962639, 0.004537873435765505, -0.00811188854277134, -0.02106417529284954, -0.011425591073930264, 0.04333845153450966, -0.004995178431272507, 0.013768400065600872, -0.0026382985524833202, 0.00035946816205978394, 0.018967607989907265, -0.01129191741347313, 0.001151177566498518, -0.007017874158918858, 0.02203506976366043, 0.0009585818042978644, -0.01018735021352768, 0.00581832742318511, -0.006497249938547611, 0.0033137029968202114, 0.016153423115611076, 0.02681918442249298, -0.001991035882383585, 0.01293821632862091, 0.007563122548162937, 0.010454697534441948, -0.025679439306259155, 0.015590585768222809, -0.009019463323056698, -0.0032468659337610006, 0.0010931349825114012, 0.013472910970449448, -0.02328738197684288, 0.004340880550444126, 0.00405594427138567, -0.020965678617358208, 0.014872968196868896, -0.00925866886973381, 0.02545430324971676, -0.02327330969274044, 0.02617192082107067, 0.007534980308264494, -0.013522159308195114, 0.04716574028134346, 0.00024140431196428835, -0.02037470042705536, 0.0075701577588915825, 0.004893164150416851, 0.013289988972246647, 0.005909788887947798, -0.016420770436525345, -0.02997107058763504, 0.011383378878235817, 0.010124030523002148, 0.012853790074586868, 0.006025873590260744, 0.02012142352759838, -0.004193135537207127, -0.0005171064985916018, 0.04080568253993988, -0.016448911279439926, -0.006775150541216135, 0.013275918550789356, 0.01529509574174881, -0.022246133536100388, 0.004759490489959717, -0.009350130334496498, 0.016674047335982323, 0.02387836016714573, -0.0026558872777968645, 0.03816035017371178, -0.022189849987626076, 0.011685903184115887, -0.01691325195133686, 0.002903887303546071, 0.038075923919677734, 0.0008592059020884335, -0.0003308865998405963, 0.009835576638579369, 0.01843291148543358, 0.039370447397232056, -0.0033436035737395287, -0.0032609370537102222, -0.006690725218504667, -0.0008930640178732574, 0.005628370214253664, -0.025721652433276176, -0.0051640295423567295, -0.012670868076384068, -0.013472910970449448, -0.01851733773946762, 0.004745419602841139, 0.005463036708533764, 0.01886911131441593, -0.019249025732278824, 0.002219688380137086, 0.01098939310759306, 0.013852826319634914, -0.011699974536895752, 0.021598869934678078, 0.010869789868593216, -0.010067746974527836, -0.013381450437009335, -0.0006120852776803076, 0.0008090782212093472, 0.00636357581242919, -0.026988035067915916, -0.025904573500156403, -0.015689082443714142, -0.02235870063304901, 0.020276203751564026, -0.011045676656067371, -0.002687546657398343, -0.01546394731849432, -0.010095888748764992, -0.023976856842637062, -0.013085960410535336, 0.012305024079978466, -0.00862547755241394, -0.010335094295442104, -0.005853504873812199, 0.016814755275845528, 0.01757458597421646, -0.022372771054506302, -0.0276775099337101, 0.027494588866829872, -0.014478982426226139, -0.002932029077783227, -0.019347522407770157, 0.0063143279403448105, -0.027185028418898582, 0.026284487918019295, -0.00589219992980361, -0.01916459947824478, -0.012368343770503998, 0.0036619582679122686, 0.009089818224310875, -0.025707580149173737, 0.0022636600770056248, 0.02577793598175049, -0.0005980143323540688, -0.0015451634535565972, -0.05422934517264366, -0.012530159205198288, 0.0015029506757855415, 0.06573936343193054, 0.03596528619527817, -0.021908430382609367, 0.007053051143884659, -0.008977250196039677, -0.006870129145681858, 0.006873647216707468, -0.04041169583797455, 0.0012830925406888127, -0.0030762560199946165, -0.007914895191788673, -0.0006257164641283453, 0.002872227691113949, 0.00811188854277134, -0.0012558300513774157, 0.011066783219575882, -0.0001457659964216873, -0.014746329747140408, 0.0022267240565270185, 0.019952572882175446, 0.009167208336293697, -0.02166922576725483, 0.004274043720215559, 0.01750423200428486, 0.01726502552628517, 0.0006490214145742357, 0.018939465284347534, 0.0027420716360211372, -0.0007123405812308192, -0.00045818451326340437, -0.01753237284719944, 0.0375412292778492, 0.00733095221221447, -0.0010298158740624785, -0.0283388439565897, 0.025327665731310844, 0.010433590970933437, 0.02677697129547596, -0.0027878021355718374, 0.02013549394905567, 0.03559944033622742, 0.004386610817164183, -0.008013391867280006, -0.026397056877613068, 0.010482839308679104, -0.025890503078699112, -0.010342130437493324, 0.011699974536895752, -0.017293166369199753, -0.009561194106936455, 0.04409828037023544, -0.011566300876438618, -0.0015689082210883498, -0.01619563437998295, 0.015027748420834541, -0.01592828705906868, -0.012157279066741467, 0.01515438687056303, -0.007119888439774513, -0.0426911860704422, -0.029577085748314857, -0.01563279889523983, 0.0016876315930858254, -0.00814706552773714, -0.00773197365924716, -0.015112173743546009, -0.019066104665398598, -0.007450554985553026, 5.2381219575181603e-05, 0.0011265535140410066, -0.004646922927349806, -0.03500846400856972, -0.03824477642774582, -0.0005799859645776451, 0.014521194621920586, 0.012987463735044003, 0.0016937876353040338, -0.009244597516953945, -0.012551265768706799, -0.009962215088307858, -0.0073661296628415585, -0.042606763541698456, 3.4242915717186406e-05, -0.04007399454712868, -0.018038926646113396, -0.0024923125747591257, -0.011059747077524662, -0.012044711969792843, -0.014099067077040672, 0.03123745508491993, -0.018925394862890244, 0.013754329644143581, 0.010890896432101727, 0.004094639327377081, -0.017321309074759483, 0.016997678205370903, 0.02453969419002533, 0.016786614432930946, 0.00589219992980361, 0.002027972135692835, 0.020191777497529984, -0.020262133330106735, -0.018658047541975975, -0.025088459253311157, 0.00740130664780736, -0.006915859878063202, -0.00039442561683245003, 0.005343433935195208, -0.0014783266233280301, -0.009146101772785187, 0.01916459947824478, -0.019994784146547318, -0.002406128216534853, 0.016477053984999657, 0.024624118581414223, 0.01467597484588623, 0.018643975257873535, -0.008512909524142742, 0.0025978446938097477, -0.015112173743546009, -0.025749793276190758, -0.0007598299416713417, 0.013606584630906582, 0.048263274133205414, -0.01749015972018242, 0.02770565263926983, -0.0010852201376110315, -0.006898271385580301, -0.03759751096367836, -0.0248773954808712, 0.0029232348315417767, 0.004773561377078295, -0.0008965817978605628, -0.02138780616223812, -0.012853790074586868, 0.009983321651816368, -0.014563407748937607, 0.006585192866623402, -0.006099746096879244, -0.02490553818643093, -0.009533052332699299, 0.0022847664076834917, 0.0036162277683615685, -0.01129191741347313, 0.03540244698524475, -0.02999921329319477, 0.0022619012743234634, 0.0013921421486884356, 0.014289024285972118, 0.03686582297086716, -0.0046258168295025826, -0.020796827971935272, 0.0018767096335068345, -0.008280739188194275, -0.01976964995265007, -0.017110245302319527, 0.005825363099575043, -0.0006323122070170939, 0.0337139368057251, -0.004566015210002661, 0.04364801198244095, 0.013486982323229313, 0.017616799101233482, 0.015196599066257477, 0.006004767492413521, 0.007760115433484316, -0.001017503789626062, 0.021148601546883583, 0.024413054808974266, 0.008906896226108074, 0.010630584321916103, -0.008322952315211296, 0.010433590970933437, -0.0032310362439602613, -0.0032099299132823944, 0.006303774658590555, 0.006381164770573378, -0.012396485544741154, -0.002316426020115614, -0.03917345777153969, -0.028535837307572365, 0.04013027995824814, -0.016645904630422592, 0.016420770436525345, -0.033910930156707764, 0.00461878115311265, 0.03168772533535957, 0.0021123976912349463, 0.011256740428507328, -0.016744401305913925, 0.014718187972903252, -0.019389735534787178, 0.03793521597981453, 0.012502017430961132, 0.005237902048975229, -0.014647833071649075, -0.02387836016714573, -0.03596528619527817, 0.0062158312648534775, 0.034952178597450256, -0.007028427440673113, 0.03056205064058304, 0.0013648797757923603, -0.001379830064252019, 0.0058851647190749645, 0.038104064762592316, -0.011995463632047176, -0.023034105077385902, -0.01749015972018242, -0.02614377997815609, -0.02138780616223812, -0.021190812811255455, -0.03149073198437691, -0.012023605406284332, -0.012333165854215622, 0.014324202202260494, 0.009842611849308014, 0.0015979295130819082, -0.012164315208792686, -0.027508659288287163, 0.010440626181662083, 0.015815719962120056, 0.02010735310614109, -0.0008108370820991695, 0.022414984181523323, -0.003220482962206006, -0.029577085748314857, -0.009511945769190788, 0.013107066974043846, -0.015815719962120056, 0.009905931539833546, 0.023343665525317192, 0.019516373053193092, -0.03548687323927879, -0.03920159861445427, 0.01885504089295864, 0.02327330969274044, -0.0018819862743839622, -0.003273248905315995, 0.03210985288023949, 0.050796039402484894, -0.00487557565793395, -0.033685795962810516, -0.028155921027064323, -0.0014413903700187802, 0.017068032175302505, -0.01628006063401699, 0.0052590081468224525, 0.0029214757960289717, -0.004259972833096981, 0.015182528644800186, 0.014718187972903252, 0.007200796157121658, 0.021528515964746475, -0.011566300876438618, -0.02549651637673378, 0.012051747180521488, -0.022386841475963593, 0.002849362324923277, 0.01293821632862091, -0.0007224540458992124, 0.02165515348315239, -0.03059019148349762, -0.0018239436903968453, 0.011594442650675774, 0.006370611488819122, 0.01685696840286255, 0.0035669796634465456, -0.026397056877613068, 0.031012319028377533, -0.008534016087651253, -0.015112173743546009, 0.013508087955415249, -0.013775436207652092, 0.04058054834604263, -0.007527945097535849, 0.004675065167248249, 0.004467519000172615, -0.026720687747001648, -0.01882689818739891, 0.017954500392079353, -0.004485107492655516, -0.007851576432585716, -0.01196732185781002, 0.02549651637673378, -0.011517052538692951, -0.02362508326768875, -0.0014967946335673332, 0.013423662632703781, -0.0127693647518754, -0.008090781979262829, -0.0024043694138526917, 0.0034473766572773457, 0.0037921143230050802, 0.01383875496685505, 6.282448157435283e-05, -0.011699974536895752, 0.009293845854699612, -0.02710060216486454, 0.01598457060754299, 0.02100789174437523, -0.029745936393737793, -0.03717538341879845, 0.000936595955863595, -0.019643012434244156, -0.013803577981889248, 0.03422049060463905, -0.012241705320775509, -0.02642519772052765, -0.04778486117720604, 0.004041873384267092, 0.001607603277079761, 0.016167493537068367, 0.0036760291550308466, -0.015759436413645744, 0.0020033479668200016, -0.0005465674912557006, -0.013451804406940937, -0.0323912687599659, 0.02582014724612236, 0.007119888439774513, -0.0016366244526579976, 0.015421734191477299, 0.005294185597449541, 0.04038355499505997, -0.05138701945543289, 0.018629904836416245, 0.022203920409083366, -0.023681366816163063, -0.035880859941244125, -0.0098988963291049, 0.015224740840494633, -0.020810898393392563, -0.0003192341246176511, 0.023737650364637375, -0.022710474207997322, 0.0025116601027548313, -0.004186100326478481, -0.004027802497148514, -0.008639547973871231, 0.022823041304945946, -0.010440626181662083, -0.0030903269071131945, 0.0015029506757855415, -0.011348200961947441, -0.019319379702210426, -0.006870129145681858, 0.02681918442249298, -0.028268489986658096, -0.0062932213768363, 0.014464911073446274, 0.026917681097984314, -0.0016489365370944142, -0.029886646196246147, -0.02482111193239689, -0.008280739188194275, -0.0407775416970253, -0.02617192082107067, -0.01305781863629818, 0.005487660877406597, 0.008801363408565521, 0.02010735310614109, -0.005079604219645262, 0.0009612200665287673, -0.01162258442491293, 0.013817648403346539, -0.01566093973815441, -0.0166318342089653, 0.009849647991359234, -0.026861395686864853, -0.003540596691891551, -0.009821506217122078, -0.036162279546260834, -0.0020754614379256964, 0.029520802199840546, 0.008738044649362564, -0.0095682293176651, 0.01844698376953602, 0.013184457086026669, 0.010243633762001991, -0.012487946078181267, 0.00042190789827145636, -0.009132030420005322, 0.0010825818171724677, 0.012593477964401245, -0.045420948415994644, 0.011418555863201618, 0.020163636654615402, 0.002474724082276225, 0.021809933707118034, -0.0015513194957748055, -0.016688117757439613, -0.023118529468774796, -0.0015829791082069278, -0.021781792864203453, -0.029154958203434944, 0.036190420389175415, -0.009265704080462456, 0.010159208439290524, 0.006887718103826046, 0.04125595465302467, 0.030336914584040642, 0.010700938291847706, -0.0036549228243529797, -0.020571693778038025, -0.010405449196696281, -0.003704171162098646, -0.00011982272553723305, 0.033010389655828476, -0.0159705001860857, -0.0021651636343449354, -0.02484925463795662, 0.020923465490341187, -0.008667689748108387, -0.0043338448740541935, -0.025623155757784843, -0.020923465490341187, -0.030533907935023308, 0.01753237284719944, 0.015365450643002987, -0.025651296600699425, -0.006673136260360479, -0.009687832556664944, -0.0015011918731033802, -0.0229637511074543, -0.0007954469765536487, -0.002140539465472102, -0.015801649540662766, 0.011059747077524662, -0.008210385218262672, 0.006588710937649012, 0.012473875656723976, -0.007478696759790182, -0.0030375609640032053, -0.024075353518128395, -0.004850951489061117, 0.20892509818077087, 0.00095506408251822, 0.01034916564822197, 0.012600514106452465, -0.007478696759790182, -0.011798471212387085, 0.02770565263926983, 0.014549336396157742, -0.006170100998133421, 0.006243973039090633, -0.007999321445822716, -0.02809963747859001, -0.0065042851492762566, -0.0011045676656067371, -0.007563122548162937, 0.0005254611023701727, -0.04308517277240753, -0.04139666259288788, -0.00354763213545084, -0.004411234986037016, -0.009842611849308014, 0.00028075891896151006, -0.008773221634328365, 0.005944965872913599, 0.004080568440258503, -0.014056854881346226, -0.00669424282386899, 0.007337987422943115, 0.005339916329830885, 0.018615834414958954, -0.014732259325683117, -0.02321702614426613, 0.00429163221269846, -0.007126923650503159, -0.014253847301006317, 0.009476767852902412, 0.010166243650019169, -0.00798525009304285, 0.0213455930352211, 0.0023762276396155357, 0.01340959221124649, -0.018292203545570374, 0.0008948229369707406, -0.015421734191477299, 0.009758186526596546, 0.014450840651988983, -0.012122102081775665, -0.015520230866968632, 0.003496624995023012, 0.004302185494452715, -0.033010389655828476, -0.0024043694138526917, 0.0022407949436455965, 0.001976964995265007, -0.004277561325579882, 0.0008596456027589738, 0.0009462697198614478, 0.0049424124881625175, 0.003904681885614991, 0.003132539801299572, 0.0015715464251115918, 0.023020034655928612, 0.010686867870390415, 0.016744401305913925, -0.022260203957557678, 0.026931751519441605, -0.008534016087651253, 0.0055791218765079975, 0.0065218741074204445, -0.042916323989629745, 0.01723688282072544, -0.0010298158740624785, -0.010264740325510502, -0.009617477655410767, -0.02584828995168209, -0.017377592623233795, 0.03168772533535957, 0.027958929538726807, 0.04333845153450966, 0.03210985288023949, 0.0009673761087469757, 0.024680403992533684, 0.012157279066741467, -0.006571121979504824, -0.0016744401073083282, -0.02038877084851265, 0.04643405228853226, -0.03689396753907204, -0.03422049060463905, 0.0037850788794457912, -0.018278131261467934, 0.0009955179411917925, -0.01115120854228735, -0.004193135537207127, 0.007436484098434448, -0.014887038618326187, 0.016983607783913612, -0.03191285952925682, 0.0004990781308151782, -0.009061675518751144, -0.010447662323713303, 0.09050419181585312, 0.034304916858673096, -0.019375665113329887, 0.0028370502404868603, 0.005002214107662439, -0.0028440856840461493, 0.019685223698616028, 0.031406305730342865, -0.019305309280753136, -0.020219920203089714, -0.012867861427366734, 0.018686188384890556, -0.0017914046766236424, 0.0017641423037275672, 0.03348880261182785, 0.019938500598073006, -0.010954215191304684, 0.021866217255592346, -0.00511126359924674, 0.007394271437078714, -0.047334592789411545, 0.0003636454639490694, 0.0248773954808712, -0.010813506320118904, -0.01291007362306118, 6.221987132448703e-05, -0.01946008950471878, -0.021176742389798164, -0.01418349239975214, 0.024764828383922577, -0.012551265768706799, 0.016758471727371216, -0.0025872914120554924, 0.0018485678592696786, 0.016139350831508636, 0.03481147065758705, -0.023343665525317192, 0.013683974742889404, 0.02331552281975746, -0.024764828383922577, -0.009392342530190945, 0.033685795962810516, -0.02490553818643093, -0.010335094295442104, -0.015182528644800186, -0.006557051092386246, 0.005195689387619495, -0.029408233240246773, -0.00022205678396858275, 0.0027948375791311264, -0.021247098222374916, -0.0057866680435836315, -0.004646922927349806, 0.023540658876299858, -0.03337623551487923, 0.0020473196636885405, -0.027227239683270454, 0.024300487712025642, -0.002548596356064081, -0.016111209988594055, 0.009701902978122234, 0.02520102821290493, 0.009272740222513676, -0.009181278757750988, 0.000771702325437218, -0.17999528348445892, 0.02867654524743557, 0.01722281239926815, -0.0034157170448452234, 0.008829506114125252, 0.019234955310821533, -0.007162101101130247, 0.02133152261376381, 0.0020842559169977903, -0.006884200032800436, 0.04395757243037224, 0.009209420531988144, -0.007633476983755827, 0.004460483323782682, -0.0004034398007206619, -0.014732259325683117, -0.01129191741347313, 0.007380200549960136, 0.03436119854450226, 0.01787007600069046, 0.0064585548825562, -0.0459275022149086, 0.0055650509893894196, -0.01484482642263174, 0.01178439985960722, 0.031096745282411575, -0.016491124406456947, 0.019643012434244156, -0.026903608813881874, -0.014563407748937607, -0.0127341877669096, -0.010968286544084549, 0.02520102821290493, 0.010264740325510502, -0.013592514209449291, 0.015449875965714455, 0.008590299636125565, -0.015449875965714455, -0.014478982426226139, 0.014232740737497807, 0.010630584321916103, 0.013754329644143581, -0.012804541736841202, 0.001407092553563416, -0.012058783322572708, 0.029408233240246773, -0.008555122651159763, -0.019319379702210426, 0.018221847712993622, 0.02037470042705536, 0.0029953483026474714, 0.006666101049631834, 0.01685696840286255, -0.009089818224310875, 0.012888967990875244, 0.024370843544602394, 0.03422049060463905, 0.00973004475235939, 0.015745365992188454, -0.006275632884353399, -0.011101960204541683, -0.03216613456606865, 0.013754329644143581, -0.009596371091902256, -0.01037027221173048, -0.03056205064058304, -0.014267918653786182, 0.018967607989907265, -0.028578048571944237, 0.017996713519096375, -0.03123745508491993, 0.008738044649362564, 0.0019241990521550179, 0.002325220499187708, -0.0015820997068658471, 0.0030375609640032053, -0.008850611746311188, 0.009673761203885078, -0.015055890195071697, 0.010503945872187614, 0.00700380327180028, 0.027818219736218452, -0.007788257207721472, -0.016392627730965614, -0.01371211651712656, 0.003612710162997246, 0.005389164201915264, 0.03472704440355301, -0.028141850605607033, -0.01165776140987873, 0.021838076412677765, -0.0075842286460101604, 0.019558586180210114, 0.005413788370788097, -0.006979179102927446, 0.016462983563542366, 0.006514838431030512, -0.00922349188476801, 0.002763177966699004, -0.030055496841669083, -0.0018784685526043177, 0.0010078300256282091, -0.007978214882314205, 0.02040284126996994, 0.008217420428991318, 0.007767150644212961, -0.01466190442442894, 0.0060927108861505985, 0.02770565263926983, -0.01528102532029152, -0.03658440709114075, 0.028296630829572678, 0.009019463323056698, 0.011045676656067371, -0.02904238924384117, 0.041002675890922546, -0.009012428112328053, 0.0063846823759377, -0.002939064521342516, -0.002253107028082013, 0.036443695425987244, -0.003943376708775759, -0.015393592417240143, 0.008984285406768322, -0.017293166369199753, -0.012340201996266842, -0.10502538830041885, 0.0014545818557962775, 0.012086925096809864, 0.017138388007879257, 0.0038483981043100357, 0.044801827520132065, -0.029492659494280815, 0.013986499980092049, -0.017912287265062332, 0.03441748395562172, -0.02708653174340725, -0.009610442444682121, -0.022738615050911903, -0.012494981288909912, 0.0013939010677859187, -0.03089975193142891, -0.03413606435060501, -0.0388638973236084, 0.020627977326512337, 0.017912287265062332, -0.011059747077524662, -0.035824574530124664, 0.005529873538762331, -0.028957964852452278, 0.010243633762001991, -0.01129191741347313, -0.02389243058860302, 0.03154701367020607, 0.013071889989078045, 0.006272114813327789, 0.02452562376856804, -0.013325165957212448, 0.012009534984827042, -0.013325165957212448, -0.015252883546054363, -0.009905931539833546, -0.023357735946774483, -0.015703152865171432, 0.031350020319223404, -0.023779863491654396, 0.009378272108733654, 0.005842951592057943, 0.015872003510594368, -0.0015838585095480084, -0.023399949073791504, 0.0008495321380905807, -0.05040205642580986, 0.017462018877267838, -0.01975557953119278, -0.017659012228250504, -0.020219920203089714, -0.014957393519580364, 0.006919377483427525, -0.026720687747001648, -0.0017333620926365256, -0.011488910764455795, -0.008372200652956963, 0.003540596691891551, -0.024807041510939598, -0.004277561325579882, 0.00014147875481285155, -0.0009691349696367979, -0.019685223698616028, 0.014092031866312027, 0.02294967882335186, 0.002103603444993496, -0.038751330226659775, 0.007746044546365738, 0.013184457086026669, -0.032419413328170776, -0.011517052538692951, 0.011974357068538666, -0.020853111520409584, 0.0034755186643451452, -0.042860038578510284, -0.007260597310960293, -0.015843862667679787, -0.016026783734560013, 0.026959892362356186, -0.005902753211557865, 0.0051816185005009174, -0.021542586386203766, -0.0012681421358138323, -0.015759436413645744, -0.007042498327791691, 0.00374638382345438, 0.004502695985138416, 0.014619691297411919, -0.01547801773995161, -0.019206812605261803, -0.0033224972430616617, 0.019994784146547318, -0.01625191792845726, -0.004471036605536938, -0.01480261329561472, 0.030674617737531662, -0.00022557452030014247, 0.0036830648314207792, -0.006993249990046024, 0.027185028418898582, -0.03728795051574707, -0.02105010487139225, -0.06208092346787453, 0.014310130849480629, 0.013479946181178093, -0.010567264631390572, -0.0015785819850862026, -0.016505194827914238, 0.006335434038192034, -0.011770329438149929, -0.007563122548162937, 0.002260142471641302, -0.021514445543289185, 0.006356540601700544, -0.008428484201431274, -0.00831591710448265, -0.029211241751909256, -0.02071240171790123, 0.01420459896326065, 0.008956143632531166, 0.017743436619639397, 0.03250383585691452, -0.004685617983341217, 0.014401592314243317, 0.012523123994469643, 0.025932716205716133, -0.0009832058567553759, 0.016167493537068367, -0.00046302139526233077, 0.0058992356061935425, -0.015351379290223122, -0.021809933707118034, -0.00105443992651999, -0.014380485750734806, -0.003326015081256628, -0.015857933089137077, 0.009779293090105057, -0.010475804097950459, 0.0004968795692548156, 0.01912238821387291, 0.020529480651021004, 0.03689396753907204, -0.03343251720070839, -0.03354508429765701, 0.001176681136712432, -0.024131637066602707, -0.009469732642173767, 0.0035159725230187178, -0.019994784146547318, 0.00031659583328291774, -0.012797506526112556, -0.026579977944493294, 0.03320738300681114, -0.00985668320208788, -0.03289782255887985, -0.022232061251997948, 0.024314558133482933, -0.019854076206684113, 0.02456783503293991, 0.01941787637770176, -0.007204313762485981, 0.0019945537205785513, 0.03540244698524475, 0.006581675261259079, 0.03475518524646759, -0.004826327320188284, 0.04654661938548088, -0.02394871413707733, -0.05617113411426544, -0.007028427440673113, 0.005417306441813707, -0.012431662529706955, -0.0016814755508676171, -0.02133152261376381, 0.015717223286628723, 0.011995463632047176, -0.0057725971564650536, -0.008118923753499985, 0.004298667889088392, 0.0018960571615025401, 0.013043748214840889, 0.02067018859088421, 0.006479660980403423, 0.0056776185519993305, -0.02005106955766678, 0.030505767092108727, 0.02708653174340725, 0.005600228440016508, -0.008822469972074032, -0.0006283547845669091, -0.020304344594478607, 0.013909109868109226, -0.014436769299209118, 0.031068602576851845, -0.0028335326351225376, -0.006834952160716057, -0.00876618642359972, 0.0022407949436455965, -0.0127693647518754, 0.016083067283034325, 0.029577085748314857, 0.034867752343416214, 0.03880761191248894, 0.017588656395673752, 0.008231491781771183, -0.03464261814951897, -0.02197878621518612, 0.013810613192617893, -0.03182843327522278, -0.03281339630484581, 0.003665476106107235, 0.00815410166978836, -0.005927377380430698, 0.014816684648394585, -0.011615549214184284, -0.003257419215515256, -0.008611406199634075, 0.018404770642518997, -0.0021598869934678078, -0.009955179877579212, -0.0254683755338192, 0.033348094671964645, -0.004660993814468384, -0.005448965821415186, -0.016997678205370903, -0.013923180289566517, 0.049304522573947906, 0.0022232062183320522, 0.014549336396157742, -0.03157515823841095, 0.010503945872187614, -0.01437345054000616, 0.0027192062698304653, 0.03948301821947098, -0.013064853847026825, -0.022710474207997322, -0.002548596356064081, -0.03227870166301727, -0.019657082855701447, 0.008329987525939941, -0.0020912913605570793, 0.07587043195962906, 0.03638741374015808, -0.003953929990530014, -0.01001849863678217, -0.007527945097535849, -0.004632852040231228, 0.019066104665398598, 0.01974150910973549, 0.0037921143230050802, -0.04266304522752762, 0.036443695425987244, 0.01100346352905035, -0.009561194106936455, -0.023048175498843193, 0.0022108941338956356, -0.019586728885769844, -0.0008165533654391766, 0.03295410796999931, -0.0006951916730031371, 0.01588607393205166, 0.012305024079978466, 0.020599834620952606, 0.007675689645111561, -0.012720116414129734, -0.014563407748937607, -0.00811188854277134, 0.014605620875954628, 0.0060082850977778435, -0.00985668320208788, -0.018278131261467934, 0.013740258291363716, 0.0031501285266131163, -0.030196206644177437, -0.0011459010420367122, -5.611880624201149e-05, 0.017926359549164772, -0.010651690885424614, -0.018714331090450287, 0.017124315723776817, -0.0027367949951440096, -0.015238812193274498, 0.017602726817131042, -0.01751830242574215, -0.025974927470088005, -0.002786043332889676, 0.003472000826150179, -0.03568386659026146, -0.009920001961290836, -0.041903216391801834] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_senate_a_permissionless_byzantine_consensus_protocol_in_wireless_networks_for_realtime_internetofthings_applications.json b/database/embeddings/publications_txt/2020_senate_a_permissionless_byzantine_consensus_protocol_in_wireless_networks_for_realtime_internetofthings_applications.json new file mode 100644 index 0000000000000000000000000000000000000000..4ed6d22301f0d7c417713f7b1f20cfb8ffbcea98 --- /dev/null +++ b/database/embeddings/publications_txt/2020_senate_a_permissionless_byzantine_consensus_protocol_in_wireless_networks_for_realtime_internetofthings_applications.json @@ -0,0 +1 @@ +[0.004843634553253651, -0.0022065446246415377, -0.01821206696331501, -0.002552774967625737, 0.005597088951617479, -0.0051450165919959545, -0.023091580718755722, -0.01010346319526434, -0.05031639337539673, -0.045149851590394974, 0.026105396449565887, 0.009924069046974182, -0.018412986770272255, 0.00645817955955863, 0.0024307870771735907, 0.004341331776231527, 0.017724115401506424, 0.0029635869432240725, 0.01241405587643385, 0.014358686283230782, 0.0007027754909358919, 0.004678592551499605, -0.030626121908426285, 0.00011716662265826017, 0.009328481741249561, 0.0022047506645321846, 0.04110272601246834, -0.03217608481645584, -0.022201785817742348, -0.01443044375628233, 0.035591743886470795, -0.003806738182902336, -0.014939921908080578, -0.0009624481317587197, -0.005729840602725744, -0.004667828790843487, 0.009909717366099358, -0.022216137498617172, 0.010232626460492611, -0.027684062719345093, 0.024311458691954613, 0.01996295154094696, -0.002323150634765625, 0.00519165862351656, -0.017953738570213318, -0.009751850739121437, 0.019819434732198715, -0.007807221729308367, 0.009163439273834229, -0.002622738480567932, 0.005690373945981264, 0.0018800478428602219, -0.02399572543799877, 0.0030191990081220865, -0.0300520621240139, 9.098633017856628e-05, -0.001770617556758225, 0.027942391112446785, -0.009486348368227482, -0.014617012813687325, 0.023105930536985397, 0.00010668329923646525, -0.03401307761669159, -0.015600091777741909, -0.006605282425880432, -0.004039950203150511, -0.018585205078125, 0.033410314470529556, -0.024153592064976692, 0.013748746365308762, 0.026966487988829613, 0.0354195274412632, 0.013325377367436886, -0.0059164101257920265, 0.035189904272556305, -0.00893381517380476, -0.0047682891599833965, 0.007936385460197926, -0.03725652024149895, 0.005729840602725744, -0.006447415798902512, -0.00501226494088769, 0.0021078779827803373, 0.013088577426970005, 0.03188905492424965, 0.01727921888232231, -0.0035896715708076954, 0.01696348562836647, -0.021225882694125175, -0.027181759476661682, 0.015198249369859695, 0.018255120143294334, 0.025760961696505547, 0.008991220965981483, -0.014796406961977482, 0.02411053702235222, -0.025387821719050407, 0.010376141406595707, 0.004230107646435499, 0.010892796330153942, 8.543633157387376e-05, 0.003596847178414464, -0.014294103719294071, -0.022503167390823364, -0.015944527462124825, -0.026277614757418633, -0.0025222778785973787, 0.0053602890111505985, 0.020637471228837967, 0.0003264968690928072, -0.027124354615807533, 0.04314063861966133, -0.016561642289161682, -0.00020439689978957176, -0.008926639333367348, -0.007871802896261215, 0.005643731448799372, -0.010146517306566238, -0.008087076246738434, -0.001826229621656239, 0.022503167390823364, -0.018599556758999825, 0.013655462302267551, -0.0012781813275068998, 0.04713036119937897, -0.018226418644189835, -0.00858937855809927, -0.016475534066557884, 0.014200819656252861, -0.02811460755765438, 0.020465252920985222, -0.004710883367806673, 0.0003646180557552725, 0.006271610036492348, 0.016575993970036507, 0.005830300971865654, -0.014466322027146816, -0.011725183576345444, -0.0291766207665205, -0.022259192541241646, 0.013906612992286682, 0.04130364581942558, -0.027971092611551285, -0.0034389805514365435, -0.005546858534216881, 0.019446296617388725, -0.019030101597309113, 0.027784524485468864, 0.0017831751611083746, -0.008740069344639778, 0.010792335495352745, 0.00154009647667408, -0.014681595377624035, 0.016475534066557884, -0.003917962312698364, 0.01659034565091133, -0.007225985173135996, 0.015887122601270676, 0.016418127343058586, 0.00010163784463657066, -0.013404310680925846, -0.00015427873586304486, -0.03048260696232319, -0.017437085509300232, -0.005507391877472401, 0.02920532412827015, 0.026464184746146202, 0.016891727223992348, -0.0014333571307361126, -0.00943611841648817, -0.028573857620358467, 0.001780484220944345, -0.015614443458616734, -0.00937153585255146, 0.005302883218973875, 0.03473065420985222, 0.017508842051029205, 0.006088627967983484, -0.010239802300930023, -0.021068016067147255, 0.00285774446092546, 0.008575026877224445, 0.04560909792780876, 0.046498894691467285, -0.01054118387401104, 0.02527301013469696, 0.032003868371248245, -0.010548359714448452, 0.007857452146708965, 0.0020450903102755547, 0.027066947892308235, 0.024698948487639427, -0.002597623271867633, -0.004926155786961317, -0.6020745635032654, -0.015657497569918633, -0.010390493087470531, -0.018886586651206017, -0.030712231993675232, 0.005597088951617479, 0.006386422086507082, 0.01940324157476425, -0.03998330608010292, 0.03751484677195549, -0.017193108797073364, 0.0029851142317056656, 0.006016870494931936, -0.02817201428115368, -0.02365128882229328, 0.010849741287529469, 0.011065014638006687, -0.0014270782703533769, 0.02261798083782196, -0.0046247742138803005, -0.012765668332576752, 0.01311727985739708, -0.00012557570880744606, -0.0009965329663828015, -0.003975368104875088, -0.004929743707180023, 0.012471462599933147, -0.024254051968455315, 0.0021365811116993427, -0.0016943751834332943, -0.03854815661907196, 0.03206127509474754, 0.01768106035888195, 0.01733662374317646, 0.05617181211709976, 0.02458413690328598, -0.010792335495352745, 0.02039349637925625, 0.018570853397250175, 0.011531438678503036, -0.006009695120155811, -0.025100791826844215, 0.018987048417329788, 0.014602662064135075, -0.017695412039756775, -0.010569887235760689, 0.01108654122799635, -0.018226418644189835, -0.011703656986355782, -0.033783454447984695, -0.0006135270814411342, -0.019575459882616997, -0.004933331627398729, 0.002581477863714099, 0.015944527462124825, -0.01213420182466507, 0.040126822888851166, -0.020006004720926285, 0.03145851194858551, 0.016202855855226517, -0.0018369932658970356, 0.030138172209262848, 0.004850810393691063, -0.057779181748628616, 0.012736964970827103, -0.0022083385847508907, -0.01404295302927494, 0.009959948249161243, 0.0049369195476174355, -0.01085691712796688, 0.010010178200900555, 0.029506705701351166, -0.01643247902393341, -0.015126491896808147, 0.0026693809777498245, 0.014380212873220444, 0.006583755370229483, 0.006296725012362003, -0.012823074124753475, 0.009859487414360046, -0.0037529198452830315, -0.013052698224782944, -0.018283823505043983, -0.017107000574469566, 0.01933148503303528, 0.009543754160404205, -0.026119748130440712, -0.010361790657043457, 0.017465787008404732, 0.012586274184286594, 0.015011679381132126, 0.014078831300139427, -0.0013633935013785958, -0.01890093833208084, -0.0018943992909044027, 0.023235095664858818, 0.027382681146264076, 0.006870785728096962, 0.014200819656252861, -0.02367999218404293, -0.014093182981014252, 0.0038856714963912964, -0.006540700793266296, -0.01868566684424877, 0.02967892400920391, 0.02174253761768341, 0.006329015828669071, -0.00927825178951025, 0.03076963871717453, -0.017580600455403328, 0.00815165787935257, -0.02099625952541828, -0.015384819358587265, -0.002619150560349226, -0.014753352850675583, -0.03444362431764603, 0.027856281027197838, 0.01999165304005146, 0.023105930536985397, 0.004373622592538595, 0.0026801445055752993, -0.002967174630612135, -0.007835924625396729, -0.0008673694101162255, -0.000622945255599916, 0.014724649488925934, 0.01811160519719124, -0.029449298977851868, -0.006752385757863522, 0.020623119547963142, -0.0030120231676846743, -0.017781520262360573, 0.019762029871344566, -0.0034623018000274897, 0.017078297212719917, -0.015313060954213142, 0.018757423385977745, -0.010246978141367435, 0.0137272197753191, -0.01958981156349182, 0.005586325190961361, 0.015040382742881775, 0.01568620093166828, -0.00927825178951025, -0.026564644649624825, -0.014609836973249912, -0.032664038240909576, 0.0003125938237644732, 0.008546324446797371, 0.0011938662501052022, -0.009306954219937325, 0.0019625690765678883, -0.008632433600723743, 0.017422733828425407, -0.00943611841648817, -0.019977301359176636, -0.010218275710940361, -0.01996295154094696, -0.016719508916139603, -0.000830593635328114, 0.012536044232547283, 0.014681595377624035, -0.0007328239735215902, -0.017881982028484344, 0.01646118238568306, 0.0034802411682903767, 0.0123997051268816, 0.013763098046183586, 0.009802081622183323, -0.022919362410902977, -0.011660601943731308, -0.01213420182466507, -0.016604697331786156, 0.01060576643794775, 0.010663172230124474, 0.012428407557308674, 0.003064047312363982, 0.005582737270742655, -0.006802615709602833, 0.004298277199268341, -0.007749815471470356, 0.009163439273834229, -0.03217608481645584, -0.0056365556083619595, 0.0354195274412632, 0.018656963482499123, 0.0168630238622427, -0.0017383266240358353, -0.008058372884988785, 0.0063003129325807095, 0.00036416956572793424, 0.019446296617388725, 0.018700018525123596, 0.015327412635087967, -0.00609221588820219, 0.018987048417329788, -4.972573879058473e-05, 0.0007386542856693268, 0.027999795973300934, 0.041963815689086914, 0.04494893178343773, 0.008345402777194977, 0.013813328929245472, -0.029248377308249474, -0.008087076246738434, -0.031286291778087616, 0.026995191350579262, 0.014344334602355957, 0.013389959000051022, -0.00360043509863317, 0.018326878547668457, 0.018140308558940887, -0.018298175185918808, -0.001484484295360744, 0.0009633451118133962, 0.042595282196998596, -0.005798010155558586, 0.004728822503238916, 0.0016001934418454766, 2.9347716917982325e-05, -0.0229337140917778, -0.023105930536985397, 0.026033639907836914, 0.000802787602879107, -0.007821572944521904, 0.014329982921481133, 0.039150919765233994, 0.02942059561610222, 0.023192040622234344, -0.0022980356588959694, -0.033008474856615067, 0.022732792422175407, 0.010742105543613434, 0.0076924096792936325, -0.005719076842069626, -0.03292236477136612, 0.030855746939778328, 0.009113209322094917, 0.020508307963609695, -0.015600091777741909, 0.01116547454148531, 0.02779887616634369, 0.021541615948081017, -0.037313926964998245, 0.02314898557960987, 0.0012907389318570495, 0.01914491504430771, 0.008768772706389427, -0.0005677816225215793, -0.004316216800361872, -0.01257192250341177, 0.03785928338766098, -0.026937784627079964, 0.01435151044279337, 0.04979974031448364, -0.021240234375, -0.0030174050480127335, -0.0008332845754921436, 0.020723581314086914, 0.010742105543613434, 0.0092926025390625, 0.02336425893008709, 0.005647319369018078, 0.014581134542822838, -0.006967658177018166, -0.011143947951495647, -0.006587343290448189, 0.0006260846275836229, -0.0008718542521819472, -0.019718974828720093, 0.007577597163617611, -0.008883585222065449, -0.00649764621630311, 0.008137306198477745, 0.026851676404476166, 0.010211099870502949, 0.013547825627028942, 0.011057838797569275, 0.023249447345733643, 0.004158350173383951, -0.037974096834659576, -0.00331878662109375, 0.004847222473472357, 0.01049812976270914, -0.014129062183201313, -0.040528666228055954, -0.004147586412727833, -0.008295172825455666, -0.01034026313573122, -0.007247512694448233, -0.01667645573616028, 0.013705692254006863, -0.020436551421880722, -0.002678350545465946, -0.027813225984573364, -0.004305453039705753, 0.02901875413954258, 0.00402201060205698, -0.02545957826077938, -0.010117814876139164, 0.009034276008605957, 0.02179994434118271, -0.01674821227788925, -0.014207995496690273, 0.06044856086373329, -0.018843533471226692, -0.008331052027642727, -0.007434082217514515, 0.004197816830128431, 0.003614786546677351, 0.020034708082675934, -0.005475101061165333, 0.0011122419964522123, -0.007814397104084492, 0.004592483397573233, 0.017810223624110222, 0.004721646662801504, 0.002346471883356571, 0.004492022562772036, -0.02073793299496174, -0.005719076842069626, -0.04316934198141098, -0.02333555556833744, 0.004789816681295633, 0.06475401669740677, 0.04150456562638283, 0.008940991014242172, 0.011725183576345444, -0.023349907249212265, -0.003853380447253585, -0.050402503460645676, -0.01808290369808674, 0.015700552612543106, -0.005966640543192625, -0.001106860232539475, -0.0013920965138822794, -0.008216239511966705, 0.0018334054620936513, -0.000196212058654055, -0.0029241202864795923, 0.013798977248370647, -0.01354064978659153, 0.01614544913172722, -0.028659965842962265, 0.01627461239695549, -0.0123997051268816, -0.0010996845085173845, 0.03114277683198452, 0.01186869852244854, -0.015944527462124825, 0.012550395913422108, 0.00943611841648817, 0.009019924327731133, 0.008058372884988785, 0.0018621084745973349, -0.00843151193112135, 0.010914323851466179, -0.01015369314700365, -0.00935718510299921, 0.022632330656051636, 0.0032775262370705605, 0.020981907844543457, 0.022187434136867523, 0.0020702052861452103, 0.022531870752573013, 0.022603629156947136, 0.008216239511966705, -0.00909168180078268, -0.006974834017455578, -0.06050596758723259, 0.00039063015719875693, 0.0008337330655194819, -0.0028128959238529205, -0.00904145184904337, 0.03676857054233551, -0.018412986770272255, -0.05083305016160011, -0.02349342219531536, 0.008366930298507214, -0.011036311276257038, -0.007771342992782593, -0.00874724518507719, -0.003618374466896057, -0.026636403053998947, -0.019173618406057358, -0.027167409658432007, 0.010562711395323277, -0.002068411326035857, -0.015226952731609344, -0.0014701328473165631, -0.013971195556223392, -0.019718974828720093, -0.018915290012955666, -0.005277767777442932, -0.012701086699962616, 0.01182564441114664, -0.051895059645175934, -0.000313939293846488, 0.010031705722212791, -0.01319621317088604, 0.024354511871933937, 0.012514516711235046, -0.011703656986355782, 0.022474465891718864, -0.015786660835146904, -0.0019105448154732585, 0.002513308310881257, -0.04781923070549965, 0.005518155638128519, 0.01930278167128563, -0.016547290608286858, -0.024124888703227043, 0.0007283391314558685, 0.0076924096792936325, 0.015040382742881775, -0.014150588773190975, -0.0024325810372829437, 0.004305453039705753, -0.0010826420038938522, 0.03616580739617348, -0.002122229663655162, 0.0176523569971323, 0.010282857343554497, -0.004994325339794159, 0.01749449037015438, -0.005737015977501869, -0.007936385460197926, -0.0008005451527424157, -0.017379678785800934, 0.0010934056481346488, 0.003727804869413376, 0.001420799526385963, -0.022287895902991295, -0.0009113209089264274, -0.006070688832551241, -0.028071554377675056, 0.013676988892257214, -0.018757423385977745, -0.008940991014242172, 0.03783058002591133, -0.004233695566654205, 0.010203924030065536, -0.0037780350539833307, 0.01171083189547062, -0.011007607914507389, 0.001309575280174613, 0.010627293027937412, 0.013798977248370647, -0.0031106898095458746, 0.030339092016220093, -0.0028362171724438667, -0.015112140215933323, -0.02039349637925625, 0.018585205078125, 0.009873839095234871, 0.025918828323483467, 0.015442225150763988, -0.04219343885779381, -0.026478536427021027, 0.005281355697661638, -0.00943611841648817, -0.013203389011323452, -0.018011145293712616, -0.01002452988177538, 0.0006256361375562847, -0.0006722785765305161, 0.013899438083171844, -0.016389423981308937, 0.0010682905558496714, -0.03214738145470619, -0.024282755330204964, -0.004431028850376606, 0.014466322027146816, 0.025445228442549706, 0.004929743707180023, 0.01967591978609562, -0.0010126784909516573, -0.02527301013469696, 0.010957377962768078, -0.0291766207665205, -0.02423970028758049, -0.006720094475895166, 0.008180361241102219, 0.029291432350873947, 0.025789663195610046, 0.02251751907169819, 0.02126893773674965, 0.021469859406352043, 0.006522761192172766, -0.007322858087718487, 0.0033474897500127554, 0.002229865873232484, -0.016949133947491646, 0.016906078904867172, 0.030224280431866646, 0.005313646513968706, 0.01486816443502903, 0.01085691712796688, -0.011258759535849094, 0.015485279262065887, 0.016633400693535805, -0.00833822786808014, -0.02261798083782196, -0.04308323189616203, -0.0008023391128517687, -0.005629379767924547, 0.0075560701079666615, 0.004807755816727877, -0.023450367152690887, -0.03610840067267418, 0.0202786847949028, -0.019231023266911507, 0.011918929405510426, -0.0009126663790084422, 0.03725652024149895, -0.02352212555706501, 0.009866663254797459, 0.006648337002843618, 0.023665640503168106, -0.010612941347062588, 0.002841599052771926, -0.03986849635839462, -0.005686786025762558, 0.03074093535542488, -0.01667645573616028, -0.0052167740650475025, -0.014925570227205753, -0.0030156110879033804, 0.019948599860072136, 0.022158732637763023, 0.006364894565194845, -0.016174152493476868, 0.011036311276257038, -0.011100892908871174, -0.016604697331786156, -0.02814331091940403, -0.034472327679395676, -0.006117331329733133, 0.01299529243260622, -0.008819002658128738, -0.0041404105722904205, 0.006899488624185324, 0.004352095536887646, -0.0212115328758955, 0.01244993507862091, 0.012930710799992085, 0.0092926025390625, -0.0005709209945052862, 0.016719508916139603, 0.018757423385977745, -0.001978714484721422, -0.032348304986953735, -0.013361255638301373, -0.0114668570458889, -0.010246978141367435, 0.031286291778087616, 0.0030227869283407927, -0.02686602622270584, -0.008266469463706017, 0.01440174039453268, 0.015298710204660892, -0.022890659049153328, -0.02639242634177208, 0.01720746047794819, 0.038088906556367874, 0.0068923127837479115, -0.011330517008900642, -0.01967591978609562, 0.011344868689775467, 0.004316216800361872, -0.03223349153995514, -0.024856815114617348, 0.0076924096792936325, -0.0036650169640779495, 0.007577597163617611, -0.0020253569819033146, -0.006515585817396641, 0.019288429990410805, -0.01630331575870514, -0.006124507170170546, 0.01826947182416916, 0.007771342992782593, -0.019130563363432884, -0.008646785281598568, -0.026248911395668983, 0.0256748516112566, -0.03817501664161682, -0.005206010304391384, 0.01996295154094696, 0.02514384500682354, -0.022976767271757126, -0.01802549697458744, -0.010971729643642902, 0.0300520621240139, -0.0033439018297940493, 0.010110639035701752, 0.0010736723197624087, -0.002256775042042136, 0.001440532854758203, -0.005356701090931892, 0.014681595377624035, -0.013555001467466354, -0.015011679381132126, -0.010239802300930023, 0.009141911752521992, -0.007993791252374649, 0.012902007438242435, -8.795905887382105e-05, 0.007491488475352526, -0.016102394089102745, -0.02270408906042576, 0.008905111812055111, 0.004707295447587967, -0.033065877854824066, -9.691473678685725e-06, 0.005568386055529118, -0.030884450301527977, 0.03318069130182266, 0.01818336360156536, 0.016561642289161682, 0.007656530477106571, 0.04104531928896904, -0.020077763125300407, -0.006390010006725788, 0.0030030535999685526, -0.03682597354054451, -0.01244993507862091, 0.011940456926822662, 0.0017975266091525555, -0.0037959744222462177, 0.01752319373190403, 0.005546858534216881, -0.018642611801624298, -0.008144482038915157, 0.0010413815034553409, -0.01940324157476425, 0.011883050203323364, 0.0015867388574406505, 0.013389959000051022, 0.003526883665472269, -0.014853812754154205, -0.041246239095926285, -0.015399170108139515, 0.022359652444720268, -0.003896435024216771, 0.010569887235760689, 0.020694877952337265, -0.00982360914349556, 0.027784524485468864, 0.011143947951495647, 0.020221278071403503, -0.010734929703176022, -0.025875773280858994, -0.009672917425632477, 0.008488918654620647, 0.032778847962617874, -0.00858937855809927, -0.027784524485468864, 0.01108654122799635, -0.01924537494778633, -0.0020540598779916763, 0.0058446526527404785, -0.0066519249230623245, -0.00999582652002573, 0.02233094908297062, 0.011804116889834404, -0.009192142635583878, 0.0067846765741705894, -0.006494058296084404, -0.029104862362146378, -0.031056668609380722, 0.0075560701079666615, -0.002895417157560587, -0.013031171634793282, 0.006128094624727964, 0.0247420035302639, 0.0006547876400873065, -0.005424870643764734, -0.0185565035790205, -0.0045530167408287525, -0.01007475983351469, -0.01730792038142681, -0.019790733233094215, 0.0008920360705815256, -0.010239802300930023, 0.012823074124753475, 0.02179994434118271, 0.01605933904647827, -0.0037062775809317827, -0.012930710799992085, -0.019474999979138374, -0.016346370801329613, 0.013167510740458965, -0.024411918595433235, 0.011524262838065624, 0.021154126152396202, -0.06050596758723259, -0.00712193688377738, 0.03622321039438248, 0.011237232945859432, -0.007179343141615391, 0.02514384500682354, 0.010081935673952103, -0.0010377935832366347, -0.0014620601432397962, -0.01664775237441063, -0.02623455971479416, -0.017092648893594742, 0.008912287652492523, -0.06331886351108551, 0.008847706019878387, 0.011545790359377861, -0.010290033183991909, -0.01674821227788925, -0.005945113021880388, 0.01852780021727085, -0.009859487414360046, 0.0020253569819033146, -0.02973632887005806, -0.027526196092367172, 0.006135270465165377, 0.004276750143617392, 0.022201785817742348, 0.027784524485468864, -0.0006879754946567118, 0.04207862913608551, -0.0006453694659285247, -0.032003868371248245, -0.028774777427315712, 0.004728822503238916, -0.016906078904867172, -0.0034820351283997297, 0.02367999218404293, 0.005306470673531294, 0.015097788535058498, -0.011380747891962528, 0.0036506655160337687, -0.022718440741300583, -0.009249548427760601, -0.02283325232565403, -0.01674821227788925, -0.025158196687698364, 0.030884450301527977, 0.018484745174646378, -0.03869166970252991, -0.026406778022646904, -0.014028601348400116, -0.001957187196239829, -0.006224967539310455, -0.033467721194028854, 0.012801547534763813, -0.029277080669999123, 0.010828214697539806, -0.004890277050435543, -0.0038318531587719917, -0.008560676127672195, -0.03045390546321869, -0.01015369314700365, -0.006425888743251562, -0.0002347817353438586, 0.20275813341140747, -0.013956843875348568, 0.010433548130095005, 0.040528666228055954, -0.012629329226911068, 0.004115295596420765, 0.012019390240311623, 0.017107000574469566, -0.02851645089685917, 0.009924069046974182, -0.009672917425632477, 0.016001934185624123, 0.01326079573482275, -0.0060958038084208965, 0.010734929703176022, 0.019762029871344566, -0.033410314470529556, -0.03570655733346939, -0.003360047237947583, -0.0016719509148970246, -0.019173618406057358, -0.007620651740580797, -0.014100358821451664, -0.00657657952979207, 0.007355148904025555, 0.008790300227701664, -0.0035161199048161507, -0.02020692639052868, 0.010282857343554497, 0.031630728393793106, -0.03438621759414673, 0.01712135225534439, 0.017465787008404732, -0.0014737206511199474, -0.025158196687698364, -0.005267004016786814, 0.034501031041145325, 0.004653477109968662, 0.027483142912387848, 0.016762563958764076, -0.0034084836952388287, -0.016518589109182358, 0.0032559989485889673, -0.011187002062797546, 0.009242372587323189, 0.023378610610961914, -0.01871437020599842, -0.009428942576050758, -0.010691874660551548, 0.00952940247952938, -0.0248281117528677, 0.009471996687352657, 0.0230198223143816, 0.0006799027905799448, -0.02423970028758049, 0.006106567569077015, -0.008094252087175846, 0.04095920920372009, 0.014911219477653503, 0.01185434777289629, -0.008058372884988785, 0.014179292134940624, -0.02126893773674965, 0.025057736784219742, -0.015542685985565186, 0.029937250539660454, -0.027784524485468864, 0.0106201171875, 0.03969627618789673, -0.02439756691455841, -0.017322272062301636, -0.021728185936808586, -0.019288429990410805, -0.01717875711619854, -0.02517254836857319, -0.018843533471226692, 0.014265401288866997, -0.0009436117834411561, 0.016131097450852394, 0.013720043934881687, -0.011280287057161331, 0.03610840067267418, -0.013368431478738785, 0.020422199741005898, -0.015628794208168983, -0.027224814519286156, 0.038031503558158875, -0.016848672181367874, -0.00982360914349556, 0.00820188783109188, -0.011617547832429409, 0.023378610610961914, -0.00024487264454364777, -0.0028774777892977, -0.0017481932882219553, -0.02471330016851425, 0.012234662659466267, 0.0004377210570964962, -0.012048092670738697, 0.01351194642484188, -0.012148553505539894, 0.07583338022232056, 0.018097253516316414, -0.005098374094814062, 0.01123005710542202, -0.00983795989304781, -0.009622687473893166, 0.012550395913422108, 0.0168343223631382, -0.019216671586036682, -0.018786126747727394, -0.023565180599689484, 0.009615511633455753, -3.8709833461325616e-05, -0.001190278329886496, 0.027066947892308235, 0.0044884346425533295, -0.0024863991420716047, 0.028502099215984344, -0.023163337260484695, -0.01143097784370184, -0.029793735593557358, -0.020379144698381424, -0.002301623346284032, -0.022474465891718864, 0.0015284358523786068, 0.002585065783932805, 0.017853278666734695, -0.04024163633584976, -0.01739403046667576, 0.044805414974689484, 0.0229624155908823, -0.004617598373442888, 3.7140140193514526e-05, -0.005245476961135864, -0.010160868987441063, -0.005554034374654293, -0.013361255638301373, -0.013081401586532593, 0.014487849548459053, -0.0042121680453419685, -0.013971195556223392, 0.005686786025762558, 0.020221278071403503, 0.017752818763256073, -0.039466653019189835, 0.004757525399327278, -0.024096185341477394, -0.014896867796778679, -0.026851676404476166, 0.002949235262349248, -0.02299111895263195, 0.008797476068139076, -0.02702389284968376, 0.016231557354331017, -0.03217608481645584, -0.022818900644779205, -0.03432881087064743, -0.003892847103998065, 0.015069086104631424, -0.03605099394917488, -0.006210615858435631, 0.017623653635382652, -0.012880480848252773, 0.00356096844188869, -0.00770676089450717, -0.18519188463687897, 0.014236697927117348, 0.02086709626019001, -0.013476068153977394, 0.008675487712025642, 0.0007565936539322138, 0.024440621957182884, 0.004011247307062149, 0.000655684620141983, -0.01310292910784483, 0.012937886640429497, 0.007914857938885689, -0.004893864970654249, -0.012521692551672459, 0.00261556264013052, -0.0006435755640268326, -0.013877910561859608, -0.0012584479991346598, 0.026751214638352394, 0.02190040424466133, 0.028602559119462967, -0.05094785988330841, 0.009342833422124386, -0.013088577426970005, 0.014329982921481133, 0.01458831038326025, 0.002785986987873912, 0.023192040622234344, -0.0030586656648665667, -0.022259192541241646, 0.009515050798654556, -0.0001741241867421195, 0.03137240186333656, -0.004944095388054848, 0.011610371991991997, 0.026880377903580666, -0.004133234731853008, 0.012170081026852131, -0.0072439247742295265, 0.0637781098484993, 0.02333555556833744, 0.04569520801305771, 0.011273111216723919, -0.01580101251602173, -0.007168579380959272, -0.011969159357249737, -0.015700552612543106, 0.0084171611815691, -0.0029635869432240725, -0.0034084836952388287, 0.004384386353194714, 0.008675487712025642, 0.021326344460248947, 0.02383785881102085, 0.02755489945411682, 0.033094581216573715, -0.010813863016664982, -0.02227354422211647, 0.0016934782033786178, 0.02134069614112377, -0.00913473591208458, -0.01229206845164299, 0.012614977546036243, 0.00223345379345119, -0.021728185936808586, -0.007878978736698627, -0.016791267320513725, -0.00034309079637750983, -0.013842031359672546, 0.0049727982841432095, -0.05025899037718773, -0.014251049607992172, 0.005607852712273598, -0.008280821144580841, 0.03651024028658867, 0.019905544817447662, -0.015557036735117435, 0.02264668233692646, 0.0005390786100178957, 0.0035699382424354553, -0.0033439018297940493, 0.01577230915427208, -0.006174737121909857, 0.0070717064663767815, 0.01799679361283779, -0.00917061511427164, 0.010548359714448452, 0.002638883888721466, -0.01568620093166828, -0.004520725924521685, 0.004667828790843487, -0.011596020311117172, -0.0036614290438592434, -0.0041404105722904205, 0.01605933904647827, -0.003928726073354483, -0.007337209768593311, -0.01002452988177538, -0.00998147577047348, -0.028372935950756073, 0.007129112724214792, -0.0021096719428896904, -0.002712435321882367, 0.029119214043021202, 0.0065442887134850025, 0.027526196092367172, 0.004000483546406031, -0.0027536959387362003, 0.012543220072984695, -0.022388355806469917, -0.03039649873971939, 0.012500165030360222, 0.01727921888232231, 0.040815696120262146, 0.006250082515180111, 0.007283391430974007, -0.008797476068139076, -0.024914221838116646, 0.022130029276013374, -0.006117331329733133, 0.05872638151049614, 0.037629660218954086, 0.002362617291510105, 0.040471259504556656, -0.006404361221939325, -0.0101393423974514, -0.09081635624170303, -0.022718440741300583, 0.004280338063836098, 0.04354248195886612, -0.024038780480623245, 0.015011679381132126, -0.0004473634762689471, 0.023751748725771904, -0.010390493087470531, 0.03467324748635292, -0.0033887503668665886, -0.03926573321223259, -0.019231023266911507, -0.005245476961135864, -0.015399170108139515, -2.1148856831132434e-05, -0.010878444649279118, -0.02495727688074112, 0.009615511633455753, 0.038404639810323715, 0.006644749082624912, -0.037687066942453384, 0.015327412635087967, -0.013662638142704964, -0.008740069344639778, -0.012435583397746086, -0.03963886946439743, 0.013626758940517902, 0.008905111812055111, 0.004474083427339792, 0.016446830704808235, -0.005984579678624868, 0.0060850405134260654, 0.0009005572646856308, 0.014251049607992172, -0.024469325318932533, 0.017537545412778854, -0.02014951966702938, 0.027310924604535103, -0.01799679361283779, -0.00263529596850276, 0.01171083189547062, 0.03183164820075035, 0.013612407259643078, -0.012098323553800583, -0.014559607021510601, -0.02586142159998417, 0.022445762529969215, 0.012349474243819714, -0.02002035640180111, -0.009256724268198013, -0.010986081324517727, -0.00077004823833704, 0.008008142933249474, 0.0037349804770201445, -0.015499630942940712, -0.0025007505901157856, 0.023105930536985397, -0.022919362410902977, -0.01892964169383049, 0.012722614221274853, -0.01318186242133379, -0.01140227448195219, 0.025875773280858994, 0.009845135733485222, 0.021512914448976517, -0.013425838202238083, -0.014753352850675583, 0.007678057998418808, -0.03963886946439743, -0.012593450024724007, 0.006210615858435631, -0.007548894267529249, 0.0036578411236405373, -0.039839792996644974, -0.03633802384138107, -0.011639074422419071, -0.015198249369859695, 0.04342766851186752, -0.011100892908871174, -0.02792803943157196, -0.0071075852029025555, 0.021541615948081017, -0.025043385103344917, 0.014301279559731483, 0.0248281117528677, 0.027569251134991646, 0.0005924482829868793, 0.01733662374317646, -0.01614544913172722, 0.015542685985565186, -0.00589488260447979, -0.01749449037015438, 0.011409450322389603, -0.020780986174941063, -0.007251100614666939, 0.0045530167408287525, 0.002882859669625759, -0.006321840453892946, 0.0026317082811146975, -0.045092444866895676, 0.009048626758158207, -0.07916293293237686, 0.03401307761669159, 0.011603196151554585, -0.0317455418407917, -0.001124799600802362, 0.005866179708391428, 0.018068552017211914, 0.013942492194473743, -0.012349474243819714, -0.005776482634246349, -0.03008076548576355, 0.006332603748887777, -0.006734446156769991, -0.029061807319521904, -0.008287996985018253, -0.00591282220557332, 0.03995460271835327, -0.028071554377675056, 0.031975165009498596, 0.02489987015724182, 0.006659100763499737, 0.01574360579252243, -0.00955810584127903, 0.030195577070116997, -0.02495727688074112, -0.004800579976290464, 0.006178325042128563, 0.0026281203608959913, -0.014035777188837528, 0.005206010304391384, -0.00011027117579942569, -0.030195577070116997, 0.005317234434187412, 0.006196264643222094, -0.020637471228837967, 0.00838845781981945, -0.00021695447503589094, -0.0012665208196267486, 0.03622321039438248, 0.014925570227205753, -0.020623119547963142, -0.04006941616535187, -0.009019924327731133, -0.013590879738330841, -0.004402325954288244, 0.01026132982224226, -0.00524906488135457, 0.03142980858683586, -0.013110104948282242, -0.0029994656797498465, -0.000622945255599916, 0.007053767330944538, -0.018843533471226692, -0.03217608481645584, -0.001164266257546842, -0.0017571629723533988, -0.0008579512359574437, 0.007570421788841486, -0.029320135712623596, -0.011997862718999386, 0.024670245125889778, 0.00788615457713604, 0.017824575304985046, -0.0033295503817498684, 0.011839996092021465, -0.009163439273834229, -0.03587877377867699, 0.006842082366347313, 0.0037708592135459185, -0.026507239788770676, -0.009500700049102306, -0.01961851492524147, -0.0043090409599244595, 0.022876307368278503, 0.00032425441895611584, -0.01868566684424877, -0.019317133352160454, 0.00919931847602129, 0.0031106898095458746, 0.013045522384345531, 0.016332019120454788, -0.022402707487344742, -0.022574925795197487, -0.0006404361338354647, -0.004689355846494436, 0.006881549023091793, 0.0021078779827803373, 0.0011947632301598787, -0.013246444053947926, 0.029449298977851868, -0.01249298918992281, 0.02639242634177208, -0.0004280786379240453, 0.0031088958494365215, -0.019532404839992523, 0.010821038857102394, -0.015944527462124825, 0.02073793299496174, 0.0022980356588959694, 0.012550395913422108, 0.016662104055285454, 0.008912287652492523, 0.007143464405089617, -0.0021186417434364557, -0.03455843776464462, 0.015858419239521027, -0.023220743983983994, -0.023981373757123947, -0.002617356600239873, -0.012909183278679848, -0.014021425507962704, 0.030941855162382126, 0.0177097637206316, 0.00833822786808014, -0.013045522384345531, 0.04982844367623329, 0.004362859297543764, -0.018972696736454964, -0.029449298977851868, 0.006325427908450365, 0.009909717366099358, -0.011488383635878563, 0.01720746047794819, 0.010354614816606045, 0.015643145889043808, -0.0029976717196404934, 0.01836993359029293, -0.023005470633506775, -0.01667645573616028, -0.018068552017211914, 0.0014674419071525335, -0.001973332604393363, -0.02548828162252903, -0.003286495804786682, -0.011926105245947838, 0.002967174630612135, 0.004219343885779381, -0.012040916830301285, -0.011237232945859432, 0.0743408203125, 0.014853812754154205, -0.008173185400664806, -0.015427873469889164, -0.012471462599933147, -0.0019643630366772413, 0.026851676404476166, 0.0040327743627130985, 0.033094581216573715, -0.030597420409321785, 0.017264867201447487, 0.00012288481229916215, 0.007426906377077103, -0.032032571732997894, -0.0008377694175578654, -0.003821089630946517, -0.01006040908396244, 0.015700552612543106, -0.02402442879974842, -0.0006480604060925543, 0.029478002339601517, -0.001760750892572105, 0.005127076990902424, -0.020809689536690712, -0.02108236774802208, -0.00044758772128261626, 0.029822438955307007, -0.014387388713657856, 0.01116547454148531, -0.0600467175245285, -0.005554034374654293, 0.016848672181367874, -0.044403571635484695, -0.021685132756829262, 0.009988650679588318, 0.005758543498814106, 0.02508644014596939, -0.0013983752578496933, 0.00406147725880146, -0.018642611801624298, 0.01380615308880806, 0.027870632708072662, -0.02089579962193966, -0.04150456562638283, 0.011215705424547195, 0.012586274184286594, -0.021139774471521378, 0.01267955917865038, -0.06085040420293808] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2020_whistleblower_towards_a_decentralized_and_open_platform_for_spotting_fake_news.json b/database/embeddings/publications_txt/2020_whistleblower_towards_a_decentralized_and_open_platform_for_spotting_fake_news.json new file mode 100644 index 0000000000000000000000000000000000000000..51f812b40b4c1596f77d0edd02e8a6df69d631a6 --- /dev/null +++ b/database/embeddings/publications_txt/2020_whistleblower_towards_a_decentralized_and_open_platform_for_spotting_fake_news.json @@ -0,0 +1 @@ +[-0.0339677520096302, 0.006258873268961906, -0.013922585174441338, -0.000761828210670501, -0.0015219091437757015, 0.012783337384462357, -0.024839792400598526, -0.00037785631138831377, -0.015138714574277401, -0.03407958149909973, 0.029438719153404236, 0.027733342722058296, -0.022169899195432663, 0.011867745779454708, -0.0007648860337212682, 0.008974196389317513, 0.029131192713975906, -0.011455380357801914, -0.011916670948266983, -0.002142205135896802, -0.015250543132424355, 0.015641940757632256, -0.04215915501117706, 0.008408067747950554, -0.01889893040060997, 0.0327935591340065, 0.03701506555080414, -0.03508603200316429, -0.0008024531998671591, -0.006891400087624788, 0.005884948186576366, 0.004508065991103649, -0.005252420902252197, 0.00770215317606926, -0.01340538077056408, -0.000178335074451752, 0.02370753511786461, -0.031535495072603226, 0.013111832551658154, -0.0015987908700481057, 0.004714248701930046, 0.025636568665504456, -0.0010772180976346135, -0.009204842150211334, -0.028627967461943626, 0.006643281783908606, 0.028963450342416763, -0.01771075837314129, 0.008170432411134243, 0.03505807742476463, -0.0040537649765610695, 0.01534839253872633, -0.018046243116259575, -0.009141938760876656, -0.01628495194017887, -0.016662370413541794, 0.017319360747933388, 0.009722046554088593, -0.008855379186570644, -0.009337637573480606, 0.03209463506937027, -0.01678817719221115, -0.02829248271882534, 0.010427960194647312, -0.014174198731780052, -0.021652694791555405, -0.02439248189330101, 0.026670977473258972, -0.0024409955367445946, -0.00032237914274446666, 0.051440875977277756, 0.0031731193885207176, 0.0006124330102466047, -0.013230649754405022, 0.02690861187875271, -0.026279577985405922, -0.015264521352946758, 0.004266936797648668, -0.01029516477137804, -0.01678817719221115, 0.01729140430688858, -0.017123661935329437, -0.00020672890241257846, 0.01738925278186798, 0.02119140513241291, 0.0159075316041708, -0.007632260676473379, 0.01289516594260931, -0.010889250785112381, -0.006465055979788303, -0.0019622319377958775, 0.00010429271060274914, 0.015879575163125992, 0.004018818493932486, -0.022924738004803658, 0.013237638399004936, -0.019639791920781136, 0.006244894582778215, 0.005343281198292971, -0.02879570797085762, 0.004854033701121807, -0.02031075954437256, -0.015390328131616116, -0.027761299163103104, 0.006353227887302637, -0.017640866339206696, -0.0023326619993895292, 0.02169463038444519, 0.02499355748295784, 0.030249472707509995, -0.0015018150443211198, 0.01209140196442604, -0.004791130777448416, -0.032765600830316544, -0.008729572407901287, -0.013964520767331123, 0.0165924783796072, -0.0018905920442193747, 0.003047312842682004, -0.016215059906244278, 0.03877635672688484, -0.005283872596919537, 0.001862635021097958, -0.03567313030362129, 0.023749470710754395, -0.008960218168795109, -0.0033915333915501833, -0.02380538359284401, 0.003068280639126897, -0.01650860719382763, 0.030864525586366653, 0.020841943100094795, 0.021638717502355576, 0.015236563980579376, 0.0020932801999151707, 0.013580111786723137, -0.01768280193209648, -0.006175002083182335, -0.023539792746305466, -0.04741507023572922, 0.003103226888924837, 0.03612044081091881, -0.030529042705893517, -0.014817208983004093, -0.009938713163137436, -0.003980377689003944, -0.014160219579935074, 0.021736565977334976, 0.01968172751367092, 0.008757529780268669, -0.007198926992714405, -0.017724737524986267, -0.023637643083930016, 0.013559143990278244, -0.001993683399632573, 0.037937648594379425, 0.002294221194460988, 0.037434421479701996, 0.041152700781822205, 0.004403227474540472, -0.009561293758451939, 0.012077423743903637, -0.011518283747136593, -0.0016057800967246294, 0.005416668485850096, 0.025426890701055527, 0.029830116778612137, 0.012874198146164417, -0.011609143577516079, -0.014209144748747349, -0.018535489216446877, 0.02500753477215767, -0.026964524760842323, 0.009449465200304985, 0.013013983145356178, 0.010994089767336845, 0.018563447520136833, 0.012035488151013851, -0.02458818070590496, -0.014327961951494217, 0.0012004036689177155, 0.0014904574491083622, 0.016858071088790894, 0.024280652403831482, 0.004109678789973259, 0.012608606368303299, 0.006985755171626806, -0.02358172833919525, -0.0008828295976854861, -0.011790864169597626, 0.00757634686306119, 0.012049466371536255, 0.008708604611456394, 0.010854304768145084, -0.6146066784858704, -0.029494633898139, 0.0005949598853476346, -0.011182799004018307, -0.012280111201107502, -0.0014459009980782866, 0.011133874766528606, -0.0005429773591458797, -0.010476885363459587, 0.03310108557343483, 0.002687366446480155, -0.01223817653954029, 0.0007814854616299272, -0.009861831553280354, -0.012322046793997288, -0.0195000059902668, 0.026069901883602142, -0.013684950768947601, 0.04070539027452469, 0.013062907382845879, -0.007786023896187544, 0.006559410598129034, -0.014118283987045288, 0.0019989253487437963, -0.017948392778635025, 0.0018399199470877647, 0.010707530193030834, -0.028879579156637192, 0.015278499573469162, 0.012986025772988796, -0.02050645835697651, 0.020827963948249817, 0.027216138318181038, 0.0004748321371152997, 0.05292259901762009, -0.00889731477946043, -0.0005582662997767329, 0.022645168006420135, 0.016872048377990723, 0.03340861201286316, -0.02210000716149807, -0.02358172833919525, 0.015865596011281013, 0.009575271978974342, 0.005483066197484732, -0.0021474468521773815, 0.04201936721801758, 0.0038790334947407246, -0.02190430834889412, -0.03080861270427704, -0.03212258964776993, -0.0053188190795481205, 0.0008452623733319342, 0.0009208336705341935, 0.010504841804504395, 0.0053991954773664474, 0.025636568665504456, -0.006052690092474222, -0.005231453571468592, 0.007457529194653034, 0.0001093708342523314, 0.015627961605787277, 0.00013039319310337305, -0.04059356078505516, 0.0012283605756238103, -0.007625271566212177, -0.00202338770031929, 0.019318286329507828, 0.025524739176034927, -0.0200871042907238, 0.009561293758451939, 0.030640870332717896, -0.0019534952007234097, -0.011175810359418392, -0.014929037541151047, 0.04926023259758949, 0.03698711097240448, -0.012580648995935917, -0.002234812593087554, 0.010001616552472115, 0.005448120180517435, -0.004780646879225969, -0.006978765595704317, -0.002037366386502981, 0.019555920735001564, -0.0015638446202501655, -0.001507056993432343, -0.010686562396585941, 0.0039034958463162184, 0.00949140079319477, 0.03229033201932907, 0.04151614382863045, -0.00600027060136199, -0.01420215517282486, -0.003326882841065526, 0.032458074390888214, 0.014929037541151047, 0.005213980097323656, -0.013538176193833351, -0.026069901883602142, -0.00909301359206438, -0.013454305939376354, -0.0035610226914286613, -0.03690323978662491, 0.022449469193816185, 0.023833341896533966, -0.015641940757632256, 0.007013712078332901, 0.012972047552466393, -0.025217212736606598, 0.011420434340834618, 0.00677258288487792, -0.022169899195432663, -0.01455161813646555, 0.004312367178499699, -0.025916138663887978, 0.02447635307908058, 0.013985488563776016, 0.01720753312110901, 0.013356456533074379, 0.006175002083182335, 0.016145166009664536, 0.0024986567441374063, -0.015641940757632256, -0.018731189891695976, 0.021065598353743553, 0.027551623061299324, -0.053034424781799316, -0.01269247755408287, 0.005486560985445976, 0.014859144575893879, -0.029270976781845093, 0.007366669364273548, -0.011881723999977112, 0.022519363090395927, 0.0164946299046278, 0.027425816282629967, -0.0200871042907238, -0.005259410478174686, -0.002601748099550605, -0.029494633898139, -0.004581453278660774, 0.012657531537115574, -0.0026227158959954977, -0.06318281590938568, -0.021624738350510597, -0.017431188374757767, 0.016746241599321365, 0.0079048415645957, 0.010120433755218983, -0.002187635051086545, 0.011266670189797878, -0.01818602718412876, 0.023344093933701515, -0.00452204467728734, -0.008988174609839916, 0.0033373667392879725, -0.0260000079870224, -0.026335492730140686, -0.023469900712370872, -0.002661156700924039, 0.04182367026805878, -0.017445167526602745, -0.025147320702672005, 0.009169895201921463, -0.002100269543007016, 0.00914892740547657, 0.009812906384468079, 0.012643552385270596, -0.032765600830316544, -0.004501076880842447, -0.015865596011281013, -0.01720753312110901, 0.0327935591340065, -0.011413444764912128, 0.028935493901371956, 0.0013227155432105064, 0.004455646499991417, -0.00835215300321579, -0.015180650167167187, -0.009232798591256142, 0.022840868681669235, -0.017375275492668152, -0.01898280158638954, 0.0008723456994630396, 0.009687099605798721, 0.017431188374757767, 0.024727964773774147, 0.012391939759254456, 0.013034950941801071, -0.017361296340823174, -0.00048225821228697896, 0.01015537977218628, 0.02548280358314514, -0.02049247920513153, 0.007436561863869429, 0.018074199557304382, -0.01170000433921814, 0.007918819785118103, 0.03178710862994194, 0.020576350390911102, 0.027859149500727654, 0.012245165184140205, -0.004270431585609913, -0.02341398596763611, -0.029215063899755478, 0.008960218168795109, -0.009477422572672367, 0.02379140630364418, -0.002212097402662039, 0.015278499573469162, 0.00010462033242220059, -0.0033408612944185734, 0.0037043022457510233, -0.009980648756027222, 0.010120433755218983, -0.020017210394144058, 0.01720753312110901, -0.013482262380421162, 0.011888713575899601, 0.0017979844706133008, -0.026517212390899658, 0.02049247920513153, 0.0018888447666540742, 0.008184411562979221, 0.018647318705916405, 0.011651079170405865, 0.012573660351336002, 0.02759355679154396, -0.03947528079152107, -0.007590325083583593, 0.020143017172813416, 0.02580430917441845, -0.004700270481407642, 0.00815645419061184, -0.02249140478670597, 0.008652690798044205, -0.004015323705971241, 0.02320430800318718, -0.03687528148293495, -0.003707797033712268, 0.03707097843289375, 0.017221510410308838, -0.010644626803696156, 0.014453768730163574, -0.010169357992708683, 0.008289250545203686, 0.0011191535741090775, -0.009113981388509274, 0.004095700103789568, -0.04137635976076126, 0.015655919909477234, -0.01170000433921814, -0.002739785937592387, 0.03651183843612671, -0.0038790334947407246, -0.01961183361709118, -0.016676349565386772, 0.016662370413541794, 0.008394088596105576, 0.019472049549221992, 0.015376348979771137, 0.02161075919866562, 0.004291399382054806, 0.021470975130796432, -0.012140326201915741, -0.0014275542926043272, -0.0031049740500748158, -0.0006159276235848665, -0.02110753394663334, 0.0033548397477716208, -0.009777960367500782, -0.002247043652459979, -0.015334413386881351, 0.022715061902999878, 0.005825539585202932, -0.0017639119178056717, 0.037350550293922424, 0.008792475797235966, 0.004563979804515839, -0.040649477392435074, -0.020869899541139603, 0.009847852401435375, 0.01169301476329565, -0.010581724345684052, -0.015460220165550709, -0.019737640395760536, 0.0041795712895691395, -0.04327743500471115, 0.003770700190216303, -0.015641940757632256, 0.005130109377205372, -0.005070700775831938, -0.01589355431497097, 0.009225809946656227, 0.003686829237267375, 0.019947318360209465, -0.019038716331124306, -0.018158070743083954, -0.010980111546814442, 0.021261297166347504, 0.014313983730971813, -0.005007797386497259, -0.015040865167975426, 0.04417205601930618, -0.019374199211597443, 0.010274196974933147, 0.003788173431530595, 0.010176347568631172, -0.0008365258108824492, 0.00830322876572609, -0.008191400207579136, -0.009204842150211334, -0.00717097008600831, 0.0132935531437397, -0.010847315192222595, 0.01519462838768959, 0.0018137103179469705, 0.0004599799867719412, -0.0014738580211997032, -0.00542016327381134, -0.0327935591340065, -0.011385487392544746, 0.011196778155863285, 0.08722583204507828, 0.04126453027129173, -0.0017385758692398667, 0.007862905971705914, -0.03352044150233269, -0.010036562569439411, -0.028264526277780533, -0.015110758133232594, 0.004888980183750391, -0.006625808775424957, -0.019751619547605515, 0.009400540962815285, 0.014411833137273788, 0.003356587141752243, 0.016830112785100937, -0.0068180132657289505, -0.012853230349719524, -0.007653228472918272, 0.015068822540342808, -0.016872048377990723, -0.009456454776227474, -0.011986562982201576, 0.008799465373158455, 0.008484949357807636, 0.018227962777018547, -0.020939791575074196, 0.026768825948238373, 0.010609680786728859, -0.011259681545197964, -0.00015780415560584515, -0.0016809145454317331, 0.015236563980579376, 0.006653765682131052, -0.00955430418252945, -0.015040865167975426, 0.017570974305272102, 0.016927963122725487, 0.03617635741829872, 0.018116135150194168, 0.006922851782292128, 0.014369897544384003, 0.017962371930480003, 0.0013305783504620194, -0.0030700278002768755, -0.016075273975729942, -0.04428388550877571, -0.010281186550855637, 0.031843021512031555, -0.009847852401435375, -0.013538176193833351, 0.015963446348905563, -0.005608872976154089, -0.048533350229263306, -0.030612913891673088, 0.022924738004803658, -0.008708604611456394, 0.012308068573474884, 0.012021508999168873, -0.006730647291988134, -0.023022588342428207, -0.02200215868651867, -0.030445171520113945, -0.012762369588017464, 0.005297851283103228, -0.012210219167172909, -0.007820970378816128, -0.008708604611456394, 0.0038405926898121834, 0.004550001583993435, 0.022141942754387856, -0.01720753312110901, -0.011567207984626293, -0.05591399595141411, 0.001871371641755104, -0.0023850814905017614, 0.024015061557292938, 0.01759893074631691, -0.0060701631009578705, 0.010365056805312634, 0.009736024774610996, -0.012119359336793423, -0.03790969029068947, 0.00770215317606926, -0.035030119121074677, 0.0006954303244128823, -0.003139920299872756, -0.02778925746679306, -0.01610323041677475, -0.01898280158638954, 0.022337641566991806, -0.015627961605787277, 0.007464518770575523, -0.006541937589645386, 0.00757634686306119, 0.013237638399004936, 0.026363449171185493, 0.04473119601607323, 0.019947318360209465, 0.0028096784371882677, 0.019066672772169113, 0.017878500744700432, 0.004717743489891291, -0.020869899541139603, -0.009337637573480606, -0.012140326201915741, 0.004294893704354763, 0.009589250199496746, 0.015362370759248734, -0.012629574164748192, 0.003648388432338834, 0.017165597528219223, -0.006094625685364008, 0.004840055480599403, 0.008205379359424114, -0.0030630386900156736, -0.0067236581817269325, 0.0201849527657032, -0.0012633068254217505, 0.0006093751871958375, -0.011937638744711876, -0.005776614882051945, 0.011364519596099854, 0.04372474551200867, 0.02938280627131462, -0.0028166675474494696, 0.019276350736618042, -0.02510538510978222, -0.006010754499584436, -0.03192689269781113, 0.007317744195461273, 0.00889731477946043, 0.014174198731780052, 0.014509682543575764, -0.030445171520113945, -0.025846244767308235, -0.010784411802887917, -0.002650673035532236, -0.022337641566991806, -0.02421076036989689, -0.028250547125935555, 0.001300000469200313, 0.0039139799773693085, 0.0018993285484611988, -0.0017979844706133008, 0.016173124313354492, -0.023917213082313538, -0.012273122556507587, 0.014565596356987953, 0.01840968430042267, 0.025552697479724884, -0.006133066490292549, 0.01469140313565731, -0.03737850859761238, -0.01860538311302662, -0.0014441537205129862, -0.028166675940155983, -0.023022588342428207, -0.0111548425629735, 0.025468826293945312, 0.013118821196258068, 0.005801077000796795, 0.029131192713975906, 0.037658076733350754, 0.022519363090395927, -0.003543549682945013, 0.0064580668695271015, -0.010686562396585941, 0.010476885363459587, -0.012888176366686821, 0.0147473169490695, 0.02650323510169983, -0.005626345984637737, 0.009211830794811249, -0.0035033614840358496, 0.008149465546011925, 0.022645168006420135, 0.0011750676203519106, 0.009449465200304985, -0.00514758238568902, -0.014635488390922546, -0.02049247920513153, 0.0010483874939382076, 0.007177959196269512, 0.022547319531440735, -0.033855926245450974, -0.006479034665971994, 0.022309685125947, 0.0068180132657289505, 0.009037099778652191, -0.0035750011447817087, 0.0038545711431652308, -0.010791401378810406, 0.027062375098466873, 0.012832262553274632, 0.034135494381189346, 0.002434006193652749, -0.00689838919788599, -0.038748398423194885, 0.0010186831932514906, 0.03170323744416237, -0.00757634686306119, -0.006922851782292128, 0.012252154760062695, 0.004637367092072964, -0.004728227388113737, 0.028516137972474098, 0.0013454306172206998, -0.029159149155020714, 0.0015883069718256593, -0.030249472707509995, -0.01758495159447193, -0.039559151977300644, -0.020059145987033844, 0.007048658095300198, -0.02140108309686184, -0.009127959609031677, 0.010022584348917007, 0.015753768384456635, 0.0043787648901343346, -0.031759150326251984, 0.009079035371541977, 0.026531191542744637, 0.031032267957925797, 0.003746237838640809, 0.02699248306453228, 0.051804319024086, -0.005269894376397133, -0.005287367384880781, 0.023260222747921944, 0.007317744195461273, 0.0053642489947378635, 0.019877426326274872, -0.004368280991911888, -0.020618285983800888, -0.023973125964403152, 0.01889893040060997, 0.0028673396445810795, -0.014929037541151047, -0.015180650167167187, 0.017319360747933388, 0.005727690178900957, -0.007415594067424536, -0.02159678190946579, -0.023973125964403152, -0.013517208397388458, 0.013272585347294807, -0.022141942754387856, 0.012818284332752228, 0.00034618627978488803, -0.01968172751367092, 0.016466671600937843, -0.014929037541151047, 0.004892474971711636, 0.013482262380421162, 0.0002723623183555901, -0.005832528695464134, 0.008659680373966694, -0.019625812768936157, -0.029019365087151527, -0.008135486394166946, -0.004176076501607895, 0.022463448345661163, -0.015334413386881351, 0.010288175195455551, 0.028963450342416763, -0.0068494644947350025, 0.0028918019961565733, 0.0028428772930055857, -0.007967744953930378, 0.03159140795469284, -0.009372583590447903, -0.0008317207102663815, 0.007779034785926342, -0.024965599179267883, -0.0037986570969223976, -0.001663441420532763, 0.0067096794955432415, -0.018381725996732712, 0.0009461696608923376, -0.008638712577521801, 0.007974733598530293, 0.009987637400627136, -0.01958387717604637, 0.0002162299060728401, 0.011001079343259335, -0.04341721907258034, 0.012972047552466393, -0.016718285158276558, 0.0007937166374176741, -0.011182799004018307, -0.004717743489891291, -0.0017813850427046418, -0.01810215599834919, 0.01494301576167345, 0.018046243116259575, -0.00047264801105484366, 0.017543016001582146, 0.04431184381246567, -0.03217850625514984, -0.02281291037797928, 0.004043281078338623, -0.01657850109040737, -0.011308605782687664, -0.0147473169490695, 0.015474198386073112, -0.012972047552466393, 0.020366674289107323, -0.02739785797894001, -0.011189788579940796, -0.013761832378804684, -0.015767747536301613, 0.0007452287245541811, 0.0024444900918751955, -0.01780860871076584, -0.006234410684555769, -0.00749946478754282, -0.015292477793991566, -0.022379577159881592, 0.0032272860407829285, 0.0327935591340065, -0.02279893308877945, 0.001413575722835958, 0.029494633898139, 0.009463444352149963, 0.01748710311949253, 0.006122582592070103, -0.0025510762352496386, -0.002212097402662039, -0.03472259268164635, -0.029159149155020714, 0.019024737179279327, 0.031647320836782455, -0.022127963602542877, -0.013566133566200733, 0.013650004751980305, -0.013104842975735664, -0.030948396772146225, -0.013468284159898758, -0.007408604491502047, -0.025734417140483856, 0.02969033271074295, 0.004668818786740303, -0.010176347568631172, -0.0021125006023794413, -0.003934947773814201, -0.027439793571829796, -0.00717097008600831, 0.003910485189408064, -0.02130323275923729, -0.009722046554088593, -0.00969408918172121, 0.03019355796277523, 0.01741720922291279, -0.021820437163114548, -0.044227972626686096, -0.018074199557304382, -0.014383875764906406, -0.014789252541959286, -0.025119362398982048, 0.0038965067360550165, -0.0024270168505609035, -0.015334413386881351, -0.011832799762487411, 0.02609785832464695, -0.020562373101711273, 0.013503230176866055, 0.014887101948261261, -0.018647318705916405, -0.000471774343168363, -0.015641940757632256, -0.0004195733927190304, 0.0030543021857738495, -0.05068603903055191, 0.008687637746334076, 0.028068827465176582, -0.0003769826435018331, -0.011776885949075222, 0.025566674768924713, -0.023721514269709587, -0.023120438680052757, -0.010826347395777702, 0.0024165331851691008, -0.0020793017465621233, -0.0006893147365190089, 0.015250543132424355, -0.05037851259112358, -0.004301883280277252, -0.0016145167173817754, 0.002475941786542535, 0.018130114302039146, 0.01055376697331667, 0.013992478139698505, -0.0033688184339553118, -0.00849193800240755, -0.027425816282629967, -0.018255919218063354, -0.003043818287551403, 0.009218820370733738, 0.03097635507583618, 0.026111837476491928, 0.0038615604862570763, 0.01790645718574524, -0.009309680201113224, 0.00010680447303457186, -0.030053773894906044, 0.001773522119037807, -0.018158070743083954, 7.103916868800297e-05, 0.023176351562142372, -0.04652044549584389, -0.01275538094341755, -0.00699973339214921, 0.010309142991900444, -0.009994626976549625, -0.0006124330102466047, -0.031563449651002884, -0.017850544303655624, -0.010938175953924656, 0.0198914036154747, 0.007415594067424536, -0.03746237978339195, -0.02300860919058323, -0.018675275146961212, 0.009435486979782581, -0.009037099778652191, -0.033939797431230545, 0.004396237898617983, -0.0035750011447817087, 0.007156991865485907, 0.00889731477946043, -0.008275271393358707, -0.005619356874376535, 0.009987637400627136, 0.010183337144553661, -0.029466677457094193, -0.002288979245349765, 0.18518716096878052, -0.03449893742799759, 0.013719896785914898, 0.028851622715592384, 0.0007758067222312093, -0.01070054154843092, 0.04892474785447121, 0.014467746950685978, -0.012629574164748192, -0.008820433169603348, -0.003774194745346904, 0.0023763449862599373, -0.0082962391898036, -0.001760417246259749, -0.016270972788333893, 0.004955377895385027, -0.06787959486246109, -0.029131192713975906, -0.006010754499584436, -0.02899140678346157, -0.014523660764098167, -0.01758495159447193, -0.00954731460660696, -0.016452694311738014, 0.00617150729522109, -0.016047317534685135, -0.014775273390114307, -0.011567207984626293, 0.04338926076889038, 0.026936568319797516, -0.03419141098856926, 0.010616670362651348, 0.0023344093933701515, 0.00495188357308507, -0.01174892857670784, -0.020632265135645866, 0.012916133739054203, -0.000973252987023443, 0.02119140513241291, 0.008946239948272705, 0.009729035198688507, -0.026461299508810043, 0.012266132980585098, -0.03349248319864273, 0.0065034967847168446, 0.019234415143728256, -0.011469358578324318, 0.008785487152636051, 0.013216671533882618, -0.0005062837735749781, -0.03662366792559624, 0.022044094279408455, 0.014369897544384003, 0.0070032281801104546, -0.0159075316041708, 0.008170432411134243, -0.01409032754600048, 0.03516990318894386, 0.009435486979782581, 0.0013113579479977489, -0.01394355297088623, 0.011616133153438568, -0.010232261382043362, 0.03916775435209274, -0.02957850508391857, 0.03816130384802818, -0.015012908726930618, 0.00048182139289565384, 0.01610323041677475, -0.037238720804452896, -0.00021524705516640097, -0.006119088269770145, -0.012671509757637978, -0.0012170030968263745, -0.02960646152496338, -0.0395871102809906, 0.014006456360220909, 0.030529042705893517, 0.022044094279408455, 0.0339677520096302, -0.014020434580743313, 0.01394355297088623, -0.012315058149397373, -0.0046653239987790585, -0.0018556457944214344, -0.02890753746032715, 0.017626887187361717, -0.0043053776025772095, -0.024420438334345818, -0.004885485395789146, -0.033548399806022644, 0.014929037541151047, -0.010560756549239159, -0.005252420902252197, -0.0013480514753609896, -0.014509682543575764, 0.019751619547605515, -0.0027659954503178596, 0.0016075273742899299, 0.008666669949889183, -0.03346452862024307, 0.06195271015167236, 0.020156996324658394, -0.012517746537923813, 0.0007478496991097927, 0.024238718673586845, 0.005762636195868254, 0.02728603035211563, 0.02681076154112816, -0.01738925278186798, -0.02070215716958046, -0.03296130150556564, -0.010644626803696156, 0.007786023896187544, 0.004861023277044296, 0.0339677520096302, 0.019136564806103706, 0.00591989466920495, 0.006433604285120964, -0.007820970378816128, -0.011860757134854794, -0.014209144748747349, 0.015068822540342808, 0.007261830382049084, 0.004798119887709618, -0.00014338882465381175, -0.0030298398341983557, 0.00980591680854559, -0.032346248626708984, -0.016844091936945915, 0.033436570316553116, -0.003742743283510208, 0.01597742550075054, 0.0060981204733252525, 0.0027782267425209284, -0.016215059906244278, 0.02770538628101349, -0.026726890355348587, -0.00844301376491785, -0.0032517483923584223, -0.015502155758440495, -0.006416131276637316, -0.002565054688602686, 0.0006355848745442927, -0.006548926699906588, -0.03606452792882919, 0.00849892757833004, -0.017515059560537338, -0.003017608541995287, 0.004406721796840429, -0.009337637573480606, -0.011252691969275475, 0.008463981561362743, -0.01670430600643158, 0.039027970284223557, -0.033632270991802216, 0.003526076441630721, -0.01870323158800602, 0.009372583590447903, -0.005951345898211002, -0.022826889529824257, 0.017473123967647552, 0.0018556457944214344, 0.004759679082781076, -0.017151618376374245, 0.013629036955535412, -0.17914845049381256, 0.021331189200282097, 0.007925809361040592, -0.019877426326274872, 0.025147320702672005, 0.015082800760865211, -0.0030822590924799442, 0.004018818493932486, -0.007827959954738617, 0.003220296697691083, 0.016816135495901108, 0.004291399382054806, -0.004263442475348711, -0.015921510756015778, 0.0024567211512476206, -0.009777960367500782, -0.01455161813646555, 0.023120438680052757, 0.027062375098466873, 0.010476885363459587, 0.03578495979309082, -0.03198280557990074, -0.010274196974933147, 0.005776614882051945, 0.0005233200499787927, 0.0040991948917508125, -0.01415323093533516, 0.02960646152496338, -0.030529042705893517, -0.019625812768936157, -0.004494087304919958, -0.00910000316798687, 0.03089248389005661, 0.01709570549428463, 0.014649467542767525, 0.017319360747933388, -0.01320269238203764, -0.02497957833111286, -0.004315861500799656, 0.03469463437795639, 0.021219361573457718, 0.03296130150556564, 0.011818821541965008, -0.009058067575097084, -0.01708172634243965, 0.02010108157992363, 0.0021404577419161797, -0.0045989262871444225, 0.014831188134849072, -0.023316137492656708, 0.013971510343253613, 0.0005892810877412558, 0.015124736353754997, 0.004120162688195705, 0.0008989922353066504, 0.0329892598092556, 0.012720433995127678, -0.002874328987672925, 0.01023925095796585, -0.0002592574746813625, -0.003550538793206215, -0.005119625478982925, -0.0013069896958768368, -0.013670972548425198, -0.008268282748758793, -0.016229037195444107, -0.02468602918088436, 0.018241941928863525, -0.04576560854911804, 0.006381184794008732, -0.02868388034403324, -0.016438715159893036, -0.017976349219679832, -0.0008221105090342462, -0.0010850810213014483, 0.019472049549221992, -0.028222590684890747, 0.011825810186564922, 0.01254570297896862, 0.011525272391736507, 0.017752693966031075, 0.030668826773762703, 0.0006823255098424852, 0.01314677856862545, 0.005283872596919537, -0.009344627149403095, -0.0027030922938138247, 0.02470000833272934, -0.025049470365047455, -0.014327961951494217, 0.00647553987801075, -0.011210756376385689, 0.0008090056362561882, -0.006615324877202511, 0.005657797679305077, 0.004536022897809744, 0.01260161679238081, 0.025273127481341362, -0.010581724345684052, -0.01194462738931179, -0.010309142991900444, 0.020646244287490845, -0.0026978503447026014, 0.026125814765691757, 0.023917213082313538, 0.02210000716149807, -0.012510756962001324, 0.010162369348108768, 0.01738925278186798, -0.011713982559740543, -0.01534839253872633, 0.015502155758440495, 0.015124736353754997, 0.0233860295265913, 0.00497634569182992, 0.013852693140506744, -0.021135490387678146, -0.016927963122725487, 0.019933339208364487, -0.005612367298454046, 0.056249480694532394, 0.02120538428425789, -0.019751619547605515, 0.025370975956320763, -0.026419363915920258, -0.02941076271235943, -0.09320863336324692, -0.025273127481341362, 0.0028096784371882677, 0.03790969029068947, -0.018423661589622498, 0.010679573751986027, -0.013698928989470005, 0.043333347886800766, -0.0035155925434082747, 0.0198914036154747, 0.012231186963617802, -0.016340864822268486, -0.001773522119037807, -0.021568823605775833, 0.03192689269781113, -0.008149465546011925, -0.027076352387666702, -0.026964524760842323, 0.012510756962001324, 0.028739795088768005, -2.5759207346709445e-05, -0.033045172691345215, 0.00949839036911726, -0.016844091936945915, 0.0031713719945400953, -0.012783337384462357, -0.032150547951459885, 0.01859140396118164, 0.004794625099748373, 0.005217474885284901, 0.005979303270578384, -0.017515059560537338, 0.014209144748747349, -0.008477959781885147, 0.014111295342445374, 0.0002398186334175989, -0.006059679668396711, -0.02247742749750614, 0.0329892598092556, -0.03693119436502457, 0.026615062728524208, 0.013873660936951637, 0.026419363915920258, -0.0022802427411079407, -0.012426885776221752, 0.0033932807855308056, -0.02679678238928318, 0.03360431268811226, 0.018144091591238976, -0.024546245113015175, -0.023050544783473015, -0.02868388034403324, -0.007233873475342989, -0.008547852747142315, 0.021862372756004333, 0.008918282575905323, -0.0006168012623675168, -0.004427689593285322, -0.0082473149523139, -0.021023662760853767, 0.006360216997563839, -0.021037641912698746, -0.02000323310494423, 0.028040869161486626, 0.0164946299046278, 0.016145166009664536, -0.004536022897809744, 0.0008251682738773525, 0.007212905678898096, -0.020730113610625267, -0.005479571875184774, -0.014188176952302456, -0.007177959196269512, 0.012622584588825703, 0.004172582179307938, -0.011245702393352985, -0.015362370759248734, -0.008834411390125751, 0.016368823125958443, -0.01114785298705101, 0.00477365730330348, -0.025650545954704285, -0.028851622715592384, -0.013279573991894722, -0.0006290324963629246, 0.00597580848261714, 0.002738038543611765, 0.006685217376798391, 0.0016363580944016576, -0.030948396772146225, -0.012308068573474884, 0.014901080168783665, -0.00835215300321579, 0.006370700895786285, -0.023833341896533966, 0.013824735768139362, -0.010917208157479763, -0.0011453633196651936, 0.008799465373158455, 0.008380110375583172, -0.03519786149263382, -0.0006277220090851188, -0.08951830863952637, 0.025762373581528664, -0.00935161579400301, -0.006276346277445555, -0.004462636075913906, -0.003463173285126686, -0.003767205635085702, 0.0014284278731793165, 0.010987100191414356, 0.008771508000791073, -0.024881727993488312, 0.0169838760048151, -0.0020461028907448053, -0.02320430800318718, 0.0028970439452677965, 0.0014860891969874501, 0.026936568319797516, -0.014244090765714645, 0.011672046966850758, 0.03659570962190628, 0.011182799004018307, 0.015921510756015778, 0.014733338728547096, 0.007408604491502047, -0.027272053062915802, -0.003026345046237111, 0.0027240600902587175, 0.010386024601757526, -0.011567207984626293, -0.01375484373420477, -0.009120970964431763, -0.020758071914315224, 0.0021107534412294626, 0.007212905678898096, 0.0018573930719867349, 0.006293819285929203, -0.006188980769366026, 0.017025811597704887, 0.0063182818703353405, 0.03740646317601204, -0.023316137492656708, -0.04646453261375427, 0.004497582092881203, -0.004270431585609913, -0.008331185206770897, -0.02100968360900879, -0.0019919362384825945, 0.0019674738869071007, 0.025650545954704285, 0.008785487152636051, 0.02070215716958046, -0.00030425077420659363, -0.04372474551200867, -0.027873126789927483, 0.0025615599006414413, 0.02938280627131462, 0.02957850508391857, 0.020939791575074196, 0.010924196802079678, -0.031255923211574554, 0.04456345736980438, 0.004766668193042278, 0.009379573166370392, -0.005088173784315586, 0.008456991985440254, -0.022058071568608284, -0.02330215834081173, -0.015278499573469162, 0.013887639157474041, -0.010973121970891953, -0.0067376368679106236, -0.011727960780262947, 0.0038720443844795227, 0.03382796794176102, -0.012063444592058659, 0.01469140313565731, -0.01657850109040737, 0.02081398479640484, -0.019569899886846542, 0.024252695962786674, 0.02530108392238617, 0.008338174782693386, -0.017459144815802574, -0.009281723760068417, 0.02279893308877945, 0.026027966290712357, -0.02750968746840954, -0.0033670710399746895, -0.0017464387929067016, 0.007212905678898096, -0.02159678190946579, 0.008191400207579136, 0.0051650553941726685, 0.006838980596512556, -0.005689249373972416, 0.007066131569445133, -0.021960223093628883, 0.010064519941806793, 0.03516990318894386, 0.0291032362729311, 0.030948396772146225, 0.003097984939813614, 0.009994626976549625, -0.008191400207579136, -0.04450754076242447, 0.0033111569937318563, -0.016368823125958443, -0.015110758133232594, 0.00600027060136199, -0.006716669071465731, -0.009847852401435375, -0.0026995977386832237, -0.00570322759449482, 0.0016852827975526452, -0.027817213907837868, 0.036455925554037094, 0.009854841977357864, -0.005500539671629667, -0.030221516266465187, 0.028516137972474098, 0.011644089594483376, -0.02548280358314514, 0.012629574164748192, -0.02379140630364418, 0.015068822540342808, -0.005196507088840008, 0.014873123727738857, -0.036763451993465424, 0.0031853504478931427, -0.03402366861701012, -0.0003103663621004671, 0.017025811597704887, -0.017822585999965668, 0.0048750014975667, -0.02439248189330101, 0.005867475178092718, -0.02848818153142929, 0.0038580656982958317, -0.007862905971705914, 0.07134626060724258, 0.03089248389005661, -0.0061645181849598885, 0.002603495493531227, -0.01980753429234028, -0.028544096276164055, 0.014188176952302456, 0.0130000039935112, -0.007876884192228317, -0.028530117124319077, 0.004791130777448416, 0.022854845970869064, -0.020045168697834015, -0.016243016347289085, 0.008107529953122139, -0.00485053937882185, 0.0014511429471895099, 0.041348401457071304, 0.013845703564584255, -0.005801077000796795, 0.030137645080685616, 0.011448390781879425, 0.007457529194653034, -0.001688777469098568, -0.013594090938568115, -0.008582798764109612, 0.03989463672041893, -0.02148495428264141, -0.012042476795613766, -0.026069901883602142, 0.01174193900078535, 0.027425816282629967, -0.02409893274307251, -0.01631290838122368, 0.007674196269363165, -0.00017265630594920367, -0.0004992945468984544, 0.014258068986237049, 0.015669897198677063, 0.006831991486251354, 0.011378498747944832, 0.037741947919130325, -0.0040991948917508125, -0.037741947919130325, -0.010057530365884304, -0.005916399881243706, -0.010260218754410744, 0.005954840686172247, -0.030724741518497467] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_a_decentralized_review_system_for_data_marketplaces.json b/database/embeddings/publications_txt/2021_a_decentralized_review_system_for_data_marketplaces.json new file mode 100644 index 0000000000000000000000000000000000000000..a6c4f7ba8c2f696111a64fd55c3862bfddd033f0 --- /dev/null +++ b/database/embeddings/publications_txt/2021_a_decentralized_review_system_for_data_marketplaces.json @@ -0,0 +1 @@ +[-0.005502556450664997, 0.009413178078830242, 0.008368038572371006, -0.01962924562394619, -0.0026266921777278185, -0.00042307391413487494, -0.01760818064212799, -0.005499095655977726, -0.006191241089254618, -0.044380366802215576, 0.021124279126524925, 0.012894670478999615, -0.02310381643474102, 0.01633463241159916, -0.011268128640949726, 0.022024068981409073, 0.03355521336197853, -0.00012090916425222531, -0.018161896616220474, -0.010022266767919064, -0.007136019878089428, 0.0008517715032212436, -0.03499487414956093, -0.003332680556923151, -0.006430031731724739, 0.024571163579821587, 0.03657296672463417, -0.04299607872962952, 0.0064992462284862995, 0.0023221480660140514, -0.004045590292662382, -0.015088771469891071, 0.007516699843108654, -0.005827865097671747, -0.0108874486759305, 0.002022795146331191, -0.00048320405767299235, -0.007225998677313328, 0.020875107496976852, -0.004890007898211479, 0.002704558428376913, 0.02558169700205326, 0.00668266462162137, -0.009911523200571537, 0.0031821387819945812, -0.00564790703356266, 0.036683712154626846, -0.02857176586985588, -0.0038794754073023796, 0.020335234701633453, 0.0010261057177558541, 0.03131266310811043, -0.02783809043467045, 0.013690637424588203, 0.0007769332733005285, 0.00016308677732013166, 0.00930243544280529, 0.026509171351790428, -0.003412277204915881, -0.014798070304095745, 0.029513083398342133, -0.004232469480484724, -0.04518325626850128, -0.007454406935721636, 0.010022266767919064, -0.024418892338871956, -0.01612699031829834, 0.029070110991597176, 0.0050042117945849895, 0.005035358481109142, 0.022785428911447525, 0.02147035300731659, 0.005461027845740318, -0.002633613534271717, 0.03925849124789238, -0.025180252268910408, -0.016473062336444855, -0.007205234374850988, -0.011302735656499863, 0.012347875162959099, -0.002026255941018462, -0.0021179651375859976, 0.012389403767883778, -0.0011057023657485843, 0.013503758236765862, 0.028820937499403954, -0.004280919674783945, -0.0031146546825766563, -0.01633463241159916, -0.007309056352823973, 0.000411610264563933, 0.0003744074492715299, 0.005800179205834866, 0.0009594866423867643, -0.03964609280228615, 0.027713505551218987, -0.005256844684481621, 0.04255310446023941, 0.0055786925368011, -0.01544868666678667, 0.021013537421822548, 0.005173787474632263, -0.020833579823374748, -0.032060179859399796, -0.0098769161850214, -0.01778813824057579, -0.01138579286634922, 0.024058977141976357, 0.018895572051405907, 0.029513083398342133, -0.020584406331181526, 0.021193495020270348, -0.014036710374057293, -0.01715136505663395, -0.0012623002985492349, -0.008990969508886337, -0.00030930250068195164, 0.0011593436356633902, -0.009330120868980885, -0.008624132722616196, 0.04617994651198387, -0.007059883791953325, -0.001668935758061707, -0.0285994503647089, 0.028765566647052765, -0.0031821387819945812, -0.01212638895958662, -0.02808726392686367, 0.033029183745384216, -0.012174839153885841, 0.0023221480660140514, 0.019546188414096832, -0.008755640126764774, 0.01917243003845215, 0.0005251654074527323, 0.013877516612410545, -0.013600658625364304, 0.0035956958308815956, -0.013164606876671314, -0.056119155138731, 0.0011143542360514402, 0.03305686637759209, -0.029789941385388374, -0.002621500985696912, -0.015337944030761719, 0.013109235092997551, -0.025318682193756104, 0.027976520359516144, 0.015780916437506676, 0.006125487387180328, -0.006360816769301891, -0.02678602933883667, -0.03128497675061226, 0.024391205981373787, -0.003045440185815096, 0.02072283625602722, 0.008174237795174122, 0.031146546825766563, 0.02198254130780697, -0.024169720709323883, 0.005395274143666029, 0.016043933108448982, -0.020861264318227768, -0.013538365252315998, 0.018494127318263054, 0.03469033166766167, 0.043549794703722, 0.006443874444812536, -0.007855851203203201, -0.003360366215929389, -0.016957564279437065, 0.01067288313060999, -0.014922656118869781, -0.007378270849585533, -0.006423110142350197, 0.027256688103079796, 0.047730352729558945, 0.016293104737997055, -0.0069352975115180016, -0.013129999861121178, -0.0021837190724909306, 0.0038137217052280903, 0.0226746853441, 0.03463495895266533, -0.0005926495650783181, 0.01147577166557312, 0.028281064704060555, -0.021857954561710358, 0.013759852387011051, -0.018466440960764885, 0.03682214021682739, 0.02313150279223919, -0.001880905358120799, -0.0016083730151876807, -0.6051012873649597, -0.02998374216258526, 0.012929277494549751, -0.010292203165590763, -0.0332229845225811, 0.012687026523053646, 0.027353588491678238, 0.021055065095424652, -0.007620521821081638, 0.03131266310811043, -0.00681763282045722, -0.00313368858769536, 0.002363676903769374, -0.014216667972505093, -0.011690337210893631, -0.0029589219484478235, 0.03366595506668091, -0.025346366688609123, 0.03059283085167408, 0.014922656118869781, -0.0007535733748227358, 0.02714594639837742, 0.012666262686252594, -0.00973848719149828, -0.014742698520421982, 0.005045740399509668, 0.026218470185995102, -0.007662050426006317, 0.004280919674783945, -0.0018843660363927484, -0.03291843831539154, 0.024031290784478188, 0.026564544066786766, -0.006011283490806818, 0.051052652299404144, -0.005018054507672787, -0.007835086435079575, 0.015213357284665108, 0.011586515232920647, 0.036739081144332886, -0.03626842424273491, -0.03291843831539154, 0.0014007294084876776, 0.005969754885882139, 0.0018705232068896294, 0.001150691881775856, 0.03164489194750786, 0.0032253980170935392, -0.02648148685693741, -0.028211848810315132, -0.030011428520083427, -4.488130798563361e-06, -0.01661149226129055, -0.005800179205834866, 0.01200180221349001, -0.017137521877884865, 0.01074901968240738, -0.022882329300045967, 0.01591934636235237, 0.030675888061523438, 0.026287686079740524, 0.01980920322239399, -0.006717272102832794, -0.05481792241334915, -0.004488563630729914, 0.00764820771291852, 0.00597321568056941, 0.008284981362521648, 0.016556119546294212, -0.01712367869913578, -0.007129098288714886, 0.004921154584735632, -0.0073505849577486515, -0.023879019543528557, 0.013967495411634445, 0.028004206717014313, 0.029845312237739563, 0.005914383102208376, -0.005820943508297205, 0.015254886820912361, 0.002439812757074833, -0.006976826582103968, 0.006218926981091499, -0.03059283085167408, 0.008631054311990738, 0.02660607174038887, 0.00024982125614769757, -0.015421001240611076, 0.010693647898733616, 0.015379472635686398, 0.02080589346587658, 0.04019980877637863, -0.0027460872661322355, 0.0031406101770699024, 0.012513990513980389, 0.03956303372979164, 0.003261735662817955, 0.012728555127978325, 0.012271739542484283, -0.03203249350190163, -0.007786636706441641, 0.007890458218753338, -0.002413857262581587, -0.02594161219894886, 0.026315370574593544, 0.024654222652316093, -0.007966594770550728, -0.006475021131336689, 0.025595540180802345, -0.023726746439933777, 0.0048138718120753765, -0.008824855089187622, -0.03864940255880356, -0.004405505955219269, 0.009724644012749195, -0.03499487414956093, 0.02343604527413845, -0.000464602664578706, -0.008693346753716469, -0.0016265418380498886, 0.00247961119748652, 0.02044597826898098, 0.004997290205210447, -0.0057136607356369495, -0.02174721099436283, 0.022702371701598167, 0.021359609439969063, -0.038068000227212906, -0.015047242864966393, 0.02727053128182888, 0.015324100852012634, -0.02356063202023506, 0.03305686637759209, -0.005204934161156416, 0.025720126926898956, -0.00309908133931458, 0.01893709972500801, -0.03524404764175415, -0.003460727399215102, -0.037763457745313644, -0.0028222231194376945, -0.0008755640592426062, -0.0035783920902758837, -0.020003003999590874, -0.04413119703531265, -0.015324100852012634, -0.02466806396842003, 0.020252177491784096, 0.0053814309649169445, 0.0056548286229372025, -0.015144143253564835, 0.012500147335231304, -0.008644897490739822, 0.009835387580096722, -0.01414745394140482, -0.009025577455759048, 0.0013444925425574183, -0.018674084916710854, -0.032420095056295395, -0.007378270849585533, -0.012430932372808456, 0.03219860792160034, -0.024474265053868294, -0.00259381509386003, 0.007952751591801643, 0.010209145955741405, 0.004561238922178745, 0.009413178078830242, 0.006931837182492018, -0.02865482307970524, -0.013683715835213661, -0.009759251028299332, -0.015379472635686398, 0.007599757518619299, -0.0313403457403183, 0.021899482235312462, -0.0035212901420891285, 0.0018601409392431378, -0.002763390773907304, -0.0006575381848961115, -0.00989075843244791, 0.02660607174038887, -0.0055717709474265575, -0.009987658821046352, 0.018494127318263054, 0.005831325892359018, 0.024058977141976357, -0.010409868322312832, 0.013240743428468704, 0.00025025385548360646, -0.00046849597129039466, 0.028488708660006523, -0.00050483358791098, 0.02210712619125843, -0.029014738276600838, -0.002775503322482109, -0.011586515232920647, -0.016929877921938896, 0.0075859143398702145, 0.026952145621180534, 0.022342456504702568, 0.007689736317843199, 0.005834786221385002, -0.008236531168222427, -0.013462229631841183, -0.01769123785197735, 0.024142034351825714, -0.0062258485704660416, 0.02014143392443657, -0.0017736228182911873, 0.03626842424273491, -0.005637525115162134, -0.0006320153479464352, 0.0015322370454668999, 0.007537464145570993, 0.03660065308213234, -0.02540173940360546, 0.02430814877152443, -0.02192716859281063, 0.014050553552806377, -0.02313150279223919, -0.023020759224891663, 0.02673065848648548, -0.004467798862606287, -0.0076828147284686565, -0.006059733685106039, 0.018051154911518097, -0.0012328841257840395, 0.011787237599492073, -0.020667463541030884, -0.007219077553600073, 0.009385492652654648, 0.011967195197939873, -0.0003000018186867237, 0.008852540515363216, 0.0016455758595839143, 0.03383206948637962, -0.00032574095530435443, 0.03563164919614792, -0.024045133963227272, 0.009427021257579327, 0.048090267926454544, 0.031091174110770226, -0.04324524849653244, 0.01914474368095398, -0.022508570924401283, -0.0012640306958928704, 0.027921149507164955, 0.0008080798434093595, 0.015988560393452644, -0.020224491134285927, 0.027408961206674576, -0.01612699031829834, 0.00771742220968008, 0.04222087562084198, 0.0005857280921190977, -0.010928977280855179, 0.0009240141953341663, 0.01054137572646141, 0.009773094207048416, -0.006589225027710199, 0.005076887086033821, -0.0014240893069654703, 0.0199337899684906, 0.013766773976385593, 0.0044331918470561504, -0.010250674560666084, -0.005551006644964218, 0.004381280858069658, -0.03122960403561592, 0.005308755673468113, -0.01778813824057579, -0.027021359652280807, 0.012057173997163773, 0.011441164650022984, 0.016860663890838623, 0.003235780168324709, 0.0008608559146523476, -0.004090579692274332, 0.015185671858489513, -0.023089973255991936, 0.0052395411767065525, 0.02995605580508709, 0.016653019934892654, 0.014535055495798588, -0.021733367815613747, -0.006471560336649418, -0.0024813415948301554, -0.02998374216258526, 0.013662951998412609, 0.00872795470058918, -0.00948239304125309, -0.012908512726426125, -0.02678602933883667, -0.013566051609814167, -0.011240442283451557, 0.04435268044471741, -0.010873605497181416, -0.027644289657473564, -0.01896478608250618, 0.01730363629758358, 0.01576707325875759, -0.006720732431858778, -0.02929159626364708, 0.05924765393137932, -0.02243935689330101, -0.0035887742415070534, -0.00948239304125309, -0.007253684569150209, -0.0030869687907397747, 0.011787237599492073, 0.017857354134321213, -0.03615767881274223, -0.004312066361308098, 0.04019980877637863, -0.0022477423772215843, 0.021055065095424652, -0.003865632461383939, 0.005243001971393824, 0.01676376350224018, -0.005727503914386034, -0.030399030074477196, -0.018521813675761223, 0.011122778058052063, 0.06157326325774193, 0.0343027301132679, -0.01763586699962616, 0.039701465517282486, 0.008015044964849949, -0.014659641310572624, -0.03917543590068817, -0.012527832761406898, 0.011607280001044273, 0.005263766273856163, -0.004229008685797453, -0.014964185655117035, -0.0020574023947119713, 0.011967195197939873, 0.0223147701472044, -0.008617211133241653, -0.012507068924605846, 0.007890458218753338, 0.005215316079556942, -0.01658380590379238, 0.00010533588647376746, 0.005336441565304995, 0.014168217778205872, 0.024875707924365997, 0.024931080639362335, -0.025138724595308304, 0.042719218879938126, 0.02095816470682621, -0.00652347132563591, -0.009897680021822453, -0.0029589219484478235, 0.032143235206604004, 0.00615317327901721, 0.006045890972018242, -0.012500147335231304, 0.037126682698726654, 0.029734570533037186, 0.021677996963262558, 0.0215949397534132, 0.040393609553575516, 0.025041824206709862, 0.014410468749701977, 0.009371649473905563, -0.0031302280258387327, -0.008402646519243717, -0.05310140177607536, 0.002996989991515875, 0.018729455769062042, -0.0029139325488358736, -0.011877216398715973, 0.01814805530011654, 0.01132350042462349, -0.049696046859025955, -0.02721516042947769, 0.010202224366366863, -0.0046581388451159, 0.0004546530544757843, 0.0019310858333483338, -0.010852840729057789, -0.03366595506668091, -0.014922656118869781, -0.021027378737926483, -0.005298373755067587, -0.000633313087746501, -0.021581096574664116, 0.004450495354831219, -0.03253083676099777, -0.016473062336444855, -0.00301948469132185, 0.028433335945010185, -0.007021815981715918, -0.0035887742415070534, -0.05562081187963486, -0.0043397522531449795, -0.0034538060426712036, 0.009849229827523232, 0.027851933613419533, -0.013607580214738846, 0.0024190484546124935, -0.00385871110484004, -0.022605471312999725, -0.01699909381568432, 0.014493525959551334, -0.04634606093168259, -0.0075789932161569595, -0.0009343964047729969, -0.022480884566903114, -0.009987658821046352, -0.012271739542484283, 0.02448810636997223, -0.013102313503623009, -0.012354796752333641, -0.015157986432313919, 0.011482693254947662, 0.011669572442770004, 0.031063489615917206, 0.028336435556411743, 0.021913325414061546, 0.006385041866451502, -0.005710200406610966, 0.018078839406371117, 0.0015599228208884597, -0.00026452934253029525, -0.028377965092658997, 0.001659418805502355, -0.007606678642332554, -0.017885038629174232, 0.021193495020270348, 0.0020054916385561228, 0.010638276115059853, 0.013393014669418335, -0.02216249890625477, 0.0011809732532128692, 0.01253475435078144, 0.010029188357293606, 0.014659641310572624, 0.009260906837880611, 0.0008708055247552693, -0.00013139948714524508, -0.010271439328789711, 0.00014729720714967698, 0.0012415359960868955, 0.022965386509895325, 0.03914774954319, 0.001173186581581831, 0.012770083732903004, -0.015268729068338871, -0.02630152739584446, -0.01371140219271183, -0.0003819777921307832, 0.013213057070970535, 0.018826356157660484, -0.02113812230527401, -0.04031055420637131, -0.029457710683345795, 0.007371349260210991, -0.013856752775609493, -0.012064095586538315, -0.026523014530539513, -0.0313403457403183, -0.0011541525600478053, 0.010292203165590763, -0.00948239304125309, -0.005211855284869671, 0.025443267077207565, -0.028793251141905785, -0.010126088745892048, 0.013787537813186646, 0.02289617247879505, 0.038123372942209244, -0.014590426348149776, 0.017594337463378906, -0.017926568165421486, 0.010832076892256737, -0.0030385185964405537, -0.04080889746546745, -0.011240442283451557, -0.014562740921974182, 0.04291301965713501, 0.02080589346587658, 0.03419198840856552, 0.02113812230527401, 0.019213957712054253, 0.0067934077233076096, 0.012804691679775715, -0.005748268216848373, 0.008554917760193348, 0.0002753441222012043, -0.017622023820877075, 0.0054194992408156395, 0.005661750212311745, -0.009600058197975159, 0.020999694243073463, -0.010479082353413105, 0.013746009208261967, -0.0014664832269772887, 0.00013626614236272871, -0.00656846072524786, -0.01279084850102663, -0.00874179694801569, -0.003400164656341076, 0.00046503523481078446, 0.0046823639422655106, -0.0011031068861484528, -0.039424605667591095, -0.02149803936481476, 0.03748659789562225, -0.0031527227256447077, 0.006025126203894615, -0.005848629400134087, 0.022550100460648537, -0.03289075195789337, 0.027824249118566513, 0.012174839153885841, 0.011939509771764278, 0.013386094011366367, -0.00013637429219670594, -0.029070110991597176, -0.0081257876008749, 0.016874507069587708, 0.0058555505238473415, 0.013974417001008987, 0.012112545780837536, -0.005720582325011492, 0.014922656118869781, 0.01477038487792015, 0.02310381643474102, -0.01751128025352955, -0.011773394420742989, -0.012659341096878052, -0.0063573564402759075, -0.01694372110068798, -0.04648448899388313, 0.005582153331488371, -0.011676494032144547, 0.011634965427219868, 0.017954254522919655, 0.012340953573584557, -0.03460727259516716, -0.027284374460577965, 0.012112545780837536, 0.011904901824891567, 0.013081549666821957, -0.008146552368998528, 0.015061086043715477, 0.025595540180802345, -0.00424977345392108, -0.01022298913449049, 0.0018341855611652136, -0.019047843292355537, 0.0037687320727854967, 0.0302606001496315, 0.04451879858970642, -0.0021231563296169043, -0.04557085782289505, 0.01661149226129055, 0.002133538480848074, -0.028073420748114586, -0.03385975584387779, 0.003102542134001851, 0.0306205153465271, -0.001571170287206769, -0.023726746439933777, -0.006942219100892544, -0.005589074920862913, 0.005447185132652521, -0.016113147139549255, -0.0067830258049070835, -0.0016922956565394998, -0.013808302581310272, 0.017898881807923317, 0.00816731620579958, 0.01262473315000534, 0.023325303569436073, 0.01760818064212799, -0.03300149738788605, 0.0012008723570033908, -0.005018054507672787, -0.0487547293305397, 0.021055065095424652, 0.009274749085307121, 0.023173030465841293, -0.01645921915769577, 0.023754432797431946, 0.01630694791674614, -0.0031544531229883432, 0.007745108101516962, -0.005755189806222916, -0.010520610958337784, 0.028848623856902122, -0.004730814136564732, -0.005679053720086813, 0.007994280196726322, -0.019047843292355537, 0.002349833957850933, -0.00925398524850607, 0.010209145955741405, -0.00925398524850607, -0.02129039540886879, -0.015199515037238598, -0.013697559013962746, 0.0075789932161569595, -0.0004905581008642912, 0.013247664086520672, 0.011309657245874405, -0.018826356157660484, 0.007049501873552799, -0.005454106256365776, 0.005741346627473831, -0.009510078467428684, -0.011102013289928436, -0.0023515643551945686, -0.006942219100892544, 0.02126270905137062, 0.0073505849577486515, 0.02663375809788704, 0.025678597390651703, 0.015504058450460434, -0.02491723746061325, -0.006824554409831762, 0.0029900684021413326, -0.02307613007724285, -0.01733132265508175, -0.02147035300731659, -0.007475171238183975, 0.0005671267281286418, 0.021373452618718147, -0.010513689368963242, -0.03391512855887413, -0.01676376350224018, -0.02931928262114525, -0.0052879913710057735, -0.013434544205665588, -0.001602316740900278, -0.005412577651441097, 0.0034105468075722456, -0.0032236676197499037, -0.013974417001008987, -0.0199337899684906, 0.03599156439304352, -0.02476496435701847, 0.014964185655117035, 0.021124279126524925, -0.015171828679740429, 0.004727353807538748, -0.027325903996825218, 0.00032682245364412665, -0.015241043642163277, -0.036766767501831055, -0.0016749920323491096, 0.007032197900116444, 0.028377965092658997, -0.01576707325875759, -0.020695149898529053, 0.0065546175464987755, -0.018826356157660484, -0.02297922968864441, 0.018591027706861496, -0.00833343155682087, -0.016417691484093666, 0.01187029480934143, 0.0016576884081587195, 0.00863797590136528, -0.009503157809376717, -0.014258196577429771, -0.036406852304935455, -0.01911705732345581, 0.019061686471104622, -0.013261507265269756, -0.021013537421822548, -0.016542276367545128, 0.03186637908220291, 0.0011108934413641691, -0.026841402053833008, -0.043715909123420715, -0.028516393154859543, -0.027519704774022102, -0.003403625451028347, -0.013393014669418335, 0.006866083014756441, -0.0062708379700779915, 0.005222237668931484, -0.010569061152637005, 0.026343056932091713, -0.0063089062459766865, 0.010991270653903484, -0.010575982742011547, 0.0032496231142431498, -0.0029502701945602894, 0.0057136607356369495, 0.028128791600465775, 0.0051461015827953815, -0.0660029947757721, 0.002403475111350417, 0.017220579087734222, 0.030122172087430954, -0.0030402489937841892, 0.02062593586742878, -0.0064058066345751286, -5.33303500560578e-06, -0.006132408976554871, 0.004969604313373566, -0.01478422712534666, -0.015324100852012634, 0.012015645392239094, -0.04695514962077141, -0.0034624577965587378, -0.0018514891853556037, -0.004585464019328356, 0.02243935689330101, -0.0032029033172875643, 0.005859011318534613, -0.01499187108129263, 0.006900690495967865, -0.0343027301132679, -0.017109835520386696, 0.006066655274480581, 0.0008180294535122812, 0.023186873644590378, 0.010236831381917, 0.0017667013453319669, 0.04811795428395271, -0.008049651980400085, -0.025747811421751976, -0.016805293038487434, 0.03385975584387779, -0.021013537421822548, -0.0015218548942357302, 0.004727353807538748, -0.0023342606145888567, 0.0020539416000247, -0.009018655866384506, 0.017012935131788254, -0.015808602795004845, -0.0034538060426712036, -0.01579475961625576, -0.023989763110876083, -0.01531025767326355, 0.025996984913945198, 0.007931986823678017, -0.013697559013962746, -0.027768876403570175, -0.02008606120944023, 0.006956062279641628, -0.022273240610957146, -0.01362142339348793, -0.0014811913715675473, -0.005336441565304995, 0.010845920071005821, -0.014438155107200146, -0.02180258184671402, 0.0038137217052280903, 0.004582003224641085, -0.004585464019328356, -0.030842002481222153, -0.009745408780872822, 0.17873965203762054, -0.013856752775609493, 7.656859088456258e-05, 0.03867708891630173, 0.0065061673521995544, -0.016957564279437065, 0.02032139152288437, 0.012873905710875988, -0.01315076369792223, -0.010444475337862968, 0.005627142731100321, 0.0027443568687886, 0.005485252942889929, -0.003067934885621071, 0.02542942576110363, -0.003261735662817955, -0.032115548849105835, -0.03391512855887413, 0.007039119489490986, -0.014659641310572624, -0.012873905710875988, -0.0121679175645113, -0.014112845994532108, -0.01141347922384739, 0.0034070860128849745, -0.0223147701472044, -0.004803489428013563, -0.010257596150040627, 0.006094341166317463, 0.015088771469891071, -0.005063044372946024, 0.010575982742011547, -0.0057517290115356445, -0.01393980998545885, -0.031783320009708405, -0.030509773641824722, 0.006160094868391752, -0.003917543217539787, 0.0282395351678133, -0.0011705909855663776, 0.007149862591177225, -0.027367431670427322, -0.0007691466598771513, -0.038123372942209244, 0.004710049834102392, 0.01120583526790142, -0.021027378737926483, -0.004685824736952782, -0.01393980998545885, -0.008762561716139317, -0.03585313633084297, 0.005069965496659279, 0.02581702545285225, 0.023906704038381577, -0.02292385883629322, 0.00036056453245691955, 0.005810561124235392, 0.026356900110840797, 0.0021750670857727528, -0.015241043642163277, 0.011669572442770004, 0.019878417253494263, -0.0015019556740298867, 0.01881251484155655, -0.014202824793756008, 0.023865176364779472, -0.040698155760765076, -0.01676376350224018, 0.03266926482319832, -0.009821544401347637, 0.002938157645985484, -0.015199515037238598, -0.021428823471069336, 0.0019674235954880714, -0.02093048021197319, -0.032392408698797226, 0.011074327863752842, 0.025650911033153534, 0.023062286898493767, 0.040061380714178085, -0.009994580410420895, 0.02675834484398365, -0.02162262424826622, 0.0037687320727854967, -0.02630152739584446, -0.03300149738788605, 0.03804031386971474, -0.01319921389222145, -0.01478422712534666, -0.011738787405192852, -0.028184164315462112, 0.03402587026357651, -0.007848929613828659, -0.021511880680918694, -0.012424011714756489, -0.030675888061523438, 0.026370743289589882, -0.009018655866384506, -0.0026768725365400314, 0.00816731620579958, -0.024709593504667282, 0.09092023223638535, 0.02612156979739666, -0.005291452165693045, 0.0012372100027278066, -0.0009266097331419587, -0.018411070108413696, 0.01618236117064953, 0.013289193622767925, -0.021331923082470894, 0.0026041974779218435, -0.03369364142417908, -0.012444775551557541, -0.014853442087769508, 0.0074820928275585175, 0.018729455769062042, 0.01884019933640957, -0.011219678446650505, 0.005769032519310713, -0.01362142339348793, -0.018895572051405907, -0.017622023820877075, 0.008762561716139317, -0.0034953346475958824, -0.005139179993420839, -0.0022910016123205423, -0.027187474071979523, -0.014618112705647945, -0.017206735908985138, -0.0054298811592161655, 0.029706884175539017, 0.013420701026916504, 0.016417691484093666, -7.694710802752525e-05, 0.009517000056803226, 0.0054298811592161655, 0.0313403457403183, -0.009606978856027126, 0.004886547103524208, 0.01724826544523239, -0.02509719505906105, 0.017954254522919655, -0.004651217721402645, 0.008132709190249443, -0.00975232943892479, -0.015171828679740429, 8.278708992293105e-05, -0.010257596150040627, -0.01463195588439703, -0.005997440777719021, 0.007772793527692556, -0.007433642633259296, -0.021401138976216316, -0.022120969370007515, 0.02090279385447502, -0.015877816826105118, 0.0007812592084519565, -0.034358102828264236, -0.00042026207665912807, -0.011842609383165836, -0.022716214880347252, 0.009447786025702953, 0.022522414103150368, 0.00881793349981308, -0.025470953434705734, 0.00035580602707341313, -0.1760818064212799, 0.02440504916012287, 0.013586815446615219, -0.005450645461678505, 0.0014725395012646914, 0.011628043837845325, -0.0008894069469533861, 0.009267828427255154, -0.0063642775639891624, 0.007447485346347094, 0.007758950814604759, 0.011351185850799084, 0.00024636051966808736, -0.014368940144777298, 0.008492625318467617, 0.0030489007476717234, -0.01362142339348793, -0.006530392449349165, 0.024086663499474525, 0.01712367869913578, 0.028156477957963943, -0.031091174110770226, -0.004800029098987579, -0.02165031060576439, 0.002496914705261588, 0.004384741652756929, -0.016528433188796043, 0.02282695844769478, -0.020833579823374748, -0.009454707615077496, 0.0035749312955886126, -0.007205234374850988, 0.025180252268910408, 0.017345165833830833, 0.027076730504631996, 0.03128497675061226, -0.009586215019226074, 0.007267527747899294, -0.014188982546329498, 0.047342751175165176, 0.007925066165626049, 0.03781883046030998, -0.007931986823678017, -0.00964850839227438, 0.011095091700553894, 0.0243358351290226, -0.0005160809960216284, 0.0046581388451159, 0.01182184461504221, -0.025567853823304176, 0.0067830258049070835, 0.012264817953109741, 0.02745048888027668, -0.0021837190724909306, 0.016722233965992928, 0.05492866411805153, 7.202639244496822e-05, -0.015517901629209518, 0.00017876819765660912, 0.006045890972018242, -0.009032498113811016, -0.011974116787314415, -0.007551307324320078, -0.015988560393452644, -0.004966143984347582, -0.0299006849527359, -0.01633463241159916, 0.013912124559283257, -0.028848623856902122, 0.0067345756106078625, -0.003927925601601601, 0.0005506882444024086, 0.009932287968695164, 0.007440563756972551, 0.009184770286083221, 0.010714411735534668, 0.0017563191941007972, 0.014562740921974182, 0.01645921915769577, 0.003478031139820814, 0.005211855284869671, 0.029180852696299553, -0.015033399686217308, 0.011676494032144547, 0.01929701678454876, -0.006194701883941889, 0.007239841856062412, 0.0049073114059865475, -0.008361116982996464, -0.0023515643551945686, 0.0012648958945646882, -0.0120779387652874, 0.002372328657656908, 0.000823220529127866, -0.0016853741835802794, -0.00038760146708227694, -0.005682514514774084, 0.010679804719984531, -0.0031042725313454866, -0.010707490146160126, 0.0005407386342994869, 0.0027460872661322355, -0.0021750670857727528, 0.022730058059096336, 0.00881793349981308, 0.007329820655286312, -0.02678602933883667, -0.008977127261459827, 0.023602161556482315, -0.01824495568871498, -0.02642611414194107, 0.016777606680989265, 0.022840801626443863, 0.023449888452887535, -0.000734539411496371, 0.04828406870365143, -0.026038512587547302, -0.023782119154930115, 0.014424311928451061, -0.007627443410456181, 0.037375856190919876, 0.0069249155931174755, -0.0037860358133912086, 0.031008116900920868, -0.012091781944036484, -0.024695750325918198, -0.09579293429851532, -0.018729455769062042, 0.009247063659131527, 0.01561480201780796, -0.021844111382961273, 0.015753231942653656, -0.015213357284665108, 0.03554859012365341, 0.013628344051539898, 0.015531744807958603, -0.003050631145015359, -0.019698459655046463, -0.0035783920902758837, -0.012991570867598057, 0.001265761093236506, -0.013856752775609493, -0.022356299683451653, -0.02530483901500702, 0.02225939929485321, 0.020003003999590874, -0.004831175319850445, -0.024848023429512978, 0.014618112705647945, -0.005059583578258753, 0.00012274767505005002, 0.004028286784887314, -0.032475464046001434, 0.005661750212311745, 0.006485403049737215, 0.01054137572646141, 0.012223289348185062, -0.01893709972500801, 0.01947697438299656, -0.025041824206709862, 0.002010682597756386, -0.017622023820877075, 0.000623796135187149, -0.02500029467046261, 0.032087866216897964, -0.040725838392972946, 0.017040621489286423, 0.018272640183568, 0.02540173940360546, -0.012645497918128967, -0.010229909792542458, 0.009067106060683727, -0.025554010644555092, 0.03385975584387779, 0.004931536503136158, -0.01890941523015499, -0.02210712619125843, -0.013476072810590267, 0.010866683907806873, -0.014562740921974182, 0.032475464046001434, 0.0036856746301054955, -0.004242851864546537, 0.016625333577394485, -0.02962382696568966, -0.016556119546294212, -0.014687326736748219, -0.026979830116033554, -0.029402339830994606, 0.01040294673293829, 0.012548597529530525, 0.01543484441936016, -0.015628645196557045, -0.003619920928031206, -6.732196197845042e-05, -0.029789941385388374, -0.020708993077278137, 0.00975232943892479, -0.04529400169849396, -0.011032799258828163, -0.01049292553216219, -0.013856752775609493, -0.022550100460648537, -0.025747811421751976, 0.016376161947846413, -0.017580494284629822, -0.008568760938942432, -0.016860663890838623, -0.00562368193641305, -0.028031891211867332, 0.009517000056803226, 0.0005160809960216284, -0.01706830784678459, 0.014424311928451061, 0.02422509156167507, -0.035105619579553604, 0.017525123432278633, 0.013053863309323788, 0.027132103219628334, -0.0022027529776096344, -0.02228708378970623, 0.018258797004818916, 0.002903550397604704, -0.010499847121536732, -0.011697258800268173, 0.005014594178646803, -0.05586998164653778, 0.013697559013962746, -0.07619137316942215, 0.03646222501993179, -0.002678602933883667, -0.021428823471069336, 0.008056573569774628, 0.0012545136269181967, 0.014576584100723267, -0.01191182341426611, 0.005720582325011492, -0.006388502661138773, -0.034385789185762405, 0.0015651140129193664, -0.001558192539960146, -0.0054298811592161655, -0.014798070304095745, -0.003564549144357443, 0.026467643678188324, -0.004308605566620827, 0.0063642775639891624, 0.014168217778205872, 0.0062708379700779915, 0.011565751396119595, 0.025083351880311966, 0.0018082300666719675, -0.03535478934645653, 0.010679804719984531, 0.017885038629174232, 0.009191691875457764, -0.029457710683345795, -0.004519709851592779, -0.014064395800232887, -0.016832977533340454, -0.005741346627473831, 0.027201317250728607, -0.013040021061897278, 0.008368038572371006, -0.0020089522004127502, 0.029208539053797722, 0.03491181880235672, 0.02192716859281063, -0.023034602403640747, -0.03684982657432556, -0.004100962076336145, -0.028350278735160828, -0.018549498170614243, -0.005606378428637981, -0.010465240105986595, 0.008686426095664501, -0.004886547103524208, -0.009869994595646858, 0.02527715265750885, -0.005637525115162134, -0.02714594639837742, -0.032060179859399796, 0.006011283490806818, -0.003571470733731985, 0.012389403767883778, 0.014742698520421982, -0.01960155926644802, -0.025083351880311966, 0.02545711025595665, -0.015227200463414192, 0.02509719505906105, -0.02014143392443657, 0.038068000227212906, -0.0075789932161569595, -0.023422202095389366, 0.006644596811383963, -0.0012017375556752086, -0.01349683664739132, -0.012064095586538315, -0.011607280001044273, 0.001270086970180273, 0.021207338199019432, -0.004692746326327324, -0.010908212512731552, -0.008035808801651001, 0.012237132526934147, -5.877829244127497e-05, 0.015171828679740429, 0.009108634665608406, -0.003945229109376669, -0.018729455769062042, -0.012313268147408962, 0.03352752700448036, 0.017414379864931107, -0.02180258184671402, 0.010506768710911274, -0.00907402765005827, 0.009856151416897774, 0.0017243074253201485, 0.00403866870328784, 0.00255920784547925, 0.004865782801061869, -0.0030817778315395117, 0.013600658625364304, -0.0332229845225811, -0.0013964035315439105, 0.044712599366903305, 0.021248865872621536, 0.03593619167804718, 0.0038275644183158875, 0.012887748889625072, -0.005249923560768366, -0.03629611060023308, 0.00723292026668787, -0.018923256546258926, -0.013988260179758072, -0.0062708379700779915, -0.004260155372321606, -0.017622023820877075, 0.01405747514218092, -0.011046641506254673, 0.003678753273561597, -0.017234422266483307, 0.009683115407824516, -0.008035808801651001, 0.007014894392341375, -0.034081242978572845, 0.04224855825304985, -0.004803489428013563, -0.007565150037407875, 0.013420701026916504, -0.007855851203203201, 0.027851933613419533, 0.013510679826140404, 0.025595540180802345, -0.025027981027960777, 0.015780916437506676, -0.026204627007246017, 0.01090129092335701, 0.0007142075919546187, 0.0009144972427748144, -0.00962082203477621, -0.028184164315462112, 0.0022165959235280752, -0.013925966806709766, 0.011344264261424541, 0.004415888339281082, 0.07718806713819504, 0.04197170212864876, -0.003761810716241598, -0.005865932907909155, -0.01661149226129055, -0.008028887212276459, 0.022868486121296883, 0.007544385734945536, 0.009517000056803226, -0.020847421139478683, 0.009683115407824516, 0.019130900502204895, -0.0033949734643101692, -0.027685819193720818, -2.0564966689562425e-06, 0.010880527086555958, 0.0028326052706688643, 0.04518325626850128, -0.011240442283451557, 0.00773818651214242, 0.009136320091784, 0.005582153331488371, 0.02446042187511921, -0.012943120673298836, -0.026439957320690155, -0.00925398524850607, 0.016500748693943024, -0.004858861211687326, 0.014507369138300419, -0.03701594099402428, 0.019075529649853706, 0.001465618028305471, -0.02455732226371765, -0.007489013951271772, 0.006077037192881107, 0.0032963429111987352, 0.010603669099509716, -0.005969754885882139, 0.016653019934892654, 0.001231153728440404, 0.00930243544280529, 0.018563341349363327, -0.011060484685003757, -0.02542942576110363, -0.025512482970952988, -0.0042463126592338085, -0.026841402053833008, -0.0016369241056963801, -0.04377128183841705] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_a_queuestabilizing_framework_for_networked_multirobot_exploration.json b/database/embeddings/publications_txt/2021_a_queuestabilizing_framework_for_networked_multirobot_exploration.json new file mode 100644 index 0000000000000000000000000000000000000000..d8d384678ccbd91c2f7dc3e2b96d31b0e9049943 --- /dev/null +++ b/database/embeddings/publications_txt/2021_a_queuestabilizing_framework_for_networked_multirobot_exploration.json @@ -0,0 +1 @@ +[-0.009783989749848843, 0.009244770742952824, -0.0045017702504992485, -0.005480878986418247, 0.013161204755306244, -0.004643670283257961, -0.0012105824425816536, 0.0027227019891142845, -0.01306187454611063, -0.025825759395956993, 0.0005503050633706152, 0.020022058859467506, -0.006548674777150154, 0.028252245858311653, -0.00869845598936081, -0.0024903411976993084, 0.02382497303187847, -0.009982649236917496, -0.01597791537642479, -0.006080405320972204, 0.006413870025426149, 0.008741026744246483, -0.01003231480717659, -0.014785956591367722, -0.005186436697840691, 0.016772553324699402, 0.0062010204419493675, -0.036865562200546265, 0.014644057489931583, 0.0178368017077446, 0.013437909074127674, 0.010273544117808342, -0.005129676777869463, -0.01587858609855175, -0.006459987256675959, -0.030394932255148888, 0.02843671478331089, -0.020646417513489723, 0.026478499174118042, -0.020149769261479378, 0.030735492706298828, 0.02301614359021187, -0.003710679244250059, -0.015027186833322048, -0.004821044858545065, 0.025045311078429222, 0.009344100020825863, -0.015821825712919235, -0.009663375094532967, 0.015126516111195087, 0.013941653072834015, 0.022987764328718185, -0.036297962069511414, -0.0006252459133975208, -0.008081192150712013, -0.014913666993379593, -0.00869845598936081, 0.003256599884480238, -0.006165545433759689, -0.03252343088388443, 0.018163172528147697, 0.00570082338526845, -0.03967517986893654, -0.016332663595676422, -0.004530150443315506, 0.006318087689578533, -0.004310205578804016, 0.029117833822965622, -0.004207328427582979, -0.00418604351580143, 0.012983829714357853, 0.02602441981434822, 0.004285373259335756, -0.008811975829303265, 0.027826545760035515, -0.02348441258072853, -0.02449190244078636, 0.010763098485767841, -0.005856913514435291, 0.02721637673676014, 0.004015763755887747, 0.0010332077508792281, -0.016474563628435135, 0.02183837629854679, 0.007378788664937019, 0.028692135587334633, 0.008024432696402073, 0.0007995165651664138, -0.01305477973073721, -0.016119815409183502, 0.01610562577843666, 0.007293648552149534, 0.008400467224419117, -0.013083159923553467, -0.0021196280140429735, 8.376798177778255e-06, -0.02137010730803013, 0.024945981800556183, 0.02257625386118889, -0.036553382873535156, 0.024279052391648293, 0.0007835528231225908, -0.01972406916320324, -0.025598719716072083, -0.02171066589653492, -0.025045311078429222, -0.0063642049208283424, 0.011458407156169415, 0.012231760658323765, 0.011089467443525791, -0.031161190941929817, 0.01817736215889454, 0.00271560694091022, -0.010919188149273396, -0.00783286802470684, -0.0343681275844574, -0.008762311190366745, 0.008308231830596924, -0.003073903964832425, -0.020334238186478615, 0.035872265696525574, 0.0088758310303092, 0.013927463442087173, -0.01654551364481449, 0.014558916911482811, 0.008684266358613968, -0.014615677297115326, -0.017666522413492203, -0.011373267509043217, -0.011472596786916256, -0.009010636247694492, 0.008187617175281048, -0.0001654019288253039, 0.02767045609652996, -0.0024264862295240164, 0.02887660451233387, -0.02257625386118889, -0.01917066052556038, -0.027727216482162476, -0.0221505556255579, -0.006676384713500738, 0.03967517986893654, -0.027925876900553703, -0.0035545893479138613, -0.016233334317803383, 0.009876224212348461, 0.014353162609040737, 0.012891595251858234, 0.014033888466656208, 0.020348427817225456, -0.001768426038324833, -0.004324395675212145, -0.02049032784998417, 0.040498197078704834, 0.006672837305814028, -0.0004159437376074493, -0.007939293049275875, 0.024662181735038757, 0.007077251560986042, -0.04146311432123184, -0.0032672423403710127, 0.01983758993446827, -0.018021272495388985, -0.022221505641937256, 0.010394158773124218, 0.028720514848828316, 0.03516276553273201, 0.03206935152411461, -0.011877011507749557, -0.006594792008399963, -0.02985571324825287, 0.0152684161439538, -0.01587858609855175, -0.0025169472210109234, 0.004005121067166328, 0.05026090145111084, 0.03252343088388443, -0.005562471225857735, -0.006591244600713253, 0.010174213908612728, 0.01084823813289404, 0.015821825712919235, 0.013409528881311417, 0.03590064495801926, -0.004228613339364529, 0.008911306038498878, 0.016162384301424026, -0.019426079466938972, 0.012217571027576923, 0.01897200010716915, 0.027925876900553703, 0.013225059024989605, -0.010607008822262287, 0.014197072945535183, -0.5925734639167786, -0.00815923698246479, 0.009556950069963932, -0.011557737365365028, -0.04353485256433487, 0.01607724465429783, 0.012657459825277328, 0.009287340566515923, -0.00441308319568634, 0.03309102728962898, -0.013132824562489986, 0.007591638248413801, 0.008450131863355637, -0.013225059024989605, -0.01698540337383747, -0.00666574202477932, 0.0202774778008461, -0.025201400741934776, 0.01830507069826126, 0.007016944233328104, -0.007683873176574707, 0.036212824285030365, -0.01062829326838255, -0.009244770742952824, -0.007726443000137806, 0.031047672033309937, 0.0348505862057209, -0.027358276769518852, 0.008003147318959236, -0.016148194670677185, -0.031700409948825836, 0.027258947491645813, 0.022902624681591988, -0.013402434065937996, 0.049778442829847336, -0.0023307038936764, -0.030735492706298828, 0.026705538854002953, 0.02037680894136429, 0.031586889177560806, -0.026294028386473656, -0.04662826657295227, 0.010642483830451965, -0.0019670857582241297, -0.007336218375712633, -0.011735111474990845, 0.021341726183891296, -0.0031359849963337183, -0.038767021149396896, -0.05145286023616791, -0.0031288901809602976, -0.005793058313429356, 0.00018014620582107455, 0.0062613277696073055, 0.024889221414923668, -0.01883010007441044, 0.01897200010716915, -0.02943001501262188, 0.010316113941371441, 0.0088758310303092, 0.011642877012491226, 0.0022384689655154943, -0.01952540874481201, -0.01996529847383499, -0.00636775279417634, 0.01653132401406765, 0.004622385371476412, -0.005370906554162502, 0.0020149769261479378, -0.021426865831017494, 0.019582169130444527, 0.017453672364354134, 0.011756396852433681, -0.016800934448838234, 0.01762395165860653, 0.03374376893043518, 0.033346448093652725, 0.021753236651420593, -0.019383510574698448, 0.008421751670539379, 0.010699243284761906, -0.012671650387346745, -0.006335825193673372, -0.01162868645042181, 0.043506473302841187, 0.010692148469388485, -0.030451692640781403, -0.0038880538195371628, 0.005615683738142252, -0.0016247524181380868, 0.007513593416661024, 0.03734802082180977, -0.01162159163504839, -0.0010722301667556167, -0.004533697851002216, 0.026861628517508507, 0.00418604351580143, 0.009166725911200047, 0.004792665131390095, -0.013139919377863407, -0.026620399206876755, -0.0010899676708504558, 0.011004327796399593, -0.023172233253717422, 0.04410245269536972, 0.021951895207166672, -0.007627113256603479, 0.006438702344894409, 0.024208102375268936, -0.02315804362297058, 0.00565115874633193, 0.015126516111195087, -0.012934165075421333, 0.0063038975931704044, 0.012082765810191631, -0.03286398947238922, 0.0416901558637619, 0.006875044200569391, -0.01586439460515976, -0.002201220253482461, 0.0026464308612048626, -0.007471023127436638, 0.0037887240760028362, -0.006452892441302538, 0.0005170473014004529, 0.010954663157463074, 0.03320454806089401, -0.02447771094739437, -0.03218286857008934, 0.013487573713064194, 0.008953875862061977, -0.015963725745677948, 0.04166177660226822, -0.003627313068136573, 0.008670076727867126, -0.00892549566924572, 0.029742194339632988, -0.037433162331581116, 0.0027102858293801546, -0.0487000048160553, -0.0236972626298666, -0.00564761133864522, 0.010741813108325005, -0.012111146003007889, -0.029344873502850533, -0.018915239721536636, -0.03791562095284462, 0.008861641399562359, 0.009883319959044456, 0.015325176529586315, 0.0029994065407663584, 0.022320834919810295, -0.01256522536277771, 0.01926998980343342, -0.0015750875463709235, -0.017340153455734253, -0.021909326314926147, -0.024222292006015778, -0.01255813054740429, -0.016119815409183502, 0.006708311848342419, 0.01553802564740181, -0.018446970731019974, -0.016999593004584312, -0.022292455658316612, 0.024548660963773727, -0.008691361173987389, -0.007946387864649296, -0.014615677297115326, -0.025556150823831558, -0.01785099133849144, -0.016446184366941452, -0.020206527784466743, 0.0211714468896389, -0.004171853419393301, 0.021526196971535683, -0.00686440197750926, 0.000977334682829678, -0.004115093499422073, -0.00782577320933342, -0.014530537649989128, 0.010706338100135326, -0.021753236651420593, -0.015679925680160522, 0.03280722722411156, 0.0202774778008461, 0.017666522413492203, 0.011919581331312656, -0.011657066643238068, 0.0031750076450407505, 0.006875044200569391, 0.030508453026413918, -0.015694115310907364, 0.008435942232608795, -0.04211585596203804, -0.0021462340373545885, -0.006271969992667437, -0.0046294801868498325, -0.005051631946116686, 0.034680306911468506, 0.02676229737699032, 0.023285754024982452, -0.008670076727867126, -0.010791477747261524, -0.013629473745822906, -0.02547101117670536, 0.01840440183877945, -0.009564044885337353, 0.03706422075629234, 0.00931572075933218, 0.040186017751693726, 0.0052786716260015965, -0.02081669680774212, -0.014885286800563335, 0.004523055627942085, 0.04044143855571747, -0.018432781100273132, 0.009684659540653229, -0.02767045609652996, 0.02226407453417778, -0.023938491940498352, -0.01773747242987156, 0.021951895207166672, 0.008244377560913563, -0.0052361018024384975, -0.003508472116664052, 0.029061075299978256, 0.03195583075284958, 0.015296796336770058, 0.0019245157018303871, -0.03402756527066231, 0.0286637544631958, 0.006481272168457508, 0.007265268824994564, 0.01035868376493454, 0.010259353555738926, 0.0038561264518648386, 6.174857844598591e-05, 0.05763968825340271, -0.024165531620383263, 0.017368532717227936, 0.026535257697105408, 0.03226801007986069, -0.0034818658605217934, 0.009627900086343288, -0.00837208703160286, 0.018163172528147697, 0.013303103856742382, -0.009230580180883408, -0.002793652005493641, -0.01972406916320324, 0.022519495338201523, -0.004182496108114719, 0.008215997368097305, 0.023668883368372917, 0.006037835497409105, 0.00023236089327838272, -0.0089184008538723, 0.029515154659748077, 0.008010242134332657, 0.012685840018093586, 0.007967672310769558, -0.016375234350562096, -0.005959790665656328, -0.00760582834482193, -0.022860053926706314, -0.011820251122117043, -0.01607724465429783, 0.0034836395643651485, -0.029344873502850533, 0.005661800969392061, -0.009755609557032585, 0.0015378388343378901, -0.014069363474845886, 0.015396125614643097, 0.008336612023413181, 0.003116473788395524, 0.0033009436447173357, 0.01305477973073721, 0.0044414629228413105, -0.0013764278264716268, -0.015296796336770058, 0.011281032115221024, 0.025414250791072845, 0.017822612076997757, -0.014871097169816494, 0.015339366160333157, 0.041150934994220734, -0.03584388270974159, -0.014729197137057781, 0.02382497303187847, -0.00343220098875463, -0.02128496766090393, -0.02480408176779747, -0.025754809379577637, -0.001988370670005679, 0.029174594208598137, -0.018929431214928627, -0.0178368017077446, -0.031217951327562332, -0.00019433618581388146, 0.02095859684050083, -0.00587465101853013, -0.003600706811994314, 0.03470868617296219, -0.01939770020544529, 0.007506498135626316, -0.009287340566515923, 0.022959385067224503, -0.0052183642983436584, 0.0041505685076117516, -0.012416230514645576, -0.009961364790797234, -0.005725656170397997, -0.0009507285431027412, -0.008662981912493706, 0.028521856293082237, 0.0038703165482729673, 0.02547101117670536, -0.0012229987187311053, -0.017666522413492203, -0.017141493037343025, -0.021100496873259544, 0.008010242134332657, 0.05380839481949806, 0.021412676200270653, 0.010692148469388485, 0.010706338100135326, 0.00015509202785324305, -0.005789510905742645, -0.043251052498817444, -0.019014570862054825, 0.015012996271252632, -0.00809538271278143, -0.01575087569653988, 0.0067899045534431934, 0.00032016137265600264, -0.013147014193236828, 0.014353162609040737, -0.007506498135626316, -0.005725656170397997, -0.025059500709176064, 0.020916027948260307, -0.00859203189611435, 0.012629080563783646, 0.0030065015889704227, 0.004178948700428009, 0.020774127915501595, 0.010550248436629772, -0.016474563628435135, 0.0262230783700943, 0.023725643754005432, 0.0008593805250711739, -0.027925876900553703, 0.024520281702280045, 0.014601487666368484, 0.017581382766366005, 0.0012203380465507507, -0.009010636247694492, 0.033119406551122665, 0.01663065329194069, 0.029231354594230652, 0.018376020714640617, 0.03155850991606712, 0.004913279786705971, 0.01283483486622572, -0.0015005901223048568, -0.002726249396800995, 0.029146214947104454, -0.06697669625282288, -0.0040228585712611675, 0.023952683433890343, -0.008492701686918736, -0.014785956591367722, 0.04285373166203499, -0.015310985967516899, -0.03871025890111923, -0.02481827139854431, 0.021568765863776207, 0.0016105624381452799, 0.0076980628073215485, -0.00539928674697876, -0.01306896936148405, -0.057469408959150314, -0.01333148404955864, -0.020901838317513466, 0.011061088182032108, 0.003675204236060381, -0.006385489832609892, -0.011245557107031345, -0.022547874599695206, 0.001892588334158063, -0.0038490314036607742, -8.214666740968823e-05, -0.010933377780020237, -0.02303033322095871, -0.0405549556016922, -0.007910912856459618, 0.011515166610479355, 0.006882139481604099, 0.0261379387229681, -0.0005015270435251296, -0.0202774778008461, 0.008187617175281048, -0.016729984432458878, -0.014644057489931583, 0.0017568966140970588, -0.05077173933386803, 0.0010686827590689063, -0.018716581165790558, -0.010770193301141262, -0.0012566999066621065, -0.001161804422736168, 0.013948747888207436, 0.012260140851140022, -0.01355142891407013, -0.009741419926285744, -0.005264481995254755, 0.022136365994811058, 0.02635078877210617, 0.015027186833322048, 0.023413462564349174, 0.027741406112909317, 0.008726836182177067, 0.0029249091167002916, -0.02084507793188095, -0.023725643754005432, -0.013664948754012585, 0.0017613309901207685, 0.001876624533906579, -0.00542411906644702, 0.015282605774700642, -0.0330626480281353, -0.005168699659407139, 0.012394946068525314, -0.015623165294528008, -0.0009542760089971125, 0.011713827028870583, 0.01729758270084858, 0.029146214947104454, 0.01103270798921585, -0.007080798968672752, 0.014601487666368484, -0.013515953905880451, -0.0030118227005004883, -0.0031093789730221033, 0.014814336784183979, 0.0152684161439538, 0.005197079386562109, 0.02192351594567299, -0.004994872026145458, -0.035560086369514465, -0.031359851360321045, 0.005282219033688307, 0.01897200010716915, 0.03473706543445587, -0.011394551955163479, -0.044698432087898254, -0.02412296272814274, -0.015921154990792274, -0.021086307242512703, -0.0013515953905880451, 0.0006833361112512648, -0.046230949461460114, -0.004086713772267103, 0.0063890377059578896, 0.004310205578804016, -0.0040902611799538136, 0.01806384138762951, -0.02823805622756481, -0.0006460874574258924, 0.009266055189073086, 0.0042108758352696896, 0.022079605609178543, -0.010947568342089653, 0.011891201138496399, -0.010663768276572227, 0.005250291898846626, -0.025939280167222023, -0.03263694792985916, -0.03314778953790665, -0.011373267509043217, 0.026705538854002953, 0.015381935983896255, 0.0374615415930748, 0.015240035951137543, 0.01400550827383995, 0.014814336784183979, 0.01654551364481449, -0.005470236297696829, -0.0020752842538058758, 0.0033080386929214, 0.0025382323656231165, 0.006662194617092609, 0.013572713360190392, 0.005172247067093849, 0.020476138219237328, 0.0020238456781953573, 0.023981062695384026, 0.02403782308101654, 0.0016486980020999908, -0.019752448424696922, -0.022292455658316612, -0.033658627420663834, 0.016900263726711273, 0.013714613392949104, -0.000642983359284699, -0.000187241195817478, -0.04549307003617287, -0.009010636247694492, 0.0018677557818591595, 0.003710679244250059, -0.01795032247900963, 0.0010500584030523896, 0.011089467443525791, -0.032665327191352844, 0.012884499505162239, 0.009677564725279808, 0.0196247398853302, 0.005395738873630762, 0.008719741366803646, -0.03221125155687332, -0.0036822992842644453, 0.013445003889501095, -0.0029710265807807446, 0.017567193135619164, 0.0046365754678845406, 0.013480478897690773, -0.0015263095265254378, 0.0069708265364170074, 0.01350176427513361, -0.019596358761191368, 0.015623165294528008, -0.023342514410614967, -0.02303033322095871, -0.028181295841932297, -0.016460373997688293, -0.012387850321829319, -0.013586903922259808, 0.0005804587854072452, 0.007541973143815994, 0.014409922063350677, -0.01983758993446827, -0.01806384138762951, 0.020759938284754753, 0.016006294637918472, 0.01599210500717163, -0.006534484680742025, 0.0005121694994159043, 0.0280961561948061, -0.004452105611562729, 0.009188010357320309, 0.0043882508762180805, 0.002901850501075387, 0.004374060779809952, 0.024449331685900688, 0.016928642988204956, -0.019553789868950844, -0.02083088830113411, 0.0027209282852709293, 0.014296403154730797, -0.02446352131664753, -0.039845459163188934, 0.0004842329944949597, 0.03905081748962402, 0.0005263594794087112, -0.01861725002527237, -0.02226407453417778, -0.003355929860845208, 0.007918007671833038, -0.014111933298408985, 0.003845483995974064, -0.004643670283257961, 0.02071736752986908, -0.005119034554809332, 0.01698540337383747, 0.014644057489931583, 0.02095859684050083, 0.013757183216512203, -0.015282605774700642, -0.0042605409398674965, 0.0019262895220890641, -0.028933364897966385, 0.019809208810329437, -0.0152684161439538, 0.02724475786089897, -0.006825379561632872, 0.021086307242512703, 0.028152916580438614, -0.010188404470682144, -0.010401253588497639, -0.007797393016517162, 0.0089184008538723, 0.04078199714422226, -0.021455246955156326, -0.0007667022291570902, 0.013019304722547531, -0.02127077616751194, 0.018659820780158043, -0.038965679705142975, 0.007747727911919355, -0.01102561317384243, -0.019709879532456398, -0.009556950069963932, 0.0008660320891067386, -0.005849818233400583, 0.0020061081741005182, 0.02391011267900467, 0.015906965360045433, -0.028124535456299782, -0.0017675390699878335, -0.0036822992842644453, -0.012274330481886864, -0.016048865392804146, -0.0076342080719769, -0.011933770962059498, -0.0003270346496719867, 0.020249098539352417, 0.013317294418811798, 0.004136378411203623, 0.005981075577437878, 0.03717774152755737, -0.012217571027576923, 0.014913666993379593, 0.00393771892413497, -0.030025992542505264, -0.022320834919810295, -0.019894348457455635, -0.010557343252003193, 0.0023307038936764, 0.022093795239925385, -0.013792658224701881, -0.021143067628145218, -0.00642096484079957, -0.027798166498541832, 0.008677171543240547, -0.00036117929266765714, -0.007190771400928497, 0.00788962747901678, -0.009131250903010368, -0.008670076727867126, -0.010713432915508747, -0.010458013974130154, 0.05775320902466774, -0.0034339746925979853, 0.011046897619962692, 0.01908552087843418, 0.000674910843372345, 0.04906894266605377, -0.01250846590846777, -0.0033541559241712093, -0.007740633096545935, -0.03459516540169716, -0.010720528662204742, -0.0014287533704191446, 0.029628673568367958, -0.029018504545092583, -0.03706422075629234, 0.0187307707965374, -0.030253032222390175, -0.026932578533887863, 0.007960577495396137, -0.0065593174658715725, -0.012593605555593967, 0.009471810422837734, -0.010450919158756733, 0.02061803825199604, -0.013168299570679665, -0.0006815623492002487, -0.01993691921234131, -0.004097355995327234, 0.01874496042728424, -0.0020273930858820677, -0.015836015343666077, 0.006257780361920595, 0.03275046870112419, 0.013842323794960976, -0.03649662435054779, -0.033232927322387695, -0.01575087569653988, -0.01543869636952877, 0.007492308504879475, 0.004008668940514326, -0.011174608021974564, -0.008230186998844147, 0.001698362990282476, -0.0018979095621034503, 0.01719825342297554, -0.006215210072696209, 0.009131250903010368, 0.005502163898199797, -0.006658647209405899, -0.007761918008327484, -0.00837918184697628, -0.014942046254873276, -0.007818677462637424, -0.05343945696949959, -0.00931572075933218, 0.00964918453246355, 0.02491760067641735, 0.0021302704699337482, 0.01883010007441044, 0.004423725418746471, -0.006779261864721775, -0.0042002336122095585, -0.007946387864649296, -0.0038525790441781282, -0.029344873502850533, 0.0065522221848368645, -0.04526602849364281, -0.015396125614643097, 0.008357897400856018, -0.009571139700710773, 0.018049651756882668, 0.0030827727168798447, 0.0036060281563550234, -0.020234908908605576, 0.010734718292951584, -0.02413715235888958, -0.021029546856880188, 0.0168576929718256, -0.0005472010234370828, 0.03161527216434479, -0.005030347034335136, 0.010607008822262287, 0.037972379475831985, 0.010443823412060738, -0.0019138732459396124, -0.014466682448983192, 0.004359870683401823, -0.016006294637918472, -0.0074568334966897964, 0.017765851691365242, -0.002046904293820262, 0.00915253534913063, -0.00493101729080081, 0.027940066531300545, -0.003393178340047598, -0.0011307639069855213, 0.004572720266878605, -0.010869522579014301, -0.019355129450559616, 0.021441057324409485, 0.007080798968672752, -0.01985177956521511, -0.009904604405164719, -0.010826952755451202, -0.0017152135260403156, -0.026152128353714943, -0.0007134898332878947, 0.00040729669854044914, -0.026066988706588745, -0.01206148136407137, -0.014069363474845886, -0.013799753040075302, 0.025527769699692726, -0.00964208971709013, -0.011380362324416637, -0.005331884138286114, -0.014012603089213371, 0.1700526922941208, -0.0177516620606184, 0.015154896304011345, 0.02095859684050083, -0.0005955356173217297, -0.012707125395536423, 0.011018517427146435, 0.0093228155747056, -0.010152929462492466, -0.0002238247252535075, 0.009230580180883408, 0.011997626163065434, 0.006254232954233885, -0.0006691461312584579, 0.004845877643674612, 0.011238462291657925, -0.01707054302096367, -0.05287185683846474, -0.019993679597973824, 0.019482839852571487, 0.0063038975931704044, -0.02094440720975399, -0.012309805490076542, -0.017453672364354134, 0.02423648163676262, 0.0005241422913968563, 0.009173820726573467, -0.01751043274998665, 0.0015254226746037602, 0.018929431214928627, -0.020802507176995277, 0.0058923885226249695, 0.02534330077469349, 0.015452886000275612, -0.018702391535043716, -0.003724869107827544, 0.012820645235478878, -0.002391011221334338, 0.023172233253717422, 0.013664948754012585, 0.006208115257322788, -0.030338171869516373, -0.006882139481604099, -0.028904985636472702, -0.01963892951607704, 0.0021320441737771034, -0.009131250903010368, -0.005693728569895029, -0.0299692340195179, 0.006005908362567425, -0.041718535125255585, 0.017609762027859688, 0.02005043812096119, 0.01928417943418026, -0.014913666993379593, -0.003061487805098295, -0.002889434341341257, 0.0312747098505497, 0.011117847636342049, 0.026208888739347458, 0.00396609865128994, 0.021015357226133347, -0.010025219060480595, 0.011458407156169415, -0.0030951888766139746, 0.021143067628145218, -0.02734408713877201, 0.002545327180996537, 0.02566966973245144, -0.015608975663781166, -0.016375234350562096, -0.020305858924984932, -0.019553789868950844, 0.0033541559241712093, -0.010869522579014301, -0.029288114979863167, 0.011877011507749557, 0.010450919158756733, 0.03777372092008591, 0.026407549157738686, 0.004225065931677818, 0.023214804008603096, -0.02359793335199356, -0.018106412142515182, -0.010415444150567055, -0.03712098300457001, 0.02382497303187847, -0.0065522221848368645, -0.018489541485905647, -0.0047571901232004166, -0.02224988490343094, 0.014466682448983192, -0.007336218375712633, -0.01643199473619461, 0.007712252903729677, -0.004891994874924421, 0.026208888739347458, 0.003657466731965542, -0.02226407453417778, 0.02403782308101654, -0.019993679597973824, 0.08156399428844452, 0.0271170474588871, 0.005363811738789082, -0.008145047351717949, 0.005633421242237091, -0.0025932183489203453, 0.023172233253717422, 0.005381549242883921, -0.022008655592799187, -0.015921154990792274, -0.019653119146823883, 0.010954663157463074, -0.008968066424131393, 0.00760582834482193, 0.008471417240798473, -0.009301530197262764, 0.0025967659894376993, 0.030678732320666313, -0.010592818260192871, -0.02016395889222622, -0.025726430118083954, -0.01851792074739933, 0.0162049550563097, 0.003396725980564952, -0.01926998980343342, -0.032580189406871796, -0.015098136849701405, -0.026634588837623596, -0.017907751724123955, 0.017127303406596184, -0.005456046666949987, 0.010812763124704361, 0.0014136765385046601, 0.01563735492527485, -0.004760737530887127, -0.0017897109501063824, -0.022292455658316612, -0.002607408445328474, 0.01008197944611311, -0.01107527781277895, -0.015126516111195087, 0.021214017644524574, 0.012004720978438854, -0.005558923818171024, -0.03652500361204147, 0.0019422532059252262, -0.0031821024604141712, -0.01360818836838007, -0.02897593565285206, 0.0025666123256087303, -0.022434355691075325, 0.001061587710864842, -0.0072794584557414055, 0.02547101117670536, -0.023214804008603096, -0.026634588837623596, -0.04827430471777916, 0.00864879135042429, 0.003898696508258581, -0.04461329057812691, -0.004700430203229189, 0.021951895207166672, -0.003785176668316126, -0.006672837305814028, -0.023881733417510986, -0.18163171410560608, 0.029231354594230652, 0.02558453008532524, -0.010152929462492466, 0.004899089690297842, 0.00562632642686367, 0.037972379475831985, 0.022732345387339592, -0.028805654495954514, 0.017893562093377113, 0.02581156976521015, 0.017567193135619164, -0.016034675762057304, -0.014346067793667316, 0.006467082537710667, 0.010763098485767841, 0.004579815547913313, -0.011174608021974564, 0.007169486489146948, 0.022107984870672226, 0.02954353392124176, -0.05477331578731537, 0.017027974128723145, -0.005938505753874779, -0.001255813054740429, 0.03527628630399704, -0.007960577495396137, 0.03496410697698593, -0.01806384138762951, -0.030451692640781403, -0.02159714698791504, -0.0026588470209389925, 0.026066988706588745, 0.006757976952940226, 0.019993679597973824, 0.0412076972424984, -0.011110752820968628, -0.0005906578153371811, -0.0027067381888628006, 0.0487000048160553, 0.006218757946044207, 0.05959790572524071, -0.002279265085235238, -0.006687026936560869, 0.006452892441302538, 0.025740619748830795, -0.01125265285372734, -0.0036432768683880568, -0.00562632642686367, -0.02965705282986164, 0.008038622327148914, -0.002689000917598605, 0.018234120681881905, 0.0004387807275634259, 0.0033914046362042427, 0.030707111582159996, -0.0033133598044514656, -0.012536845169961452, 0.016588084399700165, 0.01498461700975895, -0.02689000777900219, -0.010812763124704361, 0.016261715441942215, -0.011735111474990845, -0.02799682691693306, -0.028067776933312416, -0.04677016660571098, 0.010379969142377377, -0.03964679688215256, 0.006967279128730297, -0.004973587114363909, -0.005448951385915279, 0.007087893784046173, 0.007754822727292776, 0.01619076542556286, 0.01983758993446827, 0.02601023018360138, 0.004845877643674612, 0.005229006987065077, -0.018574681133031845, 0.01941188983619213, 0.019922729581594467, -0.014785956591367722, -0.00937248021364212, 0.04143473505973816, -0.026648778468370438, -0.000682892685290426, 0.026833247393369675, 0.0012008268386125565, -0.018674010410904884, 0.017113113775849342, -0.016048865392804146, 0.02525816112756729, -0.021526196971535683, 0.0011963924625888467, 0.0025648383889347315, 0.0029355515725910664, 0.01234528049826622, -0.0029355515725910664, -0.02400944195687771, -0.009904604405164719, -0.023569554090499878, -0.01040834840387106, -0.0068076420575380325, 0.009968459606170654, 0.019113900139927864, -0.023456033319234848, 0.01553802564740181, 0.03084901161491871, -0.02250530570745468, -0.028195485472679138, -0.005544733721762896, 0.010167119093239307, 0.03893730044364929, -0.0010669089388102293, 0.028039395809173584, -0.012302710674703121, -0.009251865558326244, 0.04659988731145859, -0.013154109939932823, 0.051424480974674225, 0.027400847524404526, -0.018390212208032608, 0.018390212208032608, -0.008882925845682621, -0.040611717849969864, -0.08638858795166016, -0.013210869394242764, 0.024193912744522095, 0.016573894768953323, -0.039192717522382736, 0.00565115874633193, -0.01212533563375473, 0.0046791452914476395, -0.009471810422837734, 0.022008655592799187, 0.013118634931743145, -0.008003147318959236, 0.011387457139790058, -0.017879372462630272, -0.0008580502471886575, -0.011465501971542835, 0.004207328427582979, -0.0299692340195179, 0.0002653969277162105, 0.0227181538939476, 0.0022402426693588495, -0.026052799075841904, 0.02270396426320076, 0.002529363613575697, -0.010649578645825386, -0.007506498135626316, -0.03524790331721306, 0.0006784583092667162, 0.009627900086343288, 0.019142279401421547, 0.021625526249408722, -0.014246737584471703, 0.013537239283323288, -0.027514366433024406, 0.009720134548842907, -0.015623165294528008, -0.010323208756744862, -0.01719825342297554, 0.02260463498532772, -0.04330781102180481, 0.006186830345541239, 0.01995110884308815, 0.04302401468157768, -0.010266449302434921, -0.02016395889222622, 0.010316113941371441, -0.02400944195687771, 0.036666903644800186, -0.01279226504266262, -0.024860840290784836, -0.009564044885337353, -0.02236340567469597, -0.00691761402413249, -0.013601093553006649, 0.03141660988330841, -0.025556150823831558, -0.0005095088854432106, 0.01751043274998665, -0.015410316176712513, -0.013870703056454659, -0.009251865558326244, -0.00493456469848752, -0.03584388270974159, 0.011004327796399593, 0.007055966649204493, 0.004526603035628796, -0.015197466127574444, -0.01085533294826746, 0.0029461942613124847, -0.018901050090789795, -0.015949534252285957, 0.01795032247900963, -0.01928417943418026, 0.0007733537931926548, -0.041491493582725525, -0.01300511509180069, -0.019213229417800903, -0.020348427817225456, 0.00592076824977994, 0.004782022442668676, -0.01731177233159542, -0.014942046254873276, 0.018475351855158806, -0.024875031784176826, 0.028521856293082237, 0.01785099133849144, -0.005491521209478378, 0.011394551955163479, 0.009762704372406006, -0.006754429545253515, 0.000358518649591133, 0.00864879135042429, 0.011174608021974564, 0.017340153455734253, -0.024860840290784836, 0.015452886000275612, 0.0011910712346434593, -0.0062613277696073055, -0.00019455789879430085, 0.025158829987049103, -0.06419546157121658, 0.007761918008327484, -0.07707995921373367, 0.029742194339632988, 0.009684659540653229, -0.023768212646245956, -0.014374447986483574, -0.011004327796399593, 0.014729197137057781, -0.012820645235478878, 0.005629873834550381, 0.009769800119102001, -0.044045690447092056, 0.015240035951137543, 0.017240822315216064, 0.006630267016589642, -0.01053605880588293, -0.024662181735038757, 0.02161133661866188, -0.02566966973245144, 0.011281032115221024, 0.02158295549452305, -0.004221518523991108, 0.018986189737915993, 0.031700409948825836, 0.021469436585903168, -0.02104373648762703, -0.002000786829739809, -0.00028468642267398536, -0.015949534252285957, -0.009386670775711536, 0.005282219033688307, 0.0012921749148517847, -0.02412296272814274, 0.0013640116667374969, 0.013884893618524075, -0.022774914279580116, -0.0032636949326843023, 0.03507762402296066, 0.027046097442507744, 0.00592076824977994, 0.033005889505147934, -0.023172233253717422, -0.03649662435054779, 0.010741813108325005, -0.004916827194392681, -0.015027186833322048, 0.020518707111477852, 0.008421751670539379, 0.0240236334502697, 0.0010651352349668741, 0.0023803687654435635, 0.029401633888483047, 0.0015706531703472137, -0.010876618325710297, -0.03374376893043518, 0.01306896936148405, 0.0004740339354611933, 0.02017814852297306, 0.009840749204158783, -0.03150175139307976, -0.032353147864341736, 0.03249504789710045, -0.004015763755887747, 0.0046117426827549934, -0.00381710403598845, 0.014289307408034801, -0.016502944752573967, -0.02601023018360138, -0.009017731063067913, -0.012600700370967388, -0.017439482733607292, -0.022618824616074562, -0.0035013770684599876, 0.005374453961849213, 0.021540386602282524, 0.010216783732175827, -0.008528176695108414, -0.015396125614643097, -0.0013808622024953365, -0.007733537815511227, 0.01426802296191454, 0.03141660988330841, -0.007556163240224123, -0.020220719277858734, -0.009748514741659164, 0.005668896250426769, 0.010465108789503574, -0.0014757576864212751, 0.022661395370960236, -0.004232160747051239, 0.020093008875846863, -0.016914453357458115, 0.019695689901709557, -0.005321241915225983, -0.0004673824005294591, -0.010699243284761906, 0.0093653853982687, -0.026095369830727577, 0.0027067381888628006, 0.02500274032354355, 0.03822780027985573, 0.009471810422837734, 0.0032654686365276575, 0.009549855254590511, -0.038085900247097015, -0.031927451491355896, -0.012522655539214611, -0.01739691197872162, -0.006360657513141632, -0.0075774481520056725, 0.0030189177487045527, -0.005090654361993074, 0.02977057360112667, 0.017482053488492966, 0.009613710455596447, -0.014686627313494682, 0.025967659428715706, -0.014927856624126434, -0.003426879644393921, -0.02877727523446083, 0.03802914172410965, 0.009904604405164719, -0.02095859684050083, 0.00981946475803852, -0.011508071795105934, 0.018390212208032608, 0.03221125155687332, 0.027968445792794228, -0.03692232072353363, 0.006729597225785255, -0.018773341551423073, 0.01665903441607952, 0.0007924215751700103, -0.011557737365365028, -0.0010128096910193563, -0.012196285650134087, -0.013913272880017757, -0.0072865537367761135, -0.00048600672744214535, -0.014310592785477638, 0.09541340917348862, 0.03107605129480362, 0.0007467475952580571, 0.01563735492527485, -0.026052799075841904, -0.02689000777900219, 0.01549545582383871, 0.011330697685480118, 0.006374847609549761, -0.036666903644800186, 0.0063925851136446, 0.0068608541041612625, -0.010422538965940475, -0.031217951327562332, 0.0006616077153012156, -0.00986203458160162, -0.0023697263095527887, 0.026819057762622833, -0.008641696535050869, -0.0007933084270916879, 0.01863144151866436, 0.00738588348031044, 0.010621198453009129, 0.0018074484542012215, -0.021341726183891296, -0.013537239283323288, 0.012238855473697186, 0.004519507754594088, 0.03601416200399399, -0.06306026130914688, 0.022888435050845146, 0.010770193301141262, -0.04438624903559685, -0.026861628517508507, 0.01829088106751442, 0.009876224212348461, -7.444195216521621e-05, -0.013530143536627293, 0.010458013974130154, -0.004484033212065697, 0.010812763124704361, 0.00958533026278019, 0.002078831661492586, -0.04572010785341263, -0.02325737290084362, 0.00038401628262363374, -0.024108773097395897, -0.003261921228840947, -0.04708234593272209] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_a_survey_of_blockchainbased_strategies_for_healthcare.json b/database/embeddings/publications_txt/2021_a_survey_of_blockchainbased_strategies_for_healthcare.json new file mode 100644 index 0000000000000000000000000000000000000000..7cfb3f5c7a8d8d08401f809c54d114b2a239b00e --- /dev/null +++ b/database/embeddings/publications_txt/2021_a_survey_of_blockchainbased_strategies_for_healthcare.json @@ -0,0 +1 @@ +[0.009228348731994629, 0.021712947636842728, 0.014050369150936604, -0.03198052570223808, -0.005182286258786917, 0.003855537623167038, -0.031010577455163002, -0.0034537026658654213, -0.028571855276823044, -0.03369871526956558, 0.01769459806382656, 0.006813874933868647, 0.004077239893376827, 0.017971724271774292, -0.004503323696553707, 0.011798707768321037, 0.03937983140349388, -0.024414941668510437, -0.027310924604535103, -0.013974159024655819, -0.012900290079414845, -8.947107562562451e-05, -0.025426456704735756, 0.0272139310836792, -0.0033722964581102133, 0.03059488721191883, 0.01896938495337963, -0.037467651069164276, -0.014826326631009579, -0.004101488273590803, 0.0026379083283245564, -0.009311486966907978, -0.024595074355602264, -0.004385544452816248, -0.015823986381292343, -0.0007573377806693316, 0.011639359407126904, -0.021006271243095398, 0.011223667301237583, -0.007316168397665024, -0.0033220669720321894, 0.017057202756404877, 0.014299783855676651, 0.005116468295454979, 0.0040252781473100185, -0.005753861740231514, 0.045421212911605835, -0.027989886701107025, -0.022364197298884392, 0.016946353018283844, -0.014272071421146393, 0.03951839730143547, -0.032673344016075134, 0.011493867263197899, 0.005902817938476801, -0.009041287936270237, 0.014147363603115082, 0.013967230916023254, 0.0010781995952129364, -0.016932496801018715, 0.0348072275519371, -0.018345847725868225, -0.03655312955379486, -0.017653027549386024, -0.00637739896774292, -0.011389944702386856, -0.01452148612588644, 0.030123770236968994, -0.009110569953918457, 0.02510775998234749, 0.011757138185203075, 0.010537777096033096, -0.004233124200254679, -0.009380768984556198, 0.01479861419647932, -0.021657520905137062, 0.0013449349207803607, -0.014008800499141216, -0.004534500185400248, 0.023306431248784065, -0.012540023773908615, 0.002520129084587097, 0.010551633313298225, 0.006127983797341585, 0.018872389569878578, 0.031814247369766235, 0.00015599252947140485, 0.02366669662296772, -0.013814810663461685, -0.009228348731994629, -0.006110663525760174, 0.004766594618558884, 0.01856754906475544, 0.005937458947300911, -0.023070871829986572, 0.0274772010743618, 0.005397059954702854, 0.012657803483307362, 0.01217975839972496, -0.017514463514089584, -0.006890085060149431, 0.010212152265012264, -0.025329463183879852, -0.028364010155200958, -0.01446606032550335, -0.010032018646597862, 0.0012955715646967292, 0.019911617040634155, 0.012075834907591343, -0.0020836531184613705, -0.03699653595685959, 0.039102703332901, -0.029957493767142296, -0.011701712384819984, -0.011798707768321037, -0.02251661755144596, 0.006391255185008049, 0.00453796423971653, 0.002992978086695075, -0.0014272071421146393, 0.03588802367448807, 0.0035922664683312178, 0.011244452558457851, -0.0071152509190142155, 0.013295196928083897, 0.00933920033276081, -0.03835446015000343, -0.018816964700818062, 0.005092219449579716, -0.022766031324863434, 0.0023607807233929634, -0.0035853383596986532, -0.0063981832936406136, 0.019523639231920242, 0.022904595360159874, 0.01303885318338871, -0.006436288356781006, -0.008736447431147099, -0.0363314263522625, -0.04098717123270035, 0.006159160751849413, 0.042151108384132385, -0.0263548344373703, -0.00843160692602396, -0.028253158554434776, 0.0025132009759545326, 0.021602096036076546, 0.012983428314328194, 0.031925100833177567, 0.030012918636202812, -0.00637739896774292, -0.02254432998597622, -0.026160845533013344, 0.018941670656204224, -0.010724837891757488, 0.01353768352419138, -0.012484597973525524, 0.03785562887787819, 0.009872670285403728, -0.02650725468993187, -0.00421580346301198, 0.008099053986370564, -0.01628124713897705, -0.0036095869727432728, 0.004870517645031214, 0.026160845533013344, 0.037467651069164276, 0.015422150492668152, 0.004517179913818836, 0.0020212994422763586, -0.02311244234442711, 0.021324967965483665, -0.01744518242776394, -0.01644752360880375, -0.007544798776507378, 0.04295477643609047, 0.009297630749642849, 0.015214305371046066, -0.013981087133288383, -0.023555845022201538, -0.004915550816804171, -0.01226289663463831, 0.03059488721191883, 0.044146426022052765, -0.010364572517573833, 0.029957493767142296, 0.039490681141614914, -0.00418116245418787, 0.010676341131329536, 0.0037204381078481674, 0.04863589257001877, 0.018110288307070732, 0.0048670535907149315, 0.005147645249962807, -0.6061334609985352, -0.012242111377418041, 0.008784945122897625, -0.0035281807649880648, -0.0029081078246235847, -0.007136035710573196, 0.037218235433101654, 0.01479861419647932, -0.02776818536221981, 0.02110326662659645, 0.0021494708489626646, 0.01574084721505642, 0.014978746883571148, -0.017653027549386024, -0.01996704377233982, -0.006505570374429226, 0.013974159024655819, -0.03125999495387077, 0.04544892534613609, -0.010891114361584187, 0.00870873499661684, 0.03175882250070572, 0.008369253017008305, -0.001299901632592082, 0.007032112684100866, 0.0173066183924675, 0.02183765545487404, -0.009207564406096935, 0.016793932765722275, 0.007745716255158186, -0.04688999056816101, 0.02237805351614952, 0.006114127580076456, 0.006914333440363407, 0.04458983242511749, -0.008590955287218094, -0.013011140748858452, 0.014272071421146393, 0.031952813267707825, 0.01799943670630455, -0.0037689353339374065, -0.03328302502632141, 0.018428985029459, -0.009415410459041595, -0.01985619217157364, -0.0008144953171722591, 0.025038478896021843, 0.0025928751565515995, -0.016059543937444687, -0.011507723480463028, -0.012283680960536003, -0.014001871459186077, -0.0011812563752755523, -0.0026933338958770037, 0.01740361377596855, 0.011043534614145756, 0.0252324678003788, -0.025883717462420464, 0.02876584418118, 0.005327777937054634, 0.02395768091082573, 0.006671846844255924, -0.01756989024579525, -0.04450669139623642, 0.0012306197313591838, 0.02821158990263939, -0.001323284232057631, 0.008043628185987473, 0.0023988857865333557, -0.022502761334180832, 0.009803389199078083, 0.014784757047891617, -0.009962737560272217, -0.009720250964164734, 0.014618480578064919, 0.029292387887835503, 0.00813369546085596, 0.010336859151721, 0.003413865575566888, 0.006758449133485556, 0.012609305791556835, 0.00023404292005579919, -0.013218986801803112, -0.007288455963134766, 0.009803389199078083, 0.013780170120298862, -0.02011946402490139, -0.009290702641010284, 0.00950547680258751, 0.001644579111598432, 0.012934930622577667, 0.013780170120298862, 0.0024958804715424776, -0.008105982095003128, 0.006890085060149431, 0.02182379923760891, -0.005022937897592783, 0.01446606032550335, 0.002289766678586602, -0.02322329208254814, -0.008466248400509357, 0.018622973933815956, -0.013309053145349026, -0.006152232643216848, 0.012422244995832443, 0.015269730240106583, -0.013336765579879284, 0.003547233296558261, 0.034668661653995514, -0.03998951241374016, 0.0014116186648607254, -0.0007772563258185983, -0.0060379174537956715, -0.001423743087798357, 0.026742814108729362, -0.037911053746938705, 0.027089223265647888, 0.00510261207818985, 0.0008227225625887513, 0.015422150492668152, 0.018068719655275345, 0.00700786430388689, 0.000195396612980403, -0.005296601448208094, -0.0071152509190142155, 0.020715288817882538, 0.0013042318169027567, -0.0342806838452816, -0.003994101658463478, 0.0015060153091326356, -0.0095609026029706, -0.02548188343644142, 0.023722123354673386, 0.001234083785675466, 0.02422095276415348, -0.019911617040634155, 0.022059356793761253, -0.01816571317613125, -0.00467652827501297, -0.026410259306430817, 0.006311581004410982, -0.004898230079561472, 0.020313452929258347, 0.0007512756274081767, -0.05567493289709091, -0.02862728014588356, -0.016669224947690964, 0.021075554192066193, 0.005196142476052046, 0.0033411195036023855, -0.017750022932887077, 0.004136129282414913, -0.013745528645813465, 0.03173111006617546, 0.0030189587268978357, 0.0011570077622309327, 0.005823143757879734, -0.022308772429823875, -0.007648721802979708, -0.018110288307070732, -0.0036061229184269905, 0.03616515174508095, 0.0009907311759889126, -0.027158504351973534, 0.01431364007294178, -0.007371594198048115, -0.013322909362614155, 0.00926991831511259, 0.019745340570807457, -0.024026961997151375, -0.00336710037663579, -0.005566800478845835, -0.016211964190006256, 0.026465686038136482, -0.019343506544828415, 0.0496058389544487, 0.005428236909210682, 0.003789719892665744, 0.003910963423550129, -0.006339293904602528, -0.03242392838001251, 0.019094090908765793, 0.0021217581816017628, -0.004246980417519808, 0.014285927638411522, 0.0036234434228390455, 0.014133507385849953, 0.0039178915321826935, 0.02707536704838276, -0.012761726044118404, 0.008237618021667004, -0.0023348000831902027, 0.005639546550810337, 0.03134313225746155, -0.014355209656059742, 0.0062215146608650684, -0.021574383601546288, 0.00573307741433382, 0.012692444026470184, 0.01612882688641548, 0.04007264971733093, 0.024996910244226456, 0.007122179493308067, -0.008313828147947788, 0.00686930026859045, -0.03076116368174553, 0.02509390376508236, 0.00027041591238230467, 0.010801048018038273, -0.01069712545722723, 0.02634097822010517, -0.014043441042304039, -0.01984233595430851, -0.005577193107455969, -0.002549574011936784, 0.005830071866512299, -0.022488905116915703, 0.00813369546085596, 0.0051580374129116535, 0.0320359505712986, 0.0009612863650545478, -0.00807826966047287, 0.022572042420506477, -0.016932496801018715, -0.01629510335624218, 0.028738131746649742, 0.037606216967105865, 0.0132605554535985, 0.008112910203635693, -0.011383015662431717, -0.012955714948475361, 0.017736166715621948, 0.023306431248784065, -0.004818555898964405, -0.007406235206872225, 0.02380526065826416, 0.037218235433101654, -0.003105561248958111, 0.01118902675807476, -0.015200449153780937, -0.007049433421343565, 0.05681115761399269, 0.029680365696549416, -0.02280760183930397, 0.011369159445166588, -0.003088240744546056, 0.004925942979753017, 0.01726504974067211, 0.012817151844501495, 0.013045781292021275, -0.02904297225177288, 0.02154667116701603, -0.009526261128485203, 0.022170208394527435, 0.024442654103040695, -0.010399213060736656, -0.01005280390381813, -0.004586461931467056, 0.025578876957297325, 0.012837936170399189, 0.0272139310836792, 0.022987734526395798, -0.018234996125102043, 0.021047841757535934, 0.002348656300455332, -0.02379140444099903, -0.009851885959506035, -0.014369065873324871, -0.004873981699347496, -0.00870873499661684, -0.013052710331976414, -0.01870611310005188, 0.005248103756457567, -0.0039871735498309135, -0.010461566969752312, 0.04098717123270035, 0.020438160747289658, -0.01701563410460949, 0.008944293484091759, 0.00739930709823966, -0.03059488721191883, -0.009387697093188763, 0.014757044613361359, 0.0294586643576622, 0.028280870988965034, -0.03597116097807884, 0.01587941125035286, -0.004770058672875166, -0.04192940518260002, -0.0015397901879623532, 0.004253908526152372, -0.011175170540809631, -0.009969665668904781, -0.03125999495387077, -0.04303791746497154, -0.0021650593262165785, 0.04212339594960213, -0.010503135621547699, -0.02548188343644142, -0.009526261128485203, 0.010939612053334713, 0.002203164389356971, -0.02011946402490139, -0.020479729399085045, 0.04492238536477089, -0.00040573213482275605, -0.0011500795371830463, -0.009069000370800495, 0.015602284111082554, -0.01701563410460949, 0.016322815790772438, -0.011895702220499516, -0.02197621762752533, -0.02010560780763626, 0.022502761334180832, 0.03453009948134422, 0.007683362811803818, 0.01617039553821087, 0.007821926847100258, -0.012172829359769821, -0.014618480578064919, -0.030650312080979347, -0.029126111418008804, 0.0033134068362414837, 0.0682288110256195, 0.018941670656204224, 0.005227319430559874, 0.017902443185448647, 0.013648534193634987, -0.008480104617774487, -0.013939518481492996, -0.019870048388838768, 0.007731860037893057, -0.01394644659012556, -0.007981275208294392, 0.0017718846211209893, -0.02577286586165428, 0.018816964700818062, 0.012443029321730137, -0.004725025501102209, -0.011888774111866951, -0.011036606505513191, 0.0015553786652162671, 0.012297537177801132, 0.01673850603401661, -0.01146615482866764, 0.021227974444627762, 0.03574946150183678, 0.032673344016075134, -0.027421776205301285, 0.03505663946270943, -0.002679477445781231, 0.0036026588641107082, -0.0075655835680663586, -0.005275816656649113, 0.015546858310699463, 0.01254695188254118, 0.02099241502583027, -0.008521673269569874, 0.03724594786763191, 0.004603782203048468, 0.009872670285403728, 0.027698904275894165, 0.01446606032550335, 0.0377170667052269, 0.028239302337169647, 0.006793090142309666, -0.003368832403793931, -0.01382173877209425, -0.05268195644021034, -0.012096619233489037, 0.028114594519138336, -0.016253532841801643, 0.003008566563948989, 0.014978746883571148, 0.0012929734075441957, -0.03159254789352417, -0.04090403392910957, 0.03131541982293129, 0.009359984658658504, 0.006647598464041948, 0.0074270195327699184, -0.008951221592724323, -0.026867520064115524, -0.01798558048903942, -0.026049993932247162, 0.0035247167106717825, -0.018318133428692818, -0.020507441833615303, -0.017666883766651154, -0.03608201444149017, -0.012512311339378357, 0.002417938318103552, 0.029846642166376114, 0.000587164075113833, 0.00029120047111064196, -0.04916243627667427, 0.010738694109022617, -0.012027338147163391, -0.004922478925436735, 0.021020127460360527, 0.012865648604929447, 0.010967324487864971, 0.011500795371830463, -0.018345847725868225, -0.003299550386145711, -0.003942139912396669, -0.03624828904867172, 0.002648300724104047, -0.013787098228931427, -0.022364197298884392, -0.04148600250482559, -0.01982847973704338, 0.04447897896170616, -0.01941278763115406, -0.01643366739153862, -0.0037065816577523947, 0.018470553681254387, -0.012706300243735313, 0.031093716621398926, 0.012089691124856472, 0.015920979902148247, 0.005400524009019136, 0.005036794114857912, 0.011951128020882607, -0.006890085060149431, 0.0071845329366624355, -0.02325100637972355, 0.014175076968967915, -0.003025887068361044, -0.008999718353152275, 0.010239864699542522, -0.007780357263982296, -0.016114970669150352, -0.004406328778713942, -0.01319127343595028, 0.01715419813990593, 0.001259198528714478, -0.002469899831339717, 0.005282744765281677, 0.00820990465581417, -0.005331241991370916, 0.002237805398181081, -0.013094278983771801, -0.0030137626454234123, 0.011930342763662338, 0.008493960835039616, 0.016530660912394524, -0.013717816211283207, 0.015671566128730774, 0.0033255312591791153, -0.010080516338348389, -0.043703023344278336, -0.006069094408303499, -0.0006811276543885469, 0.023347999900579453, -0.014369065873324871, -0.03031775914132595, -0.03458552435040474, 0.01801329478621483, -0.016946353018283844, -0.008916580118238926, -0.016502948477864265, -0.03527834266424179, -0.000584133027587086, 0.004645351320505142, 0.003682333044707775, -0.004943263716995716, 0.02466435544192791, -0.03048403561115265, 0.001210701186209917, 0.006470929365605116, 0.0013180881505832076, 0.014632336795330048, 0.005161501467227936, 0.01041999738663435, 0.0023798332549631596, -0.008660237304866314, -0.021602096036076546, -0.023057015612721443, -0.015907123684883118, -0.02097855880856514, 0.04112573713064194, 0.027241643518209457, 0.02679823897778988, 0.033116746693849564, 0.00608987919986248, 0.01899709738790989, 0.008334612473845482, 0.005992884282022715, -0.009193708188831806, 0.0028353617526590824, -0.012449957430362701, -0.0021373466588556767, 0.005410916171967983, -0.023209435865283012, 0.021712947636842728, -0.013731672428548336, 0.021311111748218536, 0.002747027203440666, 0.0036857970990240574, -0.0074963015504181385, -0.018913958221673965, -0.03031775914132595, -0.0160179752856493, 0.0022603219840675592, 0.0008248875965364277, 0.0005984224262647331, -0.055286955088377, -0.009817245416343212, 0.02779589779675007, -0.0022014323621988297, 0.007745716255158186, -0.022197920829057693, 0.011147458106279373, -0.0020697966683655977, 0.014757044613361359, -0.0012236915063112974, 0.0108495457097888, -0.01572699099779129, 0.009041287936270237, -0.03696881979703903, -0.007759572938084602, 0.018484409898519516, 0.004004493821412325, 0.022599754855036736, 0.016918640583753586, -0.016489092260599136, 0.012373747304081917, 0.01815185695886612, -0.0010816636495292187, -0.010073588229715824, 0.009754891507327557, -0.02099241502583027, -0.016336672008037567, -0.0021512028761208057, -0.006661454681307077, -0.01896938495337963, 0.0050887553952634335, 0.0016783539904281497, 0.005753861740231514, 0.01901095360517502, -0.013814810663461685, -0.03245164081454277, 0.003568017855286598, 0.014008800499141216, 0.014126579277217388, -0.004177698399871588, 0.019953187555074692, 0.020659862086176872, -0.012269824743270874, -0.01176406629383564, 0.010641699656844139, 0.006599100772291422, -0.00736466608941555, 0.026812095195055008, 0.025398744270205498, -0.015768559649586678, -0.028100738301873207, 0.021311111748218536, 0.017750022932887077, -0.0160179752856493, -0.03696881979703903, 0.013870236463844776, 0.031370844691991806, -0.011320662684738636, -0.03231307864189148, -0.03103829175233841, -0.018179571256041527, 0.01615653932094574, -0.02449807897210121, 0.0004589925811160356, 0.00644321646541357, -0.012006552889943123, 0.009547045454382896, -0.008369253017008305, -0.011313734576106071, 0.037606216967105865, -0.004783915355801582, -0.03300589695572853, -0.00228630262427032, 0.0024612394627183676, -0.03497350215911865, -0.0015216036699712276, -0.00421580346301198, 0.01226289663463831, -0.02392996847629547, 0.013662390410900116, 0.03145398199558258, 0.01120288297533989, 0.030262334272265434, -0.0064778574742376804, -0.017736166715621948, 0.023597415536642075, -0.0018273100722581148, 0.0005577192641794682, 0.012297537177801132, -0.02465049922466278, -0.007246886845678091, 0.0036026588641107082, 0.013440688140690327, 0.004253908526152372, -0.004395936615765095, -0.010752551257610321, 0.01439677830785513, 0.01899709738790989, 0.002565162256360054, -0.0018169177928939462, 0.01998089998960495, -0.02435951679944992, 0.019385075196623802, -0.0013917001197114587, 0.0016800860175862908, -0.00641203997656703, -0.03031775914132595, 0.004458290059119463, -0.004759666509926319, 0.013031925074756145, 0.003862465964630246, 0.026299409568309784, -0.006159160751849413, 0.006557531654834747, -0.01446606032550335, -0.007759572938084602, 0.008383110165596008, -0.015408294275403023, -0.006921261548995972, -0.0024785599671304226, -0.006966295186430216, -0.012020410038530827, 0.006394719239324331, 0.009415410459041595, -0.029680365696549416, -0.029153823852539062, -0.02634097822010517, -0.00261885579675436, -0.013045781292021275, -0.000568544608540833, 0.004787379410117865, 0.00034965708618983626, -0.008424678817391396, -0.014854039065539837, -0.030982865020632744, 0.03935211896896362, -0.018955526873469353, 0.011161314323544502, 0.020521298050880432, -0.02095084637403488, 0.024193238466978073, -0.025828292593359947, 0.023902256041765213, -0.004988296888768673, -0.02463664300739765, -0.01858140528202057, 0.002847486175596714, 0.021934648975729942, -0.01689092628657818, -0.005227319430559874, -0.008043628185987473, -0.001038362504914403, -0.03389270603656769, 0.012574664317071438, 0.0027383670676499605, -0.015436007641255856, 0.011646287515759468, -0.011251380667090416, 0.014549198560416698, -0.005040258169174194, -0.015948694199323654, -0.03048403561115265, -0.01205505058169365, 0.00920063629746437, -0.009962737560272217, -0.001433269353583455, 0.0024750959128141403, 0.029126111418008804, 0.01956520788371563, -0.022170208394527435, -0.056922007352113724, 0.0011206347262486815, -0.004946727771311998, -0.01587941125035286, 0.006405111402273178, 0.01784701645374298, 0.006474393419921398, -0.0024231343995779753, 0.019080234691500664, 0.0425390861928463, -0.002878662897273898, 0.010281434282660484, -0.01387716457247734, -0.01247766986489296, 0.012075834907591343, -0.011653215624392033, 0.021449675783514977, -0.0035437692422419786, -0.04871903359889984, -0.004797771573066711, 0.0027816682122647762, 0.02420709654688835, -0.014923321083188057, 0.036192864179611206, -0.018636830151081085, -0.019620634615421295, -0.0030865087173879147, -0.006942046340554953, -0.010323002934455872, 0.007059825584292412, -0.015823986381292343, -0.0404883436858654, 0.010773335583508015, 0.010156726464629173, 0.003789719892665744, 0.010496207512915134, 0.012186686508357525, 0.0057261488400399685, -0.0010522188385948539, 0.014057297259569168, -0.02422095276415348, 0.0021113657858222723, 0.008237618021667004, -0.014285927638411522, 0.01617039553821087, 0.013232843019068241, 0.0005070568877272308, 0.022710606455802917, -0.009020503610372543, -0.0009283774415962398, 0.002844021888449788, 0.014937177300453186, -0.016101112589240074, -0.014424491673707962, 0.008978934027254581, -0.012131260707974434, -0.01445220410823822, 0.00042651669355109334, -0.015103453770279884, 0.007440876215696335, 0.008293043822050095, -0.006921261548995972, -0.01801329478621483, -0.023264862596988678, 0.0012739208759739995, 0.00957475882023573, -0.007142963819205761, -0.031952813267707825, -0.029126111418008804, 0.007233030162751675, 0.001757162157446146, -0.029708078131079674, 0.001371781574562192, -0.00814755167812109, 0.014043441042304039, 0.0051233964040875435, -0.01801329478621483, 0.021366538479924202, 0.01855369284749031, -0.004084168002009392, -0.02223948948085308, -0.007960489951074123, 0.19077463448047638, -0.00920063629746437, -0.0006005874602124095, 0.010392284952104092, 0.01702949032187462, -0.01853983663022518, 0.02779589779675007, 0.007413163315504789, -0.022017788141965866, 0.01260237768292427, 0.0037412226665765047, 0.00722610205411911, -0.013766313903033733, -2.058159589068964e-05, 0.010794119909405708, 0.0037169738207012415, -0.043730735778808594, -0.003547233296558261, -0.005220391321927309, -0.0023105512373149395, -0.017528319731354713, -0.005989420227706432, -0.013496113941073418, -0.011022750288248062, 0.0019710699561983347, -0.012817151844501495, -0.013094278983771801, -0.008251474238932133, 0.010870330035686493, 0.024442654103040695, -0.006990543566644192, 0.004222731571644545, 0.007558655459433794, 0.005151109304279089, -0.02210092544555664, -0.024844489991664886, -0.002090581227093935, -0.0013925661332905293, 0.027089223265647888, 0.005771182011812925, -0.0016367848729714751, -0.006793090142309666, -0.01657222956418991, -0.026049993932247162, 0.026881376281380653, 0.01758374646306038, -0.012526167556643486, -0.008715663105249405, -0.01599026285111904, -0.013142776675522327, -0.0482202023267746, 0.0021789157763123512, 0.014992603100836277, 0.02113097906112671, -0.025038478896021843, 0.010413069278001785, 0.02492762729525566, 0.01786087453365326, 0.004925942979753017, 0.010302218608558178, 0.02566201612353325, -0.004856660962104797, 0.006914333440363407, 0.007724931929260492, -0.01183334831148386, 0.008611740544438362, -0.03785562887787819, 0.01801329478621483, 0.00957475882023573, -0.007697219029068947, -0.012131260707974434, -0.009540117345750332, -0.03125999495387077, 0.0030484036542475224, -0.02226720191538334, -0.043730735778808594, 0.04123658686876297, 0.024151669815182686, 0.031066004186868668, 0.023486563935875893, -0.020368877798318863, 0.016045687720179558, -0.011861061677336693, -0.005005617160350084, -0.018373560160398483, -0.04619717225432396, 0.02251661755144596, -0.0011639358708634973, -0.000711005472112447, -0.004628031048923731, -0.026881376281380653, 0.01858140528202057, -0.010586273856461048, -0.0050887553952634335, 0.0013873700518161058, -0.019357362762093544, 0.019371218979358673, 0.004766594618558884, -0.008521673269569874, 0.007801142055541277, -0.024262521415948868, 0.08735062181949615, -0.021477388218045235, -0.021726803854107857, 0.00499868905171752, -0.013419903814792633, -0.029292387887835503, 0.005743469577282667, 0.006439752411097288, -0.029569514095783234, 0.0016939424676820636, -0.034640949219465256, -0.013267483562231064, -0.018900102004408836, 0.01401572860777378, 0.044728394597768784, 0.023777548223733902, -0.01755603402853012, 0.005279280710965395, -0.02211478166282177, -0.02168523520231247, -0.021158691495656967, 0.019509783014655113, 0.0051788222044706345, -0.014757044613361359, 0.0019087162800133228, 0.0031609865836799145, -0.023334143683314323, -0.017362043261528015, -0.002812845166772604, 0.027560340240597725, 0.001497355056926608, 0.003122881520539522, -3.932289109798148e-05, -0.005473270080983639, 0.008715663105249405, 0.007066753692924976, -0.013419903814792633, -0.005313921719789505, 0.025689728558063507, -0.027421776205301285, -0.013648534193634987, -0.00042261957423761487, 0.0147293321788311, -0.0014341353671625257, -0.05681115761399269, -0.005078363232314587, 0.003221608232706785, -0.006720344070345163, -0.013267483562231064, -0.008674093522131443, 5.75905796722509e-05, -0.008320756256580353, -0.028405578806996346, 0.03134313225746155, -0.004662672057747841, 0.023749835789203644, -0.016655368730425835, 0.0053416346199810505, -0.002617123769596219, -0.01396030280739069, 0.015699278563261032, 0.02266903780400753, -0.011667071841657162, -0.011736353859305382, -0.0029687294736504555, -0.17647485435009003, 0.01914951764047146, 0.0014176808763295412, -0.014854039065539837, 0.01600411906838417, -0.01840127259492874, 0.003254517214372754, 0.0030709202401340008, -0.0005373677122406662, -0.003921355586498976, 0.023749835789203644, 0.0038035763427615166, -0.00044470318243838847, -0.020036324858665466, -0.008251474238932133, -0.00637739896774292, -0.012796366587281227, 0.012595449574291706, 0.0274772010743618, 0.022890739142894745, 0.012955714948475361, -0.0363314263522625, 0.0029323564376682043, -0.021934648975729942, -0.00030267529655247927, 0.005649938713759184, -0.014188933186233044, 0.021435819566249847, -0.01303885318338871, -0.009193708188831806, -0.011438441462814808, 0.0042296601459383965, 0.0092144925147295, 0.00545941386371851, -0.0060379174537956715, 0.019786911085247993, -0.01953749544918537, -0.006741128861904144, -0.010323002934455872, 0.0422065332531929, 0.009443122893571854, 0.046695999801158905, -0.022863026708364487, -0.023140154778957367, -0.0011899166274815798, 0.0026292481925338507, 0.022350341081619263, -0.007884279824793339, 0.010212152265012264, -0.0252324678003788, -0.005566800478845835, 0.002764347707852721, 0.028571855276823044, 0.0034277220256626606, -0.003072652267292142, 0.021463532000780106, -0.002743563149124384, -0.009720250964164734, -0.008757231757044792, -0.007510157767683268, -0.022059356793761253, -0.025606589391827583, -0.012727084569633007, 0.015131167136132717, -0.0034069374669343233, -0.027297068387269974, -0.019786911085247993, 0.01439677830785513, -0.028114594519138336, 0.014992603100836277, -0.05104690417647362, 0.01260237768292427, 0.0034363821614533663, -0.0011925146682187915, 0.027033796533942223, 0.004797771573066711, -0.012249039486050606, 0.015325156040489674, 0.01698792167007923, -0.015422150492668152, 0.014576911926269531, 0.016766220331192017, -0.03558318316936493, -0.00933920033276081, 0.014507629908621311, -0.002175451721996069, -0.013565395958721638, 0.002565162256360054, -0.013703959994018078, 0.006491714157164097, 0.007877351716160774, -0.0289321206510067, -0.01071098167449236, -0.0035749459639191628, -0.003578410018235445, 0.019038666039705276, -0.0011258309241384268, -0.004621102474629879, -0.006287332158535719, -0.013787098228931427, 0.01953749544918537, 0.006207657977938652, -0.014854039065539837, 0.00785656739026308, 0.013350621797144413, -0.0072399587370455265, 0.000924047315493226, 0.007593296002596617, 0.0382436104118824, -0.004434041678905487, -0.04766594618558884, 0.014687762595713139, 0.006796554196625948, 0.021712947636842728, 0.013440688140690327, 0.03727366030216217, -0.024401085451245308, -0.011085104197263718, 0.017791591584682465, -0.01380788255482912, 0.05473269894719124, 0.0028855910059064627, 0.011556221172213554, 0.03403126820921898, -0.021352682262659073, -0.006069094408303499, -0.07454732060432434, -0.022003931924700737, 0.020050181075930595, 0.016544517129659653, 0.005057578440755606, 0.0051926784217357635, -0.011251380667090416, 0.0098588140681386, 0.010059732012450695, 0.031010577455163002, -0.01332983747124672, -0.0334215871989727, -0.013295196928083897, -0.016322815790772438, 0.016766220331192017, -0.004226196091622114, -0.025565020740032196, -0.030511748045682907, 0.02397153712809086, 0.01996704377233982, -0.003289158223196864, -0.02920924872159958, 0.017500607296824455, -0.008369253017008305, 0.0070425053127110004, 0.0059097460471093655, -0.029818929731845856, 0.02365284040570259, 0.006450145039707422, 0.012810222804546356, 0.025828292593359947, -0.009117498062551022, 0.03178653493523598, -0.010239864699542522, 0.03125999495387077, -0.0272139310836792, 0.015643853694200516, -0.00785656739026308, 0.031675685197114944, -0.04361988231539726, 0.013128919526934624, 0.005261960439383984, 0.026881376281380653, -0.005864712875336409, 0.01474318839609623, -0.0033584400080144405, -0.042594511061906815, 0.020659862086176872, -3.7211957533145323e-05, -0.025994569063186646, -0.02819773368537426, -0.02496919594705105, -0.006897013168781996, -0.013918733224272728, 0.024719782173633575, -0.0108495457097888, -0.00318869948387146, 0.012117404490709305, -0.037633929401636124, -0.02481677569448948, -0.014854039065539837, -0.02182379923760891, -0.03971238434314728, 0.038770150393247604, 0.01786087453365326, 0.008985862135887146, -0.019038666039705276, 0.01389102078974247, 0.008230689913034439, -0.027144648134708405, -0.018927814438939095, 0.010891114361584187, -0.02918153628706932, 0.003564553800970316, -0.004534500185400248, -0.011618574149906635, -0.011008894070982933, -0.02566201612353325, 0.01474318839609623, -0.010392284952104092, -0.0015484504401683807, -0.005688043776899576, -0.0021962362807244062, -0.024844489991664886, 0.020022468641400337, 0.01012208592146635, -0.0068381233140826225, 0.01870611310005188, 0.0252324678003788, -0.03198052570223808, 0.03128770738840103, 0.012228255160152912, -0.007233030162751675, -0.006779233925044537, -0.005791966803371906, 0.010787191800773144, -0.006193801760673523, -0.0010323002934455872, -0.022710606455802917, 0.0011985768796876073, -0.04846961796283722, 0.022613612934947014, -0.06917104870080948, 0.022281058132648468, 0.0008547654142603278, -0.021491244435310364, 0.011057390831410885, 0.0033757605124264956, 0.02068757452070713, 0.0054698060266673565, -7.572294998681173e-05, -0.004375151824206114, -0.030955152586102486, 0.024054676294326782, 0.005656867288053036, -0.010087444446980953, -0.013932590372860432, -0.004759666509926319, 0.031149141490459442, 0.0002355584583710879, 0.013212058693170547, 0.024553505703806877, -0.012311393395066261, 0.015768559649586678, 0.016516804695129395, -0.0030986329074949026, -0.00602059718221426, 0.026465686038136482, 0.018525980412960052, -0.0069524385035037994, -0.022849170491099358, -0.015560714527964592, -0.007350809406489134, -0.02025802806019783, -0.005601441487669945, 0.02520475536584854, 0.006644133944064379, -0.0003923087497241795, -0.005189214367419481, 0.009346128441393375, 0.01629510335624218, 0.0408208966255188, -0.017209623008966446, -0.04198483005166054, -0.024414941668510437, -0.02366669662296772, -0.0055044470354914665, -0.0005702766356989741, -0.00984495785087347, 0.027948318049311638, -0.00785656739026308, -0.0226551815867424, 0.024040820077061653, 0.005778110586106777, -0.0276434775441885, -0.05797509476542473, -0.001406422583386302, 0.00850088894367218, -0.004170770291239023, 0.02678438276052475, -0.005573729053139687, -0.004988296888768673, 0.030012918636202812, -0.014701618812978268, 0.0024456509854644537, -0.015297443605959415, 0.02311244234442711, -0.03505663946270943, -0.02338956855237484, -0.0011829884024336934, 0.006436288356781006, -0.008646381087601185, -0.01453534234315157, -0.014632336795330048, -0.0063843270763754845, 0.015643853694200516, 0.0034104015212506056, -0.0019468213431537151, -0.015034171752631664, 0.02692294679582119, 0.009228348731994629, 0.028848983347415924, 0.028544142842292786, 0.0007400172762572765, -0.017181910574436188, 0.005712292622774839, 0.028461003676056862, 0.026742814108729362, -0.02422095276415348, 0.025301748886704445, -0.00421580346301198, 0.016752364113926888, -0.0059790280647575855, 0.011840276420116425, -0.012172829359769821, 0.013274411670863628, -0.025135472416877747, 0.01755603402853012, 0.0014817665796726942, 0.005074899177998304, 0.04057148098945618, 0.006332365795969963, 0.02692294679582119, 0.0011708640959113836, 0.017930155619978905, -0.008466248400509357, -0.04508865997195244, -0.0007270269561558962, -0.013530755415558815, -0.0473611056804657, 0.015214305371046066, 0.007045969367027283, -0.015685422345995903, 0.03034547157585621, -0.007974347099661827, -0.004728489555418491, -0.025592733174562454, 0.011604717932641506, -0.0025616982020437717, 0.0126162339001894, -0.03173111006617546, 0.02904297225177288, 0.006280404049903154, -0.01296957116574049, 0.0171403419226408, -0.01387716457247734, 0.01996704377233982, -0.003055331762880087, 0.014909464865922928, -0.041735418140888214, -0.0019381610909476876, -0.009276846423745155, -0.006505570374429226, 0.01466005016118288, -0.0018584869103506207, -0.01715419813990593, -0.0025963392108678818, -0.029126111418008804, -0.002795524662360549, -0.015200449153780937, -0.025592733174562454, 0.07814998179674149, 0.027172360569238663, -0.022322628647089005, -0.008327684365212917, -0.024484222754836082, -0.009456979110836983, 0.021920792758464813, 0.007032112684100866, -0.012470741756260395, -0.01154929306358099, 0.03031775914132595, 0.005705364514142275, -0.015616140328347683, -0.023597415536642075, 0.012089691124856472, 0.010807976126670837, 0.007614080794155598, 0.03331073746085167, -0.0098588140681386, 0.015006459318101406, -0.0007698950939811766, 0.013870236463844776, -0.003789719892665744, -0.0005616163834929466, -0.010620915330946445, 0.005961707327514887, 0.014057297259569168, -0.003772399388253689, 0.020895421504974365, -0.03552775830030441, 0.001990122487768531, -0.0029808536637574434, -0.03799419477581978, -0.020077895373106003, 0.019329650327563286, -0.011452297680079937, 0.004264300689101219, -0.0064189680851995945, 0.01956520788371563, 0.015810130164027214, -0.00683465925976634, 0.04639115929603577, -0.008757231757044792, -0.00991423986852169, -0.024996910244226456, -0.024581218138337135, -0.023999249562621117, 0.004957119934260845, -0.028848983347415924] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_contain_privacyoriented_contact_tracing_protocols_for_epidemics.json b/database/embeddings/publications_txt/2021_contain_privacyoriented_contact_tracing_protocols_for_epidemics.json new file mode 100644 index 0000000000000000000000000000000000000000..ded6798e41adab273a912d737474832652ed9d2f --- /dev/null +++ b/database/embeddings/publications_txt/2021_contain_privacyoriented_contact_tracing_protocols_for_epidemics.json @@ -0,0 +1 @@ +[-0.0012445796746760607, 0.01512656919658184, 0.03340571001172066, -0.030339905992150307, 0.012234299443662167, 0.008741884492337704, -0.023673225194215775, 0.0010493515292182565, -0.014981955289840698, -0.01138831116259098, 0.004699937999248505, 0.01919020712375641, -0.010101251304149628, 0.00416125264018774, 0.0029898835346102715, 0.01817791350185871, 0.01933482103049755, -0.015285643748939037, -0.005611002445220947, 0.014396270737051964, -0.02280554361641407, 0.010860471986234188, -0.006930600386112928, -0.010296478867530823, -0.018322527408599854, 0.0070029073394834995, 0.028026090934872627, -0.030571287497878075, 0.00043293656199239194, -0.018872058019042015, 0.013109210878610611, -0.003420108463615179, -0.014229965396225452, 0.009790332056581974, -0.01875636726617813, -0.0178019180893898, 0.011836612597107887, -0.023456305265426636, 0.03600875288248062, -0.02261754684150219, 0.028980540111660957, 0.02244400978088379, -0.015603793784976006, -0.01858283020555973, 0.00015048839850351214, 0.013289977796375751, 0.023803377524018288, -0.015545948408544064, -0.014519192278385162, 0.0040057930164039135, -0.0006616066093556583, 0.04584246873855591, -0.018105605617165565, 0.005524234380573034, -0.010896624997258186, -0.015806252136826515, -0.008134507574141026, 0.015820713713765144, -0.011294311843812466, 0.0010538706555962563, 0.015589332208037376, -0.015777328982949257, -0.04812736436724663, 0.0016124402172863483, 0.010115711949765682, 0.0032736873254179955, -0.015560409054160118, 0.021128028631210327, -0.026391958817839622, 0.019624046981334686, 0.0220535546541214, 0.021026799455285072, 0.021561868488788605, -0.008467118255794048, 0.004128714557737112, -0.026102731004357338, -0.005195239093154669, 0.00023567477182950824, -0.008185122162103653, 0.018669599667191505, -0.007404209580272436, -0.001764284330420196, -0.00030549595248885453, 0.020361576229333878, 0.020448343828320503, 0.022111399099230766, 0.025394124910235405, 0.018293604254722595, -0.00584961473941803, -0.015647176653146744, -0.00315980426967144, 0.006775141227990389, -0.002395160496234894, -0.0072632115334272385, -0.009819254279136658, 0.02339845895767212, -0.013535820879042149, 0.025162743404507637, 0.005404928233474493, -0.00978310126811266, -0.00010077751358039677, 0.026160577312111855, -0.025567661970853806, -0.019595125690102577, -0.02339845895767212, -0.011352157220244408, 0.023846760392189026, -0.00714028999209404, 0.005831538233906031, 0.0034164933022111654, -0.022096937522292137, 0.040723152458667755, 0.00469270721077919, -0.015213336795568466, 0.007787435315549374, -0.007823588326573372, -0.009305876679718494, -0.014808419160544872, -0.013362284749746323, -0.010412169620394707, 0.023702148348093033, -0.014251657761633396, -0.004399864934384823, 0.01139554101973772, 0.010773703455924988, 0.023644302040338516, -0.038958869874477386, -0.029992833733558655, 0.012624755501747131, -0.025336280465126038, -0.006992061156779528, -0.003886487102136016, 0.0003100151370745152, 0.029790375381708145, 0.003575568087399006, 0.007136674597859383, -0.03436015918850899, -0.0043962495401501656, -0.01725238747894764, -0.0386696420609951, -0.0010412170086055994, 0.03754165768623352, -0.008040509186685085, 0.013904585503041744, -0.006221994757652283, 0.009363722056150436, 0.006301532033830881, 0.013383977115154266, 0.009370952844619751, 0.01256691012531519, 0.0011867342982441187, -0.007371671497821808, 0.001176792080514133, 0.0037057201843708754, -0.014360117726027966, 0.014193812385201454, -0.0035647221375256777, 0.02296461910009384, 0.010310940444469452, -0.0072342888452112675, -0.023716609925031662, 0.02146063931286335, 0.002127625746652484, 0.004233559127897024, 0.015488103032112122, 0.043181583285331726, 0.01668839529156685, 0.013622588478028774, 0.005943613592535257, 0.005632694810628891, -0.037686269730329514, 0.019088977947831154, -0.026767954230308533, -0.029848219826817513, -0.01341289933770895, 0.01741146109998226, 0.02702825702726841, 0.02397691272199154, -0.0007388844387605786, -0.031554657965898514, -0.0062075331807136536, 0.009378183633089066, 0.029587915167212486, 0.039161328226327896, -0.0022523547522723675, 0.02014465630054474, 0.0333767905831337, 0.002554235514253378, 0.011764305643737316, 0.0029211922083050013, 0.022270474582910538, 0.01606655679643154, 0.0023102001287043095, 0.005636310204863548, -0.6062196493148804, -0.038206879049539566, 0.01762838289141655, -0.020245885476469994, -0.017295770347118378, 0.018134528771042824, 0.024208294227719307, 0.004186559934169054, -0.04477233067154884, 0.056254640221595764, -0.007306595798581839, 0.02549535408616066, 0.004190175328403711, -0.008467118255794048, 0.0004794840351678431, -0.011981225572526455, -0.00785251148045063, -0.016804086044430733, 0.027505481615662575, 0.013716587796807289, -0.027867015451192856, 0.024772288277745247, 0.009313107468187809, 0.004363711457699537, -0.01569056138396263, 0.014851802960038185, 0.02052065171301365, -0.026363035663962364, 0.018452677875757217, -0.0032429571729153395, -0.0441071093082428, 0.005122932139784098, 0.03759950399398804, 0.01725238747894764, 0.05767185240983963, -0.008394812233746052, -0.004446864128112793, 0.03508322685956955, 0.025263972580432892, 0.021532945334911346, -0.028026090934872627, -0.03904563561081886, 0.016630548983812332, 0.008662346750497818, -0.0011596193071454763, 0.009934945032000542, 0.008242967538535595, -0.0035484530963003635, -0.010882163420319557, -0.01913236267864704, -0.003407454816624522, -0.0067281415686011314, -0.024786747992038727, -0.009703563526272774, 0.026507649570703506, -0.018365910276770592, 0.026739031076431274, -0.016355782747268677, 0.03274048864841461, -0.007859742268919945, 0.002277662046253681, 0.014201043173670769, 0.01532902754843235, -0.04248743876814842, -0.007288518827408552, 0.004363711457699537, 0.0011551000643521547, 0.004884319845587015, 0.020809877663850784, -0.019088977947831154, 0.022516317665576935, 0.0429212786257267, 0.003897333052009344, -0.02876361832022667, 0.017382539808750153, 0.025553200393915176, 0.02685472182929516, -0.0089877275750041, -0.023832300677895546, 0.01083154883235693, 0.026695646345615387, -0.003414685605093837, -0.013275516219437122, -0.007418671157211065, 0.027519943192601204, -0.0022360857110470533, -0.020433884114027023, -0.010911086574196815, 0.016934236511588097, -0.009219109080731869, 0.0032212650403380394, 0.017512692138552666, -0.01141000259667635, -0.02491690032184124, -0.002134856302291155, 0.02513382025063038, -0.003275495022535324, -0.020940029993653297, 0.003864794969558716, -0.01952281780540943, 0.004417941439896822, -0.009060033597052097, 0.02050619013607502, 0.00584961473941803, 0.03236449509859085, 0.006388300098478794, -0.017368078231811523, 0.010802626609802246, 0.049515653401613235, -0.011453386396169662, -0.009125109761953354, -0.015965327620506287, 0.009501105174422264, -0.011576307937502861, 0.021561868488788605, -0.027852553874254227, 0.055068809539079666, 0.03103405050933361, -0.008973265998065472, 0.017888685688376427, 0.006334070116281509, 0.023803377524018288, 0.0045119402930140495, -0.006724526174366474, -0.014663806185126305, 0.034418005496263504, 0.0444541797041893, -0.04497478902339935, -0.012863367795944214, -0.002156548434868455, 0.006456991657614708, -0.039566244930028915, 0.02912515215575695, 0.007180058863013983, 0.049544576555490494, 0.009913253597915173, 0.020361576229333878, -0.007895895279943943, -0.0006995676667429507, -0.020983414724469185, -0.009060033597052097, -0.00978310126811266, 0.0206941869109869, 0.0038322568871080875, -0.04390465095639229, -0.026117192581295967, -0.026290729641914368, 0.007310210727155209, -0.011156929656863213, -0.007353594992309809, 0.007266826927661896, 0.013261055573821068, -0.0032429571729153395, 0.0019342051818966866, 0.025625506415963173, -0.007678975351154804, -0.0009969291277229786, -0.02740425243973732, -0.022530779242515564, 0.00794650986790657, -0.006999291945248842, 0.040520694106817245, -0.001519345329143107, -0.025148281827569008, 0.028966078534722328, -0.011417233385145664, 0.01822129637002945, 0.025220589712262154, 0.010390478186309338, -0.03733919933438301, 0.0005400408990681171, -0.013282747007906437, -0.028821464627981186, 0.025553200393915176, -0.02066526561975479, 0.011561847291886806, -0.022472932934761047, -0.021200334653258324, -0.010838779620826244, -0.010173557326197624, -0.00045169112854637206, 0.003385762916877866, -0.03566168248653412, 0.0022740468848496675, 0.015791790559887886, -0.0032321109902113676, 0.010325402021408081, 0.008597270585596561, 0.0068872165866196156, 0.020028965547680855, -0.015357950702309608, -0.002514466643333435, -0.017194541171193123, 0.038611795753240585, -0.005965305492281914, 0.01342736091464758, 0.010441092774271965, -0.002617503749206662, 0.011720921844244003, 0.036529362201690674, 0.04373111203312874, 0.015806252136826515, -0.00028154434403404593, -0.03540137782692909, 0.009081725962460041, -0.023326152935624123, 0.019884351640939713, -0.006590758915990591, 0.0398554727435112, -0.012487373314797878, 0.012024610303342342, -0.002382506849244237, -0.023817839100956917, 0.0022523547522723675, -0.035169996321201324, 0.021749865263700485, -0.0015988827217370272, 0.03201742097735405, -0.029616838321089745, 0.003177881008014083, 0.0008116430835798383, -0.00290130777284503, 0.022154783830046654, -0.012971828691661358, -0.023803377524018288, 0.0023770839907228947, 0.03635582700371742, 0.04231389984488487, 0.011265389621257782, -0.007208981551229954, -0.009508335962891579, 0.017382539808750153, 0.024078141897916794, 0.0007827203953638673, -0.010014482773840427, 0.0045119402930140495, 0.034765079617500305, -0.019580664113163948, 0.032711565494537354, -0.01933482103049755, -0.01092554721981287, 0.04908181354403496, 0.0337238609790802, -0.017960993573069572, 0.013109210878610611, 0.007606668397784233, 0.011352157220244408, 0.020188041031360626, 0.001550979446619749, 0.02186555601656437, -0.02684026025235653, 0.017946531996130943, -0.024410754442214966, 0.00956618133932352, 0.019696354866027832, 0.005376005545258522, -0.001363885821774602, -0.0013964237878099084, 0.033058639615774155, 0.024859055876731873, -0.0038503336254507303, -0.01218368485569954, -0.0012292144820094109, -0.01206076331436634, 0.005112085957080126, -0.02660887874662876, 0.0018148990347981453, -0.019204668700695038, -0.012574140913784504, -0.007046291138976812, 0.011713691055774689, -0.01243675872683525, 0.0026319650933146477, 0.009739717468619347, 0.013463513925671577, 0.02067972533404827, 0.010079558938741684, -0.0008541233255527914, 0.01418658159673214, 0.011504001915454865, -0.03187280893325806, -0.029414379969239235, 1.9503047951729968e-05, 0.034794002771377563, 0.009016649797558784, -0.012624755501747131, -0.017006544396281242, -0.018481601029634476, -0.021229257807135582, -0.007758512627333403, 0.015748407691717148, 0.008546655997633934, -0.027086103335022926, -0.01139554101973772, -0.012176454067230225, -0.0057845390401780605, 0.014403501525521278, -0.011084622703492641, -0.008467118255794048, 0.01726684905588627, -0.007299365010112524, 0.004913242533802986, -0.02336953766644001, -0.021388331428170204, 0.030513443052768707, -0.016731778159737587, 0.026927027851343155, -0.014620421454310417, 0.0017317462479695678, -0.009790332056581974, 0.016992082819342613, 0.013058596290647984, -0.0035014536697417498, -0.022357242181897163, 0.00756328459829092, 0.02008681185543537, 0.008575579151511192, 0.011431694962084293, 0.014417963102459908, -0.02183663472533226, -0.014425193890929222, -0.0708606019616127, -0.025567661970853806, 0.009848177433013916, 0.038814254105091095, 0.021359410136938095, 0.00738251768052578, 0.00044423449435271323, -0.008402043022215366, -0.007881433703005314, -0.012827214784920216, -0.023036925122141838, 0.005325390957295895, -0.00676067965105176, -0.026883644983172417, 0.012791061773896217, -0.001361174276098609, -0.008727422915399075, 0.0074548241682350636, 0.0010041597997769713, 0.005426620598882437, -0.006312377750873566, 0.015357950702309608, 0.010021713562309742, 0.016746239736676216, -0.037830885499715805, -0.00015997864829842, 0.00656183622777462, 0.02990606613457203, -0.03005068004131317, 0.030021756887435913, 0.014222734607756138, 0.0006941446335986257, -0.010296478867530823, 0.005159085616469383, 0.015502563677728176, 0.02569781430065632, -0.030918359756469727, -0.023138156160712242, 0.032480183988809586, 0.019248053431510925, 0.041475143283605576, -0.00047722444287501276, 0.01723792590200901, 0.03175711631774902, 0.02990606613457203, -0.002584965666756034, -0.007353594992309809, -0.0004275135579518974, -0.035574913024902344, -0.001361174276098609, 0.012465680949389935, -0.004732475616037846, -0.00938541442155838, 0.040896687656641006, 0.009291415102779865, -0.0060737659223377705, -0.033434633165597916, 0.010260325856506824, -0.002946499502286315, -0.00306942081078887, 0.002496390137821436, -0.010795395821332932, -0.04306589066982269, -0.01784530282020569, -0.016008710488677025, 0.01840929500758648, -0.006594374310225248, -0.02014465630054474, -0.012313837185502052, -0.01745484583079815, -0.007642821874469519, -0.0005097624962218106, 0.004703552927821875, 0.01007232815027237, -0.018452677875757217, -0.031728196889162064, 0.025914734229445457, 0.013109210878610611, 0.005705001298338175, 0.00422271341085434, -0.02183663472533226, -0.027924861758947372, 0.014808419160544872, 0.010860471986234188, -0.016616087406873703, 0.01664501056075096, -0.05159808695316315, 0.0045697856694459915, 0.014981955289840698, -0.016341323032975197, -0.01839483343064785, -0.005372390616685152, 0.030571287497878075, -0.017888685688376427, 0.000703183002769947, -0.003033267566934228, -0.004085330758243799, 0.0009806600864976645, 0.008315274491906166, 0.012248761020600796, 0.010318171232938766, 0.0059327674098312855, 0.0031923423521220684, 0.005799000151455402, -0.012378913350403309, -0.016587164252996445, -0.014504730701446533, 0.020057888701558113, -0.004240789916366339, -0.021330486983060837, -0.004240789916366339, -0.024656597524881363, -0.02108464390039444, 0.015372412279248238, -0.02412152662873268, -0.0008712961571291089, 0.005383236333727837, 0.00436009606346488, 0.006153303198516369, -0.003407454816624522, 0.0011551000643521547, 0.011467847973108292, -0.01236445177346468, -0.02646426483988762, -0.004595092963427305, 0.002501812996342778, 0.01587855815887451, -0.008112816140055656, 0.01141000259667635, -0.01759945973753929, -0.011742614209651947, -0.038004420697689056, -0.019305897876620293, 0.014143197797238827, 0.018148990347981453, -0.005155470222234726, -0.011518462561070919, -0.02105572074651718, 0.00014099813415668905, -0.002143894787877798, 0.007823588326573372, -0.0033767244312912226, -0.017584998160600662, -0.029009461402893066, -0.0036876434460282326, 0.016833007335662842, -0.0013367707142606378, 0.032682646065950394, -0.021128028631210327, -0.0034725309815257788, 0.018524985760450363, 0.0059906127862632275, 0.012161992490291595, -0.01265367865562439, -0.002366237808018923, -0.0014416155172511935, 0.009103418327867985, -0.02607380785048008, -0.04176437109708786, -0.018698520958423615, -0.0010827933438122272, 0.03835149109363556, -0.0024005835875868797, 0.025639967992901802, -0.004956626798957586, 0.021142490208148956, 0.02432398498058319, 0.0031218433286994696, 0.013000750914216042, -0.014736112207174301, 0.012024610303342342, -0.001237349002622068, -0.013723818585276604, 4.245196032570675e-05, 0.0005508869653567672, 0.026348574087023735, -0.010896624997258186, 0.0021710097789764404, -0.0001657405955484137, 0.004132329951971769, 0.0011731768026947975, 0.00899495743215084, -0.04060746356844902, -0.022487394511699677, 0.0039479476399719715, -0.006005074363201857, 0.01331890095025301, -0.05396974831819534, 0.0007890472188591957, 0.002006511902436614, 0.009551719762384892, -0.01005786657333374, 0.0024638520553708076, 0.023861221969127655, -0.018655138090252876, 0.003327917540445924, -0.0007772974204272032, 0.015444718301296234, 0.004963857587426901, 0.006706449668854475, -0.03221987932920456, -0.007490977644920349, 0.039595168083906174, -0.010462784208357334, 0.008402043022215366, 0.00340203195810318, 0.0024186603259295225, -0.009956637397408485, 0.04344188794493675, -0.0021601635962724686, -0.02412152662873268, 0.002646426437422633, 0.009710794314742088, -0.029197460040450096, 0.005036164075136185, -0.03615336865186691, -0.003904563607648015, -0.013326131738722324, 0.00041440798668190837, 0.017180079594254494, 0.013637050054967403, -0.0002469726896379143, -0.024295063689351082, -0.0018374948995187879, 0.014699959196150303, 0.021995708346366882, 0.0036749897990375757, 0.022545240819454193, 0.02185109443962574, -0.030802669003605843, -0.028705773875117302, 0.017107773572206497, -0.0005070510087534785, 0.01742592267692089, 0.013174287043511868, 0.017758533358573914, -0.04046284779906273, -0.011460617184638977, 0.018872058019042015, 0.026551032438874245, -0.015025340020656586, -0.03528568521142006, 0.01514103077352047, 0.04286343231797218, 0.008843113668262959, -0.03774411603808403, -0.020188041031360626, -0.014360117726027966, 0.016789624467492104, -0.021547406911849976, 0.007227058056741953, 0.014135967008769512, 0.007447593845427036, 0.004989164881408215, 0.02394799143075943, -0.010296478867530823, 0.035748448222875595, 0.018712982535362244, -0.029457764700055122, -0.01800437644124031, -0.0010366977658122778, 0.0039479476399719715, -0.008676808327436447, 0.00891542062163353, 0.017903147265315056, -0.019609587267041206, -0.02873469702899456, 0.040925610810518265, 0.007845280691981316, 0.01389735471457243, -0.007299365010112524, -0.00805496983230114, 0.029992833733558655, 0.0019305897876620293, -0.0016675740480422974, -0.0036243752110749483, -0.02412152662873268, 0.0188142117112875, 0.006529298145323992, 0.003496030578389764, -0.011569078080356121, -0.006742603145539761, -0.014295041561126709, 0.017498230561614037, 0.0168619304895401, 0.01120754424482584, -0.019667431712150574, 0.010007251985371113, -0.012509064748883247, -0.01878529042005539, 0.00010874254803638905, 0.003749104216694832, -0.012306606397032738, -0.033434633165597916, -0.0027747710701078176, -0.0022632007021456957, 0.03161250427365303, 0.025423048064112663, 0.0110267773270607, -0.006442530080676079, 0.0328851044178009, -0.031554657965898514, 0.003678605193272233, 0.016138862818479538, -0.019450511783361435, -0.028879309073090553, 0.012523526325821877, -0.011843843385577202, -0.02374553121626377, 0.0021710097789764404, -0.0052494690753519535, -0.030918359756469727, -0.037454888224601746, 0.012284914031624794, 0.011359388008713722, 0.009060033597052097, -0.02967468462884426, 0.001648593577556312, -0.002872385084629059, -0.004038331098854542, -0.019074516370892525, -0.036529362201690674, 0.03569060564041138, -0.018163451924920082, -0.006117149721831083, 0.025784581899642944, 0.005545926745980978, 0.03123650886118412, -0.02681133709847927, -0.0013177902437746525, -0.0014813842717558146, -0.033434633165597916, -0.011337695643305779, 0.00531454524025321, 0.010780934244394302, -0.014092582277953625, -0.014345656149089336, 0.02854669839143753, -0.021388331428170204, -0.014417963102459908, -0.00613884162157774, 0.016037633642554283, -0.0011903495760634542, 0.029992833733558655, -0.0009481220622546971, -0.013615358620882034, 0.0027548866346478462, 0.005303699057549238, -0.007241519633680582, -0.01570502296090126, 0.015314566902816296, -0.014114274643361568, -0.01141000259667635, 0.02105572074651718, 0.025582123547792435, 0.010882163420319557, -0.030571287497878075, -0.05136670544743538, -0.02201016992330551, -0.03086051531136036, -0.01798991486430168, -0.01670285500586033, 0.0018148990347981453, -0.0014000391820445657, 0.008242967538535595, 0.005914690904319286, 0.015748407691717148, -0.003546645399183035, 0.00985540822148323, -0.004215482622385025, -0.020404960960149765, 0.016630548983812332, -0.007787435315549374, 0.021590791642665863, -0.0028344239108264446, -0.06802617758512497, -0.016601625829935074, 0.01647147350013256, 0.021894479170441628, -0.002760309725999832, 0.03759950399398804, -0.02050619013607502, 0.008293582126498222, 0.004363711457699537, -0.0040347157046198845, 0.0007908549159765244, -0.014128736220300198, -0.0008563828887417912, -0.020535113289952278, 0.016905315220355988, 0.016746239736676216, 0.020173579454421997, 0.0006656738696619868, -0.01360812783241272, 0.008264659903943539, -0.006041227839887142, 0.00473970640450716, -0.013637050054967403, -0.01856837049126625, 0.03007960133254528, -0.016963159665465355, 0.008192352950572968, 0.005856845527887344, 0.01352135930210352, 0.017093311995267868, -0.00651483703404665, -0.006529298145323992, -0.014237196184694767, -0.009363722056150436, -0.03577737137675285, -0.006478683557361364, 0.015835175290703773, -0.002040857682004571, 0.005824307445436716, -0.015748407691717148, 0.004436018411070108, -0.01054232195019722, -0.007411440368741751, -0.014924109913408756, -0.0216341745108366, -0.017209002748131752, 0.01541579607874155, 0.019219130277633667, -0.03563275933265686, -0.037628423422575, -0.0070029073394834995, -0.012516295537352562, 0.004190175328403711, -0.00020211991795804352, 0.0073789022862911224, -0.019233591854572296, 0.02182217314839363, -0.012082455679774284, -0.01015909668058157, 0.013861200772225857, 0.001419019652530551, -0.006214763969182968, -0.007490977644920349, -0.014309503138065338, 0.19748415052890778, -0.01141000259667635, 0.013745510019361973, 0.02471444196999073, -0.0349096916615963, -0.01879975199699402, 0.007462054956704378, 0.012718754820525646, 0.007476516533643007, 0.007411440368741751, -0.01645701378583908, -0.016196709126234055, -0.015112107619643211, -0.0035014536697417498, -0.00911787897348404, 0.003929871134459972, -0.051453471183776855, -0.031352199614048004, -0.026522111147642136, -0.008604501374065876, -0.028995001688599586, -0.006052073556929827, 0.0010674281511455774, 0.005289237480610609, -0.00127982918638736, -0.0179754551500082, 0.0040636383928358555, 0.014533653855323792, 0.013651511631906033, 0.020983414724469185, -0.024786747992038727, -0.01313813403248787, 0.020390499383211136, -0.015806252136826515, -0.003004344878718257, 0.013694895431399345, 0.018336987122893333, 0.014005814678966999, 0.032451264560222626, -0.0023499689996242523, 0.005357929039746523, -0.03031098283827305, 0.019493896514177322, -0.018539447337388992, -0.013376746326684952, 0.0010764665203168988, 0.002751271240413189, -0.018626214936375618, -0.0036532978992909193, -0.0040347157046198845, -0.03464938700199127, -0.011713691055774689, 0.023629840463399887, -0.0010231402702629566, -0.01725238747894764, 0.009934945032000542, -0.01243675872683525, 0.0199277363717556, 0.008170661516487598, 0.004667399916797876, 0.002812732011079788, -0.000768710975535214, -0.003958793822675943, 0.021590791642665863, -0.020202502608299255, 0.03334786742925644, -0.013919046148657799, -0.0030368829611688852, 0.007462054956704378, -0.03569060564041138, -0.010592936538159847, -0.015242259949445724, -0.008546655997633934, -0.009349260479211807, -0.027447637170553207, -0.026305189356207848, 0.012198146432638168, 0.013694895431399345, 0.025018129497766495, 0.043586499989032745, 0.01702100597321987, 0.021128028631210327, -0.006012305151671171, -0.012002917937934399, -0.00013241170381661505, -0.03569060564041138, 0.022892313078045845, -0.03791765123605728, -0.022848928347229958, 0.011489540338516235, -0.004475786816328764, 0.012863367795944214, 0.009370952844619751, -0.02049172855913639, 0.008040509186685085, -0.0026373881846666336, 0.017932070419192314, -0.012704293243587017, -0.007975433021783829, 0.01052786037325859, -0.018915442749857903, 0.07138121128082275, 0.025943657383322716, -0.03126543387770653, -0.007613899186253548, 0.014114274643361568, -0.009934945032000542, 0.003436377504840493, 0.022718776017427444, -0.027129486203193665, -0.03754165768623352, -0.009732486680150032, -0.0059399981983006, -0.00259038875810802, 0.009971098974347115, 0.019826507195830345, 0.013853969983756542, -0.009023880586028099, 0.022487394511699677, 0.008640654385089874, 0.010889394208788872, -0.027650095522403717, 0.0011677538277581334, 0.0386696420609951, -0.011908919550478458, 0.008394812233746052, -0.006341300439089537, 0.0020426653791218996, -0.03340571001172066, -0.011836612597107887, 0.037657346576452255, -0.001032178639434278, 0.01417212001979351, -0.01561825443059206, 0.00522416178137064, 0.014273349195718765, 0.01352135930210352, -0.02394799143075943, 0.011872765608131886, -0.00043587404070422053, -0.001253618043847382, -0.0206941869109869, 0.011504001915454865, -0.010086789727210999, -0.002733194502070546, -0.026912566274404526, -0.007845280691981316, -0.003136304672807455, -0.018828673288226128, -0.015661638230085373, 0.01744038425385952, -0.025625506415963173, -0.023514149710536003, -0.02010127156972885, 0.02872023545205593, -0.043384041637182236, -0.00019488924590405077, -0.022848928347229958, 0.006200302392244339, 0.0008265563519671559, -0.0325380302965641, 0.01109908428043127, -0.0017136696260422468, -0.0005287430249154568, -0.01855390891432762, -0.0006313282065093517, -0.187303364276886, 0.03378170728683472, 0.00862619373947382, -0.016399167478084564, 0.003152573714032769, -0.0009734294144436717, -0.03195957839488983, 0.017541613429784775, 0.0037852576933801174, 0.005636310204863548, 0.03945055603981018, -0.01284890715032816, -0.017541613429784775, -0.013933507725596428, -0.01063632033765316, -0.012921213172376156, 0.001709150499664247, 0.024627674371004105, 0.04185113683342934, 0.018915442749857903, 0.01254521869122982, -0.03375278413295746, 0.007541592698544264, 0.001392808509990573, -0.006890831980854273, 0.014851802960038185, -0.00037373544182628393, 0.008655115962028503, -0.02412152662873268, -0.01722346432507038, 0.021692020818591118, -0.004779475275427103, 0.031352199614048004, -0.0020209732465445995, 0.0019305897876620293, 0.009342030622065067, -0.003533991752192378, -0.004049177281558514, 0.0027783862315118313, 0.03300079330801964, 0.009262492880225182, 0.01994219794869423, -0.009472182020545006, 9.512854740023613e-05, -0.011612461879849434, 0.03979762643575668, -0.011149698868393898, -0.012154762633144855, 0.004128714557737112, -0.005567618645727634, -0.001943243551068008, 0.007046291138976812, 0.020997876301407814, 0.007143905386328697, 0.0017236118437722325, 0.012697062455117702, 0.017382539808750153, -0.010658012703061104, 0.0026916181668639183, 0.006992061156779528, -0.033029716461896896, -0.027071641758084297, 0.0002948759065475315, -0.0020607418846338987, -0.006164149381220341, -0.03164142742753029, -0.026117192581295967, 0.017859764397144318, -0.023224923759698868, 0.015372412279248238, -0.021590791642665863, -0.0023156232200562954, -0.004085330758243799, -0.007859742268919945, 0.008879266679286957, 0.0197541993111372, 0.004931319504976273, 0.005155470222234726, 0.011641384102404118, 0.016037633642554283, -0.006970369257032871, 0.012067994102835655, 0.003984101116657257, -0.012487373314797878, -0.0018374948995187879, -0.020057888701558113, 0.019031133502721786, 0.00010049506090581417, -0.007635591086000204, -0.006344915833324194, 0.0023716608993709087, -0.01054232195019722, 0.0045987083576619625, -0.0013177902437746525, 0.01801883801817894, 0.018698520958423615, 0.005263930186629295, 0.004407095722854137, -0.01149677112698555, -0.02008681185543537, 0.01438903994858265, -0.004985549487173557, 0.012328298762440681, 0.006829371210187674, 0.00017647362255956978, 0.002064357278868556, 0.0002955537929665297, 0.00045688817044720054, 0.039363786578178406, 0.0003176977043040097, -0.03242234140634537, 0.015502563677728176, 0.030339905992150307, 0.03676074370741844, -0.0009915061527863145, 0.033261097967624664, -2.909216345869936e-05, -0.025177204981446266, 0.014577037654817104, 0.010086789727210999, 0.02834424003958702, 0.01007232815027237, -0.005582079757004976, 0.025943657383322716, -0.023673225194215775, -0.012682600878179073, -0.08196691423654556, -0.007284903433173895, 0.018640676513314247, 0.01723792590200901, -0.023832300677895546, 0.02072311006486416, -0.01744038425385952, -0.0005296468152664602, -0.0010484476806595922, 0.030397752299904823, -0.006981215439736843, -0.01706438884139061, -0.024483060464262962, -0.010028944350779057, -0.014736112207174301, -0.001776937977410853, -0.004877089057117701, -0.03829364851117134, 0.008264659903943539, 0.026782413944602013, 0.012950136326253414, -0.02987714298069477, -0.005867691710591316, -0.009898792020976543, 0.012176454067230225, -0.013109210878610611, -0.036529362201690674, 0.020535113289952278, 0.0015211529098451138, 0.015488103032112122, 0.0061894566752016544, -0.015025340020656586, 0.012407835572957993, -0.0028271933551877737, -0.0033984165638685226, -0.006883601192384958, 0.00034029356902465224, 0.009045572951436043, 0.01800437644124031, -0.03522784262895584, 0.008040509186685085, -0.0027476558461785316, 0.030976206064224243, 0.007838049903512001, -0.005838769022375345, -0.02146063931286335, -0.04616061970591545, -0.0017082466511055827, -0.01626901514828205, -0.02795378305017948, -0.0036605284549295902, -0.049168579280376434, -0.002006511902436614, -0.016572704538702965, 0.0058170766569674015, -0.037078894674777985, -0.022501856088638306, -0.005195239093154669, -0.006793217733502388, -0.02202463150024414, -0.02780917100608349, -0.009327569045126438, -0.004898781422525644, 0.023123694583773613, 0.0031471506226807833, 0.012024610303342342, -0.019508356228470802, 0.001603401848115027, 0.02529289573431015, -0.02028927020728588, -0.012089686468243599, -0.0023843145463615656, -0.027736863121390343, 0.020173579454421997, -0.024945823475718498, -0.01005786657333374, -0.004537247586995363, -0.01936374418437481, 0.012053532525897026, -0.013181517831981182, 0.005473619792610407, -0.003922640345990658, -0.009457721374928951, -0.028040552511811256, 0.002727771643549204, 0.0036008753813803196, -0.00920464750379324, 0.012718754820525646, 0.0031923423521220684, -0.017917608842253685, 0.028488853946328163, 0.002763924887403846, 0.0031670350581407547, -0.0005513388314284384, -0.03589306399226189, 0.0006525682983919978, -0.006995676551014185, -0.0019179361406713724, -0.004229944199323654, 0.011757074855268002, -0.0308315921574831, 0.002333699958398938, -0.07450485974550247, 0.01879975199699402, 0.018279142677783966, -0.029023922979831696, -0.006005074363201857, -0.012198146432638168, -0.009580641984939575, -0.0036605284549295902, 0.005762846674770117, 0.02644980326294899, -0.01840929500758648, 0.022660931572318077, -0.003004344878718257, 0.01541579607874155, -0.012899521738290787, -0.018669599667191505, 0.01953727938234806, -0.0034327623434364796, 0.021532945334911346, 0.030947282910346985, -0.001213849289342761, 0.02416491135954857, 0.0005269353277981281, 0.030571287497878075, -0.011272620409727097, 0.02109910547733307, 0.011843843385577202, 0.002219816669821739, -0.027881477028131485, -0.019117901101708412, 0.006775141227990389, -0.015300105325877666, 0.01467103697359562, 0.007411440368741751, 0.004884319845587015, -0.010245864279568195, 0.005498927086591721, 0.0034978382755070925, 0.010600167326629162, 0.022125860676169395, -0.016196709126234055, -0.03259587660431862, 0.014555346220731735, 0.0029031154699623585, 0.00046728228335268795, 0.0013783471658825874, -0.014866264536976814, 0.008083892986178398, -0.01054232195019722, -0.014374579302966595, 0.03444692865014076, 0.011431694962084293, -0.029182998463511467, -0.027650095522403717, 0.014273349195718765, -0.014707189984619617, -0.0035430300049483776, 0.03858287259936333, -0.0020788186229765415, -0.0034725309815257788, 0.060853347182273865, -0.003911794163286686, 0.02549535408616066, -0.0009264300460927188, 0.01169922947883606, -0.025726735591888428, -0.03626905754208565, 0.0028506929520517588, -0.007346364203840494, 0.005325390957295895, -0.01645701378583908, -0.010101251304149628, 0.017136696726083755, 0.014331194572150707, 0.00642445357516408, -0.010101251304149628, -0.002028204035013914, 0.022299397736787796, 0.016905315220355988, 0.029255304485559464, 0.02737532928586006, -0.006738987751305103, -0.01543025765568018, 0.005911075510084629, 0.03331894427537918, 0.010773703455924988, -0.008358658291399479, 0.01350689772516489, -0.015372412279248238, 0.01034709345549345, -0.014056429266929626, 0.011583538725972176, -0.004736091010272503, 0.0002709242980927229, -0.016196709126234055, 0.018727444112300873, 0.0010592936305329204, 0.009616795927286148, 0.031178664416074753, 0.02279108203947544, 0.0356038361787796, 0.004779475275427103, 0.005090394057333469, -0.03329002112150192, -0.021576330065727234, 0.005184392910450697, -0.026507649570703506, -0.022718776017427444, -0.004992780275642872, 0.011735383421182632, 0.001964935567229986, -0.00651483703404665, -0.006565451622009277, 0.008662346750497818, -0.03204634413123131, 0.010498938150703907, -0.002888654125854373, 0.0138828931376338, -0.021489562466740608, 0.04159083589911461, 0.0023282768670469522, 0.004833705257624388, 0.006359377410262823, -0.02013019472360611, 0.021041259169578552, 0.0013159825466573238, 0.007082444615662098, -0.02066526561975479, 0.016399167478084564, -0.0065256827510893345, 0.005574849434196949, 0.010028944350779057, -0.008546655997633934, -0.014085352420806885, -0.0070607527159154415, -0.0059327674098312855, -0.0001977137289941311, -0.01842375658452511, 0.0063232239335775375, 0.08578471094369888, 0.00627260934561491, -0.02091110870242119, -0.008452657610177994, -0.012299375608563423, -0.010643551126122475, 0.027303023263812065, 0.020968953147530556, -0.0006697411299683154, -0.03676074370741844, 0.0037563350051641464, -0.0036316057667136192, 0.011164159514009953, -0.031525734812021255, -0.0016079209744930267, 0.009110648185014725, 0.0002682127815205604, 0.005159085616469383, -0.01744038425385952, -0.0009020265424624085, 0.008221276104450226, 0.02105572074651718, -0.013694895431399345, -0.008510502986609936, -0.02474336512386799, 0.0019974736496806145, 0.007657283451408148, 0.0010538706555962563, -0.006992061156779528, -0.05781646445393562, 0.006435299292206764, -0.011460617184638977, -0.03389739617705345, -0.021113567054271698, 0.00584961473941803, 0.011684768833220005, -0.009197416715323925, -0.009522796608507633, 0.014446885325014591, 0.008727422915399075, 0.004587862174957991, 0.026218421757221222, -0.024468598887324333, -0.028431007638573647, -0.007722359150648117, -0.010137404315173626, -0.023629840463399887, -0.021706482395529747, -0.039768703281879425] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_context_information_sharing_for_the_internet_of_things_a_survey.json b/database/embeddings/publications_txt/2021_context_information_sharing_for_the_internet_of_things_a_survey.json new file mode 100644 index 0000000000000000000000000000000000000000..4909b00bae0b5a3fe230ea60ee6620b53e4f7e4b --- /dev/null +++ b/database/embeddings/publications_txt/2021_context_information_sharing_for_the_internet_of_things_a_survey.json @@ -0,0 +1 @@ +[0.0011290370021015406, 0.026051772758364677, 0.020431676879525185, -0.018092278391122818, -0.01662496291100979, 0.017732370644807816, -0.022660335525870323, 0.002927709836512804, -0.026951542124152184, -0.04025427997112274, 0.011191741563379765, 0.021054593846201897, -0.007523452863097191, 0.014562414959073067, -0.0029363613575696945, 0.026716217398643494, 0.032806962728500366, -0.017164824530482292, -0.0021525241900235415, -0.001979491673409939, 0.025276586413383484, -0.01113637164235115, -0.01850755512714386, 0.021926678717136383, -0.0030246081296354532, 0.013600354082882404, 0.01216072402894497, -0.027892839163541794, -0.0002381359663559124, -0.01414713729172945, 0.0068382443860173225, -0.013551904819905758, -0.023629317060112953, -0.028958719223737717, -0.006281079724431038, 0.00036142164026387036, 0.007412712089717388, -0.006966288201510906, 0.027726726606488228, -0.020667001605033875, -0.0016325615579262376, 0.03596307337284088, 0.010748778469860554, -0.010658801533281803, 0.0015555621357634664, 0.006852086633443832, 0.03851011395454407, -0.01583593338727951, -0.02303408645093441, 0.010596510022878647, -0.008340165950357914, 0.031921036541461945, -0.02426607720553875, -0.005969621241092682, -0.017164824530482292, -0.013932576403021812, 0.004914123099297285, 0.026287097483873367, -0.0029294402338564396, -0.028654180467128754, 0.03986668586730957, -0.020431676879525185, -0.040586501359939575, -0.012659057043492794, 0.013870284892618656, -0.010423477739095688, -0.03374825790524483, 0.03756881505250931, -0.004028196446597576, 0.016929499804973602, 0.020320937037467957, 0.021995890885591507, 0.0021992430556565523, -0.01918584294617176, 0.015392971225082874, -0.015337600372731686, -0.01950422301888466, 0.006187641993165016, -0.00890079140663147, 0.012506788596510887, -0.012576001696288586, -0.00396590493619442, -0.022051261737942696, 0.01753857359290123, 0.01889514923095703, 0.021054593846201897, 0.0021992430556565523, 0.017234036698937416, -0.0008054662612266839, -0.009205329231917858, 0.032391682267189026, 0.01401563175022602, 0.006786334328353405, 0.000628107984084636, -0.010388870723545551, 0.026134828105568886, -0.0064402692951262, 0.030453719198703766, 0.00674134586006403, -0.0401989109814167, 0.022189687937498093, 0.007980259135365486, -0.022438853979110718, -0.01701255515217781, -0.0027218011673539877, -0.020874639973044395, -0.0060769012197852135, 0.009461416862905025, 0.014340933412313461, 0.013780307956039906, -0.028515756130218506, 0.02274339087307453, -0.01442398875951767, 0.009260699152946472, -0.007537295576184988, -0.023421678692102432, -0.005028324201703072, -0.0018185715889558196, -0.004197768401354551, -0.017940009012818336, 0.027657514438033104, -0.009219171479344368, 0.0026249028742313385, -0.04271826148033142, 0.008443986065685749, 0.02632862515747547, -0.009170722216367722, -0.02356010489165783, -0.013185076415538788, -0.024930521845817566, 0.011530885472893715, 0.01853524148464203, 0.003599075833335519, 0.024570614099502563, 0.011973848566412926, 0.033914368599653244, -0.017704684287309647, 0.014465516433119774, -0.025082791224122047, -0.043022800236940384, -0.008395536802709103, 0.05146678537130356, -0.02083311229944229, -0.012098432518541813, -0.009952829219400883, -0.0005095807136967778, 0.0066894362680613995, -0.0015754608903080225, 0.012645214796066284, 0.013904890976846218, 0.00504562770947814, 0.005796588491648436, -0.005495511926710606, 0.00975211150944233, -0.010603431612253189, 0.0026871946174651384, -0.011510121636092663, 0.017109453678131104, 0.02981695905327797, -0.015683665871620178, 0.0101189399138093, 0.024695197120308876, -0.020030241459608078, -0.03759650141000748, -0.015296072699129581, 0.021746724843978882, 0.05661623179912567, 0.0018912451341748238, -0.0011714299907907844, -0.002268455922603607, -0.03601844608783722, 0.005381310824304819, -0.015489868819713593, -0.027394505217671394, 0.002709688851609826, 0.0542353056371212, 0.029484737664461136, 0.005312097724527121, -0.015420655719935894, -0.0048622130416333675, -0.0005861475947313011, 0.0004193875065539032, 0.013157390989363194, 0.024141494184732437, -0.0031388094648718834, 0.026563948020339012, 0.016611119732260704, -0.01832760125398636, 0.003872467204928398, -0.009814403019845486, 0.055425770580768585, 0.015794405713677406, -0.01414713729172945, 0.014036396518349648, -0.6095173358917236, -0.00592809310182929, 0.0011870028683915734, -0.019642649218440056, -0.011724681593477726, 0.023670844733715057, 0.014825424179434776, 0.010665723122656345, -0.029401682317256927, 0.010264287702739239, -0.020957695320248604, 0.008471670560538769, 0.017067926004529, -0.02021019533276558, -0.024307604879140854, -0.013191997073590755, -0.00024246178509201854, -0.014299405738711357, 0.004311969969421625, 0.003145730821415782, 0.0056304773315787315, 0.03078594245016575, 0.00812560599297285, -0.01680491678416729, 0.000918802572414279, 0.008360929787158966, 0.022134317085146904, -0.01986413076519966, 0.025110475718975067, -0.0217744093388319, -0.031921036541461945, 0.021982047706842422, 0.03972826153039932, 1.6194760974030942e-05, 0.041998445987701416, -0.012243779376149178, -0.017760055139660835, 0.03324992582201958, 0.03120121918618679, 0.0455421544611454, -0.04028196632862091, -0.03754112869501114, 1.3011233022552915e-05, 0.015309914946556091, -0.011143292300403118, -0.004260059911757708, 0.013337344862520695, -0.0007777810678817332, -0.003291078144684434, -0.02696538344025612, -0.0065440889447927475, -0.012818247079849243, -0.014797738753259182, -0.0023169051855802536, 0.032474737614393234, -0.004651113413274288, 0.020376306027173996, -0.013302737846970558, 0.019698020070791245, 0.014091766439378262, -0.005498972721397877, 0.006149575114250183, -0.01877056434750557, -0.02505510486662388, 0.01486695185303688, 0.011607020162045956, 0.012229937128722668, 0.010686486959457397, 0.010991023853421211, -0.02984464541077614, -0.0012752495240420103, 0.022895660251379013, -0.008769286796450615, -0.023989224806427956, 0.019753389060497284, 0.02274339087307453, 0.023629317060112953, 0.010312736965715885, -0.0020781203638762236, 0.0053017158061265945, -8.089269249467179e-05, -0.006751727778464556, 0.02000255696475506, -0.020044084638357162, 0.024902837350964546, -0.006952445488423109, -0.02214816026389599, 0.004408868029713631, 0.01078338548541069, 0.023103298619389534, 0.005803510081022978, 0.01944885216653347, -0.02297871559858322, 0.022895660251379013, -0.008527041412889957, 0.023463206365704536, -0.013032807968556881, 0.015766721218824387, -0.008457828313112259, -0.0008431008318439126, -0.012769797816872597, 0.0008002753020264208, 0.006703278981149197, -0.014368618838489056, 0.02659163437783718, 0.022937187924981117, -0.011440908536314964, 0.004446935374289751, 0.005668544676154852, -0.011302482336759567, -0.010015120729804039, 0.004903740715235472, -0.02803126350045204, 0.0031474612187594175, 0.015545239672064781, -0.034800294786691666, 0.028100477531552315, 0.00461996765807271, 0.002206164412200451, 0.025511911138892174, -0.01414713729172945, 0.013012044131755829, -0.0038482428062707186, 0.018756723031401634, -0.00010760458098957315, 0.025165846571326256, 0.012818247079849243, -0.024639828130602837, -0.023103298619389534, 0.008852342143654823, 0.019462695345282555, -0.00982824619859457, 0.027754412963986397, -0.014382461085915565, 0.03028760850429535, -0.010762621648609638, 0.023809270933270454, -0.013745701871812344, 0.02321404032409191, -0.017206352204084396, -0.009281462989747524, -0.025719549506902695, -0.00377902970649302, -0.015476026572287083, -0.03421890735626221, -0.04188770800828934, -0.012008455581963062, 0.003644064301624894, -0.007281207479536533, -0.00246052211150527, -0.00819481909275055, 0.012555237859487534, -0.006623683962970972, 0.007184309419244528, -0.0068278624676167965, -0.021815937012434006, -0.001058958820067346, -0.016929499804973602, -0.03967289254069328, 0.00505946995690465, -0.00665482971817255, 0.039174556732177734, -0.009094588458538055, -0.031450387090444565, -0.01191155705600977, 0.004703023470938206, -0.022162001579999924, 0.006637526676058769, 0.009620606899261475, -0.040088169276714325, -0.01371801644563675, -0.019061259925365448, -0.014064081013202667, 0.0045334515161812305, -0.03020455315709114, 0.027865152806043625, -0.0163896381855011, 0.005031784996390343, -0.014230192638933659, -0.0001738976570777595, -0.020320937037467957, 0.015725193545222282, -0.00818097684532404, -0.018396815285086632, 0.01947653852403164, 0.009184564463794231, 0.0229510311037302, 0.003443346591666341, 0.000804601120762527, -0.0017043701373040676, -0.008215582929551601, -0.00939912535250187, -0.013198918662965298, 0.023906169459223747, -0.012582923285663128, 0.01364880334585905, -0.0031855283305048943, -0.005201356951147318, -0.011378617025911808, 0.027103809639811516, 0.017192509025335312, 0.03754112869501114, 0.013025886379182339, -0.009883616119623184, -0.007253522053360939, -0.026771588250994682, 0.014783896505832672, -0.008949240669608116, 0.02691001445055008, 0.019116630777716637, 0.036212239414453506, -0.03740270435810089, -0.014188664965331554, 0.000477569701615721, 0.010264287702739239, 0.01407100260257721, -0.02182978019118309, 0.009385282173752785, -0.040586501359939575, 0.0005913385539315641, -0.011143292300403118, 0.0009075554553419352, 0.016112785786390305, -0.012396047823131084, -0.023144826292991638, -0.0025003196205943823, 0.042995113879442215, 0.022466538473963737, 0.013136627152562141, -0.017621628940105438, -0.02714533731341362, 0.018493713811039925, 0.030453719198703766, -0.012084589339792728, -0.00982824619859457, -0.022051261737942696, 0.04842141270637512, -0.00021553359692916274, 0.024625984951853752, -0.009357597678899765, 0.0015010569477453828, 0.03410816565155983, 0.04221992939710617, -0.03466187044978142, -0.00036207051016390324, -0.024113807827234268, 0.007876439020037651, 0.009558315388858318, 0.006409123539924622, 0.0005260187899693847, -0.006253394298255444, 0.02596871741116047, -0.020403992384672165, -0.0010996215278282762, 0.03455112874507904, -0.015711350366473198, -0.03319455310702324, 0.0007189500029198825, 0.01510227657854557, 0.0059142508544027805, 0.023878484964370728, -0.003644064301624894, 0.0069939736276865005, 0.02194052003324032, 0.02162213996052742, -0.0167495459318161, -0.03358214721083641, -0.019573435187339783, -0.006744806654751301, -0.03900844603776932, 0.008810814470052719, -0.023130984976887703, -0.005883105099201202, -0.0047064837999641895, 0.024542929604649544, 0.016901813447475433, 0.024099966511130333, 0.007239679805934429, 0.0009265890112146735, 0.012811326421797276, -0.018133806064724922, -0.007488846313208342, 0.005713533144444227, 0.013759544119238853, 0.0043777222745120525, -0.004190847277641296, 0.0030955513939261436, -0.002829081378877163, -0.04238604009151459, -0.003213213523849845, 0.021040750667452812, 0.0038240181747823954, -0.009585999883711338, -0.027657514438033104, -0.024598300457000732, -0.015074591152369976, 0.02688232809305191, 0.008942319080233574, -0.023310936987400055, 0.017386306077241898, 0.0022771076764911413, 0.0014353045262396336, 0.006433348171412945, 0.004623428452759981, 0.07170466333627701, -0.0012077668216079473, 0.024639828130602837, -0.012714427895843983, 0.007571902126073837, -0.008090999908745289, 0.008042550645768642, -0.002668161178007722, -0.021137649193406105, -0.0006294057238847017, 0.010146625339984894, -0.001629966078326106, 0.02115149237215519, -0.01686028577387333, 0.003130157943814993, -0.018203018233180046, -0.011627783998847008, -0.03895307704806328, -0.024113807827234268, 0.013531140983104706, 0.012312992475926876, 0.03510483354330063, -0.010603431612253189, 0.024612141773104668, 0.0038759279996156693, -0.016998711973428726, -0.03881464898586273, 0.023961540311574936, 0.0035679300781339407, -0.015517554245889187, -0.01511611882597208, 0.014257878065109253, 0.021026909351348877, -0.016846444457769394, 0.027269922196865082, 0.00038305067573674023, -0.0034295041114091873, -0.004554215352982283, 0.01269366405904293, -0.02264649234712124, 0.013538062572479248, -0.0374857597053051, 0.0020469743758440018, 0.026107143610715866, 0.02758830040693283, -0.022106632590293884, 0.006218787748366594, 0.02646705135703087, 0.0019431549590080976, -0.014770054258406162, 0.013697252608835697, 0.006765570491552353, 0.03557548299431801, -0.005924632772803307, -0.02200973406434059, 0.03839937224984169, 0.04316122457385063, 0.024072280153632164, 0.024667512625455856, 0.02614867128431797, 0.019753389060497284, 0.005225581582635641, 0.016666490584611893, 0.0036302218213677406, -0.00027533795218914747, -0.053570859134197235, -0.003204561769962311, 0.029540108516812325, 0.015642138198018074, -0.030509090051054955, 0.009648292325437069, 0.014908479526638985, -0.033831313252449036, -0.02447371557354927, 0.028238903731107712, 0.010160468518733978, -0.0006661750958301127, -0.010686486959457397, -0.01751088909804821, -0.014825424179434776, -0.016694175079464912, -0.007108174730092287, -0.0014145406894385815, -0.00182722311001271, -0.011821580119431019, 0.0011610480723902583, -0.033416036516427994, -0.009821324609220028, -0.026300938799977303, 0.017635472118854523, -0.003291078144684434, -0.0016282357973977923, -0.054429102689027786, 0.011350931599736214, 0.018050750717520714, -0.012312992475926876, 0.009565236046910286, -0.009177643805742264, 0.0017164823366329074, 0.01020891685038805, -0.0354924239218235, -0.013669567182660103, 0.002429376356303692, -0.03953446447849274, 0.025041263550519943, -0.0071497028693556786, -0.020279409363865852, -0.018438342958688736, -0.014271720312535763, 0.03421890735626221, -0.025581123307347298, -0.009558315388858318, 0.009724426083266735, -0.009412967599928379, 0.026134828105568886, 0.04221992939710617, 0.019490379840135574, 0.01225070096552372, 0.004401946906000376, 0.013012044131755829, -0.008983846753835678, -0.01583593338727951, -0.018078435212373734, -0.026037929579615593, 0.01583593338727951, 0.020348621532320976, -0.0016074718441814184, 0.005270570050925016, -0.022729549556970596, 0.0037409625947475433, 0.005806970410048962, -0.013261210173368454, 0.0008340166532434523, -0.0262594111263752, 0.00011701322364388034, 0.02429376170039177, -0.004754933062940836, -0.005741218104958534, 0.007101253606379032, -0.018106119707226753, -0.021082280203700066, -0.01748320274055004, 0.014631628058850765, 0.015185331925749779, 0.021206863224506378, 0.03175492212176323, -0.008340165950357914, -0.026245569810271263, -0.023172512650489807, 0.004204689525067806, -0.0036163791082799435, 0.01234067790210247, -0.0022338496055454016, -0.023809270933270454, -0.018313759937882423, 0.008880027569830418, -0.013724938035011292, 0.00517021119594574, -0.021054593846201897, -0.02421070635318756, -0.01753857359290123, -0.011731603182852268, -0.012908224016427994, 0.009295305237174034, 0.017067926004529, -0.025525754317641258, -0.013974104076623917, 0.022314270958304405, 0.024598300457000732, 0.03253011032938957, -0.008665467612445354, 0.020819269120693207, -0.004903740715235472, -0.007350420579314232, -0.020985381677746773, -0.03507714718580246, -0.039119187742471695, -0.01578056439757347, 0.039645206183195114, 0.027505245059728622, 0.04269057884812355, 0.01565597951412201, -0.008104842156171799, 0.02753293141722679, 0.018590610474348068, 0.0162512119859457, 9.911517554428428e-05, 0.009544472210109234, -0.015019220300018787, 0.015254545025527477, 0.011786974035203457, 0.009267620742321014, 0.017109453678131104, -0.01357266865670681, -0.008679309859871864, -0.005502433516085148, -0.0026075998321175575, -0.005983463488519192, -0.002022749977186322, -0.01953190751373768, 0.010527296923100948, -0.0009611955028958619, -0.003789411624893546, 0.021262232214212418, -0.03845474123954773, -0.007419633213430643, 0.030536774545907974, 0.0007470677956007421, -0.010167389176785946, -0.001474236836656928, 0.014479359611868858, -0.027449876070022583, 0.030841311439871788, -0.00495911156758666, 0.001339271548204124, -0.008706995286047459, -0.003166494658216834, -0.03172723948955536, -0.009039217606186867, 0.032363999634981155, -0.010776463896036148, 0.01591898873448372, 0.021815937012434006, 0.009648292325437069, 0.016209684312343597, 0.021843621507287025, 0.02512431889772415, -0.0007154893828555942, 0.0026283636689186096, 0.003768647788092494, -0.01095641776919365, -0.024307604879140854, -0.02156677097082138, -0.020030241459608078, 0.005869262386113405, -0.009046139195561409, -0.005298255011439323, 0.0222727432847023, -0.026370152831077576, -0.028681866824626923, 0.0068278624676167965, 0.01113637164235115, 0.028280431404709816, -0.002289219992235303, 0.02523505873978138, 0.03070288524031639, -0.02376774325966835, -0.017898481339216232, 0.01856292597949505, 0.006298382766544819, -0.009129194542765617, 0.016292739659547806, 0.0025781842414289713, -0.008907712996006012, -0.01591898873448372, 0.011101764626801014, 0.00838861521333456, -0.034357331693172455, -0.01662496291100979, 0.020057927817106247, 0.03754112869501114, -0.009876694530248642, -0.024432187899947166, -0.03023223765194416, -0.0030817086808383465, 0.008575490675866604, -0.023809270933270454, -0.01209151092916727, 0.009260699152946472, 0.009198407642543316, 0.002062547253444791, -0.00018600992916617543, -0.004291206132620573, 0.0451822467148304, -0.000327031419146806, -0.008928476832807064, 0.004699562676250935, -0.014756211079657078, -0.012333756312727928, 0.010748778469860554, 0.01311586331576109, 0.007475004065781832, -0.022923344746232033, 0.018466027453541756, 0.021760566160082817, 0.020639315247535706, 0.0005268839304335415, -0.005190975032746792, 0.011254034005105495, 0.02976159006357193, 0.0140571603551507, -0.010748778469860554, 0.02080542780458927, -0.016680331900715828, 0.02470904029905796, -0.011067158542573452, 0.017413990572094917, 0.0026041390374302864, -0.0059419358149170876, -0.016915656626224518, 0.00934375450015068, 0.007122017443180084, 0.00856164749711752, -0.0023220961447805166, 0.003088630037382245, -0.03158881142735481, 0.007267364766448736, 0.01251371018588543, -0.026397837325930595, -0.009551393799483776, -0.021220704540610313, -0.0018410657066851854, 0.009675976820290089, 0.028072793036699295, 0.0227710772305727, 0.029955385252833366, 0.027214551344513893, 0.024930521845817566, -0.011344010010361671, 0.002870609052479267, -0.013759544119238853, -0.01371801644563675, -0.02476441115140915, -0.0025210834573954344, 0.006696357391774654, -0.008603176102042198, 0.036295294761657715, 0.008720837533473969, -0.03410816565155983, -0.01827223226428032, 0.019407324492931366, 0.010035884566605091, 0.002309983829036355, -0.01044424157589674, 0.002067738212645054, 0.001796077354811132, -0.015476026572287083, -0.01045808382332325, -0.021635983139276505, 0.04673261567950249, -0.023463206365704536, 0.0006497370195575058, 0.010665723122656345, -0.004865673836320639, 0.032419368624687195, -0.008111763745546341, 0.01285285409539938, 0.012928987853229046, -0.04797844961285591, -0.006028451956808567, 0.015822092071175575, 0.05769595503807068, -0.018161490559577942, -0.010437319986522198, 0.001262272009626031, -0.022162001579999924, -0.02018251083791256, 0.01236836239695549, -0.006260315887629986, -0.010755700059235096, 0.0002625768247526139, -0.008409379050135612, 0.010243523865938187, -0.0034243131522089243, -0.013759544119238853, -0.025664180517196655, -0.018382972106337547, 0.005813891999423504, -0.013427321799099445, -0.007488846313208342, 0.004516148008406162, 0.0262594111263752, 0.009897458367049694, -0.03114585019648075, -0.03834399953484535, -0.03507714718580246, -0.016915656626224518, -0.017621628940105438, -0.012229937128722668, 0.0005671139806509018, -0.004543833434581757, -0.011247112415730953, -0.006198023911565542, 0.01441014651209116, -0.013842599466443062, 0.008187897503376007, -0.00820866134017706, -0.0040558818727731705, -0.0008989038178697228, 0.022840289399027824, 0.018839778378605843, 0.005339782685041428, -0.054539844393730164, -0.022258900105953217, 0.01580824889242649, -0.02253575250506401, 0.004204689525067806, 0.016666490584611893, -0.02394769713282585, 0.0017735831206664443, -0.013814914040267467, -0.014507044106721878, -0.008693153038620949, -0.021511400118470192, 0.003374133724719286, -0.02735297754406929, -0.016500378027558327, -0.0022442315239459276, 0.0023757361341267824, 0.025788763538002968, -0.013814914040267467, 0.012126117013394833, -0.005315558053553104, 0.016445009037852287, -0.008070236071944237, -0.007038962095975876, 0.0014041586546227336, 0.003275505267083645, 0.023892326280474663, 0.001646404154598713, 0.0101189399138093, 0.023421678692102432, 0.00863778218626976, 0.013413479551672935, -0.02162213996052742, 0.029041774570941925, -0.01677723042666912, -0.00038369957474060357, 0.012825168669223785, -0.021663667634129524, -0.007641115225851536, -0.029595477506518364, 0.016112785786390305, -0.01441014651209116, -0.002569532487541437, -0.024805938825011253, -0.022175844758749008, -0.019573435187339783, -0.0033499090932309628, 0.026245569810271263, -0.023753901943564415, -0.014368618838489056, -0.010741857811808586, 0.008153291419148445, -0.014202507212758064, -0.017109453678131104, -0.007315814029425383, -0.018341444432735443, -0.024653669446706772, 0.010174310766160488, -0.010824913159012794, 0.02065315842628479, -0.018881306052207947, -0.0005580298020504415, -0.03258547931909561, -0.007641115225851536, 0.16511452198028564, -0.025304272770881653, 0.0063814385794103146, 0.03172723948955536, 0.0004420980403665453, -0.01044424157589674, 0.014327090233564377, 0.0020885022822767496, 0.002296141115948558, 0.005194435361772776, -0.004547294229269028, -0.0110463947057724, 0.003322223899886012, -0.007475004065781832, 0.016168156638741493, 0.005585488863289356, -0.04216456040740013, -0.014202507212758064, -0.03311149775981903, -0.009004611521959305, -0.01662496291100979, -0.00813944824039936, -0.010125861503183842, -0.02685464359819889, 0.013967183418571949, -0.006751727778464556, 0.006942063570022583, -0.018050750717520714, 0.028211217373609543, 0.026993069797754288, -0.005159828811883926, 0.009606764651834965, 0.009219171479344368, 0.0025470382533967495, -0.028903348371386528, -0.014603942632675171, 0.017580101266503334, 0.010554982349276543, 0.03372057154774666, 0.003872467204928398, 0.010658801533281803, -0.030038440600037575, 0.007357341703027487, -0.05473363772034645, 0.008907712996006012, 0.01615431345999241, 0.0019275819649919868, -0.0018029985949397087, 0.001328889513388276, -0.004914123099297285, -0.026342466473579407, 0.0026370151899755, 0.016874128952622414, 0.014894637279212475, 0.0024778253864496946, -0.005706611555069685, 0.007274286355823278, 0.02264649234712124, -0.002756407717242837, -0.0005043897544965148, 0.007378105539828539, 0.029540108516812325, -0.011876950971782207, 0.0029778892640024424, -0.003265123115852475, 0.020030241459608078, -0.04285668954253197, -0.014154057949781418, 0.021096121519804, -0.01709561049938202, -0.005024863872677088, -0.001755414647050202, -0.01950422301888466, 0.0015174950240179896, -0.03211482986807823, -0.020196352154016495, 0.01209151092916727, 0.01357266865670681, 0.027865152806043625, 0.03967289254069328, -0.011267876252532005, 0.014700841158628464, -0.015946675091981888, 0.016666490584611893, -0.014327090233564377, -0.04166622459888458, 0.03837168589234352, -0.009496022947132587, -0.013233525678515434, -0.001853178022429347, -0.026743901893496513, 0.005180593114346266, -0.008942319080233574, 0.005260187666863203, -0.0029726983048021793, -0.010070491582155228, 0.0034243131522089243, 0.011447830125689507, -0.002107535721734166, 0.020985381677746773, -0.028280431404709816, 0.07231374084949493, 0.02185746468603611, 0.0019327729241922498, 0.015489868819713593, -0.017261721193790436, -0.003126697149127722, 0.002029671100899577, 0.011094843968749046, -0.014202507212758064, -0.010347343049943447, -0.023407835513353348, -0.010852598585188389, -0.012776719406247139, -0.0167495459318161, 0.013337344862520695, -0.0022390405647456646, -0.002986540785059333, 0.00950294453650713, -0.01442398875951767, -0.010610352270305157, -0.025484226644039154, 0.00274256500415504, 0.015531396493315697, 0.0025885661598294973, 0.002066008048132062, -0.008838499896228313, 0.003827478736639023, -0.02882029302418232, -0.023684687912464142, 0.046261969953775406, 0.012728270143270493, -0.005256727337837219, 0.011600098572671413, 0.0019223910057917237, 0.003972826059907675, 0.010728014633059502, -0.0037513445131480694, 0.02000255696475506, 0.010575746186077595, -0.021400658413767815, -0.030066126957535744, -0.00548513000831008, 0.003637143177911639, -0.018908990547060966, -0.044905394315719604, 0.0029190583154559135, -0.014797738753259182, -0.02573339268565178, -0.018729036673903465, 0.0037617264315485954, -0.022051261737942696, 0.013302737846970558, -0.015060748904943466, 0.046400394290685654, -0.028488069772720337, 0.004889898467808962, -0.03217020258307457, -0.01853524148464203, -0.009959750808775425, -0.043991781771183014, -0.00406972412019968, 0.011247112415730953, 0.00802178680896759, -0.01780158281326294, -0.0030021138954907656, -0.17685306072235107, 0.024847466498613358, 0.015476026572287083, -0.01759394444525242, -0.019199686124920845, 0.008243268355727196, 0.01609894260764122, 0.007198151666671038, -0.01939348131418228, 0.002595487516373396, 0.033886682242155075, 0.012659057043492794, -0.007987179793417454, -0.006018070038408041, -0.01983644627034664, 0.0014984614681452513, -0.003503907937556505, 0.004543833434581757, 0.006208405829966068, 0.015905147418379784, 0.029678532853722572, -0.02392001263797283, 0.014645470306277275, -0.00557510694488883, 0.005284412298351526, 0.017400147393345833, -0.008880027569830418, 0.02782362513244152, -0.015046905726194382, -0.014936164952814579, -0.0045507545582950115, -0.004097409546375275, 0.030509090051054955, -0.0006077766302041709, 0.024833623319864273, 0.011842343956232071, -0.03743039071559906, -0.009724426083266735, -0.020196352154016495, 0.05952318012714386, 0.001604876364581287, 0.0281143207103014, 5.818217687192373e-05, -0.00838861521333456, 0.004647652618587017, 0.0020314014982432127, -0.004876055754721165, 0.009613685309886932, 0.01591898873448372, -0.03593538701534271, -0.008146369829773903, -0.010201996192336082, 0.030066126957535744, -0.0014673155965283513, -0.010554982349276543, 0.0384824275970459, -0.0018081895541399717, -0.010762621648609638, 0.02282644622027874, 0.007661879062652588, -0.013614197261631489, -0.017192509025335312, 0.004235835280269384, 0.00021099149307701737, -0.00032530108001083136, -0.022867973893880844, -0.02206510305404663, 0.013669567182660103, -0.0325024239718914, 0.012022297829389572, -0.008610096760094166, 0.006319146603345871, -0.00660292012616992, -0.008942319080233574, 0.01035426463931799, 0.02097153849899769, -0.010409634560346603, 0.023172512650489807, 0.025719549506902695, 0.0006393551011569798, 0.00695590628311038, 0.03128427639603615, -0.026342466473579407, 0.005090616177767515, 0.004858752712607384, -0.02937399595975876, 0.011731603182852268, -0.0020210195798426867, 0.015074591152369976, -0.0002976158866658807, 0.003931298386305571, -0.02429376170039177, -0.007814147509634495, -0.025553438812494278, 0.004914123099297285, 0.005755060818046331, -0.007814147509634495, 0.015213017351925373, 0.0014205968473106623, 0.0019483459182083607, 0.0007600452518090606, 0.0027339134830981493, -0.01053421851247549, 0.008243268355727196, 0.009994356893002987, 0.002941552549600601, -0.013925655744969845, -0.00467187725007534, 0.014133294112980366, -0.016292739659547806, -0.019144315272569656, 0.016998711973428726, -0.006111507769674063, 0.019781075417995453, -0.013337344862520695, 0.02667468972504139, -0.03181029483675957, -0.021635983139276505, 0.03441270440816879, -0.023130984976887703, 0.03781798109412193, 0.012686742469668388, 0.009143036790192127, 0.021137649193406105, -0.028072793036699295, -0.038150206208229065, -0.06290077418088913, -0.01850755512714386, 0.008229425176978111, 0.038260944187641144, -0.022134317085146904, -0.013863363303244114, -0.0010710711358115077, 0.014437831938266754, 0.0008102246792986989, 0.012223015539348125, -0.022715706378221512, -0.016085101291537285, -0.005284412298351526, -0.018050750717520714, 0.009260699152946472, -0.026107143610715866, -0.01850755512714386, -0.032890018075704575, 0.0013505186652764678, 0.024252234026789665, 0.004208150319755077, -0.028515756130218506, 0.01354498416185379, -0.004270441830158234, -0.033886682242155075, 0.007827989757061005, -0.040531132370233536, 0.01565597951412201, 0.01191155705600977, 0.0027702501974999905, 0.009302226826548576, -0.016901813447475433, 0.001755414647050202, -0.0128805385902524, 0.005890026222914457, 0.003758265869691968, 0.0042392960749566555, -0.010513454675674438, 0.035326313227415085, -0.0021784792188555002, 0.014257878065109253, 0.01965649239718914, 0.03604612872004509, -0.019850287586450577, 0.004111252259463072, -0.019808759912848473, -0.019365796819329262, 0.038648538291454315, 0.013849521055817604, -0.024778254330158234, -0.006153035443276167, -0.019171999767422676, 0.010381950065493584, -0.02444603107869625, 0.012977437116205692, -0.008589332923293114, -0.007083950564265251, 0.00036012387135997415, -0.03801177814602852, 0.0011247112415730953, -0.0219128355383873, -0.026522420346736908, -0.010132783092558384, 0.04097409546375275, 0.0261209849268198, 0.00195180659648031, -0.011946163140237331, -0.010804149322211742, 0.02468135580420494, -0.026314781978726387, -0.01580824889242649, 0.004132016096264124, -0.009800560772418976, -0.01485310960561037, -0.0027494863606989384, -0.023643160238862038, -0.0005368333077058196, -0.024584457278251648, 0.012209173291921616, -0.01651422120630741, 0.006869390141218901, 0.006966288201510906, -0.016431165859103203, -0.022175844758749008, 0.017109453678131104, 0.013448085635900497, -0.010734936222434044, 0.01601588726043701, 0.015171489678323269, -0.02837732993066311, 0.01824454590678215, 0.020985381677746773, 0.029512422159314156, 0.001974300714209676, -0.013960261829197407, -0.005370928905904293, -0.01512996107339859, -0.005983463488519192, -0.0021058055572211742, 0.01132324617356062, -0.04742474481463432, 0.012181487865746021, -0.07685411721467972, 0.016943341121077538, 0.009973593056201935, -0.02758830040693283, -0.020071769133210182, -0.007876439020037651, 0.0076065086759626865, 0.001463854918256402, -0.0026647003833204508, 0.01173852477222681, -0.016292739659547806, 0.01132324617356062, 0.0028325419407337904, 0.022992558777332306, -0.010665723122656345, 0.006298382766544819, 0.03743039071559906, 0.00034866048372350633, 0.0069939736276865005, 0.025165846571326256, -0.01654190570116043, 0.02088848315179348, 0.015946675091981888, 0.01251371018588543, -0.013738780282437801, 0.01727556437253952, 0.010859519243240356, 0.015060748904943466, -0.02738066203892231, -0.003644064301624894, 0.0031595733016729355, -0.015752878040075302, -0.008713916875422001, 0.02923556976020336, 0.010575746186077595, 0.0001977977663045749, 0.005834655836224556, 0.007827989757061005, 0.02080542780458927, 0.03347140550613403, -0.033858999609947205, -0.03025992214679718, 0.017344776540994644, 0.004751472268253565, -0.017732370644807816, 0.0013825296191498637, -0.00755805941298604, 0.015877461060881615, 0.01827223226428032, -0.011074080131947994, 0.025594966486096382, -0.00042349702562205493, -0.00838861521333456, -0.01818917691707611, 0.03557548299431801, -0.007198151666671038, 0.022701863199472427, 0.023435521870851517, -0.007087410893291235, -0.010748778469860554, 0.030896682292222977, 0.011544727720320225, 0.020902326330542564, -0.018673667684197426, 0.004436552990227938, 0.00141194520983845, -0.026134828105568886, -0.008187897503376007, -0.00925377756357193, -0.009440653026103973, -0.016874128952622414, -0.014327090233564377, 0.014811581932008266, 0.038731593638658524, 0.019282741472125053, -0.003379324683919549, -0.01391181256622076, 0.015448341146111488, -0.002226928249001503, 0.01842449977993965, 0.038177888840436935, 0.0047064837999641895, -0.012312992475926876, 0.00011441773676779121, 0.03781798109412193, 0.018521398305892944, -0.008319402113556862, 0.01345500722527504, 8.5651088738814e-05, 0.003130157943814993, -0.028654180467128754, 0.006419505458325148, 0.010845676995813847, -0.009710583835840225, -0.01871519535779953, 0.0075857448391616344, -0.014700841158628464, 0.009745189920067787, 0.020071769133210182, 0.018078435212373734, 0.0051356046460568905, 0.0013738779816776514, 0.014451674185693264, -0.018410658463835716, -0.05190974846482277, 0.0050179422833025455, -0.027699042111635208, -0.01850755512714386, 0.003488335059955716, 0.018867462873458862, -0.02876492217183113, 0.022175844758749008, -0.007045883219689131, 0.004125094506889582, -0.03446807339787483, 0.010762621648609638, -0.011883871629834175, 0.020528575405478477, -0.03075825609266758, 0.03067520074546337, -0.0023186353500932455, -0.030149182304739952, 0.02884797751903534, -0.019698020070791245, -0.004291206132620573, 0.0003025905753020197, 0.024487558752298355, -0.0438256710767746, 0.006568313576281071, -0.011710839346051216, 0.008229425176978111, 0.01989181526005268, 6.899670552229509e-05, -0.009800560772418976, -0.018023064360022545, -0.0030349900480359793, -0.014271720312535763, -0.0035575481597334146, 0.0013046649983152747, 0.08455059677362442, 0.01727556437253952, -0.007398869376629591, 0.006914378609508276, -0.014742368832230568, -0.0025660719256848097, 0.016195841133594513, 0.012486024759709835, -0.009959750808775425, -0.010388870723545551, -0.0006648773560300469, -0.004048960283398628, -0.001941424561664462, -0.020431676879525185, -0.007924888283014297, 0.0021213784348219633, -0.009468338452279568, 0.029900016263127327, -0.010215838439762592, 0.005976542364805937, 0.025248901918530464, 0.0162512119859457, -0.0048449099995195866, -0.006045755464583635, -0.013773386366665363, 0.0014577987603843212, 0.020722372457385063, -0.01467315573245287, -0.0036613675765693188, -0.05847113952040672, 0.009869773872196674, 0.018410658463835716, -0.03834399953484535, -0.015240701846778393, 0.015974359586834908, 0.010201996192336082, 0.022494224831461906, 0.0006514673586934805, 0.020694686099886894, -0.013012044131755829, 0.011364774778485298, 0.02714533731341362, -0.016583435237407684, -0.02426607720553875, -0.020667001605033875, -0.004000511486083269, -0.01973954774439335, 0.022258900105953217, -0.04950113594532013] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json b/database/embeddings/publications_txt/2021_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json new file mode 100644 index 0000000000000000000000000000000000000000..27a16b19fdd1f6c098c2765733283fdfa2dc5bb1 --- /dev/null +++ b/database/embeddings/publications_txt/2021_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json @@ -0,0 +1 @@ +[-0.01879669725894928, -0.000689720269292593, 0.01883779838681221, -0.012926154769957066, 0.021358637139201164, 0.002716067945584655, 0.006884358823299408, 0.01750887744128704, -0.01478253398090601, -0.02501659467816353, -0.015166140161454678, 0.0221258495002985, -0.011343779042363167, 0.03222290799021721, -0.0033017522655427456, 0.0034199166111648083, 0.04562172293663025, -0.018111687153577805, -0.01738557405769825, -0.006240448448807001, -0.021961446851491928, 0.029702069237828255, -0.020728427916765213, -0.022687558084726334, -0.024427486583590508, 0.030825486406683922, 0.019248804077506065, -0.03652477636933327, 0.012152092531323433, -0.0033017522655427456, -0.003087686374783516, -0.00035813223803415895, 0.014522229321300983, -0.012542548589408398, -0.008384532295167446, -0.018070586025714874, 0.00393538735806942, -0.01556344609707594, 0.028496449813246727, -0.018700795248150826, 0.02440008521080017, 0.012686400674283504, -0.011247877962887287, -0.0163306575268507, 0.0048327515833079815, 0.01446742843836546, 0.026414018124341965, -0.023920578882098198, -0.030167877674102783, 0.028688253834843636, 0.006134272087365389, 0.04148425534367561, -0.0488823726773262, 0.011439681053161621, -0.02623591385781765, -0.0077611724846065044, 0.016508761793375015, 0.0005655620479956269, 0.0012929579243063927, -0.02396167814731598, 0.024454886093735695, -0.023975379765033722, -0.05918493494391441, -0.013987921178340912, -0.002267385832965374, 0.006459651980549097, -0.019372105598449707, 0.023290367797017097, -0.017056768760085106, 0.01782398112118244, 0.017056768760085106, 0.01474143285304308, 0.026057811453938484, -0.007130962796509266, 0.012597349472343922, -0.022194350138306618, -0.02674282342195511, 0.01993381418287754, 0.01789248362183571, 0.028880055993795395, -0.0020567451138049364, -0.004154590889811516, 0.006651455070823431, -0.0012604199582710862, 0.023112265393137932, 0.011754785664379597, -0.0054389857687056065, 0.00916544534265995, -0.012679550796747208, -0.027194930240511894, 0.004171716049313545, 0.001708245719783008, 0.01856379397213459, 0.011939738877117634, -0.02863345295190811, 0.028688253834843636, -0.03145569562911987, 0.024057580158114433, 0.020385922864079475, -0.023441070690751076, 0.03066108375787735, 0.0038566109724342823, -0.026112612336874008, -0.015837449580430984, -0.002185184508562088, -0.018344590440392494, 0.010775220580399036, 0.004658073652535677, 0.016741665080189705, -0.0033668281976133585, -0.023906877264380455, 0.018741896376013756, -0.02455078810453415, -0.03241471201181412, 0.011042374186217785, 0.002488301834091544, -0.012186342850327492, -0.007918724790215492, -0.00891199056059122, -0.008637986145913601, 0.026304416358470917, 0.014535930007696152, -0.00488412706181407, 0.0069220345467329025, 0.015810050070285797, 0.0033959411084651947, -0.02224915102124214, -0.014796233735978603, -0.0038703111931681633, -0.020659927278757095, 0.0036682330537587404, 0.017796581611037254, 0.003084261203184724, 0.04430650174617767, -0.0006952859694138169, 0.027633337303996086, -0.01953650824725628, -0.018303489312529564, -0.03811400383710861, -0.03575756400823593, 0.007658421061933041, 0.04345708712935448, -0.017673280090093613, -0.001721945940516889, 0.004205966368317604, 0.017317073419690132, 0.01746777631342411, 0.02400277927517891, 0.023372570052742958, 0.02303006313741207, -0.0014513666974380612, -0.0077885729260742664, -0.001871792133897543, 0.017755480483174324, 0.009179145097732544, 0.012617899104952812, 0.021824445575475693, 0.03304492309689522, 0.018769295886158943, -0.03227771073579788, 0.011282128281891346, 0.023824676871299744, 0.0022348477505147457, -0.010521766729652882, -0.009103793650865555, 0.016152555122971535, 0.024660389870405197, 0.012056190520524979, 0.013186458498239517, -0.008973642252385616, -0.04422429949045181, 0.03386693447828293, -0.009980607777833939, -0.00851468462496996, -0.020810628309845924, 0.032716117799282074, 0.018125386908650398, 0.004949203226715326, -0.0026287289801985025, -0.006024670321494341, -0.00325037632137537, 0.011316378600895405, 0.026879824697971344, 0.03249691426753998, 0.025866009294986725, 0.0069631352089345455, 0.042004864662885666, -0.01617995649576187, 0.008048877120018005, -0.021194234490394592, 0.01589225046336651, 0.01860489323735237, 0.0038737361319363117, -0.0015892251394689083, -0.6076319813728333, -0.038634609431028366, 0.0055211870931088924, -0.009151744656264782, -0.012789152562618256, 0.0064528021030128, 0.029126660898327827, -0.009802505373954773, 0.0022211475297808647, 0.05038939788937569, -0.00963125191628933, -0.004418320022523403, 0.0029712344985455275, -0.015179839916527271, -0.006264423951506615, -0.02326296828687191, 0.0005514337099157274, -0.021509340032935143, 0.03833320736885071, 0.026797624304890633, -0.010062809102237225, 0.03879901394248009, -0.01805688627064228, 0.004784800577908754, 0.00814477913081646, 0.005257457960397005, 0.0021115457639098167, -0.03066108375787735, 0.02587970905005932, 0.017043069005012512, -0.018125386908650398, 0.023249266669154167, 0.04099104925990105, -0.015727847814559937, 0.049128975719213486, -0.01180958654731512, -0.016892366111278534, 0.01761847920715809, 0.027112727984786034, 0.03512735664844513, -0.04068964347243309, -0.038442809134721756, -0.0058705429546535015, -0.010617667809128761, -0.006969985086470842, 4.016411185148172e-05, -0.00218860968016088, -0.015001737512648106, -0.009665503166615963, -0.005990419536828995, -0.019796812906861305, 0.016467660665512085, -0.021988848224282265, -0.007110412232577801, 0.031702302396297455, -0.0068809338845312595, 0.004051839001476765, -0.02678392268717289, 0.035538360476493835, -0.006288399454206228, 0.011295828968286514, 0.0023256116546690464, -0.011446530930697918, -0.023084864020347595, -0.007062461692839861, 0.024180881679058075, 0.0010609105229377747, 0.014357826672494411, 0.006915184203535318, -0.004154590889811516, 0.0065315780229866505, 0.02102983184158802, -0.00046923241461627185, -0.02318076603114605, 0.008761288598179817, 0.015248341485857964, 0.013248109258711338, -0.0059390440583229065, -0.019015900790691376, -0.003291476983577013, -0.01017926074564457, -0.0044011943973600864, -0.01785138249397278, -0.011391730047762394, 0.004219666589051485, 0.0027657311875373125, -0.02585230953991413, 0.011090325191617012, -0.001722802291624248, 0.003565481398254633, 0.00546296127140522, 0.023482171818614006, 0.0019402931211516261, 0.021413438022136688, 0.0059801447205245495, 0.020975030958652496, 0.011898637749254704, -0.01405642181634903, 0.010699869133532047, 0.0016166255809366703, 0.011302678845822811, -0.01345361303538084, 0.02600301057100296, -0.018659694120287895, 0.01119992695748806, 0.010747820138931274, 0.012275394052267075, 0.0016020691255107522, 0.04595052823424339, -0.008816089481115341, 0.0038566109724342823, -0.006445951759815216, -0.0024643265642225742, 0.00045852913171984255, 0.031346093863248825, -0.03230511024594307, 0.021797044202685356, 0.0004752262611873448, 0.004890977405011654, 0.0004409757093526423, 0.01648136042058468, 0.006445951759815216, 0.014357826672494411, -0.014796233735978603, 0.01045326516032219, 0.017454076558351517, 0.0049286531284451485, -0.029400665313005447, -0.03564796224236488, -0.0016782765742391348, 0.02039962261915207, 0.002551665296778083, 0.015029137954115868, -0.008446183055639267, 0.011713685467839241, 0.007473468314856291, 0.01898849941790104, -0.008624286390841007, 0.010795770213007927, -0.02008451707661152, -0.021016132086515427, -0.011987689882516861, 0.009980607777833939, 0.001489898539148271, -0.021673742681741714, -0.011912338435649872, -0.020851729437708855, 0.015590846538543701, 0.00709671201184392, 0.01014501042664051, -0.012343894690275192, -0.006243873853236437, -0.00515813147649169, 0.01519354060292244, -0.006435676943510771, -0.010932772420346737, -0.03277091681957245, -0.028496449813246727, -0.011645183898508549, -0.001981393899768591, -0.0024386385921388865, 0.042196668684482574, -0.016344359144568443, -0.03849760815501213, -0.007151512894779444, 0.0007051330176182091, 0.0029558218084275723, 0.00973400380462408, 0.006456227041780949, -0.03888121619820595, 0.009179145097732544, -0.01761847920715809, -0.02341366931796074, 0.02455078810453415, -0.009247645735740662, 0.017330773174762726, -0.022194350138306618, 0.000506051757838577, -0.018577493727207184, -0.009569601155817509, -0.011151975952088833, -0.009850455448031425, -0.02063252590596676, -0.005702715367078781, 0.03019527718424797, 0.021783344447612762, 0.021632641553878784, -0.015029137954115868, 0.014083822257816792, -0.0011037236545234919, 0.007877624593675137, 0.027934741228818893, 0.0045861476100981236, 0.024495987221598625, -0.008131078444421291, -0.0034079288598150015, 0.005387610290199518, -0.0018769296584650874, -0.0060349456034600735, 0.021824445575475693, 0.034716349095106125, 0.026331815868616104, -0.0029267086647450924, -0.014138623140752316, 0.00973400380462408, -0.01852269284427166, 0.015385342761874199, -0.0117479357868433, 0.0113780302926898, 0.011912338435649872, 0.022769760340452194, -0.007021361030638218, -0.021591540426015854, -0.010172410868108273, -0.01605665311217308, 0.010336813516914845, -0.024071279913187027, 0.01637175865471363, -0.029154060408473015, 0.007398116867989302, 0.0045450469478964806, -0.0213860385119915, -0.005134155973792076, -0.016864966601133347, -0.027441533282399178, -0.003973062615841627, 0.014440027996897697, 0.02259165793657303, 0.015494944527745247, -0.007089862134307623, -0.0274963341653347, 0.021317537873983383, 0.018632294610142708, -0.0008190160733647645, -0.013939970172941685, 0.00011473931226646528, 0.01004225853830576, -0.0021252459846436977, 0.03633297607302666, -0.001065191812813282, -0.007905025035142899, 0.026263315230607986, 0.010665618814527988, -0.008884590119123459, 0.012535697780549526, -0.025276899337768555, 0.023756176233291626, 0.023358868435025215, 0.001012103515677154, 0.006326075177639723, -0.004551896825432777, 0.010617667809128761, -0.019180303439497948, -0.004726574756205082, 0.034634146839380264, -0.026660621166229248, -0.010192961432039738, -0.013124807737767696, 0.031099490821361542, 0.033072322607040405, 0.018029484897851944, -0.005726690404117107, -0.012234293855726719, -0.011830137111246586, 0.007261114660650492, -0.017289673909544945, -0.026770222932100296, -0.012994655407965183, -0.007952976040542126, -0.0012955267447978258, -0.014686631970107555, 0.0011302678612992167, 0.015316842123866081, 0.0003504258638713509, 0.035072553902864456, 0.022605357691645622, 0.007836523465812206, -0.006658305414021015, 0.02005711756646633, 0.004880702123045921, -0.030825486406683922, -0.01782398112118244, 0.008699637837707996, 0.020262619480490685, 0.00976825412362814, -0.0030243229120969772, 0.011795886792242527, -0.020728427916765213, -0.03301752358675003, -0.014837334863841534, 0.010110760107636452, 0.01660466194152832, -0.00892569124698639, -0.012110991403460503, -0.017604777589440346, -0.002856495091691613, 0.01782398112118244, -0.004712874535471201, -0.023947978392243385, -0.0009855593089014292, 0.020303720608353615, 0.006086321081966162, 0.0017639028374105692, -0.02094763144850731, 0.013597465120255947, 0.0010180973913520575, 0.012754901312291622, -0.003075698623433709, 0.0029832222498953342, -0.01641285978257656, 0.016426559537649155, -0.005562287755310535, -0.024180881679058075, -0.012378145940601826, 0.01942690648138523, 0.01368651632219553, 0.012891903519630432, -0.00861743651330471, -0.001298951799981296, -0.026071511209011078, -0.008843489922583103, -0.04570392146706581, -0.042004864662885666, 0.006312374956905842, 0.08253010362386703, 0.012857653200626373, 0.01778288185596466, 0.03720978647470474, 0.03126389533281326, -0.011919188313186169, -0.04874537140130997, -0.011624633334577084, 0.0011379742063581944, -0.008507834747433662, -0.0009436024120077491, 0.01871449500322342, -0.005308833904564381, 0.006538428366184235, 0.010350513271987438, -0.013850918971002102, -0.009192845784127712, -0.013467312790453434, 0.021358637139201164, 0.0021783343981951475, 0.01820758730173111, -0.0059664444997906685, -0.004932078067213297, 0.027359332889318466, 0.013207009062170982, -0.018947400152683258, 0.00601097010076046, 0.02918146178126335, -0.008035177364945412, -0.008137928321957588, 0.017330773174762726, 0.012549398466944695, 0.006165097467601299, 0.015727847814559937, 0.0005394460167735815, 0.017988383769989014, 0.03057888336479664, 0.030524082481861115, 0.013768717646598816, 0.037812598049640656, 0.02529059909284115, 0.0271812304854393, -0.0018786422442644835, -0.017837682738900185, -0.0005903937271796167, -0.047841157764196396, 0.004788225516676903, 0.005199232138693333, -0.014837334863841534, -0.030441882088780403, 0.02033112198114395, 0.002089282963424921, -0.033976536244153976, -0.03559316322207451, 0.02204364910721779, -0.005284858401864767, -0.001585800084285438, 0.005846567451953888, -0.02172854356467724, -0.026057811453938484, -0.01809798553586006, -0.025523504242300987, 0.01270695123821497, -0.004702599253505468, -0.00604179548099637, -0.008857189677655697, 0.007555669639259577, -0.0018598043825477362, -0.0048738522455096245, -0.005928768776357174, 0.01778288185596466, -0.027852540835738182, -0.033620331436395645, 0.013816668651998043, 0.006123996805399656, -0.0023273243568837643, 0.022468354552984238, -0.011597232893109322, 2.441688957333099e-05, -0.0008913703495636582, -0.031044689938426018, -0.026057811453938484, -0.0005450117168948054, -0.04962218552827835, 0.018591193482279778, -0.028880055993795395, -0.0017656154232099652, -0.020659927278757095, -0.017056768760085106, 0.019961215555667877, -0.017262272536754608, 0.010055959224700928, 0.010754670016467571, 0.003770984709262848, -0.012309644371271133, 0.017947284504771233, -0.003914836794137955, 0.03559316322207451, 0.015316842123866081, 0.003949087578803301, 0.006415126379579306, -0.0037504343781620264, -0.025619404390454292, -0.02286566235125065, -0.0017424962716177106, -0.014988036826252937, -0.00451422156766057, 0.0020122192800045013, -0.021372338756918907, -0.008548934943974018, 0.016399160027503967, -0.03674397990107536, 0.006312374956905842, 0.029071860015392303, 0.01645396091043949, 0.026098912581801414, 0.011467081494629383, 0.008322881534695625, 0.004503946285694838, -0.03594936802983284, -0.01245349645614624, 0.00488412706181407, -0.0031750251073390245, 0.019728312268853188, -0.005435560829937458, 0.01478253398090601, -0.014631831087172031, -0.03474374860525131, -0.03537395969033241, -0.0045313467271625996, 0.0014642106834799051, 0.02956506796181202, -0.01243294682353735, -0.03342852741479874, -0.042552873492240906, -0.00987100601196289, -0.023098565638065338, -0.010138160549104214, -0.022139549255371094, -0.036990582942962646, -0.011453380808234215, -0.01828978955745697, 0.015645647421479225, -0.0027246305253356695, 0.013330310583114624, -0.03701798617839813, 0.01797468401491642, 0.034250542521476746, 0.02016671933233738, 0.020701026543974876, -0.00041614408837631345, -0.010658768936991692, 0.0008489852771162987, 0.011364329606294632, -0.024413786828517914, -0.0318119041621685, -0.020180419087409973, 0.0069357347674667835, 0.027592236176133156, 0.01563194766640663, 0.048937175422906876, -0.015453844331204891, 0.005164981819689274, 0.031620100140571594, 0.013604314997792244, 0.0009179144981317222, 0.007357016205787659, 0.010802621021866798, -0.004671773873269558, 0.011528732255101204, 0.01010390929877758, -0.009925806894898415, 0.023208167403936386, 0.007000810466706753, 0.009569601155817509, -0.010768369771540165, -0.012480896897614002, -0.026372916996479034, -0.013207009062170982, -0.01848159171640873, 0.01734447479248047, 0.00559996347874403, -0.009076393209397793, 0.006069195922464132, -0.050307195633649826, -0.010439565405249596, 0.008014626801013947, 0.022879362106323242, -0.014933235943317413, 0.021468238905072212, -0.004712874535471201, -0.02330406755208969, -0.0009701465605758131, 0.001542130601592362, 0.015796350315213203, -0.005038254428654909, 0.0019402931211516261, -0.028880055993795395, -0.010398464277386665, 0.034168340265750885, 0.0034096413291990757, 0.020221520215272903, -0.012131541967391968, 0.004966328386217356, -0.015768948942422867, 0.02838684804737568, 0.00994635745882988, -0.014261925593018532, 0.0066137793473899364, -0.01167258433997631, -0.012309644371271133, -0.018193887546658516, -0.009686052799224854, -0.008966791443526745, -0.01961871050298214, 0.014905835501849651, 0.011761635541915894, 0.014618131332099438, -0.006439101882278919, -0.014207124710083008, 0.023043764755129814, 0.008453033864498138, 0.018043184652924538, -0.0031099491752684116, 0.028797855600714684, 0.03156529739499092, -0.02157784067094326, 0.0017185208853334188, 0.004164865706115961, -0.0018358289962634444, -0.0004944921820424497, 0.023153366521000862, 0.009884706698358059, -0.020098216831684113, -0.028030643239617348, 0.010460115037858486, 0.0258112084120512, -0.019755711778998375, -0.030441882088780403, 0.036168571561574936, 0.025276899337768555, -0.020728427916765213, -0.02440008521080017, -0.0227560605853796, -0.01017926074564457, 0.013556363992393017, -0.02330406755208969, -0.020961331203579903, 0.011973989196121693, -0.005041679833084345, 0.007836523465812206, 0.007685821503400803, 0.006082896143198013, 0.036798782646656036, 0.007446067873388529, -0.0292910635471344, 0.004075814504176378, 0.011871237307786942, 0.0020978457760065794, -0.0021954597905278206, -0.0034884177148342133, 0.011186227202415466, -0.015536045655608177, 0.022057348862290382, 0.04068964347243309, -0.01014501042664051, 0.014357826672494411, 0.006055495701730251, -0.011741085909307003, 0.03660697862505913, -0.003671657992526889, -0.01801578514277935, 0.006877508945763111, -0.010343663394451141, 0.012172642163932323, -0.013254959136247635, 0.009638102725148201, -0.028222445398569107, -0.018947400152683258, -0.019796812906861305, 0.022112149745225906, 0.034990351647138596, 0.0009136332082562149, 0.01883779838681221, 0.017522577196359634, -0.01280285231769085, -0.0025345401372760534, -0.011083475314080715, -0.012131541967391968, -0.0092202452942729, -0.006264423951506615, -0.012152092531323433, 0.0003118939930573106, 0.020646225661039352, 0.021714843809604645, -0.007035061251372099, 0.014755133539438248, 0.022660158574581146, -0.0335107296705246, 0.0035141054540872574, -0.009610702283680439, -0.010254612192511559, -0.010336813516914845, -0.006223323289304972, -0.013494713231921196, 0.001394853345118463, 0.025989310815930367, -0.004589572548866272, -0.015590846538543701, -0.03529175743460655, -0.01474143285304308, 0.03794959932565689, 0.008932541124522686, -0.003002059878781438, 0.028880055993795395, -0.010014858096837997, 0.0030243229120969772, -0.027441533282399178, -0.027304532006382942, 0.03529175743460655, 0.013583764433860779, -0.00875443872064352, 0.026208514347672462, 0.00043819285929203033, 0.035894569009542465, -0.01620735600590706, 0.0001621549017727375, 0.0032983270939439535, -0.03860720992088318, -0.027263430878520012, 0.0019711186178028584, 0.03293532133102417, -3.173526783939451e-05, -0.01824868842959404, 0.007432367652654648, -0.01083002146333456, -0.01789248362183571, 0.0005711278063245118, -0.003445604583248496, -0.009877855889499187, 0.007562519516795874, -0.010857421904802322, -0.008384532295167446, -0.009329847060143948, -0.0103779137134552, -0.010247762314975262, 0.0014273913111537695, 0.02714012935757637, -0.009857306256890297, -0.008836640045046806, -0.003248663851991296, 0.03345593065023422, 0.01437152735888958, -0.017714379355311394, -0.04304607957601547, -0.0006661730585619807, -0.043950293213129044, -0.0024934394750744104, -0.005038254428654909, 0.011919188313186169, -0.009007892571389675, -0.029263662174344063, 0.006946009583771229, -0.004949203226715326, -0.006877508945763111, 0.0035997319500893354, -0.0029575342778116465, -0.000982990488409996, 0.001024947501718998, -0.011652033776044846, -0.01478253398090601, 0.0012039064895361662, -0.03871681168675423, 0.00207558274269104, 0.013816668651998043, 0.00904899276793003, 0.0004073673626407981, 0.022372454404830933, -0.004980028606951237, -0.007562519516795874, 0.0011448243167251348, -0.0190707016736269, -0.006141121964901686, -0.02035852149128914, 0.00796667579561472, -0.03783999755978584, 0.002537965076044202, 0.02800324186682701, -0.00904899276793003, -0.00034207728458568454, -0.006415126379579306, 0.003281201934441924, -0.008432483300566673, 0.016988268122076988, -0.02048182301223278, -0.023646574467420578, 0.0027520309668034315, 0.008603735826909542, 0.015508645214140415, 0.01161093357950449, 0.03230511024594307, 0.029071860015392303, 0.012508297339081764, 0.017714379355311394, -0.01961871050298214, 0.019317304715514183, 0.019248804077506065, -0.01259049866348505, 0.0335107296705246, 0.014631831087172031, 0.005620514042675495, -0.02231765352189541, 0.013268659822642803, -0.00017510588804725558, 0.009823055006563663, -0.015714148059487343, -0.022016247734427452, -0.029976073652505875, 0.0026561294216662645, 0.030606284737586975, -0.016467660665512085, -0.011487632058560848, -0.007535119075328112, -0.009275046177208424, -0.027153829112648964, -0.01616625487804413, 0.010973873548209667, -0.02741413377225399, 0.009158594533801079, 0.008631136268377304, -0.005986994598060846, 0.02381097711622715, 0.02142713963985443, 0.0058294422924518585, -0.01617995649576187, -0.0066411797888576984, 0.18895338475704193, -0.018618594855070114, 0.011206776835024357, 0.01641285978257656, 0.003551781177520752, 0.006374025717377663, 0.024345284327864647, 0.026564719155430794, -0.011898637749254704, -0.01119992695748806, -0.005723265465348959, -0.0061034467071294785, -0.007336466107517481, 0.00010606964497128502, 0.0016371759120374918, 0.011795886792242527, -0.029784271493554115, -0.03175710141658783, -0.01304260641336441, 0.004178565926849842, -0.011713685467839241, -0.002553377766162157, 0.002063595224171877, -0.012275394052267075, 0.01985161378979683, -0.017056768760085106, -0.009364098310470581, 0.017536276951432228, 0.004630673211067915, 0.011576683260500431, -0.02313966490328312, 0.015673046931624413, 0.012508297339081764, -0.0024848768953233957, -0.01871449500322342, -0.012720650993287563, 0.023331468924880028, 0.005545162595808506, 0.02286566235125065, -0.007302215322852135, 0.02318076603114605, -0.009795654565095901, -0.01069301925599575, -0.016070354729890823, 0.0016577262431383133, 0.010062809102237225, 0.0005017704097554088, -0.0036922083236277103, 0.0011533870128914714, -0.001422253786586225, -0.039648428559303284, 0.012165792286396027, 0.01624845713376999, 0.03559316322207451, -0.016358058899641037, 0.008185879327356815, 0.018687095493078232, 0.030798086896538734, 0.021920345723628998, 0.005956169217824936, 0.012474047020077705, 0.015111339278519154, 0.007884474471211433, 0.011604083701968193, -0.023153366521000862, 0.026304416358470917, -0.005613663699477911, 0.0014693482080474496, 0.006737081333994865, -0.0002260535693494603, -0.003156187478452921, -0.021276436746120453, -0.019015900790691376, -0.018495291471481323, -0.013789268210530281, -0.01586485095322132, 0.03879901394248009, 0.018467891961336136, 0.04016903415322304, 0.043018680065870285, -0.014933235943317413, 0.033236727118492126, -0.013693366199731827, -0.012809702195227146, -0.012480896897614002, -0.0394018217921257, 0.04222406819462776, -0.01361116487532854, -0.026646921411156654, -0.006298674736171961, -0.006377450656145811, 0.013446762226521969, -0.0008318600011989474, -0.018454192206263542, 0.013693366199731827, -0.006675430573523045, -0.003633982501924038, -0.015097638592123985, -0.013515263795852661, 0.017919883131980896, -0.01139857992529869, 0.07803643494844437, 0.01668686419725418, 0.007350166328251362, 0.02353697270154953, -0.004757400136440992, -0.005973294377326965, 0.013809817843139172, 0.02220805175602436, -0.02835944853723049, -0.015810050070285797, -0.016810165718197823, -0.012741201557219028, -0.006850108504295349, 0.003767559537664056, 0.018508993089199066, 0.015590846538543701, -0.01761847920715809, 0.016344359144568443, -0.014426328241825104, -0.006877508945763111, -0.04088144749403, -0.026688022539019585, 0.02474259026348591, 0.005805466789752245, 0.0004152878245804459, -0.0067850323393940926, -0.010234061628580093, -0.027510035783052444, -0.0060349456034600735, 0.029948674142360687, -0.0017844531685113907, -0.00412034010514617, -0.006202773191034794, 0.010343663394451141, -0.0006212192238308489, 0.03907301649451256, -0.016426559537649155, 0.027866240590810776, 0.0007770591764710844, -0.00918599497526884, -0.021468238905072212, 0.00428816769272089, 0.0016448822570964694, -0.032990120351314545, -0.033264126628637314, 0.004271042533218861, 0.0008913703495636582, 0.0008905140566639602, -0.021276436746120453, 0.006154822185635567, -0.024290483444929123, 0.0003223832172807306, -0.017536276951432228, 0.007261114660650492, -0.020372221246361732, -0.0010677606333047152, -0.016358058899641037, 0.02145453914999962, -0.00010879898763960227, -0.038908615708351135, 0.007466617971658707, 0.0066411797888576984, -0.02087913081049919, -0.014111222699284554, -0.018413091078400612, -0.1740475445985794, 0.02694832533597946, 0.015111339278519154, 0.0007980376249179244, 0.011802736669778824, 0.020618826150894165, 0.0038840114139020443, -0.0014924673596397042, -0.00800777692347765, 0.009275046177208424, 0.023358868435025215, 0.021687442436814308, -0.011597232893109322, -0.024386385455727577, 0.00650075264275074, -0.017001967877149582, -0.009795654565095901, 0.01542644388973713, 0.018454192206263542, 0.02737303264439106, 0.023358868435025215, -0.05312943831086159, -0.011617783457040787, -0.014152323827147484, -0.013542664237320423, 0.025660505518317223, 0.005658189300447702, 0.030332280322909355, -0.017317073419690132, -0.015453844331204891, 0.007425517309457064, 0.007178913336247206, 0.020111918449401855, 0.02126273699104786, 0.002966096857562661, 0.03172970190644264, 0.004997153766453266, -0.009720304049551487, -0.016577262431383133, 0.02983907237648964, 0.029154060408473015, 0.03614117205142975, -0.01923510432243347, -0.0065452782437205315, -0.02448228746652603, 0.012371295131742954, -0.009473700076341629, 0.0014111222699284554, -0.0029078710358589888, -0.019440608099102974, 0.004863576963543892, 0.01478253398090601, 0.03194890543818474, 0.002496864413842559, 0.01816648803651333, 0.02627701498568058, 0.017358174547553062, 0.0022005971986800432, -0.012686400674283504, -0.005401310510933399, -0.02918146178126335, -0.02239985391497612, 0.0077885729260742664, 0.002239985391497612, -0.00865168683230877, -0.022290252149105072, -0.030359679833054543, 0.016111453995108604, -0.031346093863248825, 0.00953535083681345, -0.012809702195227146, 0.02048182301223278, 0.0026287289801985025, -0.006887783762067556, 0.011871237307786942, 0.007343315985053778, -0.004130615387111902, 0.011371179483830929, 0.007103562355041504, -0.0011970563791692257, 0.004041563719511032, 0.03657957911491394, -0.010364213958382607, -0.013522113673388958, 0.03614117205142975, -0.002364999847486615, 0.0200160164386034, -0.002537965076044202, 0.009877855889499187, -0.011419130489230156, 0.006946009583771229, 0.0065315780229866505, 0.0054937866516411304, -0.018810397014021873, -0.013364560902118683, -0.011686285026371479, 0.023194465786218643, -0.002239985391497612, -0.0031219369266182184, -0.021057233214378357, 0.0021406589075922966, -0.01656356267631054, -0.01051491592079401, 0.0037093337159603834, 0.011247877962887287, 3.564196958905086e-05, -0.04148425534367561, 0.00415116548538208, 0.03531915694475174, -0.0012407258618623018, -0.02768813818693161, 0.01035736408084631, 0.025345399975776672, 0.04131985455751419, -0.007658421061933041, 0.03803180158138275, -0.037100184708833694, 0.0012056190753355622, 0.0084804343059659, -0.013693366199731827, 0.02909925952553749, 0.02585230953991413, 0.0027965568006038666, 0.009932656772434711, -0.02549610286951065, -0.04660813510417938, -0.0929422676563263, -0.010706719011068344, 0.0035175306256860495, 0.033702533692121506, -0.02318076603114605, 0.022262852638959885, -0.0046820491552352905, 0.015536045655608177, -0.021605242043733597, 0.02107093296945095, -0.004243642091751099, -0.0008275787113234401, -0.009617552161216736, -0.014714032411575317, 0.0029695220291614532, -0.01341251190751791, -0.005819167010486126, -0.030496682971715927, 0.028880055993795395, 0.02176964469254017, -0.00871333759278059, -0.04570392146706581, -0.023002663627266884, -0.02556460350751877, 0.008795538917183876, 0.009850455448031425, -0.027578536421060562, 0.02646881900727749, -0.013768717646598816, 0.00677475705742836, -0.00078562181442976, -0.0023615749087184668, 0.030688485130667686, -0.018467891961336136, -0.0065589784644544125, -0.0244411863386631, -0.0007573650800623, -0.022153250873088837, 0.028989657759666443, -0.03740159049630165, 0.019372105598449707, 0.006480202544480562, 0.018673395738005638, 0.009446299634873867, -0.011741085909307003, -0.018180187791585922, -0.026414018124341965, 0.02381097711622715, -0.010439565405249596, -0.016303258016705513, -0.011028674431145191, -0.03211330622434616, 0.0037230339366942644, -0.019358405843377113, 0.034634146839380264, -0.024098681285977364, 0.010836871340870857, 0.0058979433961212635, -0.02804434299468994, 0.0007072736625559628, -0.01911180280148983, -0.004325843416154385, -0.029592467471957207, 0.025619404390454292, 0.023468470200896263, -0.005010853987187147, -0.015111339278519154, -0.026414018124341965, 0.01671426370739937, -0.025934509932994843, -0.008247530087828636, 0.01194658875465393, -0.02533170022070408, -0.007754322607070208, -0.023276668041944504, -0.0032058507204055786, -0.011021824553608894, -0.04227886721491814, 0.016070354729890823, 0.006579529028385878, -0.010576567612588406, -0.018865197896957397, 0.004442295059561729, -0.022783460095524788, 0.010960172861814499, -0.004959478508681059, -0.028058042749762535, 0.016933467239141464, 0.011371179483830929, -0.018591193482279778, 0.015851151198148727, 0.014946936629712582, 0.00787077471613884, -0.0036785081028938293, -0.02224915102124214, 0.0022605357225984335, -0.014152323827147484, -0.017714379355311394, -0.005219782702624798, 0.03605896979570389, -0.04880017042160034, -0.01055601704865694, -0.06422661244869232, 0.021701142191886902, 0.00379838515073061, -0.02227655239403248, -0.00904899276793003, -0.002757168607786298, 0.02326296828687191, -0.01574154943227768, -0.012097291648387909, 0.007165213115513325, -0.043484486639499664, 0.017097869887948036, 0.004462845623493195, 0.012384995818138123, -0.023646574467420578, -0.016385458409786224, 0.027852540835738182, -0.03449714556336403, 0.023947978392243385, 0.032168108969926834, 0.0018529542721807957, 0.023550672456622124, 0.022687558084726334, 0.0037778348196297884, -0.0184404905885458, 0.01989271491765976, 0.0018341165268793702, 0.0001914819295052439, -0.026400316506624222, -0.011521882377564907, -0.0005351647268980742, -0.025002894923090935, -0.006740506738424301, 0.014618131332099438, -0.003914836794137955, -0.014440027996897697, 0.03816880285739899, 0.018276089802384377, 0.002005369169637561, 0.03605896979570389, -0.020659927278757095, -0.025797508656978607, -0.007069311570376158, -0.00987100601196289, 0.01860489323735237, -0.0038052352610975504, -0.017878782004117966, 0.0017176646506413817, 0.013296060264110565, -0.007754322607070208, 0.02126273699104786, 0.0034678673837333918, -0.03701798617839813, -0.02478369139134884, 0.02783883921802044, -0.006750781554728746, 0.010843721218407154, 0.004603272769600153, -0.0017476339126005769, -0.0039011365734040737, 0.018673395738005638, -0.009521650150418282, 0.017549976706504822, -0.00704876147210598, -0.0005664183408953249, -0.0008956516394391656, -0.029948674142360687, -0.0077063716016709805, -0.015316842123866081, -0.008035177364945412, -0.014988036826252937, -0.009206545539200306, -0.010261462070047855, 0.014083822257816792, 4.502072897594189e-06, -0.007432367652654648, 0.004260767251253128, 0.0339217372238636, -0.002762306248769164, 0.01519354060292244, 0.018111687153577805, -0.011295828968286514, -0.03660697862505913, -0.0006601791828870773, 0.010734119452536106, 0.024468587711453438, -0.016673164442181587, 0.005644489079713821, -0.0008588323253206909, 0.0038394855801016092, -0.007295365445315838, 0.01946800760924816, -0.0017193772364407778, 0.0059253438375890255, 0.002253685612231493, 0.012850803323090076, -0.019221404567360878, 0.010980723425745964, 0.0396210253238678, 0.035346560180187225, 0.021057233214378357, -0.0007612183107994497, -0.003976488020271063, -0.03318192437291145, -0.03129129484295845, -0.0013434775173664093, -0.01860489323735237, -0.0234958715736866, 0.009501100517809391, -0.0045313467271625996, -0.000506051757838577, 0.011302678845822811, -0.006791882216930389, 0.0010977298952639103, -0.005360209848731756, 0.02153673954308033, -0.011391730047762394, 0.00013957095507066697, -0.038990817964076996, 0.03551096096634865, 0.004726574756205082, -0.0048327515833079815, 0.015768948942422867, -0.024180881679058075, 0.025085097178816795, 0.011782186105847359, 0.008083127439022064, -0.03811400383710861, 0.009740853682160378, -0.008843489922583103, -0.003154474776238203, -0.0038737361319363117, -0.02033112198114395, -0.019289905205368996, -0.01574154943227768, -0.026770222932100296, -0.003993613179773092, -0.014905835501849651, -0.0018632294377312064, 0.07485798001289368, 0.025523504242300987, 0.002786281518638134, -0.0036511076614260674, -0.024811092764139175, 0.008309181779623032, 0.0028239572420716286, 0.02052292414009571, -0.0053978851065039635, -0.019796812906861305, 0.01266585011035204, -0.01110402587801218, -0.001024091150611639, -0.025715306401252747, -0.034168340265750885, 0.0001789590751286596, -0.001844391692429781, 0.03578496724367142, -0.00428816769272089, 0.018084285780787468, 0.007822823710739613, 0.020221520215272903, 0.00415116548538208, -0.009384647943079472, -0.03762079402804375, -0.005538312718272209, 0.018467891961336136, -0.012987805530428886, -0.0005432991893030703, -0.04997839033603668, -0.0019899564795196056, 0.005421860609203577, -0.031236493960022926, -0.025400200858712196, 0.013816668651998043, -0.0013186458963900805, -0.0005595682305283844, -0.009501100517809391, 0.01388516929000616, -0.009775104932487011, 0.016851266846060753, 0.025715306401252747, -0.02259165793657303, -0.032606516033411026, -0.00559996347874403, -0.010699869133532047, -0.023208167403936386, 0.009501100517809391, -0.04647113382816315] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_daisim_a_computational_simulator_for_the_makerdao_stablecoin.json b/database/embeddings/publications_txt/2021_daisim_a_computational_simulator_for_the_makerdao_stablecoin.json new file mode 100644 index 0000000000000000000000000000000000000000..7c6fe7864466a42244ec8a2cf56c2c56ec44ba57 --- /dev/null +++ b/database/embeddings/publications_txt/2021_daisim_a_computational_simulator_for_the_makerdao_stablecoin.json @@ -0,0 +1 @@ +[-0.016808876767754555, 0.010135608725249767, -0.008821068331599236, -0.018863296136260033, -0.022469302639365196, 0.026319541037082672, -0.020242484286427498, 0.00979799497872591, -0.02554374560713768, -0.04212275892496109, 0.02324509620666504, 0.032410964369773865, -0.006791791878640652, 0.030715707689523697, -0.005768174305558205, 0.01277905609458685, 0.013447101227939129, -0.032410964369773865, -0.002043643267825246, 0.012261860072612762, 0.010236174799501896, -0.009869827888906002, -0.03350282087922096, 0.007330537773668766, -0.01445994433015585, 0.018461031839251518, 0.03881844878196716, -0.02731083333492279, -0.009058116935193539, 0.002178329974412918, -0.003295330097898841, -0.014617976732552052, -0.008821068331599236, -0.026233341544866562, 0.00349287036806345, 0.008081191219389439, 0.0034659330267459154, -0.0036526983603835106, 0.03014104627072811, -0.011981712654232979, -0.01738354004919529, 0.0088713513687253, 0.01623421534895897, -0.011421415954828262, -0.019897688180208206, 0.006371569819748402, 0.03482454642653465, -0.017412273213267326, -0.00989137776196003, 0.02588854357600212, 0.0067055923864245415, 0.04427774250507355, -0.030026113614439964, 0.005412601865828037, 0.0018874070374295115, -0.0049133640713989735, 0.028373958542943, 0.0047625149600207806, -0.026649972423911095, -0.021420544013381004, 0.020702214911580086, -0.011952979490160942, -0.03186503425240517, -0.0008678301237523556, -0.02517021633684635, -0.02050108276307583, -0.010681538842618465, 0.023791026324033737, 0.007391595747321844, 0.010250541381537914, 0.0354854054749012, 0.021219411864876747, 0.014309095218777657, -0.028187192976474762, 0.008081191219389439, -0.017484106123447418, -0.02863255701959133, 0.005067804362624884, -0.013755982741713524, 0.015573352575302124, -0.0021747383289039135, 0.005509576294571161, 0.0022770999930799007, -0.004166302736848593, 0.018863296136260033, 0.019394857808947563, -0.0070467982441186905, 0.023201996460556984, -0.017441006377339363, -0.005074987653642893, 0.024078356102108955, 0.026089675724506378, 0.005373093765228987, 0.01330343633890152, -0.015070523135364056, 0.018504131585359573, -0.0072766635566949844, 0.04419154301285744, 0.006069872062653303, -0.04355941340327263, 0.017254240810871124, -0.006367978174239397, -0.022469302639365196, -0.01961035653948784, -0.004406942520290613, -0.02103264629840851, 0.009180232882499695, 0.012225943617522717, -0.007470611948519945, 0.014316278509795666, -0.028618190437555313, 0.011572265066206455, -0.002936166012659669, -0.029681315645575523, 0.0022860791068524122, -0.01728297397494316, -0.0005454804049804807, 0.017527205869555473, 0.0025267188902944326, -0.007643010932952166, 0.04097343236207962, 0.005929798353463411, 0.007308988366276026, -0.012728773057460785, -0.009180232882499695, 0.02517021633684635, -0.01352611742913723, -0.015185455791652203, 0.004471592139452696, -0.014984323643147945, 0.02065911516547203, 0.008440354838967323, 0.0015228554839268327, 0.023891592398285866, -0.0060842386446893215, 0.023273829370737076, -0.03962297737598419, 0.011593814939260483, -0.012391159310936928, -0.04353068023920059, 0.009460380300879478, 0.033560287207365036, -0.038444917649030685, 0.009331081993877888, -0.009639962576329708, 0.018949493765830994, -0.0006860033026896417, -0.002345341257750988, 0.014316278509795666, 0.02111884579062462, 0.0034497706219553947, 0.012937088496983051, -0.02616150863468647, 0.02147800847887993, 0.00953221321105957, 0.013540484011173248, -0.0032127222511917353, 0.024336954578757286, 0.019279925152659416, -0.00211727200075984, 0.006077055353671312, 0.031003039330244064, -0.027684364467859268, -0.013892465271055698, 0.003940029535442591, 0.016291679814457893, 0.055914659053087234, -0.00864867027848959, -0.020702214911580086, -0.04654765874147415, -0.022067038342356682, -0.017010008916258812, -0.015544619411230087, -0.013820632360875607, -0.01916499249637127, 0.03327295556664467, 0.03324422240257263, 0.008318238891661167, -0.01729734055697918, 0.00023345662339124829, -0.005297669675201178, 0.003929254598915577, 0.02216760441660881, 0.03172136843204498, 0.012297776527702808, 0.013957114890217781, 0.011759030632674694, -0.015903783962130547, 0.009740528650581837, -0.010178708471357822, 0.03979537636041641, 0.015501519665122032, 0.010430123656988144, 0.010078143328428268, -0.5788000226020813, -0.015472786501049995, -0.020960813388228416, -0.01986895501613617, -0.029020454734563828, 0.020989546552300453, 0.011019152589142323, 0.009762078523635864, -0.005250978283584118, 0.030026113614439964, -0.008260772563517094, -0.011945796199142933, -0.02103264629840851, -0.0226273350417614, -0.010142792016267776, -0.028144093230366707, 0.0220814049243927, -0.029307784512639046, 0.0026578139513731003, 0.0003461443411651999, -0.0016359922010451555, 0.03203743323683739, -0.010588156059384346, 0.00319296820089221, -0.0037460809107869864, 0.005574225913733244, 0.007413145620375872, -0.02022811770439148, 0.03077317401766777, 0.005789724178612232, -0.03554287180304527, 0.018877660855650902, 0.027698731049895287, -0.015846317633986473, 0.050139300525188446, 0.003200151491910219, -0.023173263296484947, 0.015630818903446198, 0.014754458330571651, 0.05220808461308479, -0.029480183497071266, -0.0157888513058424, 0.010056593455374241, 0.014984323643147945, -0.00980517826974392, -0.00971897877752781, 0.03999650850892067, 0.0021442093420773745, -0.013641050085425377, -0.032066166400909424, -0.027828030288219452, -0.010185891762375832, -0.020630382001399994, -0.008713319897651672, 0.01861906424164772, 0.0010631255572661757, 0.024609919637441635, -0.035887669771909714, 0.008634303696453571, 0.023043964058160782, 0.03528427332639694, 0.015027423389256, -0.00798780843615532, -0.03255462646484375, 0.017326073721051216, 0.0034066708758473396, 0.01369851641356945, 0.01542968675494194, 0.007229972165077925, -0.05364473909139633, -0.001502203638665378, 0.022225070744752884, -0.009108399972319603, -0.012570741586387157, 0.022684801369905472, 0.025040917098522186, 0.033129289746284485, 0.0211044792085886, -0.014208529144525528, 0.028891155496239662, -0.002582389395684004, 0.011004786007106304, 0.01143578253686428, -0.03450848162174225, 0.031520236283540726, -0.0010783900506794453, -0.008569654077291489, -0.012728773057460785, 0.010681538842618465, 0.028977354988455772, 0.01561645232141018, 0.02749759890139103, -0.004230952356010675, -0.013712882995605469, 0.00970461219549179, 0.024782318621873856, -0.0013073571026325226, -0.0026865468826144934, -0.010595339350402355, -0.025701778009533882, -0.002695525996387005, 0.013102304190397263, -0.008217672817409039, -0.0014995099045336246, 0.03447974845767021, 0.019825855270028114, -0.03537047281861305, 0.020343050360679626, 0.03149150311946869, -0.013921198435127735, 0.00042067086906172335, -0.011766213923692703, -0.01463234331458807, -0.00532281119376421, 0.023661727085709572, -0.04778318479657173, 0.04468000680208206, -0.009747711941599846, -0.0035664988681674004, 0.019639089703559875, 0.003821505466476083, 0.017010008916258812, 0.00997757725417614, 0.0014438393991440535, -0.00864867027848959, 0.019840221852064133, 0.019035693258047104, -0.04335828125476837, -0.011155635118484497, 0.03123290464282036, 0.027511965483427048, 0.008174573071300983, 0.03433608263731003, -0.023618627339601517, 0.02971004880964756, -0.010185891762375832, -0.0025159441865980625, -0.025658678263425827, 0.012419892475008965, -0.020515449345111847, -0.020472349599003792, -0.0028499665204435587, -0.0038466467522084713, -0.023618627339601517, -0.053874604403972626, -0.014481494203209877, -0.02544317953288555, 0.015314754098653793, 0.006389528047293425, 0.015013056807219982, -0.011457332409918308, 0.025931643322110176, -0.007930342108011246, 0.015199822373688221, -0.030543310567736626, -0.018733996897935867, 0.0068025668151676655, -0.007592727895826101, -0.01285807229578495, 0.002519535832107067, -0.005168370436877012, 0.020874613896012306, -0.0315777026116848, -0.02172224037349224, -0.02100391313433647, 0.004396167583763599, -0.015558985993266106, 0.011083802208304405, 0.008339788764715195, -0.03175010159611702, -0.030112313106656075, -0.013253153301775455, -0.009841094724833965, 0.02438005432486534, -0.0006662493105977774, 0.019739655777812004, 0.015329120680689812, 0.012850889004766941, -0.014582060277462006, -0.01010687556117773, -0.011665647849440575, -0.008275139145553112, -0.023087063804268837, -0.006446994375437498, 0.03180756792426109, 0.012534825131297112, 0.02679363638162613, 0.0030762399546802044, 0.026305174455046654, 0.006533193867653608, -0.0011645894264802337, 0.018834562972187996, -0.00922333262860775, 0.009963210672140121, -0.015659552067518234, 0.012154110707342625, -0.0031265229918062687, -0.025069650262594223, 0.0008085680310614407, 0.030083579942584038, 0.03850238397717476, 0.03068697452545166, 0.01640661247074604, -0.013806265778839588, -0.024624286219477654, -0.020156286656856537, 0.03473834693431854, -0.0047984314151108265, 0.004040595609694719, 0.01485502440482378, 0.04028384014964104, 0.010099692270159721, -0.020242484286427498, -0.0016297068214043975, 0.008533737622201443, 0.02198083885014057, -0.013662599958479404, -0.005369502119719982, -0.01801566779613495, 0.029595116153359413, -0.020558549091219902, -0.011572265066206455, 0.025859810411930084, -0.012096644379198551, -0.013023287989199162, 0.004931322298943996, 0.01614801585674286, 0.013188503682613373, 0.022670434787869453, -0.008986284025013447, -0.03111797198653221, -0.010516323149204254, -0.01587505079805851, -0.011105352081358433, 0.024265121668577194, -0.021851539611816406, 0.0220814049243927, 0.0005095639498904347, 0.03284195810556412, -0.021147578954696655, -0.009287982247769833, 0.021391810849308968, 0.02091771364212036, -0.02873312309384346, 0.009920110926032066, -0.03180756792426109, 0.008936000987887383, 0.03390508517622948, -0.007865692488849163, 0.012240310199558735, -0.02483978495001793, 0.0363474003970623, -0.0013782919850200415, 0.00930953212082386, 0.029307784512639046, -0.0044392673298716545, -0.01467544212937355, 0.004647582769393921, 0.015171089209616184, -0.0070467982441186905, 0.009331081993877888, 0.01843229867517948, -0.01254919171333313, 0.028531990945339203, -0.00011616711708484218, -0.00693904934450984, -0.01650717854499817, 0.006867216434329748, -0.015372220426797867, -0.020515449345111847, 0.01295145507901907, -0.013195686973631382, -0.006464952602982521, -0.0030295485630631447, 0.016981275752186775, 0.008224856108427048, 0.01521418895572424, 0.0030421193223446608, 0.02590291015803814, -0.0024674569722265005, -0.02650630660355091, -0.03565780445933342, 0.005667608696967363, -0.00821048952639103, 0.010473223403096199, -0.012556375004351139, 0.007283846847712994, -0.004557791631668806, -0.037640392780303955, 0.014883757568895817, -0.005549084395170212, -0.00731258001178503, -0.03680713102221489, -0.025601211935281754, -0.008936000987887383, -0.01237679272890091, 0.02899172157049179, -0.008792335167527199, -0.01933739148080349, -0.006001631263643503, 0.03163516893982887, 0.005685566924512386, 0.022584235295653343, -0.03416368365287781, 0.053242478519678116, -0.006662493105977774, 0.015731384977698326, 0.002165759215131402, 0.021578574553132057, -0.005074987653642893, 0.014826291240751743, -0.013102304190397263, -0.04832911118865013, 0.006924682762473822, 0.03637613356113434, -0.0050103385001420975, 0.01237679272890091, 0.014495860785245895, 0.013152587227523327, 0.0007044104859232903, -0.003925662953406572, -0.014409661293029785, -0.02846015803515911, 0.013849365524947643, 0.041548095643520355, 0.01112690195441246, 0.0029990198090672493, 0.019208092242479324, 0.009568129666149616, -0.009582496248185635, -0.018920760601758957, -0.02597474306821823, -0.0051755537278950214, 0.010537873022258282, -0.02988244779407978, -0.010825203731656075, 0.005200695246458054, -0.005182737018913031, 0.02792859636247158, -0.008454721421003342, -0.032956890761852264, -0.00675946706905961, 0.02235436998307705, -0.009984760545194149, 0.0006146194646134973, -0.008749236352741718, -0.009338265284895897, 0.018676530569791794, 0.011514798738062382, -0.018317366018891335, 0.008993467316031456, 0.01570265181362629, 0.0037424892652779818, -0.01861906424164772, 0.008153023198246956, 0.02173660695552826, 0.010444490239024162, 0.020098820328712463, 0.000825179391540587, -0.0014420435763895512, 0.027698731049895287, 0.030801907181739807, 0.01121310144662857, 0.009496296755969524, -0.006543968804180622, -0.002582389395684004, 0.010149975307285786, 0.011493248865008354, -0.004859489388763905, -0.06654591113328934, -0.017785802483558655, 0.016708310693502426, -3.84067016057088e-06, -0.024868518114089966, 0.025040917098522186, 0.005541901104152203, -0.033043090254068375, -0.038617316633462906, 0.03200870007276535, 0.02402089163661003, -0.0015336304204538465, -0.01073182187974453, -0.00896473415195942, -0.03379015251994133, -0.02412145584821701, -0.002304037334397435, 0.0001917038025567308, 0.0024297446943819523, -0.023000864312052727, 0.0011089189210906625, -0.030169779434800148, 0.01227622665464878, -0.01666521094739437, 0.01437374483793974, -0.004191444255411625, -0.001758107915520668, -0.04884630814194679, -0.011766213923692703, 1.704626265564002e-05, -0.004640399478375912, 0.024351321160793304, -0.009496296755969524, -0.008311055600643158, 0.007251522038131952, -0.022670434787869453, -0.031146705150604248, -0.01738354004919529, -0.04462254047393799, -0.013166953809559345, 0.0002794745087157935, -0.01959598995745182, -0.012484542094171047, -0.006490094121545553, 0.039680443704128265, 0.00032437001937069, -7.261848077178001e-05, -0.02065911516547203, -0.0023309746757149696, -0.004259685520082712, 0.017972568050026894, 0.03284195810556412, 0.0157888513058424, 0.011428599245846272, 0.015932517126202583, 0.036060068756341934, -0.017067475244402885, -0.03220983222126961, -0.008842618204653263, 0.010545056313276291, -0.02722463384270668, -0.013245970010757446, 0.008533737622201443, -0.010818020440638065, 0.007420328911393881, 0.007470611948519945, -0.011938612908124924, 0.0009293369366787374, -0.00561014236882329, 0.0058759236708283424, -0.010573789477348328, -0.001099939807318151, 0.012750322930514812, -0.0021675550378859043, -0.006245862692594528, 0.012893988750874996, 0.009769261814653873, 0.02847452461719513, 0.04082976654171944, 0.014000213705003262, 0.028704389929771423, -0.004216585773974657, -0.021779706701636314, -0.03787025436758995, 0.01254919171333313, 0.011004786007106304, 0.023474961519241333, -0.03519807383418083, -0.04407661035656929, -0.014179795980453491, 0.007269480265676975, -0.023963425308465958, -0.007549628149718046, -0.01861906424164772, -0.0063141039572656155, 0.004963647108525038, 0.006191988009959459, 0.0017392518930137157, 0.006375161465257406, -0.004561383277177811, -0.025572478771209717, -0.014330645091831684, 0.005064212717115879, 0.03315802291035652, 0.028848055750131607, -0.012965821661055088, 0.01542968675494194, -0.020644748583436012, -0.015530252829194069, -0.00656551867723465, -0.02996864728629589, -0.014481494203209877, 0.01104788575321436, 0.014898124150931835, 0.035600338131189346, 0.03318675607442856, 0.026822369545698166, 0.019811488687992096, 0.018058767542243004, -0.0028140502981841564, -0.007003698498010635, 0.00033649179385975003, -0.00527611980214715, -0.006475727539509535, 0.007330537773668766, 0.017800169065594673, -0.0007349394145421684, 0.02226817049086094, -0.0016584399854764342, 0.02864692360162735, 0.013777532614767551, 0.012929905205965042, -0.010264907963573933, -0.006748692132532597, -0.028848055750131607, 0.0007228176109492779, 0.019294291734695435, 0.002620101673528552, 0.00032122732955031097, -0.03677839785814285, -0.01950979046523571, 0.026276441290974617, -0.005347952712327242, 0.0019035694422200322, -0.0010379840387031436, 0.025040917098522186, -0.004927730653434992, 0.03896211460232735, 0.019739655777812004, 0.03858858346939087, 0.017527205869555473, -0.014129512943327427, -0.032698292285203934, 0.0014977140817791224, 0.02996864728629589, -0.009869827888906002, 0.036491066217422485, 0.038358718156814575, 0.023791026324033737, -0.002171146683394909, 0.02261296845972538, 0.007384412456303835, 0.0022645292337983847, 0.012132560834288597, -0.009833911433815956, -0.01801566779613495, -0.022454936057329178, -0.048472777009010315, 0.0014447373105213046, 0.005225836765021086, -0.002357912017032504, 0.003546744817867875, 0.0052725281566381454, -0.0034318123944103718, 0.001673704362474382, 0.026549406349658966, -0.0005180941079743207, 0.016306046396493912, -0.004432084038853645, 0.02465301938354969, 0.036749664694070816, -0.02298649773001671, -0.01276468951255083, 0.005890290252864361, 0.017613403499126434, -0.0009437035187147558, 0.01077492069453001, 0.024882884696125984, -0.03123290464282036, -0.0264201071113348, 0.020817147567868233, 0.007434695493429899, -0.02696603536605835, -0.021521108224987984, 0.0016530525172129273, 0.02429385483264923, 0.00023008945572655648, -0.02002698741853237, -0.015027423389256, -0.0011376520851626992, 0.0006092319963499904, -0.0315777026116848, -0.002453090390190482, 0.016033083200454712, -0.027511965483427048, 0.0388471819460392, -0.02403525821864605, 0.006350019946694374, 0.02881932258605957, -0.004802023060619831, -0.020946446806192398, -0.0031121564097702503, -0.013569217175245285, -0.016981275752186775, 0.0037532642018049955, 0.009252065792679787, 0.030485844239592552, -0.017713969573378563, 0.0159468837082386, 0.012707223184406757, 0.017268607392907143, 0.009589679539203644, -0.01711057499051094, -0.014553327113389969, 0.024523720145225525, -0.0023309746757149696, -0.006281779147684574, 0.01932302489876747, -0.03163516893982887, -0.006306920666247606, -0.0011071230983361602, 0.013008921407163143, -0.020242484286427498, -0.018935127183794975, 0.005207878537476063, 0.015501519665122032, 0.005207878537476063, 0.010853936895728111, 0.017441006377339363, -0.002774542197585106, -0.024940351024270058, 0.00913713313639164, 0.0023435454349964857, 0.0071437726728618145, -0.012850889004766941, -0.0037999555934220552, 0.008282322436571121, -0.015501519665122032, 0.01179494708776474, 0.034278616309165955, 0.009668695740401745, 0.012326509691774845, 0.004995971918106079, -0.022023938596248627, 0.0032432512380182743, 0.003552132286131382, -0.023977791890501976, -0.02091771364212036, -0.007262296974658966, -0.014208529144525528, 0.0024961901362985373, 0.020817147567868233, -0.0017374560702592134, -0.0184466652572155, -0.02067348174750805, -0.009869827888906002, -0.003171418560668826, -0.002794296247884631, -0.0003737550869118422, 0.0015919945435598493, 0.020903347060084343, -0.016277313232421875, -0.004784064833074808, -0.012893988750874996, 0.04091596603393555, -0.0046511744149029255, -0.003234272124245763, 0.005538309458643198, 0.003004407277330756, 0.023704826831817627, -0.017081841826438904, 0.001470776740461588, -0.02643447369337082, -0.034537214785814285, -0.007779492996633053, 0.001249890890903771, 0.013669783249497414, -0.017426639795303345, -0.012577924877405167, 0.005441335029900074, -0.01916499249637127, -0.038100119680166245, 0.028402691707015038, 0.01179494708776474, -0.002339953789487481, 0.016622111201286316, 0.01055942289531231, 0.02261296845972538, -0.004245318938046694, -0.0009643554221838713, -0.020630382001399994, 0.0014276769943535328, 0.018690897151827812, -0.015013056807219982, -0.014215712435543537, 0.019193725660443306, 0.028488891199231148, 0.02874748967587948, -0.036835864186286926, -0.05749497935175896, -0.007082714699208736, -0.029121020808815956, -0.009302348829805851, -0.01454614382237196, -0.005031888373196125, -0.005466476548463106, -0.0074059623293578625, -0.0001934996253112331, 0.04597299546003342, -0.023388762027025223, -0.009697428904473782, -0.031261637806892395, -0.01006377674639225, -0.0020777639001607895, -0.006389528047293425, 0.012297776527702808, 0.003390508471056819, -0.026808002963662148, 0.004755331669002771, 0.018403565511107445, 0.019912054762244225, 0.004787656478583813, 0.014122329652309418, 0.010789287276566029, -0.014000213705003262, 0.000661310798022896, -0.0008619936998002231, -0.02748323231935501, -0.014517410658299923, -0.0005145024624653161, -0.03628993406891823, -0.011069435626268387, 0.003464137203991413, -0.017397906631231308, 0.008591203950345516, -0.0013890669215470552, 0.0006837585242465138, 0.00257161445915699, 0.0030169778037816286, -0.021176312118768692, -0.0037819973658770323, 0.006590660195797682, -0.00035534793278202415, 0.020730948075652122, -0.02259860187768936, -0.004715824034065008, 0.031146705150604248, 0.003749672556295991, -0.009948844090104103, -0.03795645385980606, 0.029566382989287376, -0.01792946830391884, 0.0021567801013588905, 0.01144296582788229, -0.004227360710501671, 0.02136307768523693, -0.02820155955851078, 0.004938505589962006, -0.024063991382718086, -0.0035629072226583958, -0.026922935619950294, -0.02909228764474392, -0.026089675724506378, 0.025328248739242554, 0.008454721421003342, -0.020098820328712463, -0.027066601440310478, -0.00432074349373579, 0.00921614933758974, -0.014740091748535633, -0.009898561052978039, -0.01020744163542986, -0.017426639795303345, 0.0013369881780818105, -0.007463428657501936, -0.016004350036382675, 0.0289198886603117, -6.944773645045643e-07, -0.00953221321105957, -0.03146276995539665, -0.006795383524149656, 0.17354805767536163, 0.006393119692802429, 0.01801566779613495, 0.03781278803944588, 0.015041789971292019, -0.022397469729185104, 0.008433171547949314, 0.0030582817271351814, -0.019452324137091637, 0.004866672679781914, -0.006249454338103533, 0.02279973216354847, 0.0008242814801633358, -0.008181756362318993, 0.01870526373386383, -0.000807221163995564, -0.035427939146757126, -0.03390508517622948, -0.03358902037143707, -0.00020809067063964903, -0.0016728064510971308, -0.007158139254897833, -0.01657901145517826, -0.02041488327085972, 0.0037173477467149496, -0.01916499249637127, -0.00585078215226531, -0.03060077503323555, 0.02172224037349224, 0.032324764877557755, 0.0029271868988871574, 0.003264801111072302, 0.008835434913635254, 0.002794296247884631, -0.021434910595417023, -0.02430822141468525, -0.004004679154604673, -0.010250541381537914, 0.03387635201215744, 0.006770242005586624, 0.006328470539301634, -0.02242620289325714, -0.010250541381537914, -0.03706572949886322, -0.014251628890633583, 0.0056747919879853725, -0.007330537773668766, -0.019797122105956078, 0.01428036205470562, -0.001585709280334413, -0.036893330514431, 0.0038646049797534943, 0.02261296845972538, 0.019840221852064133, -0.02136307768523693, -0.009417281486093998, 0.01659337803721428, 0.026937302201986313, 0.002679363824427128, 0.01940922439098358, 0.006332062184810638, 0.01294427178800106, 0.013454284518957138, 0.004529058467596769, -0.027425765991210938, 0.01011405885219574, -0.026678703725337982, 0.035341739654541016, 0.02261296845972538, -0.021391810849308968, -0.015487153083086014, -0.038100119680166245, -0.02439442090690136, -0.00798780843615532, -0.015989983454346657, -0.0174697395414114, 0.016564644873142242, 0.022469302639365196, 0.02501218393445015, 0.034623414278030396, -0.015731384977698326, 0.003936437889933586, -0.02899172157049179, 0.021865906193852425, -0.003677839646115899, -0.02403525821864605, 0.041979093104600906, -0.029307784512639046, -0.014122329652309418, -0.006709184031933546, -0.03042837791144848, 0.004661949351429939, -0.0050103385001420975, 2.7652824428514577e-05, 0.004514691885560751, -0.037554193288087845, 0.01738354004919529, 0.00017430679872632027, 0.005922615062445402, 0.020687848329544067, -0.009323898702859879, 0.07614277303218842, 0.010042226873338223, 0.006777425296604633, 0.01728297397494316, -0.010121242143213749, -0.014797558076679707, 0.003474912140518427, -0.0008328116382472217, -0.03459468111395836, -0.021865906193852425, -0.03195123374462128, 0.00997039396315813, -0.002697321819141507, -0.016995642334222794, 0.030284712091088295, 0.010839570313692093, -0.007628644350916147, 0.0237622931599617, -0.007657377049326897, -0.03735306113958359, -0.009280798956751823, -0.0033923042938113213, 0.00989137776196003, 0.004679907578974962, -0.012915538623929024, -0.015573352575302124, -0.0034785037860274315, -0.03220983222126961, -0.016248581930994987, 0.036835864186286926, 0.016564644873142242, 0.016521545127034187, 0.009122766554355621, 0.011026335880160332, -0.013554850593209267, 0.014912490732967854, -0.016708310693502426, -0.005933389998972416, 0.010825203731656075, -0.029207220301032066, -0.011507615447044373, 0.002690138528123498, -0.0007861203048378229, -0.003331246552988887, -0.0441628098487854, 0.003331246552988887, 0.004564974922686815, -0.016880709677934647, -0.016018716618418694, -0.002869720570743084, -0.024351321160793304, -0.005998039618134499, -0.02945145033299923, 0.03022724576294422, -0.0022681208793073893, -0.006446994375437498, -0.044909872114658356, -0.00571789126843214, -0.00494209723547101, -0.01861906424164772, 0.006949824281036854, 0.0005275221774354577, 0.006044730544090271, -0.012908355332911015, -0.004730190150439739, -0.18354718387126923, 0.026535039767622948, 0.018733996897935867, -0.011069435626268387, 0.0016153402393683791, -0.014610793441534042, 0.03468088060617447, -0.00039485597517341375, 0.004906180780380964, -0.007556811440736055, 0.018116233870387077, 0.02216760441660881, 0.01007096003741026, -0.00829668901860714, 0.013849365524947643, 0.046949923038482666, -0.002630876610055566, -0.01695254258811474, 0.024796685203909874, 0.03333042189478874, 0.027253367006778717, -0.03508314490318298, 0.008124290965497494, -0.018202433362603188, 0.003521603299304843, 0.014898124150931835, -0.007542444858700037, 0.009374181739985943, -0.016966909170150757, -0.02242620289325714, -0.004230952356010675, 0.010221808217465878, 0.02936525084078312, 0.008311055600643158, 0.014028946869075298, 0.031089238822460175, -0.02251240238547325, -0.003354592015966773, 0.0028840871527791023, 0.05008183419704437, 0.006730733904987574, 0.043588146567344666, -0.015817584469914436, -0.03396255150437355, -0.0017051312606781721, 0.021966472268104553, 0.015846317633986473, -0.0048163896426558495, 0.0020202978048473597, -0.036232467740774155, 0.020529815927147865, -0.015889417380094528, 0.019222458824515343, -0.003331246552988887, -0.0012391159543767571, 0.05416193604469299, 0.011478882282972336, -0.010832387022674084, 0.007966258563101292, 0.0022088587284088135, -0.01642097905278206, -0.030112313106656075, 0.013310619629919529, -0.008411621674895287, -0.009905744343996048, -0.01968218944966793, -0.031347837299108505, 0.020687848329544067, -0.024983450770378113, 0.005947756581008434, -0.005434151738882065, -0.003115748055279255, 0.012348059564828873, -0.0031067689415067434, 0.011593814939260483, 0.0037604474928230047, 0.002124455291777849, 0.006080646999180317, 0.021420544013381004, -0.01387091539800167, -0.013375268317759037, 0.04407661035656929, -0.0017742703203111887, -0.009007833898067474, 0.008756419643759727, -0.015171089209616184, 0.01906442642211914, -0.0052186534740030766, -0.011162818409502506, 0.005531126167625189, 0.021420544013381004, -0.008627120405435562, 0.001285807229578495, -0.005100129172205925, -0.007592727895826101, 0.014926857315003872, -0.024178922176361084, 0.00671995896846056, 0.010444490239024162, -0.013138220645487309, 0.008267955854535103, 0.002830212702974677, -0.004417717456817627, 0.01180213037878275, 0.003223497187718749, 0.008102741092443466, -0.036232467740774155, -0.0012005057651549578, 0.03085937350988388, -0.016033083200454712, -0.028086626902222633, 0.00896473415195942, 0.019667822867631912, 0.03335915505886078, 0.001334294443950057, 0.01649281196296215, -0.01834609918296337, -0.015386587008833885, 0.016262948513031006, -0.004794839769601822, 0.04930603876709938, 0.011924246326088905, -0.0053156279027462006, 0.03111797198653221, -0.017958201467990875, -0.029020454734563828, -0.08436045050621033, -0.030744440853595734, 0.001189730828627944, 0.0360313355922699, -0.015558985993266106, 0.015831951051950455, 0.0006087830406613648, 0.0030510984361171722, -0.015587719157338142, 0.011198734864592552, -0.023000864312052727, -0.028431424871087074, -0.016119282692670822, -0.0184466652572155, -0.0015713426982983947, -0.004044187255203724, -0.008282322436571121, -0.02199520543217659, 0.02448062039911747, 0.0123696094378829, 0.004324335139244795, -0.01978275552392006, 0.01791510172188282, -0.013274703174829483, -0.004945688880980015, 0.00989137776196003, -0.0245811864733696, 0.017239874228835106, 0.006026772316545248, 0.03511187806725502, -0.00470145745202899, -0.006202762946486473, -0.0013028675457462668, -0.03491074591875076, -0.003546744817867875, -0.015760118141770363, -0.002435132162645459, -0.029508916661143303, 0.031520236283540726, -0.018331732600927353, 0.006508052349090576, 0.013676966540515423, 0.020687848329544067, -0.0032791676931083202, -0.015286021865904331, 0.012412709183990955, -0.011363950558006763, 0.03930691257119179, -0.0004736475821118802, -0.03149150311946869, -0.026190241798758507, -0.01179494708776474, 0.011363950558006763, 0.004044187255203724, 0.030830640345811844, 0.0060231806710362434, 0.014653892256319523, 0.018202433362603188, -0.015573352575302124, -0.021434910595417023, -0.021219411864876747, 0.006824116688221693, -0.021966472268104553, -0.0038466467522084713, 0.007499345112591982, -0.01560208573937416, -0.019035693258047104, 0.0034120583441108465, 0.015228555537760258, -0.019897688180208206, -0.0003531031543388963, 0.003223497187718749, -0.027282100170850754, -0.011011969298124313, 0.0021208636462688446, -0.00921614933758974, -0.01736917346715927, -0.028345225378870964, 0.0024189697578549385, -0.0020023395773023367, -0.014215712435543537, -0.012484542094171047, -0.022756634280085564, -0.01791510172188282, 0.011392682790756226, 0.008914451114833355, 0.008936000987887383, 0.0010658192913979292, 0.030715707689523697, -0.02953764982521534, 0.025112750008702278, 0.0031786016188561916, 0.024107089266180992, 0.0006671472219750285, -0.02067348174750805, -0.005470068193972111, 0.01121310144662857, -0.018863296136260033, -0.027167167514562607, 0.009194599464535713, -0.06355766952037811, 0.002397419884800911, -0.07367172837257385, 0.014165429398417473, -0.007858509197831154, -0.016607744619250298, -0.0006285370909608901, -0.019466690719127655, 0.007707660086452961, 1.2100741514586844e-05, 0.006393119692802429, 0.0028373959939926863, -0.04059990122914314, -0.0030097945127636194, -0.010530689731240273, 0.014524593949317932, -0.02758379839360714, -0.022210704162716866, 0.05327121168375015, -0.01294427178800106, 0.012398342601954937, 0.02501218393445015, -0.017081841826438904, 0.015357853844761848, 0.017354806885123253, 0.019193725660443306, -0.02871875651180744, 0.006188396364450455, 0.01295145507901907, 0.019811488687992096, -0.030169779434800148, 0.002912820316851139, -0.02022811770439148, -0.01633477956056595, -0.023173263296484947, 0.023173263296484947, -0.011378317140042782, 0.0029936323408037424, 0.007686110213398933, 0.013669783249497414, 0.036404866725206375, 0.029034821316599846, -0.026032209396362305, -0.010983236134052277, 0.013159770518541336, -0.019021326676011086, -0.0042129941284656525, -0.003151664510369301, -0.0046152579598128796, 0.008109924383461475, 0.01400739699602127, -0.016248581930994987, 0.023431861773133278, -0.0034785037860274315, -0.0030600775498896837, -0.024049624800682068, 0.01818806678056717, -0.00160815694835037, 0.0074849785305559635, 0.004133977927267551, -0.0050103385001420975, -0.003115748055279255, 0.020817147567868233, -0.015530252829194069, 0.018877660855650902, -0.014215712435543537, 0.025385713204741478, -0.017168041318655014, -0.035169340670108795, 0.011557898484170437, -0.0017069270834326744, 0.013914015144109726, -0.024494986981153488, -0.0020651931408792734, -0.003544948995113373, 0.01352611742913723, 0.014574876986443996, -0.010825203731656075, 0.00734131271019578, -0.0014860412338748574, -0.002314812270924449, 0.003259413642808795, 0.03502567857503891, 0.00838288851082325, -0.024451887235045433, 0.0026775680016726255, 0.022684801369905472, 0.016808876767754555, -0.008584020659327507, 0.006587068550288677, -0.005599367432296276, -0.0005755603779107332, -0.01817370019853115, 0.006030363962054253, 0.0004350374510977417, -0.007513711694628, -0.0056137340143322945, 0.007858509197831154, -0.015645185485482216, -0.009079666808247566, 0.03769785910844803, 0.02679363638162613, 0.04255375638604164, 0.0008503208518959582, 0.012362426146864891, -0.02261296845972538, -0.05048409849405289, 0.003498257603496313, -0.01361950021237135, -0.03034217841923237, 0.010365474037826061, -0.012628207914531231, -0.02075968123972416, 0.02251240238547325, -0.019265558570623398, 0.016650844365358353, -0.011909879744052887, 0.025414446368813515, 0.0009607637766748667, 0.014912490732967854, -0.02279973216354847, 0.045455802232027054, -0.013289069756865501, 0.005067804362624884, 0.0157888513058424, 0.0018999777967110276, 0.03537047281861305, 0.009467563591897488, 0.009331081993877888, -0.027684364467859268, 0.01007096003741026, -0.013834998942911625, 0.024322587996721268, 0.014208529144525528, 0.004697865806519985, -0.027353933081030846, -0.009589679539203644, -0.02050108276307583, -0.006224312819540501, 0.007686110213398933, -0.006202762946486473, 0.07930342108011246, 0.042352624237537384, 0.00015893008094280958, -0.008275139145553112, -0.011119718663394451, -0.0023632992524653673, 0.001471674651838839, 0.0012409117771312594, -0.0053335861302912235, -0.02820155955851078, 0.008605570532381535, 0.006526010576635599, -0.03468088060617447, -0.02581671066582203, 0.01986895501613617, 0.01754157245159149, -0.013418368063867092, 0.043501947075128555, -0.011428599245846272, -0.009489113464951515, 0.022483669221401215, 0.04585806280374527, 0.003133706282824278, 0.00211727200075984, -0.013676966540515423, -0.01560208573937416, 0.02881932258605957, -0.011981712654232979, -0.003103177295997739, -0.06654591113328934, -0.007901608943939209, 0.017670869827270508, -0.028776222839951515, -0.004159119445830584, -0.018130600452423096, 0.01614801585674286, 0.020860247313976288, 0.01428036205470562, 0.02136307768523693, -0.0027547881472855806, -0.006906724534928799, 0.011033519171178341, -0.0038286885246634483, -0.03608880192041397, -0.01870526373386383, 0.002494394313544035, -0.017943834885954857, -0.011672831140458584, -0.06677577644586563] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_dataset_largescale_urban_iot_activity_data_for_ddos_attack_emulation.json b/database/embeddings/publications_txt/2021_dataset_largescale_urban_iot_activity_data_for_ddos_attack_emulation.json new file mode 100644 index 0000000000000000000000000000000000000000..df38b072f1973dbdc4daaef21a59a7fde60450cf --- /dev/null +++ b/database/embeddings/publications_txt/2021_dataset_largescale_urban_iot_activity_data_for_ddos_attack_emulation.json @@ -0,0 +1 @@ +[-0.005219991318881512, 0.007837021723389626, 0.005336069501936436, -0.005719478242099285, -0.008048073388636112, 0.03098226711153984, -0.011762567795813084, 0.025790415704250336, -0.019219698384404182, -0.057799797505140305, 0.00949025433510542, 0.03396511822938919, -0.02023274265229702, 0.0013410523533821106, -0.0042491573840379715, 0.017981532961130142, 0.02622658759355545, -0.0033838488161563873, -0.0062119304202497005, -0.0057616885751485825, 0.011171625927090645, -0.008695296011865139, -0.01954331062734127, 0.00136567500885576, 0.00018642826762516052, 0.003735600272193551, 0.01916341856122017, -0.04184435307979584, -0.015350433066487312, -0.007590796332806349, 0.004129562061280012, -0.017362451180815697, 0.0006265572737902403, -0.002522057853639126, 0.0036863551940768957, 0.005307929124683142, 0.015012751333415508, -0.010538472793996334, 0.02268093265593052, -0.023848747834563255, 0.005044115707278252, 0.006134544964879751, 0.00889227632433176, -0.032079730182886124, -0.0011695735156536102, 0.00567023316398263, 0.024692950770258904, -0.012015828862786293, -0.0030303385574370623, 0.032783232629299164, 0.010995750315487385, 0.03267067298293114, -0.024510040879249573, -0.007042063865810633, -0.011720358394086361, 0.01126308087259531, 0.015913235023617744, 0.0021368900779634714, 0.0044250329956412315, -0.03261439502239227, 0.011699252761900425, -0.018938297405838966, -0.037201233208179474, 0.0023391470313072205, -0.00646519148722291, -0.011621867306530476, -0.018713176250457764, 0.025748206302523613, 0.0016435586148872972, -0.017503151670098305, 0.026522058993577957, 0.025424594059586525, 0.016588598489761353, -0.028041625395417213, 0.011776638217270374, -0.027239631861448288, -0.011417851783335209, -0.009201818145811558, -0.0023356296587735415, 0.016293127089738846, 0.0024939177092164755, -0.016940349712967873, -0.014689140021800995, 0.005680785980075598, 0.019979482516646385, 0.0221744105219841, -0.009884215891361237, 0.011804778128862381, -0.02148497849702835, -0.012993698008358479, 0.0043019200675189495, -0.0035843471996486187, 0.023708047345280647, 0.007052616216242313, -0.004688846878707409, 0.026704968884587288, -0.03151692822575569, 0.03199531137943268, -0.0022969369310885668, -0.027689874172210693, 0.0028210466261953115, -0.011558552272617817, -0.02971596270799637, -0.02303268387913704, -0.005283306818455458, 0.0038446432445198298, -0.0037813279777765274, 0.017292100936174393, 0.006982265971601009, 0.004140114411711693, -0.012036934494972229, 0.014063023030757904, -0.01952924020588398, -0.013683130964636803, -0.0043195076286792755, -0.009075187146663666, 0.013218819163739681, 0.015758464112877846, -0.0033011871855705976, -0.021681958809494972, 0.04508046433329582, -0.01036963239312172, 0.004854169674217701, -0.022455811500549316, 0.020542284473776817, -0.004794372245669365, -0.002407738706097007, -0.008688260801136494, 0.013957497663795948, -0.008491279557347298, -0.006152132526040077, 0.010932434350252151, -0.002817529020830989, -0.00509687839075923, 0.012641946785151958, 0.03078528679907322, -0.013936392031610012, -0.006750110071152449, -0.018755387514829636, -0.049160782247781754, 0.004854169674217701, 0.0451086051762104, -0.04271669685840607, -0.0014026088174432516, -0.0058496263809502125, 0.024045728147029877, -0.007604866288602352, 0.01833328604698181, 0.017292100936174393, 0.011551517061889172, -0.0040908693335950375, -0.009075187146663666, -0.030757145956158638, 0.031179247424006462, -0.009616884402930737, -0.0030233035795390606, -0.011551517061889172, 0.02797127515077591, 0.015097171999514103, -0.022399531677365303, 0.02830895595252514, 0.037567052990198135, -0.026268796995282173, -0.01686999946832657, 0.0002100615674862638, 0.017193609848618507, 0.04235087335109711, -0.001389418146573007, 0.004783819429576397, -0.0202608834952116, -0.019627731293439865, 0.01637754775583744, -0.005244614090770483, -0.008125457912683487, 0.009553569369018078, 0.049864284694194794, 0.045840248465538025, 0.0097505496814847, -0.005786311347037554, -0.0026750697288662195, 0.0030725488904863596, -0.010967610403895378, 0.030025502666831017, 0.02149904891848564, 0.005870731547474861, 0.029518980532884598, 0.027155211195349693, -0.012072109617292881, -0.002699692267924547, -0.0125786317512393, 0.04553070664405823, 0.01744687184691429, -0.01757350191473961, 0.011150520294904709, -0.6015231013298035, -0.005128535907715559, 0.013816796243190765, -0.00668679503723979, -0.023300016298890114, 0.01686999946832657, 0.006475743837654591, 0.004857687279582024, -0.008322439156472683, 0.03905848041176796, -0.026099957525730133, 0.0011625385377556086, -0.009518394246697426, -0.015462993644177914, -0.01865689642727375, 0.007837021723389626, 0.0018730764277279377, -0.003241389524191618, 0.026676829904317856, 0.013401729986071587, 0.011593727394938469, 0.021794518455863, -0.01250124629586935, -0.005321999546140432, -0.012128389440476894, 0.022089989855885506, 0.0077244616113603115, -0.014675070531666279, 0.022455811500549316, 0.005976256914436817, -0.02957526035606861, -0.0008754213922657073, 0.04589652642607689, 0.014478089287877083, 0.04837285727262497, -0.016757437959313393, -0.014295178465545177, 0.029096879065036774, 0.025199472904205322, 0.053578779101371765, -0.04716283455491066, -0.029687821865081787, 0.008076213300228119, 0.024861792102456093, -0.0044074454344809055, -0.005934047047048807, 0.034865602850914, -0.013809761963784695, -0.021724168211221695, -0.01450622919946909, -0.03416210040450096, -0.0032484245020896196, 0.0015749670565128326, -0.013676095753908157, 0.022779423743486404, -0.007780741900205612, 0.011825883761048317, -0.0007377986330538988, 0.023370366543531418, 0.009715374559164047, 0.004702916834503412, 0.018741317093372345, 0.005775758530944586, -0.015533343888819218, -0.0022600030060857534, -0.007358639966696501, 0.0027278324123471975, 0.0012768576852977276, 0.018938297405838966, -0.04029664397239685, 0.01686999946832657, 0.01744687184691429, 0.007590796332806349, -0.026859739795327187, 0.01098871510475874, 0.023004544898867607, 0.030869707465171814, 0.019613660871982574, -0.02535424381494522, 0.016419757157564163, -0.006180272903293371, 0.0038763009943068027, -0.010003810748457909, -0.017812693491578102, 0.01616649702191353, 0.01867096684873104, -0.00992642529308796, 0.012656017206609249, -0.0017139088595286012, 0.0019205628195777535, 0.013718306086957455, 0.025649715214967728, -0.025452734902501106, -0.018094094470143318, -0.005395866930484772, 0.026873810216784477, -0.0019311154028400779, 0.022216621786355972, -0.020697055384516716, -0.004804924596101046, -0.008181738667190075, -0.012895207852125168, 0.009919391013681889, -0.009616884402930737, 0.03942430019378662, 0.010327422060072422, -0.007042063865810633, 0.007165176793932915, 0.005255166441202164, -0.008385754190385342, -0.011720358394086361, 0.003317016176879406, -0.04142225161194801, 0.0021544776391237974, 0.02235732227563858, -0.026803459972143173, 0.021569399163126945, -0.0021826177835464478, 0.009286237880587578, 0.012262055650353432, -0.0025730617344379425, 0.012747472152113914, 0.020373443141579628, -0.0114319222047925, -0.010672139003872871, 0.015294152311980724, 0.03472490236163139, -0.02901245839893818, -0.0059305294416844845, -0.012986662797629833, 0.01723582111299038, -0.01686999946832657, 0.014886121265590191, -0.013577605597674847, 0.03942430019378662, -0.0031675216741859913, 0.029603401198983192, -0.01951516978442669, 0.011854023672640324, -0.01793932355940342, -0.020331233739852905, -0.014063023030757904, -0.001105378963984549, -0.012656017206609249, -0.029153158888220787, -0.011417851783335209, -0.017643852159380913, 0.015350433066487312, 0.007900337688624859, 0.00836464948952198, -0.010313352569937706, 0.019951341673731804, 0.002430602442473173, 0.0004726659972220659, -0.026789389550685883, -0.011579657904803753, -0.005304411519318819, -0.023004544898867607, -0.010165616869926453, 0.00033284479286521673, -0.0018414187943562865, 0.022047780454158783, -0.02376432716846466, -0.013697201386094093, -0.013000733219087124, 0.023187454789876938, 0.012444966472685337, 0.01100278552621603, 0.00012531144602689892, -0.03340231627225876, -0.0006366700981743634, -0.015054961666464806, -0.017334310337901115, 0.013493184931576252, -0.009799795225262642, 0.026001466438174248, -0.026268796995282173, 0.006933020893484354, -0.011044994927942753, 0.001404367620125413, -0.004263227339833975, 0.01083394419401884, -0.009025941602885723, 9.425839380128309e-06, 0.02548087388277054, 0.01267712190747261, 0.024355269968509674, 0.00870233029127121, -0.004639601334929466, 0.0008354096789844334, 0.003914993721991777, 0.0017209439538419247, -0.015040891245007515, 0.013851971365511417, -0.019585520029067993, 0.018445845693349838, 0.003007474821060896, -0.01232537068426609, -0.009307343512773514, 0.029293859377503395, 0.04558698832988739, 0.023187454789876938, 0.004217499867081642, 0.006299868226051331, -0.016771508380770683, -0.02393316850066185, 0.01170628797262907, -0.010904294438660145, 0.022948263213038445, 0.0012355269864201546, 0.03894592076539993, -0.005244614090770483, -0.042294591665267944, 0.006546094547957182, -0.01954331062734127, 0.03748263418674469, 0.000688993139192462, 0.007421955466270447, -0.026662759482860565, 0.006046607159078121, -0.0030461675487458706, -0.022807562723755836, 0.027886854484677315, -0.00835057906806469, -0.004808442201465368, -0.0008490400505252182, 0.01969808153808117, 0.024875862523913383, 0.024411549791693687, -0.015786604955792427, -0.024425620213150978, 0.02835116535425186, 0.014281108975410461, 0.017376521602272987, -0.007534516043961048, -0.017657922580838203, 0.025734135881066322, -0.005501392763108015, 0.03556910529732704, -0.016813719645142555, 0.026507988572120667, 0.03199531137943268, 0.03258625417947769, -0.03551282733678818, 0.017897114157676697, -0.03179832920432091, 0.0045586987398564816, 0.020345304161310196, -0.003250183304771781, 0.008807855658233166, 0.00518481619656086, 0.018867947161197662, -0.011994724161922932, 0.0019698080141097307, 0.03058830462396145, -0.010503297671675682, -0.02602960728108883, 0.001953979255631566, 0.03064458630979061, 0.002562509151175618, 0.03393697738647461, 0.006011432036757469, -0.002784112701192498, 0.022568373009562492, 0.006303385831415653, -0.028252676129341125, -0.006092335097491741, 0.01898050867021084, -0.006679759826511145, -0.007288289722055197, -0.005044115707278252, -0.02673310972750187, -0.006398358847945929, -0.019796570762991905, 0.003929063677787781, 0.01100278552621603, 0.0019205628195777535, 0.0015283600660040975, 0.0227090734988451, 0.015800675377249718, -0.034921884536743164, -0.015575554221868515, -0.0026838635094463825, 0.018741317093372345, 0.022469881922006607, -0.021245786920189857, -0.00879378616809845, 0.018938297405838966, -0.026634618639945984, -0.028604427352547646, 0.02356734685599804, 0.01197361946105957, -0.008582735434174538, -0.021386487409472466, -0.03495002165436745, -0.004917485173791647, 0.04012780264019966, -0.011896234005689621, -0.021330207586288452, -0.005424007307738066, 0.024200499057769775, 0.0114319222047925, -0.01125604659318924, 0.0005737945321016014, 0.04887938126921654, -0.005898871459066868, 0.0022037227172404528, 0.0035087205469608307, -0.0006793199572712183, 0.007179246749728918, 0.0013885388616472483, -0.002376080956310034, -0.01916341856122017, 0.03236113116145134, 0.0028984318487346172, -0.004713469184935093, 0.032107871025800705, -0.004783819429576397, -0.00039967757766135037, 0.003183350432664156, 0.008730471134185791, -0.04851355776190758, -0.03587864711880684, 0.012269089929759502, 0.048288438469171524, 0.036835409700870514, -0.0023356296587735415, 0.009384728036820889, 0.00026337389135733247, -0.02375025674700737, -0.04226645454764366, 0.010904294438660145, 0.004562216345220804, 0.0009356588125228882, -0.02868884801864624, 0.016841858625411987, 0.008681225590407848, 0.009884215891361237, 0.027858713641762733, -0.007900337688624859, 0.0100178811699152, -0.010299282148480415, 0.00584610877558589, -0.007365675177425146, 0.003907958511263132, -0.029631542041897774, -0.002319800667464733, 0.016602668911218643, 0.04066246747970581, -0.03025062382221222, 0.03787659481167793, 0.019430749118328094, 0.007168694399297237, 0.0075696911662817, -3.1173285606200807e-06, 0.0319671705365181, 0.027858713641762733, -0.00827319361269474, -0.02971596270799637, 0.027506962418556213, 0.025283893570303917, 0.010869119316339493, 0.01778455264866352, 0.008955591358244419, 0.025565294548869133, -0.0008908105082809925, -0.0007672578212805092, 0.007977723143994808, -0.0012355269864201546, -0.06719859689474106, 0.0039923787117004395, 0.02852000668644905, -0.018361425027251244, -0.025902975350618362, 0.02431306056678295, 0.004762714728713036, -0.041816212236881256, -0.03812985494732857, 0.028899898752570152, -0.012051003985106945, 0.007115931715816259, -0.008427964523434639, -0.016405686736106873, -0.025424594059586525, -0.018882017582654953, -0.008216913789510727, 0.005445112474262714, -0.01318364404141903, -0.033177196979522705, -0.00096819584723562, -0.016926279291510582, 0.0015872783260419965, -0.025790415704250336, 0.007858127355575562, -0.011917338706552982, -0.009560604579746723, -0.055886268615722656, 0.010819874703884125, 0.02113322727382183, -0.003914993721991777, 0.020471934229135513, -0.0032783234491944313, -0.0025695443619042635, -0.005156676284968853, -0.030475744977593422, -0.0044179982505738735, -0.007590796332806349, -0.021245786920189857, -0.006799355149269104, -0.003113000188022852, -0.01723582111299038, 0.004910449963063002, -0.0030057160183787346, 0.03275509551167488, -0.017137330025434494, -0.02394723892211914, 0.004945625085383654, -0.00021698666387237608, 0.0057089258916676044, 0.018431775271892548, 0.03323347494006157, 0.010088231414556503, 0.01048219297081232, 0.004333577584475279, 0.011762567795813084, -0.009877180680632591, -0.012895207852125168, -0.01845991611480713, 0.006486296653747559, -0.0038270556833595037, 0.003665250027552247, 9.151033736998215e-05, -0.0005003664409741759, 0.020359372720122337, 0.03205159306526184, -0.01391528733074665, -0.0035315845161676407, -0.007200351916253567, 0.01969808153808117, -0.0029476771596819162, 0.014449949376285076, -0.018586546182632446, -0.008779715746641159, 0.004122526850551367, -0.019093068316578865, 5.001465979148634e-05, 0.017376521602272987, 0.01620870642364025, 0.01985285058617592, 0.038974061608314514, -0.006145097780972719, -0.0319671705365181, -0.04789447784423828, 0.0013146710116416216, -0.0009286238346248865, 0.022765353322029114, -0.008153598755598068, -0.041112709790468216, -0.013275098986923695, -0.0005122380098327994, -0.006637549493461847, 0.006454639136791229, -0.004351165145635605, -0.02711300179362297, -0.008146563544869423, 0.0062822806648910046, -0.0006388685433194041, 0.0008450828609056771, 0.007119449321180582, -0.027309982106089592, -0.02693009003996849, 0.010320386849343777, 0.037060532718896866, 0.02004983276128769, -0.00835057906806469, 0.006173237692564726, -0.007035028655081987, -0.011030925437808037, -0.036891691386699677, -0.028097905218601227, -0.03607562929391861, 0.00589183671399951, 0.02622658759355545, 0.011868094094097614, 0.046543750911951065, 0.032304853200912476, 0.010327422060072422, 0.017840832471847534, 0.002214275300502777, 0.004794372245669365, 0.0037567054387181997, -0.02078147605061531, -0.0076541113667190075, -0.0012627877295017242, 0.025283893570303917, -0.010355562902987003, 0.01899457722902298, -0.009208852425217628, -0.0087164007127285, -0.0015160486800596118, -0.004171771928668022, -0.027380332350730896, -0.01452029962092638, -0.021189507097005844, 0.00818877387791872, 0.008688260801136494, 0.018389565870165825, 0.017714202404022217, -0.039311740547418594, -0.0029881284572184086, 0.027183352038264275, -0.01882573775947094, -0.0040451413951814175, -0.0062646931037306786, 0.023539206013083458, -0.006046607159078121, 0.008329474367201328, 0.018614687025547028, 0.013429869897663593, -0.006092335097491741, 0.008955591358244419, -0.015040891245007515, -0.01585695520043373, 0.028899898752570152, 0.0019821194000542164, 0.0059129418805241585, -0.00012234355381224304, 0.0022424154449254274, 0.008835996501147747, 0.013809761963784695, 0.01656045764684677, -0.0031411403324455023, -0.02797127515077591, -0.022371390834450722, -0.01760164275765419, -0.02180858887732029, -0.04009966552257538, -0.016222776845097542, -0.0040556942112743855, -0.0044707609340548515, -0.01135453674942255, 0.006936538498848677, -0.005072255618870258, -0.011424886994063854, 0.011249011382460594, 0.013697201386094093, 0.017545361071825027, -0.012810787186026573, 0.02162567898631096, 0.019135277718305588, 0.006451121531426907, -0.0037426352500915527, 0.008399824611842632, 0.0022353804670274258, -0.01706697978079319, 0.009004836902022362, -0.007316430099308491, -0.016293127089738846, -0.016476036980748177, 0.024158289656043053, 0.004428550601005554, 0.0026926572900265455, -0.04142225161194801, 0.029518980532884598, 0.017517222091555595, 0.007703356444835663, -0.006630514748394489, -0.02954712137579918, -0.00025655870558694005, -0.0012355269864201546, -0.017714202404022217, 0.00484361732378602, 0.025072842836380005, -0.008062142878770828, 0.016279056668281555, -0.0036054523661732674, -0.022272901609539986, 0.03835497796535492, -0.020373443141579628, -0.006387806031852961, 0.021611608564853668, -0.010524403303861618, -0.021048806607723236, -0.019402610138058662, -0.0035702772438526154, 0.016658948734402657, -0.018389565870165825, 0.011797742918133736, 0.03717309236526489, 0.0031059652101248503, 0.028365235775709152, 0.007661146577447653, -0.009004836902022362, 0.03357115760445595, -0.0022617618087679148, -0.0045938738621771336, 0.008941521868109703, -0.015575554221868515, 0.01091132964938879, 0.008519419468939304, 0.010728418827056885, -0.020359372720122337, -0.011868094094097614, -0.015026821754872799, 0.005420489702373743, -0.0028456691652536392, 0.018009673804044724, 0.0112771512940526, 0.00597977451980114, -0.04294181615114212, 0.010355562902987003, 0.003971274010837078, -0.0035263081081211567, -0.007661146577447653, -0.017629781737923622, 0.00020401584333740175, -0.02619844675064087, 0.013542430475354195, 0.01620870642364025, 0.019416678696870804, 0.013866041786968708, 0.01812223345041275, -0.02355327643454075, -0.026507988572120667, 0.01276857778429985, 0.005455664824694395, -0.02111915685236454, 0.014478089287877083, -0.0075696911662817, 0.005026528146117926, 0.024904001504182816, 0.008034002967178822, -0.040184084326028824, -0.027718013152480125, -0.02638135850429535, -0.015012751333415508, -0.0007474718149751425, -0.006845083087682724, 0.01916341856122017, -0.0028298404067754745, -0.018783526495099068, -0.018009673804044724, -0.021006595343351364, 0.04080316796898842, -0.01778455264866352, 0.007963652722537518, 0.02835116535425186, 0.002402462298050523, 0.03275509551167488, -0.022835703566670418, -0.0033134985715150833, -0.01424593385308981, -0.03449978306889534, -0.01442180946469307, -0.0012759784003719687, 0.032473694533109665, -0.02411607839167118, 0.0038165031000971794, 0.014787630178034306, -0.019768431782722473, -0.040043383836746216, 0.007879232056438923, 0.010981679894030094, 0.01512531191110611, 0.025199472904205322, 0.01125604659318924, 0.011136450804769993, -0.0046114614233374596, -0.006873222999274731, -0.03326161578297615, -0.01708105020225048, 0.006391323637217283, -0.01522380206733942, -0.009722409769892693, 0.01399970706552267, 0.015448923222720623, 0.007865162566304207, -0.028956178575754166, -0.047950755804777145, -0.020162392407655716, -0.010081196203827858, -0.006714934948831797, -0.003241389524191618, -0.005596365313977003, 0.002179100178182125, 0.007140554487705231, 0.006785285193473101, 0.017981532961130142, -0.012015828862786293, 0.010489228181540966, 0.0063631837256252766, 0.0008389271679334342, -0.020331233739852905, 0.015899164602160454, 0.00923699326813221, -0.023440716788172722, -0.05349436029791832, -0.028773268684744835, 0.015420783311128616, -0.0008916899096220732, 0.002696174895390868, 0.021907079964876175, -0.0041436320170760155, -0.007077238988131285, -0.014260003343224525, -0.002761248731985688, -0.036863550543785095, -0.011699252761900425, 0.007179246749728918, -0.05453554540872574, -0.023088965564966202, -0.008674190379679203, 0.013085153885185719, 0.004228052217513323, -0.021203577518463135, 0.022244760766625404, -0.0015433094231411815, -0.008202843368053436, -0.01795339398086071, -0.003281841054558754, -0.007928477600216866, -0.008603840135037899, 0.024721091613173485, -0.001179246697574854, 0.008385754190385342, 0.031404368579387665, 0.006760662887245417, 0.013324344530701637, -0.02728184126317501, 0.01092540007084608, -0.012648981995880604, -0.0006300747627392411, 0.024355269968509674, -0.015744393691420555, -0.005413454491645098, -0.022258831188082695, 0.02059856429696083, -0.02780243381857872, -0.014661000110208988, -0.03345859795808792, -0.017840832471847534, -0.016476036980748177, 0.015012751333415508, 0.017475010827183723, -0.027689874172210693, -0.02466481178998947, 0.0030057160183787346, -0.002743661170825362, -0.022582443431019783, -0.004776784684509039, 0.01232537068426609, -0.030222482979297638, -0.009004836902022362, -0.001278616487979889, -0.024678880348801613, 0.010503297671675682, -0.014070057310163975, 0.000367140572052449, -0.029828522354364395, -0.0017209439538419247, 0.17919625341892242, -0.01778455264866352, 0.009363623335957527, 0.0175875723361969, -0.0007303239544853568, -0.011938444338738918, 0.013612780719995499, -0.0005452147452160716, -0.02166788838803768, 0.0033152573741972446, -0.008167668245732784, 0.013774586841464043, -0.009448044002056122, -0.013057013973593712, 0.022216621786355972, 0.011628902517259121, -0.03883335739374161, -0.015927305445075035, 0.005061703268438578, -0.00976462010294199, -0.017024770379066467, -0.014759490266442299, -0.01656045764684677, -0.016490107402205467, 0.009905320592224598, -0.024580391123890877, -0.004104939289391041, -0.02059856429696083, 0.02991294302046299, 0.03576608747243881, -0.011755533516407013, 0.01813630387187004, 0.020711125805974007, -0.0017007181886583567, -0.011551517061889172, -0.007597831077873707, 0.01073545403778553, -0.027703942731022835, 0.028928037732839584, -0.01425296813249588, 0.00624358793720603, -0.021569399163126945, 0.006746592465788126, -0.01709512062370777, -0.0010578924557194114, 0.01812223345041275, -0.01668708771467209, -0.0058320388197898865, -0.0002814011531881988, -0.004991353023797274, -0.021048806607723236, -0.005533050280064344, 0.010151546448469162, 0.02076740562915802, -0.009455079212784767, -0.0005074014770798385, 0.010728418827056885, 0.022329181432724, 0.005923494230955839, 0.018952367827296257, 0.017123259603977203, 0.026873810216784477, -0.009356588125228882, 0.012656017206609249, -0.007808881811797619, 0.007471200544387102, -0.03095412626862526, 0.01373941171914339, -0.001755239674821496, -0.008491279557347298, -0.017179541289806366, -0.03433094173669815, -0.013000733219087124, 0.005300894379615784, -0.012712297029793262, -0.02266686223447323, 0.00462201377376914, 0.019233768805861473, 0.04077502712607384, 0.04589652642607689, -0.004899897612631321, 0.013795691542327404, -0.0044004106894135475, 0.01616649702191353, 0.007302360143512487, -0.03570980578660965, 0.03812985494732857, -0.01779862307012081, -0.020471934229135513, 0.0034172653686255217, -0.021864868700504303, 0.006676242221146822, -0.005139088723808527, -0.012036934494972229, -0.00487527484074235, -0.028449656441807747, 0.021245786920189857, -1.8219625417259522e-05, 0.004702916834503412, 0.011854023672640324, -0.023482926189899445, 0.08329474180936813, 0.03430280089378357, -0.014759490266442299, -0.0003976989828515798, -0.01250124629586935, 0.0027014510706067085, 0.02376432716846466, 0.017137330025434494, -0.019304119050502777, -0.02252616174519062, -0.043166935443878174, -0.006475743837654591, 0.014449949376285076, -0.0033416387159377337, 0.020359372720122337, -0.0018220724305137992, -0.009827935136854649, -0.0015160486800596118, -0.015899164602160454, -0.02148497849702835, -0.02638135850429535, -0.005733548663556576, -0.005110948346555233, 0.0016461967024952173, -0.017193609848618507, -0.014703210443258286, -0.002576579339802265, -0.03818613663315773, -0.0405217669904232, 0.04361717775464058, -0.01433035358786583, 0.03677913174033165, 0.0017912941984832287, 0.008660120889544487, 0.005195369012653828, 0.012114319950342178, -0.016405686736106873, 0.028126046061515808, 0.02304675430059433, -0.0220196396112442, -0.03666657209396362, -0.005304411519318819, 0.0032026967965066433, -0.007534516043961048, -0.032445553690195084, 0.014548439532518387, -0.0008613513200543821, -0.008653085678815842, -0.03129180893301964, -0.011825883761048317, -0.008835996501147747, -0.013049978762865067, -0.003767258021980524, 0.020373443141579628, -0.01582881435751915, -0.003448922885581851, -0.02463667094707489, -0.0025818555150181055, -0.0062576583586633205, -0.03641330823302269, 0.0036969075445085764, 0.011199765838682652, 0.008181738667190075, -0.02923757955431938, -0.015364502556622028, -0.17987161874771118, 0.026128096505999565, 0.03064458630979061, -0.031235527247190475, 0.0033222923520952463, 0.01654638722538948, 0.01777048222720623, -0.010883189737796783, -0.005248131696134806, -0.012592701241374016, 0.03233299404382706, -0.0009189506527036428, 0.002766525140032172, 0.0009286238346248865, -0.007506375666707754, 0.0021069911308586597, 0.020359372720122337, 0.0031077240128070116, 0.025269823148846626, 0.011059065349400043, 0.02199150063097477, -0.037567052990198135, 0.0007949582650326192, -0.007151106838136911, -0.005378279369324446, 0.015378572978079319, -0.0197262205183506, 0.029153158888220787, -0.011966584250330925, -0.025072842836380005, 0.014231863431632519, -0.012360545806586742, 0.0464874692261219, 0.011769603006541729, 0.011382676661014557, 0.013057013973593712, 0.01601172611117363, 0.004175289534032345, -0.008484244346618652, 0.041253410279750824, 0.011720358394086361, 0.02853407710790634, 0.0006221603835001588, -0.018164444714784622, -0.0125786317512393, 0.011115345172584057, 0.01275450736284256, -0.011495237238705158, -0.00033086619805544615, -0.03323347494006157, 0.006753627676516771, -0.010784699581563473, 0.015181592665612698, 0.0016602667747065425, -0.007056133821606636, 0.030363185331225395, 0.006662172265350819, 0.00047002785140648484, 0.005044115707278252, -0.004076799377799034, -0.008104353211820126, -0.009525429457426071, 0.008322439156472683, -0.006943573243916035, -0.024158289656043053, -0.023482926189899445, -0.021752309054136276, 0.014661000110208988, -0.030757145956158638, 0.010109336115419865, -0.015533343888819218, -0.01240979041904211, -0.0040099662728607655, 0.0032976698130369186, 0.02655019797384739, -0.004396893084049225, -0.034865602850914, 0.018741317093372345, 0.014034882187843323, -0.006619961932301521, 0.0012803752906620502, 0.03993082419037819, -0.01564590446650982, 0.006637549493461847, 0.02234325185418129, -0.009715374559164047, -0.0007927598198875785, 0.005712443497031927, -0.0005271874833852053, 0.0010068884585052729, 0.01850212551653385, -0.00844203494489193, 0.017292100936174393, -0.01654638722538948, -0.004192877095192671, -8.903708658181131e-05, 0.015111241489648819, 0.025297963991761208, -0.007900337688624859, 0.00496321264654398, -0.01019375678151846, -0.011579657904803753, 0.0011810055002570152, 0.013683130964636803, 0.02321559563279152, 0.009743515402078629, -0.005167228635400534, 0.009736480191349983, 0.01971215009689331, -0.020654844120144844, -0.018389565870165825, 0.018924226984381676, 0.01968401111662388, 0.02569192461669445, -0.00664106709882617, 0.025227613747119904, -0.018065953627228737, -0.009905320592224598, 0.014815771020948887, -0.03427466005086899, 0.030503885820508003, 0.016926279291510582, 0.007302360143512487, 0.020668914541602135, -0.011994724161922932, -0.022075921297073364, -0.08003048598766327, -0.004769749473780394, 0.025565294548869133, 0.01969808153808117, -0.03362743929028511, 0.011495237238705158, -0.0022617618087679148, 0.03185461089015007, -0.0077526019886136055, 0.008069178089499474, -0.019965412095189095, -0.015561483800411224, -0.012051003985106945, -0.014787630178034306, -0.006648102309554815, -0.01452029962092638, -0.01833328604698181, -0.026972301304340363, 0.005445112474262714, 0.032811373472213745, 0.006918950937688351, -0.015885096043348312, -0.0007325223996303976, -0.0097505496814847, -0.003971274010837078, 0.00809731800109148, -0.04553070664405823, 0.03238927200436592, 0.011199765838682652, 0.013127364218235016, 0.025931116193532944, -0.023159315809607506, 0.013113293796777725, -0.019810641184449196, -0.0030021986458450556, -0.014464018866419792, -0.00015565000649075955, -0.0016347648343071342, 0.030503885820508003, -0.027324052527546883, 0.00761190103366971, 0.03858009725809097, 0.05526718497276306, -0.0006291954196058214, -0.020120183005928993, -0.010278177447617054, -0.03601934760808945, 0.04606536775827408, 0.0016127803828567266, -0.04330763593316078, -0.013366554863750935, -0.02007797174155712, 0.005255166441202164, -0.003700425149872899, 0.01110127568244934, 0.006095852702856064, 0.005624505691230297, 0.0058425916358828545, -0.031770192086696625, -0.010250036604702473, -0.01830514520406723, -0.02144276723265648, -0.013844937086105347, 0.027324052527546883, 0.01117866113781929, 0.001541550736874342, -0.016926279291510582, -0.018023744225502014, -0.0044074454344809055, -0.02040158398449421, -0.015561483800411224, -0.004456690978258848, -0.008019932545721531, -0.025199472904205322, -0.00835057906806469, -0.012684157118201256, -0.004815477412194014, -0.02109101600944996, 0.022089989855885506, -0.008195808157324791, -0.006440568715333939, -0.012803752906620502, -0.015054961666464806, -0.029687821865081787, 0.022821633145213127, -0.0077174268662929535, -0.0013419317547231913, 0.0031780742574483156, 0.02093624509871006, -0.017868973314762115, -0.0015424300218001008, 0.012247985228896141, 0.024510040879249573, 0.014393668621778488, -0.015913235023617744, 0.005223508924245834, 0.0020665398333221674, -0.018037814646959305, -0.01399970706552267, 0.007499340921640396, -0.058700282126665115, 0.02023274265229702, -0.06978748738765717, 0.01898050867021084, 0.01709512062370777, -0.0074078855104744434, -0.020134253427386284, -0.016785578802227974, 0.0032255607657134533, 0.011776638217270374, -0.016138356178998947, 0.008990766480565071, -0.007337535265833139, -0.007217939477413893, 0.008034002967178822, 0.02799941413104534, -0.02780243381857872, -0.02709893137216568, 0.026437638327479362, -0.013936392031610012, 0.007309394888579845, 0.008132493123412132, -0.019937271252274513, 0.017840832471847534, 0.022104060277342796, 0.022033710032701492, -0.02338443510234356, 0.0077596367336809635, 0.013000733219087124, -0.00016202550614252687, -0.01937446929514408, -0.005782793741673231, -0.006725487764924765, -0.03413395956158638, -0.024228639900684357, 0.01310625858604908, 5.8368754253024235e-05, -0.012423860840499401, -0.010629928670823574, 0.017123259603977203, 0.018094094470143318, 0.024692950770258904, -0.028379306197166443, -0.03185461089015007, 0.013479115441441536, -0.015885096043348312, -0.016419757157564163, 0.0036195223219692707, 0.002602960681542754, 0.006714934948831797, 0.0008938883547671139, -0.005687820725142956, 0.03523142263293266, 0.00484361732378602, -0.03323347494006157, -0.024031657725572586, 0.01547706313431263, 0.0003851678338833153, 0.014013777486979961, 0.018065953627228737, -0.0008644291665405035, 0.009637989103794098, 0.02356734685599804, -0.010615858249366283, 0.03447164222598076, 0.006461673881858587, -0.008491279557347298, -0.0007734134560450912, -0.03095412626862526, -0.018544336780905724, -0.0013709513004869223, 0.0059023890644311905, -0.007534516043961048, -0.005012458190321922, 0.019796570762991905, 0.014829840511083603, 0.003805950516834855, 0.011495237238705158, -0.0016523523954674602, -0.007766671944409609, 9.563242201693356e-05, -0.009546534158289433, 0.02570599503815174, 0.00541697209700942, -0.016433827579021454, 0.009623919613659382, 0.024017589166760445, 0.014492159709334373, 0.0006546973600052297, 0.030672725290060043, -0.0073445700109004974, 0.008153598755598068, -0.02906874008476734, 0.011066100560128689, 0.00717221200466156, 0.0035562070552259684, -0.012416825629770756, 0.02377839758992195, 0.0008635497651994228, -0.0011783672962337732, 0.03357115760445595, 0.0383831188082695, 0.030025502666831017, 0.007457130588591099, 0.009117397479712963, -0.027169281616806984, -0.04820401594042778, 0.013443940319120884, 0.0006960281752981246, -0.009989741258323193, 0.0043898578733205795, 0.005466217175126076, -0.02320152521133423, 0.020879965275526047, 0.003767258021980524, 0.01417558267712593, -0.007147589232772589, 0.03430280089378357, 0.008287264034152031, -0.0123113002628088, -0.021076945587992668, 0.04240715503692627, 0.01108720526099205, -0.0013243441935628653, 0.021794518455863, -0.012480141595005989, 0.032107871025800705, 0.017193609848618507, 0.013908252120018005, -0.024003518745303154, 0.011565587483346462, -0.004203429911285639, 0.024594461545348167, -9.958962618838996e-05, -0.012240950018167496, -0.006999853532761335, -0.02145683765411377, -0.011509306728839874, -0.01616649702191353, 0.018783526495099068, -0.011579657904803753, 0.08520826697349548, 0.02287791296839714, -0.012043969705700874, -0.017714202404022217, -0.018882017582654953, -0.019064927473664284, -0.004625531379133463, 0.010411842726171017, -0.0037391178775578737, -0.03495002165436745, 0.006296350620687008, 0.0011889198794960976, -0.022807562723755836, -0.03601934760808945, -0.0114319222047925, -0.01143895648419857, -0.004484830889850855, 0.027000440284609795, -0.006873222999274731, 0.0015274806646630168, 0.03289579600095749, 0.007984757423400879, -0.0005012457841075957, 0.00037373590748757124, -0.020120183005928993, -0.014843910932540894, 0.01951516978442669, -0.02359548583626747, 0.009820899926126003, -0.05898168310523033, 0.004041624255478382, 0.009075187146663666, -0.02726777270436287, -0.017489081248641014, 0.0032466656994074583, 0.0380735769867897, 0.02906874008476734, -0.01968401111662388, 0.017109191045165062, -0.019261909648776054, 0.0019416679861024022, 0.03396511822938919, -0.002715521026402712, -0.026085887104272842, 0.004017001483589411, -0.009905320592224598, -0.030335044488310814, -0.019951341673731804, -0.04375787824392319] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_design_and_experimental_evaluation_of_algorithms_for_optimizing_the_throughput_of_dispersed_computing.json b/database/embeddings/publications_txt/2021_design_and_experimental_evaluation_of_algorithms_for_optimizing_the_throughput_of_dispersed_computing.json new file mode 100644 index 0000000000000000000000000000000000000000..ec3dc047fd7b974fb0cb1bf0972768a2db77799e --- /dev/null +++ b/database/embeddings/publications_txt/2021_design_and_experimental_evaluation_of_algorithms_for_optimizing_the_throughput_of_dispersed_computing.json @@ -0,0 +1 @@ +[-0.015536699444055557, 0.014541667886078358, 0.0019687400199472904, -0.015579343773424625, 0.02953820861876011, 0.029339201748371124, -0.0077328127808868885, 0.010334108024835587, -0.018720798194408417, -0.05199747905135155, 0.040284544229507446, 0.020725075155496597, -0.014236051589250565, 0.01417919248342514, -0.019005093723535538, 0.013681677170097828, 0.024278758093714714, -0.009673123247921467, -0.009211144410073757, 0.004712183028459549, -0.02329794131219387, -0.010412289761006832, -0.02075350470840931, -0.011883514001965523, -0.015920497477054596, 0.0033457919489592314, 0.04727819189429283, -0.026396753266453743, -0.01304912194609642, 0.0038841748610138893, 0.008102395571768284, -0.020810363814234734, -0.0024875777307897806, -0.008166362531483173, 0.005167054012417793, -0.013695891946554184, 0.013020692393183708, -0.01584942266345024, 0.0439235158264637, -0.03115868754684925, 0.018436504527926445, 0.023241082206368446, 0.002951333299279213, -0.013525315560400486, 0.014164977706968784, 0.022317124530673027, 0.01344002690166235, -0.018194854259490967, -0.020540283992886543, 0.008464870974421501, 0.008500408381223679, 0.022672493010759354, -0.013255234807729721, 0.005639693699777126, -0.0018994432175531983, -0.008734951727092266, 0.004342599771916866, 0.02702220156788826, -0.00791760440915823, -0.0001437020255252719, 0.02183382399380207, -0.0044776396825909615, -0.032438013702631, 0.0038592990022152662, -0.015906281769275665, -0.014086796902120113, -0.029452919960021973, 0.006126548629254103, 0.020000124350190163, -0.013631925918161869, 0.029054906219244003, 0.030049938708543777, -0.012544498778879642, -0.013191268779337406, 0.016730736941099167, -0.025799734517931938, -0.016986601054668427, 0.004207559861242771, 0.005177715327590704, 0.026922697201371193, 0.007697275839745998, 0.006581419613212347, -0.0008213448454625905, 0.013042014092206955, -0.004559374414384365, 0.00931064784526825, -0.002944225911051035, 0.021748535335063934, 0.006073242984712124, -0.015664631500840187, 0.022928358986973763, -0.008784702979028225, 0.03195471316576004, 0.013212591409683228, -0.00845065712928772, 0.01917566917836666, -0.013880683109164238, 0.015451410785317421, -0.011030630208551884, -0.02115151658654213, -0.0020558051764965057, 0.000643660721834749, 0.002164192497730255, -0.010838731192052364, -0.002636832417920232, -0.02887011505663395, -0.022331340238451958, 0.020526070147752762, -0.00033071456709876657, -0.00625448115170002, -0.033091891556978226, 0.016972387209534645, -0.009275111369788647, -0.004381690174341202, -0.005646801088005304, -0.02407975122332573, 0.01158500462770462, -0.0036887223832309246, -0.01464117132127285, -0.009246681816875935, 0.029993079602718353, 0.015124471858143806, 0.026538899168372154, -0.004164915531873703, 0.012686645612120628, 0.012302848510444164, -0.01012088730931282, -0.025501225143671036, 0.014150762930512428, -0.023752812296152115, 0.0035874424502253532, 0.003745581256225705, -0.010611295700073242, 0.000481523951748386, -0.006599188316613436, 0.009594942443072796, -0.01890558935701847, -0.03789646923542023, -0.029993079602718353, -0.036418136209249496, -7.662627467652783e-05, 0.03900521621108055, -0.017100319266319275, -0.022658279165625572, -0.038408197462558746, 0.03351833298802376, -0.00997163262218237, 0.02339744381606579, -0.0007920269854366779, -0.007327693048864603, 0.004747719503939152, 0.009125856682658195, -0.008607018738985062, 0.03391634300351143, 0.004623340908437967, -0.0017581844003871083, -0.004623340908437967, 0.010817409493029118, 0.0019456411246210337, -0.021336309611797333, 0.019388891756534576, 0.00572142843157053, -0.017938988283276558, -0.0029762089252471924, -0.015394551679491997, 0.026681046932935715, 0.025643372908234596, 0.007178438361734152, 0.022004401311278343, -0.025799734517931938, -2.3751368644298054e-05, 0.008599910885095596, -0.03292131423950195, -0.013845146633684635, 0.009715767577290535, 0.001453456119634211, 0.017882129177451134, 0.015792563557624817, -0.00985080748796463, -0.029097551479935646, 0.020554499700665474, 0.016844455152750015, 0.030021509155631065, 0.027349138632416725, 0.0027967479545623064, 0.016162147745490074, 0.02021334506571293, -0.004641109146177769, 0.009211144410073757, -0.005892005283385515, 0.015764135867357254, 0.006091011688113213, -0.012430780567228794, -0.0006529891397804022, -0.5977009534835815, -0.0109240198507905, -0.019204098731279373, -0.014882821589708328, -0.025899237021803856, 0.0016320286085829139, 0.0015138686867430806, -0.005422919522970915, -0.01197590958327055, 0.017626265063881874, -0.00542647298425436, 0.002892697462812066, 0.010014276951551437, -0.03169884532690048, -0.019644755870103836, -0.01150682382285595, 0.007299263495951891, -0.03368891030550003, 0.00512085622176528, -0.0036567391362041235, -0.008770488202571869, 0.006826623808592558, -0.0076333098113536835, -0.007597772870212793, -0.0003520366735756397, 0.0077328127808868885, 0.03710044547915459, -0.01491125114262104, 0.0002636388235259801, 0.013702998869121075, -0.02009962685406208, 0.02835838496685028, 0.019658971577882767, -0.00811661034822464, 0.05253763869404793, -0.0033635604195296764, -0.008294294588267803, 0.011521038599312305, 0.012736397795379162, 0.03991496190428734, -0.03846505656838417, -0.02143581211566925, 0.018578652292490005, 0.021378953009843826, -0.010362537577748299, -0.011378890834748745, 0.004186237696558237, -0.019090382382273674, -0.0023045630659908056, -0.022018615156412125, -0.019388891756534576, -0.017469903454184532, 0.002068243222311139, -0.001735973870381713, -0.0010376753052696586, 0.005806717090308666, 0.019332032650709152, -0.021492671221494675, 0.002651046961545944, 0.0022388198412954807, 0.01847914792597294, 0.029225483536720276, -0.002405842998996377, -0.0302205141633749, 0.004801024682819843, 0.0018390306504443288, 0.0007218417595140636, 0.009147178381681442, 0.020526070147752762, -0.016048429533839226, 0.004737058654427528, 0.013233913108706474, -0.007775457110255957, -0.015238190069794655, 0.027988802641630173, -0.01138599868863821, 0.03675929084420204, -0.012018553912639618, -0.012295740656554699, 0.024378260597586632, -0.01124385092407465, 0.0008786479593254626, 0.006343322806060314, -0.014122333377599716, 0.029253913089632988, -0.0030490595381706953, -0.01874922774732113, -0.003207198344171047, -0.0010856499429792166, 0.002745219739153981, 0.008336938917636871, 0.018692368641495705, -0.011570789851248264, -0.027178563177585602, 0.0034257497172802687, 0.03127240389585495, 0.014342661947011948, -0.003390213008970022, -0.00336178345605731, -0.025060568004846573, -0.015295049175620079, -0.01623322069644928, -0.0027487732004374266, -0.00678397947922349, 0.054527703672647476, 0.020938295871019363, -0.00639307452365756, -0.024520408362150192, 0.024719415232539177, 0.0006778649403713644, -0.009090319275856018, -0.024648340418934822, -0.036389708518981934, 0.002738112350925803, 0.0166312325745821, -0.03462707996368408, 0.03650342673063278, 0.018678154796361923, -0.0014783318620175123, 0.0028589374851435423, 0.005586388520896435, -0.0069012511521577835, -0.0027079060673713684, -0.01678759604692459, 0.007803886663168669, 0.0176831241697073, -0.00036980508593842387, -0.04031297191977501, -0.014193407259881496, 0.019403105601668358, 0.0015414097579196095, 0.00041977872024290264, 0.018123779445886612, -0.010632617399096489, 0.0301067978143692, 0.0017821716610342264, 0.017640478909015656, -0.004914742894470692, 0.0008822016534395516, -0.059417568147182465, -0.00029495565104298294, 7.268390618264675e-05, 0.015892067924141884, -0.014129441231489182, -0.0330350324511528, -0.009680231101810932, -0.020199131220579147, 0.0005046228761784732, 0.02156374417245388, -0.0019651863258332014, -0.007981570437550545, 0.007839423604309559, -0.026055598631501198, 0.0171571783721447, -0.030959680676460266, -0.01491125114262104, 0.01178401056677103, -0.02355380728840828, -0.030789103358983994, -0.021492671221494675, 0.011911943554878235, 0.036816149950027466, -0.02422189898788929, -0.021393168717622757, -0.026012955233454704, 0.010412289761006832, -0.007818100973963737, 0.009623371995985508, 0.01356795895844698, -0.02850053273141384, -0.015295049175620079, -0.01464117132127285, -0.011407320387661457, 0.02207547426223755, -0.03184099495410919, 0.010533114895224571, 0.002551543992012739, 0.014534560963511467, -0.018123779445886612, -0.011798225343227386, -0.003248065710067749, 0.024918420240283012, -0.01583520881831646, -0.0026670387014746666, 0.04656745493412018, 0.020810363814234734, 0.026780549436807632, 0.008898420259356499, 0.0023898514918982983, 0.02314157970249653, 0.0018479148857295513, 0.015735706314444542, -0.0008439995581284165, 0.020454995334148407, -0.022672493010759354, 0.0053376308642327785, 0.0003220524522475898, 0.005046228878200054, 0.007604880258440971, 0.03459865227341652, 0.052111197263002396, 0.011563681997358799, 0.016076859086751938, -0.013091766275465488, -0.012999369762837887, -0.0028589374851435423, 0.013539529405534267, -0.001514757052063942, 0.016446441411972046, 0.0018150432733818889, 0.023525377735495567, -0.018706584349274635, -0.032011572271585464, 0.0015938265714794397, -0.024690985679626465, 0.04855751618742943, -0.021904898807406425, 0.01596314087510109, -0.02769029326736927, -0.0016702307621017098, -0.020966725423932076, -0.008813132531940937, 0.033745769411325455, 0.007867853157222271, 0.009786841459572315, 0.007519592065364122, 0.04167758673429489, 0.017256680876016617, 0.02557229809463024, -0.007818100973963737, -0.024563051760196686, 0.0011016415664926171, 0.02115151658654213, -0.0031148025300353765, 0.02129366435110569, 0.018408074975013733, 0.02513164095580578, 0.001111414167098701, 0.03405849263072014, -0.02048342488706112, 0.014001508243381977, 0.018578652292490005, 0.037754323333501816, -0.02409396693110466, -0.0006569870165549219, 0.007796779274940491, 0.013859361410140991, 0.02036970667541027, -0.011286495253443718, 0.0002567535557318479, 0.011833762750029564, 0.03366047888994217, 0.0035909961443394423, -0.0047654882073402405, 0.053959112614393234, 0.000804020615760237, 0.005326970014721155, 0.016474870964884758, 0.024321401491761208, 0.020028553903102875, 0.0053305234760046005, 0.010149316862225533, 0.023639095947146416, -0.0036602928303182125, 0.004587803967297077, -0.03061852790415287, -0.019133025780320168, 0.010504685342311859, -0.020056983456015587, -0.0031041414476931095, 0.006581419613212347, -0.017128748819231987, 0.007505377288907766, -0.01511025708168745, 0.014200515113770962, 0.025927666574716568, -0.0009834816446527839, 0.0012420120183378458, 0.022715138271450996, 0.0179816335439682, -0.029339201748371124, -0.019388891756534576, -0.004488300997763872, 0.027477072551846504, -0.0021251020953059196, -0.01756940595805645, 0.013503992930054665, 0.006407289300113916, -0.013944650068879128, -0.02622617594897747, 0.020440781489014626, 0.00045886923908255994, -0.0041045029647648335, -0.0048578837886452675, -0.020938295871019363, -0.019900621846318245, 0.030163655057549477, 0.00176351482514292, -0.008365368470549583, 0.0019936158787459135, 0.006659600883722305, 0.022004401311278343, -0.019516823813319206, -0.026922697201371193, 0.05054757744073868, -0.009246681816875935, -0.006997200660407543, -0.027718722820281982, 0.017526760697364807, -0.00030517246341332793, 0.017811056226491928, -0.002592411357909441, -0.022402413189411163, -0.002014937810599804, 0.012416565790772438, 0.006080350372940302, 0.0011407320853322744, 0.010284356772899628, 0.027121704071760178, -0.012814578600227833, -0.01637536846101284, -0.01143574994057417, -0.010184853337705135, 0.005554405506700277, 0.04852908477187157, 0.04429309815168381, 0.0024733629543334246, 0.004122271668165922, 0.001263334066607058, -0.012551605701446533, -0.012793256901204586, -0.018166424706578255, 0.009083212353289127, -0.0087278438732028, 0.008322724141180515, -0.002826954238116741, 0.0009070774540305138, -0.006652493495494127, 0.0143213402479887, 0.0023454304318875074, 7.285048923222348e-05, -0.010646832175552845, 0.018663939088582993, -0.0015485171461477876, -0.02035549283027649, -0.013951756991446018, 0.009175607934594154, 0.005142178386449814, 0.01457009743899107, -0.007164223585277796, 0.027775581926107407, 0.010796086862683296, 0.0029744321946054697, 0.004143593832850456, -0.0023045630659908056, 0.0034577329643070698, 0.014143656007945538, 0.016801809892058372, -0.010966664180159569, 0.040909990668296814, 0.0019527485128492117, 0.017768410965800285, 0.01995748095214367, 0.0033564530313014984, 0.01163475587964058, -0.0009363953140564263, -7.695943349972367e-05, 0.0021837379317730665, -0.002636832417920232, -0.04125114530324936, 0.005049782805144787, 0.036275990307331085, -0.03300660103559494, -0.01185508444905281, 0.043212778866291046, -0.0020007232669740915, -0.057967666536569595, -0.026666833087801933, 0.011357569135725498, 0.019133025780320168, 0.015167116187512875, -0.023909175768494606, -0.015408766455948353, -0.05122988671064377, -0.003916157875210047, -0.009410151280462742, 0.00024187250528484583, -0.011954587884247303, 0.013013584539294243, -0.0024964618496596813, -0.018265927210450172, -0.01650330051779747, -0.007277941331267357, 0.014072582125663757, -0.0263541080057621, 0.007427196018397808, -0.04926825314760208, -0.00267769955098629, 0.0017475233180448413, 0.006130102090537548, 0.0020629125647246838, 0.003475501434877515, -0.001587607548572123, 0.016133718192577362, -0.03809547424316406, -0.013056228868663311, -0.0059772939421236515, -0.03997182101011276, -0.004122271668165922, -0.016816025599837303, -0.018265927210450172, -0.016005786135792732, 0.018322786316275597, 0.010966664180159569, -0.0012429003836587071, -0.019388891756534576, 0.008166362531483173, 0.006407289300113916, 0.00599150825291872, 0.023724382743239403, 0.02540172077715397, 0.022445058450102806, 0.02075350470840931, -0.008599910885095596, 0.01131492480635643, -0.001049224752932787, -0.020824579522013664, -0.01058997306972742, 0.005280772224068642, 0.016190577298402786, -0.006560097448527813, 0.007903389632701874, -0.012800363823771477, -0.01742725819349289, 0.01728511042892933, -0.004971601534634829, 0.01304912194609642, -0.005021353252232075, 0.02461991086602211, 0.03721415996551514, 0.012885652482509613, -0.0040121073834598064, -0.009360399097204208, 0.0026546006556600332, 0.004204006399959326, 0.00992188137024641, 0.020128056406974792, 0.002054028445854783, -0.015593558549880981, 0.04378136619925499, 0.004577143117785454, -0.041990309953689575, -0.026112457737326622, 0.005678784567862749, -0.006290017627179623, 0.020469211041927338, -0.0028376153204590082, -0.03584954887628555, -0.028415244072675705, -0.012750612571835518, -0.027761366218328476, -0.023752812296152115, -0.00984370056539774, -0.012253097258508205, 0.008955279365181923, -0.0020202684681862593, 0.0018283695681020617, 0.009268003515899181, 0.013759857974946499, -0.023369016125798225, -0.021592173725366592, 0.014811747707426548, 0.026155102998018265, 0.018450718373060226, -0.010696584358811378, 0.0005446018185466528, -0.016204791143536568, 0.007576450705528259, -0.039346370846033096, -0.035053521394729614, -0.01728511042892933, 0.01011378038674593, 0.019118811935186386, 0.0166312325745821, 0.030931251123547554, -0.009758411906659603, 0.012196238152682781, 0.03445650264620781, 0.007349015213549137, -0.011016415432095528, 0.014683815650641918, -0.004690860863775015, -0.009474117308855057, 0.0021837379317730665, 0.039460089057683945, -0.013752751052379608, 0.003702936926856637, -0.004442102741450071, 0.012892759405076504, 0.016190577298402786, 0.0037917790468782187, -0.0008431111345998943, -0.012416565790772438, -0.03570739924907684, 0.0018354769563302398, 0.007498269900679588, 0.01417208556085825, -0.005746304523199797, -0.03820919245481491, -0.01611950248479843, 0.03391634300351143, 0.020682431757450104, 0.008905528113245964, 0.027093274518847466, 0.004513176623731852, -0.03283602371811867, 0.007569343317300081, 0.019900621846318245, 0.01309887319803238, -0.02022756077349186, -0.015636201947927475, -0.025216929614543915, 0.0005899113020859659, 0.025586513802409172, -0.01675916649401188, 0.028955403715372086, -0.0015760581009089947, -0.004282187204807997, 0.004889866802841425, 0.03769746422767639, 0.018066920340061188, -0.009900558739900589, 0.0012384583242237568, -0.031243976205587387, -0.025344863533973694, -0.031727276742458344, -0.0034772781655192375, -0.02088143676519394, -0.0032285205088555813, -0.011663185432553291, -0.010127995163202286, 0.0007804774795658886, -0.013205483555793762, 0.0021410936024039984, 0.005646801088005304, 0.026396753266453743, 0.022189192473888397, -0.013042014092206955, 0.01731353998184204, 0.02780401147902012, -0.00884156208485365, -0.020838793367147446, 0.0017235359409824014, 0.01904773712158203, 0.020554499700665474, 0.02663840353488922, -0.0021037799306213856, -0.028244666755199432, 0.0018337001092731953, -0.002460925141349435, 0.012857222929596901, -0.03297817334532738, -0.02328372746706009, -0.0014374644961208105, 0.019630542024970055, 0.0070078615099191666, -0.019872192293405533, -0.029197053983807564, -0.006730674300342798, 0.027704507112503052, -0.028528962284326553, 8.323390648001805e-05, 0.0006467701750807464, -0.01065394002944231, -0.00022943461954127997, 0.03644656762480736, -0.0015627318061888218, 0.0353662483394146, -0.018209068104624748, -0.014164977706968784, -0.008670984767377377, -0.024861561134457588, -0.03928951174020767, -0.01071079820394516, -0.010447826236486435, 0.028841685503721237, -0.03195471316576004, 0.00579250231385231, 0.02516007050871849, -0.00207712734118104, -0.005469117313623428, -0.017867915332317352, -0.009225359186530113, 0.03471237048506737, 0.009474117308855057, 0.0014028161531314254, -0.0020078306552022696, -0.009033460170030594, 0.029708784073591232, -0.004182684235274792, 0.009552298113703728, -0.019502608105540276, -0.021862253546714783, -0.0020007232669740915, 0.011492609046399593, 0.0008262311457656324, 0.0029868700075894594, 0.01398018654435873, 0.018806086853146553, -0.01158500462770462, -0.0019083274528384209, -0.0036745076067745686, 0.02358223684132099, -0.028656894341111183, -0.015422981232404709, -0.009694445878267288, -0.026254605501890182, 0.012693753466010094, 0.020568713545799255, -0.005653908476233482, -0.01104484498500824, 0.020810363814234734, -0.022786211222410202, -0.0026741460897028446, 0.01131492480635643, -0.02474784478545189, -0.03727101907134056, -0.007313478272408247, -0.008301402442157269, 0.005135070998221636, 0.027050631120800972, -0.008280079811811447, -0.0016995485639199615, -0.010788979940116405, -0.015081827528774738, 0.0026972449850291014, 0.002205059863626957, -0.010717906057834625, -0.0017093211645260453, -0.008678092621266842, -0.004051197785884142, -0.022999431937932968, -0.020042767748236656, 0.02234555408358574, -0.020682431757450104, -0.004641109146177769, 0.024392476305365562, -0.0015893843956291676, 0.020142272114753723, -0.009957417845726013, 0.006616956554353237, -0.011599219404160976, -0.03113025799393654, -0.0036087643820792437, -0.0016453549033030868, -0.00018123780319001526, -0.03258015960454941, 0.013702998869121075, 0.00455582095310092, -0.02743442729115486, -0.02315579354763031, 0.007064720615744591, -0.008358260616660118, -0.0001546962303109467, 0.012118056416511536, -0.0019509716657921672, -0.008827347308397293, -0.014499024488031864, -0.011627648957073689, -0.020142272114753723, 0.01204698346555233, 0.01491125114262104, -0.026126673445105553, -0.029339201748371124, 0.02528800442814827, 0.008898420259356499, 0.013752751052379608, -0.03914736583828926, -0.029623495414853096, -0.029225483536720276, -0.02221762202680111, -0.016446441411972046, -0.008038429543375969, 0.013155732303857803, -0.007583558093756437, 0.0014161424478515983, 0.00442433450371027, 0.03471237048506737, -0.0028358385898172855, 0.02543015033006668, -0.0040192147716879845, -0.009424366056919098, -0.009147178381681442, 0.003265834180638194, -0.00384508422575891, -0.012572928331792355, -0.05034857243299484, -0.027789795771241188, 0.004079627338796854, 0.0043994588777422905, -0.017725767567753792, 0.024662556126713753, 0.019076166674494743, 0.0048436690121889114, -0.006457041017711163, -0.01004270650446415, -0.004260865040123463, -0.023226868361234665, 0.007249512244015932, -0.047306619584560394, -0.0014241382014006376, 0.0008080185507424176, -0.017512546852231026, -0.003909050486981869, 0.0017644033068791032, 0.02807409130036831, -0.032153718173503876, 0.0006885259645059705, -0.025387506932020187, -0.02503213845193386, 0.004644663073122501, -0.028827471658587456, 0.020568713545799255, 0.009495439007878304, -0.005255896132439375, 0.031869422644376755, 0.021606389433145523, 0.015295049175620079, 0.006126548629254103, 0.010398074984550476, -0.027704507112503052, -0.0019527485128492117, 0.023241082206368446, -0.020142272114753723, 0.0009212921722792089, -0.0026723691262304783, 0.013020692393183708, 0.0021339862141758204, -0.010810301639139652, -0.03235272318124771, -0.014811747707426548, -0.020014338195323944, 0.023184223100543022, 0.022032830864191055, -0.019204098731279373, -0.01782527007162571, -0.011926158331334591, 0.016872884705662727, -0.01457009743899107, -0.008351153694093227, 0.012075413018465042, -0.016531730070710182, 0.004712183028459549, 0.0032462887465953827, -0.01771155372262001, -0.01163475587964058, -0.005916881375014782, -0.013340523466467857, -0.013056228868663311, -0.0010607742005959153, 0.19809646904468536, -0.00162225600797683, 0.0026830302085727453, 0.010056921280920506, 0.018152208998799324, -0.01994326524436474, 0.020014338195323944, 0.0101919611915946, -0.008948172442615032, 0.0248899906873703, 0.004086734727025032, 0.008166362531483173, -0.013823824003338814, 0.002075350610539317, 0.00475482689216733, 0.0010581088718026876, -0.02783244103193283, -0.028401030227541924, -0.012039875611662865, 0.003742027562111616, -0.01217491552233696, -0.017640478909015656, 0.0011638309806585312, -0.032409582287073135, 0.012843008153140545, -0.01930360309779644, 0.012402351014316082, -0.014143656007945538, 0.009502546861767769, 0.022672493010759354, -0.02022756077349186, 0.006997200660407543, 0.019189884886145592, -0.011599219404160976, -0.026283035054802895, -0.00402276823297143, 0.013233913108706474, 0.006115887314081192, 0.026311464607715607, 0.0003207198460586369, 0.027349138632416725, -0.021009370684623718, -0.0018043821910396218, -0.02808830514550209, 0.024321401491761208, 0.00857858918607235, -0.030675387009978294, 0.002036259975284338, -0.012381029315292835, 0.0048792059533298016, -0.03792489692568779, -0.00469441432505846, 0.027661863714456558, 0.019502608105540276, -0.01471224520355463, 0.013219698332250118, 0.005533083342015743, 0.02514585666358471, 0.007604880258440971, 0.03499666228890419, 0.011400213465094566, 0.019374676048755646, -0.0013033130671828985, 0.005454902537167072, 0.005799609702080488, 0.01981533318758011, -0.04980841279029846, -0.014008616097271442, 0.03249487280845642, 0.005447795148938894, -0.0012153593124821782, -0.025231145322322845, -0.0036496317479759455, -0.008962387219071388, -0.02581394836306572, -0.022061260417103767, 0.028813255950808525, 0.0023276619613170624, 0.012700860388576984, 0.036787718534469604, -0.012132271192967892, 0.018393859267234802, -0.011492609046399593, 6.624285742873326e-05, -0.008102395571768284, -0.0330350324511528, 0.04062569513916969, -0.0094599025323987, -0.011094596236944199, 0.0013299656566232443, -0.02939606085419655, 0.01304912194609642, -0.021634818986058235, -0.006673815660178661, 0.02328372746706009, 0.0013326308690011501, 0.014200515113770962, -0.0016959948698058724, -0.015764135867357254, 0.022260267287492752, -0.026510469615459442, 0.0646485909819603, 0.01584942266345024, -0.007082488853484392, 0.010177746415138245, -0.0030383984558284283, 0.0029850932769477367, 0.020924082025885582, 0.023241082206368446, -0.01457009743899107, -0.01224598940461874, -0.0313861221075058, 0.013930435292422771, -0.016432227566838264, 0.014037045650184155, 0.0380670465528965, -0.003973016981035471, -0.018806086853146553, 0.002084234729409218, -0.017668908461928368, -0.0019598559010773897, -0.019516823813319206, -0.013219698332250118, 0.023482732474803925, -0.009253788739442825, -0.013411597348749638, -0.03474079817533493, -0.008152147755026817, -0.030789103358983994, -0.001770622213371098, 0.03465551137924194, 0.002741666045039892, 0.017498331144452095, 0.006247373763471842, -0.005842254031449556, -0.00831561628729105, 0.0007418312015943229, -0.031101828441023827, -0.02049764059484005, 0.01511025708168745, -0.015238190069794655, -0.02326951175928116, -0.0018461380386725068, 0.024406690150499344, 0.0004908523987978697, -0.03155669942498207, 0.006186961196362972, -0.02473362907767296, -0.01756940595805645, -0.04434995725750923, 0.002022045198827982, -0.017469903454184532, -0.013553744181990623, -0.00904056802392006, 0.015024969354271889, -0.03337618336081505, -0.004523837473243475, -0.03164198622107506, 0.00103856367059052, -0.004200452473014593, -0.03275073692202568, -0.0013210814213380218, 0.005554405506700277, 0.00422532856464386, -0.0011034184135496616, -0.010540221817791462, -0.182744562625885, 0.011762688867747784, 0.027377568185329437, -0.0019349800422787666, 0.007349015213549137, 0.007238850928843021, 0.04281476512551308, 0.00309170363470912, -0.007825208827853203, 0.012622679583728313, 0.02783244103193283, 0.019118811935186386, -0.0030455058440566063, -0.013383167795836926, 0.01117277704179287, 0.009417258203029633, 0.0005063997232355177, 0.008543052710592747, 0.02210390381515026, 0.010135102085769176, 0.019275173544883728, -0.029197053983807564, 0.016332725062966347, 0.0027007986791431904, 0.003955248277634382, 0.016858668997883797, -0.010682369582355022, 0.03982967138290405, 0.006609849166125059, -0.023369016125798225, -0.017199821770191193, 0.012942511588335037, 0.042018741369247437, 0.030988110229372978, 0.007100257556885481, 0.008130825124680996, -0.016204791143536568, -0.007555128540843725, -0.007569343317300081, 0.048500657081604004, 0.02517428621649742, 0.03650342673063278, -0.016275865957140923, -0.025657586753368378, -0.00950965378433466, 0.006840838585048914, 0.005508207716047764, -0.011108811013400555, 0.006059028208255768, -0.0030152995605021715, 0.013134409673511982, -0.004232435487210751, 0.0076546319760382175, 0.0033369078300893307, 0.0027594342827796936, 0.012622679583728313, 0.007157116197049618, 0.009928988292813301, 0.015735706314444542, -0.012523177079856396, -0.014520346187055111, -0.011592111550271511, 0.019076166674494743, -0.003272941568866372, -0.0031503394711762667, -0.04841537028551102, -0.024321401491761208, 0.0015956034185364842, -0.04608415439724922, 0.0029015815816819668, -0.022715138271450996, -0.0024858007673174143, 0.019076166674494743, 0.009836592711508274, 0.0391189344227314, 0.023667525500059128, -0.019744258373975754, 0.016958171501755714, 0.008514623157680035, 0.010618402622640133, 0.014335555024445057, 0.04326963797211647, -0.0040476443246006966, -0.004321277607232332, 0.013965971767902374, -0.01150682382285595, 0.008052644319832325, 0.0016489085974171758, 0.007320585660636425, -0.008862883783876896, 0.020966725423932076, -0.011968802660703659, 0.002260142005980015, -0.013269449584186077, -0.002405842998996377, 0.010213282890617847, 0.0026208406779915094, -0.016034215688705444, 0.009147178381681442, -0.01223888248205185, 0.014897036366164684, -0.009395936504006386, -0.027775581926107407, 0.008749165572226048, -0.00010500021016923711, 0.03283602371811867, -0.028258882462978363, 0.01688709855079651, 0.03940322995185852, -0.01078187208622694, -0.025899237021803856, 0.011570789851248264, 0.01638958230614662, 0.002917573321610689, 0.01251606922596693, 0.04597043618559837, 0.0224877018481493, -0.020412351936101913, 0.04162072762846947, -0.009857915341854095, 0.05086030066013336, 0.012082519941031933, -0.01744147390127182, 0.05111616849899292, -0.01638958230614662, -0.0428716242313385, -0.08767645061016083, -0.01731353998184204, 0.0006236712797544897, 0.03570739924907684, -0.022914143279194832, 0.010007169097661972, -0.003351122373715043, 0.011840869672596455, -0.017100319266319275, 0.01718560792505741, -0.0021464242599904537, -0.015337693504989147, -0.020853009074926376, -0.008479085750877857, 0.0007826985674910247, -0.035195671021938324, -0.003212528768926859, -0.02449197880923748, 0.0044847470708191395, 0.04941039904952049, -0.0007031849236227572, -0.035991694778203964, 0.009957417845726013, -0.014534560963511467, 0.010895590297877789, -0.000888864800799638, -0.020696645602583885, 0.01310598012059927, 0.007754134945571423, 0.014044152572751045, 0.021776964887976646, -0.0075266994535923, 0.015039184130728245, -0.012700860388576984, 0.008031322620809078, -0.02914019487798214, 0.00884156208485365, -0.01243788842111826, 0.030021509155631065, -0.01430001761764288, 0.0077328127808868885, 0.018976664170622826, 0.03658871352672577, 0.03192628175020218, -0.02500370889902115, -0.013873576186597347, -0.0466243140399456, 0.020739290863275528, -0.0072601730935275555, -0.03795332834124565, -0.015892067924141884, -0.015735706314444542, -0.009481224231421947, 0.00675910385325551, 0.015735706314444542, -0.02170589193701744, 0.014292910695075989, 0.014698030427098274, -0.013084658421576023, -0.02530221827328205, 0.005483332090079784, -0.01744147390127182, -0.0020593588706105947, 0.023383229970932007, 0.006137209478765726, -0.01837964542210102, -0.0061691924929618835, -0.011911943554878235, -0.008699414320290089, -0.01928938739001751, -0.014122333377599716, 0.025074783712625504, -0.013383167795836926, 0.009012138471007347, -0.03516723960638046, -0.012651109136641026, -0.013411597348749638, -0.013404489494860172, 0.019332032650709152, -0.0001368167722830549, -0.01678759604692459, -0.013610603287816048, 0.020170701667666435, -0.027704507112503052, 0.004452764056622982, 0.0038166549056768417, -0.018450718373060226, -0.009211144410073757, 0.021322093904018402, -0.039204224944114685, 0.005572173744440079, 0.013013584539294243, 0.0011407320853322744, -0.001001249998807907, -0.012999369762837887, 0.021734321489930153, 0.0005943533615209162, -0.010547329671680927, -0.0026723691262304783, 0.018550222739577293, -0.05387382581830025, 0.00872073695063591, -0.07158537954092026, 0.01597735658288002, 0.007427196018397808, -0.011449964717030525, -0.01070369128137827, -0.009125856682658195, 0.006396628450602293, -0.004307062830775976, -0.014385306276381016, -0.00465887738391757, -0.04454896226525307, -0.002084234729409218, -0.0012375698424875736, 0.002018491504713893, -0.020710861310362816, -0.013162839226424694, 0.013304986990988255, -0.02794615738093853, 0.012743504717946053, 0.031187117099761963, 0.009737089276313782, 0.009872129186987877, 0.0011451741447672248, 0.007675954140722752, -0.01705767586827278, -0.006609849166125059, -0.0005645912606269121, 0.0021446472965180874, -0.013674569316208363, -6.213391316123307e-05, -0.00938882865011692, -0.03766903281211853, -0.007285048719495535, 0.0066276174038648605, -0.00602704519405961, 0.004793917294591665, -0.006840838585048914, 0.009019245393574238, 0.025245359167456627, 0.03323403745889664, -0.014314232394099236, -0.03357519209384918, 0.008976601995527744, -0.005000031087547541, -0.010135102085769176, 0.02328372746706009, 0.01718560792505741, 0.015280834399163723, 0.00519193010404706, 0.01650330051779747, 0.03397320210933685, 0.0014419066719710827, 0.0016755611868575215, -0.029993079602718353, 0.02398024871945381, 0.009204037487506866, -0.002919350052252412, -0.007597772870212793, -0.0016489085974171758, -0.03471237048506737, 0.029054906219244003, 0.012260204181075096, 0.01944574899971485, -0.015437196008861065, 0.015437196008861065, 1.3805222806695383e-05, -0.04048354923725128, -0.010177746415138245, -0.006364644970744848, -0.029993079602718353, -0.01171293668448925, 0.005987954791635275, 0.0008679869351908565, 0.031073398888111115, 0.011265173554420471, -0.011862191371619701, -0.02088143676519394, 0.006624063942581415, 0.0016240328550338745, 0.003072158433496952, 0.03229586407542229, -0.02780401147902012, -0.008585697039961815, 0.003185876179486513, 0.03238115459680557, -0.009687338024377823, -0.00784653052687645, 0.0215495303273201, -0.013283664360642433, 0.008742058649659157, 0.006471255794167519, 0.017540976405143738, 0.0024964618496596813, 0.014427950605750084, 0.015280834399163723, 0.009978740476071835, -0.00872073695063591, 0.0026528239250183105, 0.04486168548464775, 0.030561668798327446, 0.0065210070461034775, 0.00923957396298647, 0.014435057528316975, -0.02648204192519188, -0.04460582137107849, 0.008877098560333252, -0.009132963605225086, -0.02490420639514923, -0.0019865084905177355, 0.01538033690303564, -0.0016382475150749087, 0.013674569316208363, 0.0016862222691997886, 0.011378890834748745, -0.02461991086602211, 0.021634818986058235, -0.0009825931629166007, -0.011407320387661457, -0.019275173544883728, 0.022786211222410202, -0.005053336266428232, -0.010796086862683296, 0.014271588064730167, 0.004001446533948183, 0.031101828441023827, -0.001142508932389319, 0.03823762387037277, -0.025487009435892105, 0.011492609046399593, -0.0028589374851435423, -0.006467701867222786, 0.03874935209751129, -0.02304207719862461, -0.014157870784401894, -0.0019705169834196568, -0.017896344885230064, -0.015238190069794655, -0.0025319987908005714, 0.013482671231031418, 0.0995599627494812, 0.015678847208619118, -0.015806779265403748, -0.009808163158595562, -0.008009999990463257, 0.003130794269964099, 0.02022756077349186, 0.010554436594247818, -0.005724982358515263, -0.041450150310993195, 0.002768318634480238, 0.006865714211016893, -0.02211811952292919, -0.03670243173837662, -0.011798225343227386, -0.0038095475174486637, 0.0076475245878100395, 0.021123088896274567, -0.004218221176415682, 0.0031076951418071985, 0.018706584349274635, 0.004612679593265057, -0.012466317974030972, 0.003759796032682061, -0.04420780763030052, -0.011016415432095528, 0.032267436385154724, 0.00672356691211462, 0.029481349512934685, -0.05003584921360016, -0.010213282890617847, 0.005916881375014782, -0.025586513802409172, -0.028585821390151978, -0.00033071456709876657, 0.021450025960803032, -0.0021517546847462654, -0.006201175507158041, 0.03621913120150566, 0.005248788744211197, -0.0036336402408778667, 0.028116734698414803, -0.015877852216362953, -0.03286445513367653, -0.012082519941031933, -0.014228944666683674, -0.03542310744524002, 0.00026963563868775964, -0.05168475583195686] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_dynamic_automated_market_makers_for_decentralized_cryptocurrency_exchange.json b/database/embeddings/publications_txt/2021_dynamic_automated_market_makers_for_decentralized_cryptocurrency_exchange.json new file mode 100644 index 0000000000000000000000000000000000000000..b5e42f1f449c56b4335a0c91e13f97e5805cb137 --- /dev/null +++ b/database/embeddings/publications_txt/2021_dynamic_automated_market_makers_for_decentralized_cryptocurrency_exchange.json @@ -0,0 +1 @@ +[-0.022392168641090393, 0.013558689504861832, 0.005485870875418186, -0.006982654798775911, -0.027622148394584656, 0.007417317945510149, -0.03194073960185051, 0.005219464190304279, -0.016250796616077423, -0.0484018549323082, 0.023878436535596848, 0.020078638568520546, -0.01031273603439331, 0.018297920003533363, -0.009134938940405846, 0.006274574436247349, 0.02142469212412834, -0.001611584099009633, -0.017582830041646957, -0.018662476912140846, 0.007830949500203133, -0.00041604108992032707, -0.027257593348622322, -0.0025816895067691803, -0.02627609483897686, 0.028295176103711128, 0.020078638568520546, -0.03449263423681259, -0.007809916976839304, -0.003191620111465454, -0.0035579290706664324, -0.00515286298468709, -0.008777393028140068, -0.01855030655860901, -0.009106895886361599, -0.003512359457090497, 5.8166882809018716e-05, -0.010060351341962814, 0.030258171260356903, -0.005755782593041658, -0.015325385145843029, 0.015143106691539288, 0.006004662718623877, -0.012387902475893497, 0.0011541361454874277, 0.007228029426187277, 0.027748340740799904, -0.009857040829956532, -0.018620412796735764, 0.015703963115811348, -0.0034720480907708406, 0.038642965257167816, -0.03726886957883835, -0.010509035550057888, -0.006544486153870821, 0.0034001884050667286, 0.014680400490760803, 0.024593526497483253, -0.010943698696792126, -0.025434810668230057, 0.022574447095394135, -0.011196084320545197, -0.038306452333927155, 0.000411659391829744, -0.0035737031139433384, -0.024257013574242592, -0.01841009221971035, 0.030959241092205048, 0.01496082916855812, -0.00898070354014635, 0.01874660514295101, 0.009394334629178047, -0.0023398203775286674, -0.01571798324584961, 0.013944277539849281, -0.029052332043647766, -0.031239667907357216, 0.01031273603439331, -0.009099885821342468, 0.015213213860988617, -0.013467550277709961, -0.0006362207932397723, 0.004718199372291565, 0.012598223984241486, 0.010971741750836372, 0.011546619236469269, -0.004455298185348511, 0.001225995714776218, -0.009499494917690754, 0.0012128506787121296, 0.025897517800331116, 0.0024151853285729885, 0.0201487448066473, 0.001404768554493785, -0.02975340001285076, 0.021971525624394417, -0.005328130442649126, 0.03889534994959831, 0.011069891974329948, -0.021578926593065262, 0.024172885343432426, -0.0014398220228031278, -0.03115553967654705, -0.031548138707876205, -0.0035193702206015587, -0.0272295493632555, -0.006618098821491003, 0.02500014752149582, 0.01576004922389984, 0.02122839167714119, -0.013222175650298595, 0.00788002461194992, -0.0020611451473087072, -0.042877428233623505, -0.01156765129417181, -0.020849814638495445, -0.007298136129975319, -0.011827046982944012, -0.00242219609208405, -0.010361811146140099, 0.029781443998217583, 0.012934736907482147, -0.004805833101272583, -0.02659858763217926, 0.0036420575343072414, 0.009275153279304504, -0.0177651084959507, -0.01195323932915926, -0.009934158995747566, -0.01571798324584961, 0.0027219033800065517, 0.01696588844060898, 0.012303774245083332, 0.023541923612356186, -0.001885877689346671, 0.029949700459837914, -0.031211625784635544, -0.0038173249922692776, -0.03740908205509186, -0.05726337805390358, -0.006859967485070229, 0.04736427217721939, -0.035137616097927094, 0.012458009645342827, -0.026486415416002274, 0.003989086952060461, -0.010424907319247723, -0.01542353443801403, 0.015381470322608948, 0.00719998637214303, -0.019700059667229652, -0.004294052254408598, -0.03684822842478752, 0.02218184806406498, 0.010186543688178062, 0.013334346935153008, 0.0031828568316996098, 0.016909802332520485, 0.018522262573242188, -0.025392746552824974, 0.0026780865155160427, 0.016909802332520485, -0.004907488357275724, -0.004132806323468685, 0.01266833022236824, 0.021032093092799187, 0.04063400253653526, 0.0062360153533518314, -0.003771755378693342, -0.0011462491238489747, -0.025617089122533798, -0.0021522841416299343, -0.009793944656848907, -0.012521105818450451, -0.011630747467279434, 0.04282134026288986, 0.05933854356408119, 0.0028831493109464645, -0.02013472281396389, 0.005170389544218779, 0.019868317991495132, -0.0005389474099501967, 0.009892093949019909, 0.04074617475271225, -0.0015581275802105665, 0.015521684661507607, 0.006151887122541666, -0.02313530258834362, 0.014252748340368271, -0.013194132596254349, 0.02188739739358425, 0.027145421132445335, -0.0011935712536796927, 0.00495305797085166, -0.5954045057296753, -0.024495378136634827, -0.017540765926241875, -0.015535705722868443, -0.04203614220023155, 0.017849236726760864, 0.02471972070634365, 0.01385313831269741, -0.011189073324203491, 0.026191966608166695, -0.02187337726354599, 0.011588683351874352, -0.012535127811133862, 0.001186560606583953, 0.006221994291990995, -0.007038740441203117, 0.025112319737672806, -0.03696039691567421, 0.02012070268392563, 0.012338828295469284, 0.02373822219669819, 0.014736486598849297, 0.004704178310930729, -0.00397857092320919, -0.0033791563473641872, 0.012836587615311146, 0.010480993427336216, -0.013390432111918926, 0.019742123782634735, 0.009317217394709587, -0.043999139219522476, 0.027650192379951477, 0.017695000395178795, -0.013383422046899796, 0.04722405970096588, 0.001631739898584783, -0.033567219972610474, 0.00786600261926651, 0.009352270513772964, 0.04599017649888992, -0.03003382869064808, -0.028827989473938942, -0.015942325815558434, 0.0016098314663395286, 0.011770961806178093, -0.00649541150778532, 0.017035994678735733, -0.006369218695908785, -0.010431918315589428, -0.05016855150461197, -0.00983600877225399, 0.003263479797169566, -0.011118966154754162, -0.003911969251930714, 0.00865120068192482, 0.0010656260419636965, 0.009415366686880589, -0.014610294252634048, 0.00774682080373168, 0.022097719833254814, 0.026009688153862953, 0.016727523878216743, -0.021340563893318176, -0.04155941680073738, 0.0062605529092252254, -0.0012084690388292074, 0.010102415457367897, 0.008749350905418396, 0.013053919188678265, -0.025448832660913467, 0.004837381187826395, 0.016573289409279823, -0.010179532691836357, -0.0035298862494528294, 0.009394334629178047, 0.011322276666760445, 0.031239667907357216, 0.01210046373307705, -0.012808544561266899, 0.025112319737672806, -0.013656838797032833, -0.004549942910671234, 0.0019016517326235771, -0.03558630123734474, 0.030650770291686058, 0.015115064568817616, -0.020667536184191704, -0.02483189105987549, 0.011609715409576893, 0.018059557303786278, 0.022546403110027313, 0.022251954302191734, 0.005208948161453009, -0.019307460635900497, -0.007564542815089226, 0.04938335344195366, 0.003333586733788252, 0.018157707527279854, 0.0166714396327734, -0.035978902131319046, 0.012359860353171825, 0.0003200821520294994, 0.0016501429490745068, -0.010060351341962814, 0.020569387823343277, 0.026850972324609756, -0.009639709256589413, 0.011385372839868069, 0.046158432960510254, -0.015816133469343185, -0.0004311579104978591, -0.010572131723165512, -0.017568808048963547, -0.004420245066285133, 0.02879994548857212, -0.04865424335002899, 0.035137616097927094, -0.0075995963998138905, 0.01791934296488762, 0.005244001746177673, 0.010326758027076721, 0.012359860353171825, 0.011378362774848938, -0.009955191053450108, -0.010396864265203476, 0.0080132270231843, 0.02567317523062229, -0.03152009844779968, -0.015605812892317772, 0.02138262800872326, 0.028884073719382286, -0.002346831141039729, 0.02392050065100193, -0.004038162063807249, 0.03129575401544571, -0.0006629491108469665, 0.02707531489431858, -0.019279418513178825, 0.020681558176875114, -0.023962564766407013, -0.019714081659913063, -0.012128506787121296, -0.0034282312262803316, -0.03791385143995285, -0.027594106271862984, -0.01588624157011509, -0.022097719833254814, 0.015816133469343185, 0.008195505477488041, 0.008805436082184315, -0.023724200204014778, 0.01637698896229267, -0.01487670000642538, 0.01793336495757103, -0.010761421173810959, -0.019461696967482567, -0.0030864595901221037, -0.005874964874237776, -0.015521684661507607, -0.002392400521785021, -0.0050336807034909725, 0.016348946839571, -0.02877190336585045, -0.020849814638495445, -0.007014202885329723, 0.013916234485805035, -0.005426280200481415, 0.010284693911671638, 0.006449841894209385, -0.03210899606347084, -0.025098297744989395, -0.013726945966482162, -0.011665800586342812, 0.004031151067465544, -0.03067881241440773, 0.008125398308038712, -0.00210320926271379, -0.004532415885478258, -0.0054753548465669155, -0.017274359241127968, -0.012359860353171825, 0.022265976294875145, -0.00515286298468709, -0.019293440505862236, 0.03631541505455971, 0.006751301698386669, 0.03639954328536987, -0.020345045253634453, 0.011189073324203491, 0.00012268721184227616, -0.00625704787671566, 0.02657054364681244, -0.0011699101887643337, 0.01825585588812828, -0.01337641105055809, 0.0040732151828706264, -0.020863836631178856, -0.010726367123425007, 0.010558110661804676, 0.026374245062470436, 0.02798670530319214, 0.0027096346020698547, -0.006239520851522684, -0.007003686856478453, -0.006555002182722092, -0.031407926231622696, 0.019559847190976143, 0.001551993191242218, 0.03948424756526947, 0.012535127811133862, 0.0383625365793705, -0.008230558596551418, 0.013348367996513844, -0.009001735597848892, -0.009990244172513485, 0.013018865138292313, -0.01822781376540661, 0.011791993863880634, -0.014764529652893543, 0.027720298618078232, -0.0058854809030890465, -0.021817291155457497, 0.03337091952562332, -0.003869905136525631, -0.0049635739997029305, 0.004493857268244028, 0.01982625387609005, 0.00719998637214303, 0.0017114866059273481, -0.01587221957743168, -0.01139939483255148, 0.005713718477636576, 0.006088790949434042, -0.021466756239533424, 0.014512144029140472, -0.015928305685520172, 0.04206418618559837, -0.0029918153304606676, 0.034520674496889114, -0.024958083406090736, -0.0026535489596426487, 0.03143596649169922, 0.0346328467130661, -0.022420210763812065, 0.029304716736078262, -0.0387551374733448, 0.02328953705728054, 0.020246895030140877, 0.01439997274428606, 0.006327154580503702, -0.03067881241440773, 0.014736486598849297, -0.011287223547697067, 0.014315844513475895, 0.02833724021911621, 0.007704756688326597, 0.002194348257035017, -0.008251591585576534, 0.02298106625676155, 0.016405032947659492, -3.272571848356165e-05, 0.006453347392380238, -0.016278840601444244, 0.03491327539086342, 0.0011339803459122777, -0.00605724286288023, -0.004083731211721897, -0.010663270950317383, -0.012563169933855534, -0.0320529080927372, -0.0013784784823656082, -0.012577191926538944, -0.021929461508989334, 0.0003663089592009783, 0.013341357931494713, 0.01196726132184267, 0.004998627584427595, -0.01196726132184267, -0.01007437240332365, 0.012948758900165558, -0.04786904528737068, -0.013271250762045383, 0.02204163372516632, 0.004648092668503523, 0.0117148756980896, -0.019742123782634735, -0.0013846127549186349, 0.007417317945510149, -0.03213703632354736, 0.014904743060469627, -0.004139816854149103, 0.004118784796446562, -0.022616511210799217, -0.026023710146546364, -0.019545825198292732, 0.0001768010261002928, 0.031099455431103706, 0.0008969311602413654, -0.016923824325203896, -0.021130243316292763, 0.01313804741948843, 0.019882338121533394, 0.00998323317617178, -0.01919529028236866, 0.052804574370384216, 0.001341672264970839, 0.005513913929462433, -0.015437556430697441, 0.0067092375829815865, 0.007978173904120922, 0.024789826944470406, -0.0026745812501758337, -0.03177248314023018, 0.006183435209095478, 0.032193124294281006, 0.003377403598278761, 0.02784649096429348, 0.009261131286621094, 0.024313099682331085, -0.0026220008730888367, 0.004111774265766144, -0.036736056208610535, -0.027327699586749077, 0.013425486162304878, 0.04200810194015503, 0.015844177454710007, 0.007999205961823463, 0.024593526497483253, 0.007809916976839304, -0.013825096189975739, -0.037997979670763016, 0.0015554985729977489, 0.004476330243051052, 0.01447007991373539, -0.028533538803458214, 0.001183055224828422, -0.011350319720804691, -0.003813819494098425, 0.014315844513475895, -0.020260917022824287, -0.013916234485805035, 0.0014810098800808191, 0.022223912179470062, -0.008146430365741253, 0.011897154152393341, -0.018059557303786278, -0.008076324127614498, 0.02345779351890087, 0.012401924468576908, -0.01259121298789978, 0.02185935527086258, 0.0063096280209720135, 0.00664263591170311, -0.004202913027256727, 0.018143685534596443, 0.03160422667860985, 0.02218184806406498, 0.002012070268392563, -0.02173316292464733, 0.014301823452115059, 0.03693235665559769, 0.01623677648603916, 0.02390647865831852, 0.01637698896229267, 0.02424299344420433, 0.011203095316886902, 0.003747217822819948, -0.0029988258611410856, -0.0030181054025888443, -0.05928245931863785, -0.0018122653709724545, 0.011350319720804691, 0.007697746157646179, -0.0174426157027483, 0.014203673228621483, -0.0013013607822358608, -0.03637149930000305, -0.027916597202420235, 0.020204830914735794, 0.014301823452115059, -0.001162899425253272, -0.0072630830109119415, -0.004623555112630129, -0.027425849810242653, -0.0016107078408822417, -0.01590026170015335, 0.0046410816721618176, 0.004676135256886482, -0.01981223188340664, 0.0010226855520159006, -0.04526106268167496, 0.005577010102570057, -0.002334562363103032, 0.027439869940280914, 0.0034702953416854143, -0.003866399871185422, -0.04332611337304115, -0.011813025921583176, 0.0042169345542788506, 0.008510987274348736, 0.025729261338710785, -0.008461912162601948, 0.002758709480985999, 0.009737859480082989, -0.02641630917787552, -0.014371930621564388, -0.005373699590563774, -0.05586123839020729, -0.01487670000642538, -0.010284693911671638, -0.00316708255559206, -0.009317217394709587, -0.013769010081887245, 0.05126222223043442, -0.017274359241127968, -0.010824517346918583, 0.0072700935415923595, -0.007494435645639896, 1.3672230124939233e-05, 0.0030461482238024473, 0.019111162051558495, 0.01682567410171032, 0.001955984625965357, 0.017344465479254723, 0.015381470322608948, -0.01590026170015335, -0.019868317991495132, -0.03348309174180031, 0.009141949936747551, 0.0006287719588726759, -0.0021645529195666313, 0.012934736907482147, -0.010263660922646523, -0.010915656574070454, -0.010628217831254005, -0.018199771642684937, -0.007077299524098635, -0.009681773371994495, 0.019952446222305298, 0.0010191801702603698, -0.002215380547568202, -0.006197456736117601, -0.005265033803880215, 0.01163775846362114, 0.0003047462669201195, 0.0027324194088578224, 0.01697991043329239, 0.024916019290685654, -0.0002966401516459882, 0.023878436535596848, 0.00015916474512778223, -0.027033250778913498, -0.004613039083778858, -0.007140395697206259, 0.007704756688326597, 0.017582830041646957, -0.014042427763342857, -0.04125094413757324, -0.0006953735719434917, -0.011441458947956562, -0.018143685534596443, -0.009001735597848892, -0.01618069037795067, -0.016124604269862175, -0.007326179184019566, 0.019307460635900497, -0.0019034043652936816, -0.006144876591861248, 0.026023710146546364, -0.02896820195019245, 0.009099885821342468, 0.003291522618383169, 0.03404394909739494, 0.03811015188694, -0.01653122529387474, 0.01571798324584961, -0.007620628457516432, 0.009275153279304504, -0.012254699133336544, -0.03494131565093994, -0.018970947712659836, -0.006267563905566931, 0.0320529080927372, 0.033286791294813156, 0.05100983753800392, 0.03395982086658478, 0.01494680717587471, 0.0032599742989987135, 0.020204830914735794, 0.016082540154457092, 0.005640106275677681, 0.009604656137526035, -0.026163924485445023, 0.01665741764008999, 0.014133566059172153, -0.010424907319247723, 0.01730240136384964, -0.010922666639089584, 0.008847500197589397, 0.006102812476456165, -0.007592585403472185, -0.003680616384372115, -0.010684303008019924, -0.009226078167557716, 0.0027131401002407074, 0.003103986382484436, -0.014456058852374554, 0.002432712120935321, -0.046999718993902206, -0.01748467981815338, 0.026220008730888367, -0.00912792794406414, -0.0050582182593643665, -0.024761784821748734, 0.030790984630584717, -0.02249031886458397, 0.03067881241440773, 0.01226171012967825, 0.025084275752305984, 0.01330630388110876, -0.008777393028140068, -0.045569535344839096, -0.015816133469343185, 0.02108817920088768, 0.0036034986842423677, 0.02122839167714119, 0.03098728321492672, 0.008202516473829746, 0.025406768545508385, 0.017596852034330368, 0.01984027400612831, -0.012135517783463001, 0.004928520414978266, -0.01793336495757103, -0.021046115085482597, -0.016124604269862175, -0.023682136088609695, -0.004826865158975124, -0.0030689327977597713, -0.0013600753154605627, 0.01904105395078659, 0.011469501070678234, -0.01699393056333065, -0.014918765053153038, 0.041783757507801056, 0.000783883617259562, 0.03112749755382538, -0.012927726842463017, -0.0021049620117992163, 0.023527901619672775, -0.014610294252634048, -0.004364159423857927, 0.004255493637174368, -0.011609715409576893, -0.013663849793374538, 0.018648454919457436, 0.0333428792655468, 0.00043269150773994625, -0.01637698896229267, 0.006137865595519543, 0.015409513376653194, -0.024032671004533768, -0.03241746500134468, 0.016292860731482506, 0.026542501524090767, -0.004388696514070034, -0.0010857818415388465, -0.0141616091132164, -0.006583045236766338, 0.0022837347351014614, -0.02581338956952095, 0.01590026170015335, 0.02027493715286255, -0.008517997339367867, 0.0017877279315143824, -0.004076720681041479, 0.011995303444564342, 0.0226585753262043, 0.0028358271811157465, -0.025897517800331116, -0.00023529653844889253, -0.012233667075634003, -0.03614715859293938, 0.01730240136384964, 0.0027043765876442194, 0.020190808922052383, 0.0022013590205460787, 0.025841431692242622, 0.03247355297207832, 0.008300665766000748, -0.018297920003533363, -0.019559847190976143, -0.0049635739997029305, 0.03210899606347084, 0.004038162063807249, 0.009499494917690754, 0.018283899873495102, -0.02516840398311615, 0.004812844097614288, -0.011455480009317398, 0.015956347808241844, 0.001266307313926518, -0.016348946839571, 0.004967079497873783, 0.006905537098646164, 0.015844177454710007, 0.004868929740041494, 0.002925213659182191, 0.009885083884000778, -0.015942325815558434, 0.015451577492058277, 0.007424328941851854, -0.010354800149798393, -0.022392168641090393, -0.014848657883703709, -0.017989451065659523, -6.912109529366717e-05, 0.011588683351874352, 0.01620873250067234, 0.014273780398070812, 0.015002893283963203, 0.017526743933558464, -0.015689941123127937, -0.007522478699684143, 0.004935530945658684, -0.02205565571784973, -0.0034282312262803316, -0.01984027400612831, 0.0062780799344182014, -0.01822781376540661, 0.004223945550620556, -0.0037647446151822805, -0.035333916544914246, -0.011118966154754162, -0.02564513124525547, -0.006393756251782179, -0.011946229264140129, 0.0031127496622502804, -0.009716827422380447, 0.01344651822000742, -0.012864630669355392, 0.003694637678563595, -0.003440499771386385, 0.03951229155063629, -0.02359800785779953, 0.004455298185348511, 0.018283899873495102, -0.009899104945361614, 0.01696588844060898, 0.0029146976303309202, -0.007620628457516432, 0.0015975626884028316, -0.04122290387749672, 0.008686254732310772, 0.009366292506456375, 0.025406768545508385, -0.009345260448753834, -0.001202334649860859, 0.009604656137526035, -0.007732799742370844, -0.03496935963630676, 0.020793728530406952, -0.005356173031032085, -0.018480198457837105, 0.025406768545508385, -0.0019542318768799305, 0.009408356621861458, 0.005142346955835819, -0.018466178327798843, -0.02644435130059719, -0.017232295125722885, 0.020541343837976456, -0.02849147468805313, 0.005247507244348526, -0.0070808045566082, 0.025729261338710785, 0.008784404024481773, -0.03401590511202812, -0.05597341060638428, -0.006330660078674555, -0.03718474134802818, -0.009772912599146366, -0.009850029833614826, 0.005825889762490988, 0.007788884919136763, -0.007536499761044979, 0.00649541150778532, 0.0333428792655468, -0.012030357494950294, 0.00665315194055438, -0.021186327561736107, -0.0016851964173838496, 0.02314932458102703, 0.014848657883703709, 0.023836372420191765, -0.009113906882703304, -0.0487944558262825, 0.003915474750101566, 0.014266769401729107, 0.03286615014076233, 0.011132988147437572, 0.038642965257167816, -0.016895782202482224, -0.005790836177766323, -0.0029690305236727, -0.0021452733781188726, -0.020877856761217117, -0.011791993863880634, 0.017274359241127968, -0.06343279033899307, -0.0063411761075258255, 0.008693264797329903, -0.004220440052449703, 0.012093453668057919, 0.00762763898819685, 0.0016781857702881098, -0.00401712954044342, 0.03258572146296501, -0.02818300388753414, -0.01590026170015335, 0.006807387340813875, -0.011904164217412472, 0.03724082559347153, -0.0007773110992275178, 0.0132291866466403, 0.031379882246255875, 0.011118966154754162, 0.0029865573160350323, -0.02564513124525547, 0.027285635471343994, -0.007634649984538555, -0.021172307431697845, 0.015661899000406265, -0.008489955216646194, 0.015647877007722855, -0.015129085630178452, 0.012892672792077065, -0.0050266701728105545, -0.0011401147348806262, -0.028673753142356873, -0.013670860789716244, -0.01919529028236866, 0.026009688153862953, -0.008391804993152618, -0.010459961369633675, -0.010992773808538914, -0.005752277560532093, 0.00888255424797535, -0.018830733373761177, -0.016138626262545586, -0.0031390399672091007, -0.01180601492524147, -0.004648092668503523, 0.0011488781310617924, -0.030454469844698906, 0.009219067171216011, 0.007802906446158886, -0.019153226166963577, -0.020821772515773773, -0.004237966611981392, 0.17880083620548248, -0.002658806974068284, 0.007063277997076511, 0.03003382869064808, 0.012177581898868084, -0.005839911289513111, 0.007192975841462612, 0.0030531587544828653, -0.02373822219669819, 0.0012251194566488266, 0.005447312258183956, -0.0027183981146663427, -0.020092658698558807, -0.005808363202959299, 0.014610294252634048, 0.006207972764968872, -0.03283810615539551, -0.02519644796848297, -0.006730269640684128, 0.0004885579692199826, -0.0009008746710605919, 0.010270671918988228, -0.023401709273457527, -0.016643395647406578, 0.008567072451114655, -0.02091992273926735, 0.013733956962823868, -0.014512144029140472, 0.010480993427336216, 0.009878072887659073, -0.025224490091204643, 0.01417563110589981, -0.012177581898868084, -0.01219160296022892, -0.016587311401963234, -0.023233452811837196, 0.003286264603957534, -0.00811838824301958, 0.034548718482255936, 0.0041853864677250385, 0.021480778232216835, -0.019601911306381226, -0.005016154143959284, -0.04624256119132042, 0.0019419632153585553, 0.011960250325500965, -0.006243026349693537, -0.017568808048963547, -0.023037152364850044, -0.006663667969405651, -0.027958663180470467, 0.015605812892317772, 0.02204163372516632, 0.023864414542913437, -0.01022159680724144, 0.0024151853285729885, -0.013018865138292313, 0.0383625365793705, -0.00375422858633101, 0.0166714396327734, 0.011700854636728764, 0.028042791411280632, 0.0117148756980896, 0.024018650874495506, -0.0013951287837699056, 0.01731642335653305, -0.02783246897161007, -0.00795714184641838, 0.019083119928836823, -0.012920715846121311, 0.0034387472551316023, -0.01329929381608963, -0.004266009666025639, -0.003552671056240797, -0.028211047872900963, -0.027425849810242653, 0.0071263741701841354, 0.024439292028546333, 0.03222116827964783, 0.026402287185192108, -0.007543510757386684, 0.02896820195019245, -0.024930041283369064, 0.001961242640390992, -0.012051389552652836, -0.02201359160244465, 0.039568375796079636, -0.021817291155457497, -0.01204437855631113, -0.0003595173475332558, -0.02515438385307789, 0.0064042722806334496, -0.006705732550472021, -0.004118784796446562, -0.01147651206701994, -0.0342402458190918, 0.012016335502266884, -0.02738378569483757, -0.014848657883703709, 0.021046115085482597, -0.03345504775643349, 0.07554727792739868, 0.04425152391195297, -0.00440622353926301, 0.011385372839868069, -0.0004381686158012599, -0.040690090507268906, 0.011350319720804691, 0.034071989357471466, -0.04024140536785126, 0.014133566059172153, -0.020176788792014122, -0.006141371093690395, -0.006221994291990995, -0.0067723337560892105, 0.008489955216646194, 0.016264818608760834, -0.009226078167557716, 0.013124026358127594, 0.016250796616077423, -0.01763891614973545, -0.01762489415705204, 0.0006782850250601768, 0.004549942910671234, 0.00943639874458313, -0.002451991429552436, -0.029052332043647766, -0.022770745679736137, -0.020050594583153725, -0.021018071100115776, 0.03362330421805382, -0.0017719538882374763, 0.004932025913149118, -0.003445758018642664, 0.0062921009957790375, -0.008525008335709572, 0.0259395819157362, -0.021270455792546272, 0.008847500197589397, 0.011104945093393326, -0.028098875656723976, 0.0030181054025888443, -0.011651779524981976, 0.010046329349279404, 0.011118966154754162, -0.040045104920864105, 0.005569999106228352, 0.007347211241722107, 0.0011883132392540574, -0.01605449803173542, -1.3651691006089095e-05, -0.007550521288067102, -0.0055069029331207275, -0.01731642335653305, 0.01808759942650795, -0.015058978460729122, -0.014245737344026566, -0.016643395647406578, 0.0058679538778960705, 0.0013767257332801819, -0.02879994548857212, 0.003333586733788252, -0.009723837487399578, -0.008917607367038727, -0.007410307414829731, -0.01733044534921646, -0.17891299724578857, 0.025617089122533798, 0.015002893283963203, -0.009485473856329918, -0.00144420366268605, 0.0014266769867390394, 0.00664263591170311, 0.00420641852542758, -0.03034229949116707, 0.016348946839571, 0.012794523499906063, 0.006442831363528967, -0.006393756251782179, -0.01605449803173542, 0.018928883597254753, 0.001742158317938447, -0.013677870854735374, -0.009990244172513485, 0.016867738217115402, 0.009113906882703304, 0.009226078167557716, -0.02502819150686264, 0.011686832644045353, -0.01047398243099451, 0.01328527182340622, 0.010971741750836372, -0.002821805886924267, 0.027411827817559242, -0.040690090507268906, -0.019587889313697815, 0.00012093453551642597, 0.006516443565487862, 0.03115553967654705, 0.02846343256533146, 0.020204830914735794, 0.02706129290163517, -0.01681165210902691, 0.004329105839133263, 0.003785776672884822, 0.049299225211143494, 0.005797847174108028, 0.031996823847293854, -0.010936688631772995, -0.0021698109339922667, -0.02629011683166027, 0.026780864223837852, -0.012864630669355392, 0.0008149935747496784, 0.0033791563473641872, -0.016433075070381165, 0.03367939218878746, -0.0007150911842472851, 0.023976586759090424, 0.005370194558054209, 0.010242628864943981, 0.04590604826807976, -0.0013039897894486785, -0.012892672792077065, 0.01636296883225441, 0.010761421173810959, -0.014834635891020298, -0.009534548968076706, -0.000793961517047137, -0.004336116369813681, -0.027341721579432487, -0.029080374166369438, -0.020345045253634453, 0.025617089122533798, -0.040493790060281754, 0.018325963988900185, 0.0025624099653214216, -0.0067898607812821865, 0.01328527182340622, -0.004195902496576309, 0.02094796486198902, -0.022378146648406982, -0.0036736056208610535, 0.008258601650595665, 0.03210899606347084, -0.01550766360014677, -0.010908645577728748, 0.036876268684864044, -0.017680980265140533, 0.01606851816177368, 0.019153226166963577, -0.004374675452709198, 0.0179614070802927, 0.013474561274051666, -0.00562959024682641, 0.007459382526576519, -0.011006795801222324, -0.014624315313994884, 0.010789463296532631, -0.013544667512178421, 0.005100282374769449, 0.017078058794140816, -0.018662476912140846, 0.017232295125722885, -0.008069313131272793, -0.01870454102754593, 0.0005639229784719646, 0.002310024807229638, -0.016278840601444244, 0.01998048834502697, 0.010775442235171795, 0.01156765129417181, -0.020527321845293045, -0.007333189714699984, 0.025561003014445305, -0.023527901619672775, -0.02641630917787552, 0.021116221323609352, 0.021312521770596504, 0.034548718482255936, 0.004020635038614273, 0.010880602523684502, -0.0050266701728105545, -0.02535068243741989, 0.011182062327861786, 0.002664065221324563, 0.03482914716005325, 0.02989361435174942, 0.020359065383672714, 0.016559267416596413, -0.01761087216436863, -0.03589477390050888, -0.08081932365894318, -0.02045721560716629, -0.0032371897250413895, 0.03726886957883835, -0.02250433899462223, 0.0031548140104860067, -0.0177651084959507, 0.01808759942650795, 0.009113906882703304, 0.013719934970140457, -0.014988871291279793, -0.012177581898868084, -0.002111972775310278, -0.016306882724165916, 0.011294233612716198, -0.007417317945510149, -0.022265976294875145, -0.018788669258356094, 0.009282163344323635, 0.020835792645812035, -0.010866581462323666, -0.02251836098730564, 0.008069313131272793, -0.02565915323793888, -0.0018280394142493606, 0.010396864265203476, -0.03569847345352173, 0.03522174432873726, 0.010558110661804676, 0.00802724901586771, 0.004791812039911747, -0.022378146648406982, 0.008861522190272808, -0.03889534994959831, 0.0030233634170144796, -0.009352270513772964, -0.004858413711190224, -0.018438134342432022, 0.0405498743057251, -0.038642965257167816, 0.024018650874495506, 0.02657054364681244, 0.04284938424825668, -0.015437556430697441, 0.012633277103304863, -0.0014030159218236804, -0.028912117704749107, 0.03743712604045868, -0.00010866581578738987, -0.028659731149673462, -0.037689510732889175, -0.019321482628583908, -0.014890721999108791, -0.0035614343360066414, 0.031183583661913872, 0.0067968713119626045, -0.010102415457367897, 0.009092874825000763, -0.022756725549697876, -0.016629375517368317, -0.011490533128380775, -0.021004050970077515, -0.02750997804105282, -0.004360653925687075, 0.016881760209798813, 0.007494435645639896, -0.019854295998811722, -0.010789463296532631, 0.002841085195541382, -0.005647116806358099, -0.019391588866710663, 0.016391010954976082, -0.02530861832201481, -0.01622275449335575, -0.015353428199887276, -0.013769010081887245, -0.0245234202593565, -0.023037152364850044, -0.0016177184879779816, -0.013250218704342842, -0.019433654844760895, -0.02706129290163517, -0.025855453684926033, -0.019125184044241905, 0.01496082916855812, 0.012268721126019955, 0.0022416706196963787, 0.009807965718209743, 0.031407926231622696, -0.03984880447387695, 0.011799003928899765, 0.0024151853285729885, 0.04046574607491493, -0.00041888919076882303, -0.015030935406684875, 0.004812844097614288, 0.006197456736117601, -0.00945042073726654, -0.006688205525279045, 0.01376199908554554, -0.05235588923096657, 0.011378362774848938, -0.08267014473676682, 0.01571798324584961, -0.009899104945361614, -0.010754410177469254, -0.007070288527756929, -0.02483189105987549, 0.013516625389456749, -0.01824183575809002, 0.021326541900634766, 0.007256072014570236, -0.04590604826807976, -0.007571553345769644, 0.009709816426038742, -0.006232510320842266, -0.018928883597254753, -0.0017272606492042542, 0.044307608157396317, -0.007445360999554396, 0.012654309161007404, 0.02675282210111618, -0.003556176321581006, 0.019742123782634735, -0.0026938605587929487, -0.001492402283474803, -0.03805406764149666, 0.014540187083184719, 0.0041538383811712265, 0.01195323932915926, -0.028211047872900963, 0.00397857092320919, -0.00070851860800758, -0.02835126221179962, -0.0036736056208610535, 0.02313530258834362, -0.00507223978638649, 0.010677292943000793, 0.008188494481146336, 0.03381960466504097, 0.022602489218115807, 0.02136860601603985, -0.019307460635900497, -0.03841862455010414, 0.00021908430790062994, -0.01054408960044384, -0.013488582335412502, -0.01149754412472248, -0.0013951287837699056, 0.009990244172513485, 0.008419848047196865, -0.03132379800081253, 0.03443654626607895, -0.009478462859988213, -0.017751086503267288, -0.04489650949835777, 0.01139939483255148, -0.01496082916855812, 0.015647877007722855, -0.007403296884149313, -0.007333189714699984, -0.008321697823703289, 0.029949700459837914, -0.011027827858924866, 0.010431918315589428, -0.04217635840177536, 0.007249061483889818, -0.003845367580652237, -0.013712924905121326, -0.0072771040722727776, -0.008861522190272808, 0.009871061891317368, -0.008756360970437527, -0.003670100122690201, 0.0021330048330128193, 0.01633492484688759, 0.006905537098646164, -0.00408723670989275, 0.016152648255228996, 0.021298499777913094, -0.0023293043486773968, 0.018171727657318115, 0.026079794391989708, 0.0021978537552058697, -0.00809735618531704, -0.002686849795281887, 0.009478462859988213, 0.028421368449926376, -0.008251591585576534, 0.0004239281115587801, -0.007809916976839304, 0.013593742623925209, -0.021438714116811752, 0.005233485717326403, 0.0063727241940796375, 0.0063166385516524315, -0.018676498904824257, 0.011756939813494682, -0.014413994736969471, -0.007501446641981602, 0.023219430819153786, 0.022602489218115807, 0.027439869940280914, -0.0009560838807374239, 0.010810495354235172, -0.02550491876900196, -0.025252532213926315, 0.005461333319544792, -0.020990028977394104, -0.019854295998811722, 0.00542978523299098, -0.005398237146437168, -0.0049460469745099545, 0.005727740004658699, -0.01472246553748846, 0.0011059375246986747, -0.01857834868133068, 0.02661260776221752, -0.010347790084779263, 0.005888985935598612, -0.01874660514295101, 0.05140243470668793, 0.006660162936896086, -0.012808544561266899, 0.017358487471938133, 0.003307296661660075, 0.019083119928836823, 0.014974850229918957, 0.0037016484420746565, -0.04038161784410477, 0.019938424229621887, -0.017568808048963547, 0.014666379429399967, 0.003282759105786681, -0.013712924905121326, -0.019139204174280167, -0.03822232410311699, -0.005622579716145992, -0.00895967148244381, 0.021508820354938507, 0.014105523936450481, 0.08923216164112091, 0.03780168294906616, 0.0054683443158864975, 0.0034562740474939346, -0.020723622292280197, -0.01195323932915926, 0.008510987274348736, 0.0062921009957790375, 0.02406071498990059, -0.027467913925647736, 0.005888985935598612, 0.0013039897894486785, -0.0054438067600131035, -0.036091070622205734, 0.017176209017634392, -0.003333586733788252, 0.013474561274051666, 0.04307372495532036, -0.012507084757089615, 0.006674183998256922, 0.02816898375749588, 0.025224490091204643, 0.0013609516900032759, 0.001175168203189969, -0.015213213860988617, -0.019265396520495415, 0.025448832660913467, -0.004069710150361061, 0.005573504604399204, -0.04514889419078827, 0.0025851947721093893, 0.0017325186636298895, -0.02471972070634365, -0.00895967148244381, -0.00401712954044342, -0.003663089592009783, 0.03410003334283829, -0.002409927314147353, 0.014512144029140472, 0.005229980684816837, -0.012254699133336544, 0.02894015982747078, 0.003032126696780324, -0.03208095207810402, -0.03003382869064808, -0.012794523499906063, -0.0333428792655468, -0.0005783825763501227, -0.03903556615114212] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_dynamic_curves_for_decentralized_autonomous_cryptocurrency_exchanges.json b/database/embeddings/publications_txt/2021_dynamic_curves_for_decentralized_autonomous_cryptocurrency_exchanges.json new file mode 100644 index 0000000000000000000000000000000000000000..6e4f887947651846fd11efdf7c5052c69aaebdeb --- /dev/null +++ b/database/embeddings/publications_txt/2021_dynamic_curves_for_decentralized_autonomous_cryptocurrency_exchanges.json @@ -0,0 +1 @@ +[-0.005651197396218777, 0.02630632370710373, 0.002472398802638054, -0.011422482319176197, -0.01852179877460003, 0.0036768103018403053, -0.023466596379876137, 0.0024847607128322124, -0.007855163887143135, -0.03602638095617294, 0.029979601502418518, 0.010101514868438244, -0.014248081482946873, 0.02480875700712204, -0.01675580069422722, 0.003998222295194864, 0.02187013439834118, -0.007523156236857176, -0.013223801739513874, -0.019892213866114616, 0.0019373010145500302, -0.0039028581231832504, -0.0254868995398283, -0.014375233091413975, -0.02706923522055149, 0.02684318646788597, 0.019793318584561348, -0.0354047492146492, 0.005177909508347511, 0.0004302415472920984, 0.004655173979699612, -0.005612345412373543, -0.0067637767642736435, -0.019849831238389015, -0.006180997006595135, -0.003630894236266613, 0.00742426048964262, -0.009451627731323242, 0.02689969912171364, -0.006103293038904667, -0.014092673547565937, 0.013386273756623268, -0.003242374397814274, -0.02006174996495247, -0.0031470104586333036, 0.005538173485547304, 0.031025072559714317, -0.018860870972275734, -0.004708153661340475, 0.023876309394836426, 0.015427768230438232, 0.042270954698324203, -0.050182633101940155, -0.013916073366999626, -0.009041915647685528, 0.0012176564196124673, 0.0003785860608331859, 0.019228199496865273, -0.010560674592852592, -0.026546498760581017, 0.027323538437485695, -0.016233064234256744, -0.030177393928170204, -0.0032829924020916224, -0.015314744785428047, -0.020301926881074905, -0.02889174595475197, 0.035065680742263794, 0.018860870972275734, 0.0010198644595220685, 0.014389361254870892, 0.013089586049318314, -8.835514745442197e-05, -0.021799493581056595, 0.007643244229257107, -0.030488209798932076, -0.027507202699780464, 0.007862227968871593, -0.007869292050600052, 0.014721369370818138, -0.0069474405609071255, 0.0009642355144023895, 0.010292243212461472, 0.007671500090509653, 0.003011028515174985, 0.005269741639494896, -0.0023788008838891983, 0.007410132326185703, -0.017575222998857498, -0.007982316426932812, 0.028552673757076263, 0.001122292480431497, 0.018210982903838158, 0.0010013214778155088, -0.04585946723818779, 0.010701955296099186, 0.004026478156447411, 0.03413323312997818, 0.004817645531147718, -0.02665952406823635, 0.027832146733999252, 0.003496678313240409, -0.026772547513246536, -0.028665699064731598, -0.011570826172828674, -0.02969704195857048, -0.006569516845047474, 0.018860870972275734, 0.01099864300340414, 0.010532419197261333, -0.023071013391017914, 0.01973680593073368, 0.0016406131908297539, -0.035291727632284164, -0.013930201530456543, -0.02236461266875267, 0.004206609912216663, -0.008865315467119217, 0.0041536302305758, -0.004785857629030943, 0.03029041737318039, 0.008250747807323933, 0.00184193707536906, -0.03404846414923668, 0.01145073864609003, 0.007141700480133295, -0.003226480446755886, -0.009783634915947914, -0.009388051927089691, -0.015865735709667206, -0.0008410571026615798, 0.023014500737190247, 0.016275448724627495, 0.022039668634533882, -0.0037050661630928516, 0.030686000362038612, -0.011980538256466389, -0.002802640665322542, -0.031166352331638336, -0.051991015672683716, -0.0040653301402926445, 0.045068297535181046, -0.03142065554857254, 0.015639688819646835, -0.031618449836969376, 0.010716082528233528, -0.010179218836128712, -0.01247501838952303, 0.01710899919271469, 0.007282980717718601, -0.005234421696513891, 0.00046754826325923204, -0.018846742808818817, 0.021615829318761826, 0.00511433370411396, 0.006933312863111496, -0.001166442409157753, 0.03142065554857254, 0.015540792606770992, -0.02634870819747448, -0.005403957329690456, 0.014481193386018276, -0.013386273756623268, -0.020852917805314064, 0.009472819045186043, 0.021107221022248268, 0.04648109897971153, 0.017716502770781517, -0.004983649589121342, -0.006237509194761515, -0.024342533200979233, 0.005103737581521273, -3.520960672176443e-05, -0.009522267617285252, -0.006159805227071047, 0.04337294027209282, 0.05538173392415047, 0.006188061088323593, -0.021248502656817436, 0.00252891075797379, 0.01260923407971859, 0.0008326686220243573, 0.011613210663199425, 0.04602900147438049, -0.0021651149727404118, 0.01942599005997181, 0.016416728496551514, -0.023833924904465675, 0.004192482214421034, -0.0009368625469505787, 0.016007015481591225, 0.016967719420790672, -0.0031752665527164936, 0.001928471028804779, -0.5926975607872009, -0.03283345699310303, -0.012270161882042885, -0.021262628957629204, -0.045068297535181046, 0.013153161853551865, 0.013456913642585278, 0.015498408116400242, -0.017801271751523018, 0.02616504393517971, -0.028439650312066078, 0.005177909508347511, -0.005682985298335552, -0.01179687399417162, -0.0009818954858928919, -0.009027787484228611, 0.014792009256780148, -0.03277694433927536, 0.012058242224156857, 0.008596884086728096, 0.02191251702606678, 0.037778254598379135, 0.010581866838037968, 4.105948028154671e-05, 0.0007832206320017576, 0.02454032376408577, 0.01358406525105238, -0.01693946309387684, 0.01589399203658104, -0.001995579106733203, -0.03661976009607315, 0.022421125322580338, 0.004701089579612017, -0.020838789641857147, 0.04518132284283638, -0.007035740651190281, -0.04088641330599785, 0.0012944773770868778, 0.01914343051612377, 0.04379677772521973, -0.024342533200979233, -0.01982157491147518, -0.00576068926602602, 0.008427347987890244, 0.004630449693650007, -0.009988491423428059, 0.021516934037208557, -0.007247660309076309, -0.0038640061393380165, -0.030459953472018242, -0.0027390646282583475, 0.0025606986600905657, -0.00022350926883518696, -0.007593796122819185, 0.011267074383795261, -0.006735520903021097, 0.01306132972240448, -0.023240549489855766, 0.002126262988895178, 0.011966410093009472, 0.025119571015238762, 0.010461779311299324, -0.020273670554161072, -0.0441923625767231, 0.00404060585424304, 0.010045003145933151, 0.005937288980931044, 0.004397337790578604, 0.007088720798492432, -0.003226480446755886, 0.01324499398469925, 0.023198164999485016, -0.004722281824797392, -0.01575271226465702, 0.01901627890765667, 0.01036994718015194, 0.03478311747312546, 0.010892682708799839, -0.005612345412373543, 0.023155780509114265, -0.0039028581231832504, -0.010532419197261333, -0.004227802157402039, -0.02336770109832287, 0.02780389040708542, 0.019595526158809662, -0.023607876151800156, -0.004100650083273649, 0.005170845426619053, 0.021658213809132576, 0.03359636664390564, 0.014410553500056267, 0.009705930948257446, -0.02131914161145687, -0.008928891271352768, 0.054618820548057556, 0.005901969037950039, 0.011818066239356995, -0.0008066201116889715, -0.027690866962075233, 0.008667523972690105, 8.526464807800949e-05, -1.3279485756356735e-05, -0.011231754906475544, 0.027577843517065048, 0.017462199553847313, -0.013675897382199764, 0.01022866740822792, 0.05888547748327255, -0.022421125322580338, -0.01480613648891449, -0.010165090672671795, -0.021629957482218742, -0.0058489893563091755, 0.0220537967979908, -0.04568992927670479, 0.03930407762527466, -0.010200411081314087, 0.026701906695961952, 0.012128882110118866, 0.022618917748332024, 0.003750982228666544, 0.011196434497833252, -0.0165297519415617, -0.01287766546010971, 0.0077986521646380424, 0.023297060281038284, -0.034020207822322845, -0.01720789633691311, 0.022011414170265198, 0.027380051091313362, 0.013704153709113598, 0.0333985760807991, -0.010037939064204693, 0.021898388862609863, -0.005110801663249731, 0.03613940626382828, -0.017815399914979935, 0.023297060281038284, -0.033935438841581345, -0.037467438727617264, -0.012093562632799149, -0.001063131494447589, -0.04046257212758064, -0.02069750986993313, -0.00041633431101217866, -0.022124437615275383, 0.015357128344476223, 0.007636180147528648, 0.004284313879907131, -0.029414482414722443, 0.015738584101200104, -0.009903723374009132, 0.013492233119904995, -0.00505782151594758, -0.013146097771823406, -0.0013933733571320772, -0.005432213190943003, -0.016176551580429077, -0.007187616545706987, -0.01043352298438549, 0.019397735595703125, -0.04509655386209488, -0.0014622473390772939, -0.008024699985980988, 0.017052488401532173, -0.012093562632799149, 0.013273249380290508, 0.009670611470937729, -0.03390718251466751, -0.03255089744925499, -0.0063152131624519825, -0.0038640061393380165, 0.0023593748919665813, -0.025557540357112885, 0.021884260699152946, -0.0015523132169619203, -0.006912120617926121, -0.0083284517750144, -0.01624719239771366, -0.01326618529856205, 0.01743394322693348, -0.010475906543433666, -0.020075878128409386, 0.03051646612584591, 0.013372145593166351, 0.03546126186847687, -0.005040161777287722, 0.014127993024885654, -0.0035991063341498375, -0.0024123548064380884, 0.02164408564567566, -0.01946837455034256, 0.020527973771095276, -0.020499717444181442, -0.0007505496614612639, -0.011161115020513535, -0.014226889237761497, 0.014820264652371407, 0.036280687898397446, 0.025020675733685493, -0.0031099244952201843, -0.0002620301384013146, -0.01172623410820961, -0.006251636892557144, -0.03421799838542938, 0.022265717387199402, -0.0024317807983607054, 0.04105594754219055, 0.01197347417473793, 0.03365287929773331, -0.014890904538333416, -0.0016035272274166346, -0.0007730661309324205, -0.014064417220652103, 0.024427300319075584, -0.011090475134551525, 0.001909045036882162, -0.012199521996080875, 0.014057353138923645, -0.012552722357213497, -0.014622473157942295, 0.033342063426971436, -0.003468422219157219, -0.008639267645776272, 0.0059938011690974236, 0.007191148586571217, 0.011931090615689754, 0.007841036655008793, -0.013866625726222992, -0.013040137477219105, -5.761572174378671e-05, 0.007417196407914162, -0.01879023015499115, 0.005071949679404497, -0.001211475464515388, 0.030996816232800484, -0.007056932430714369, 0.03865418955683708, -0.028962386772036552, 0.002308160997927189, 0.029810065403580666, 0.025840099900960922, -0.018945638090372086, 0.0024459087289869785, -0.029414482414722443, 0.02472398802638054, 0.015018057078123093, 0.006820288952440023, 0.003044582437723875, -0.028227729722857475, 0.014311657287180424, -0.0003761578118428588, 0.004881221801042557, 0.030940305441617966, 0.00395937031134963, -0.0026754888240247965, -0.00020088240853510797, 0.025373876094818115, 0.019341222941875458, 0.0003832218062598258, 0.0010949195129796863, -0.01201585866510868, 0.0309685617685318, 0.007155828643590212, -0.005153185687959194, -0.010666634887456894, -0.01068076305091381, -0.02421537972986698, -0.030714256688952446, -0.0022957988549023867, -0.02141803689301014, -0.01159201841801405, -0.003941710107028484, 0.011881642043590546, 0.01919994316995144, 0.008822931908071041, -0.010701955296099186, -0.019623782485723495, 0.01376066543161869, -0.03856942057609558, -0.015950504690408707, 0.011881642043590546, 0.001043705502524972, 0.020471462979912758, -0.028637442737817764, 0.0002549661148805171, -6.247222336241975e-05, -0.021262628957629204, 0.007275916635990143, 0.001205294393002987, -0.012715193443000317, -0.01915755867958069, -0.029894834384322166, -0.014721369370818138, -0.0021121350582689047, 0.030657745897769928, -0.006219848990440369, -0.017815399914979935, -0.018677206709980965, 0.01969442330300808, 0.015427768230438232, 0.007890484295785427, -0.0070922523736953735, 0.059055011719465256, 0.006880332715809345, 0.0064988769590854645, -0.008074148558080196, 0.009720059111714363, 0.0055452375672757626, 0.018846742808818817, -0.007756268139928579, -0.04345770552754402, -0.005241485312581062, 0.018860870972275734, 0.016459112986922264, 0.02684318646788597, 0.007201744709163904, 0.030544720590114594, -0.004464445635676384, -0.006679008714854717, -0.0374109260737896, -0.038145583122968674, 0.005916097201406956, 0.049645766615867615, 0.02513369917869568, 0.012757577933371067, 0.020796405151486397, 0.014905032701790333, -0.016360215842723846, -0.038089070469141006, -0.004503297619521618, 0.0038534102495759726, 0.022336358204483986, -0.026179172098636627, 0.003198224352672696, -0.020852917805314064, -0.011288266628980637, 0.005471065174788237, -0.02598137967288494, -0.024822883307933807, -0.0062975529581308365, 0.02259066142141819, 0.000993374502286315, 0.009465755894780159, -0.01716551184654236, 0.0011116964742541313, 0.01811208762228489, 0.009197323583066463, -0.019044535234570503, 0.02680080384016037, 0.00896421167999506, 0.0029633466619998217, -0.005937288980931044, 0.008187172003090382, 0.025204339995980263, 0.02762022614479065, 0.0027743845712393522, -0.04622679203748703, 0.027719123288989067, 0.036648012697696686, 0.014481193386018276, 0.024978291243314743, 0.011196434497833252, 0.02544451504945755, -0.0005412787431851029, 0.013633513823151588, -0.0051637813448905945, -0.009310347959399223, -0.04820471256971359, -0.00787635613232851, 0.009811891242861748, 0.00928209163248539, -0.003463124390691519, 0.012828217819333076, -0.005658261477947235, -0.03695882856845856, -0.02688557095825672, 0.030940305441617966, 0.016642775386571884, 0.009585843421518803, -0.004362017847597599, -0.00955052301287651, -0.032211825251579285, -0.012135946191847324, -0.009826019406318665, 0.0022728408221155405, 0.005870181135833263, -0.00871697161346674, 0.00017306792142335325, -0.04831773787736893, -0.0004218530375510454, -0.00921145174652338, 0.031025072559714317, -0.0009121385519392788, -0.003049880499020219, -0.03365287929773331, 5.4801159421913326e-05, 0.0055840895511209965, 0.009649419225752354, 0.026447603479027748, -0.015696199610829353, 0.014707241207361221, 0.00012119168968638405, -0.025882484391331673, -0.010235731489956379, -0.0076785641722381115, -0.04944797605276108, -0.0050613535568118095, -0.009508139453828335, -0.0064600249752402306, -0.003332440508529544, -0.020980069413781166, 0.050549957901239395, -0.01603527180850506, -0.015766840428113937, -0.00029558411915786564, -0.004277249798178673, -0.007579668425023556, 0.00569358142092824, 0.0166145209223032, 0.018634822219610214, 0.0177023746073246, 0.00907723605632782, 0.016769928857684135, -0.012602169997990131, -0.006767308805137873, -0.04006698727607727, 0.007516092620790005, 0.0023169908672571182, -0.006071505136787891, 6.239633876248263e-06, 0.0007099316571839154, -0.01439642533659935, -9.034189133672044e-05, -0.00403001019731164, 0.0017059551319107413, -0.0035408283583819866, 0.01784365624189377, -0.0022534148301929235, -0.00040529679972678423, -0.008236619643867016, 0.004079457838088274, -0.00036975607508793473, 0.005312125664204359, 0.0026242746971547604, 0.016685159876942635, 0.029866578057408333, 0.012460890226066113, 0.030912049114704132, 0.0015496643027290702, -0.03368113562464714, -0.016275448724627495, -0.012051178142428398, 0.013082521967589855, 0.0099814273416996, -0.011895770207047462, -0.04057559743523598, -0.013400401920080185, -0.0031487764790654182, -0.012934178113937378, -0.00768562825396657, -0.020132390782237053, -0.017419815063476562, -0.0021969028748571873, 0.012347865849733353, 0.00991078745573759, -0.010016746819019318, 0.022110309451818466, -0.028453778475522995, 0.0027637886814773083, -0.007396004628390074, 0.03684580698609352, 0.0242295078933239, -0.029357969760894775, 0.0070922523736953735, -0.009903723374009132, 0.004736409522593021, -0.007982316426932812, -0.04269479587674141, -0.019793318584561348, 0.003044582437723875, 0.03181624040007591, 0.0265323705971241, 0.039953965693712234, 0.02526085264980793, 0.017984936013817787, 0.00952933169901371, 0.016515623778104782, 0.017546966671943665, 0.0019249391043558717, -0.0013024243526160717, -0.0331442728638649, 0.016374344006180763, 0.020881174132227898, -0.01914343051612377, 0.022943861782550812, -0.02893413044512272, 0.009833083488047123, 0.0189173836261034, -0.005135525483638048, -0.010645442642271519, -0.017900167033076286, -0.025599922984838486, -0.0035637863911688328, 0.005167313385754824, -0.01095625851303339, 0.004203077871352434, -0.04925018548965454, -0.004037074279040098, 0.026461731642484665, -0.003466656431555748, -0.014085609465837479, -0.02335357293486595, 0.020259542390704155, -0.023607876151800156, 0.04105594754219055, 0.013704153709113598, 0.01575271226465702, 0.009670611470937729, -0.017801271751523018, -0.04074513167142868, -0.013456913642585278, 0.018055574968457222, -0.004644577857106924, 0.03467009589076042, 0.01847941428422928, 0.015512536279857159, 0.02671603485941887, 0.004913009703159332, 0.01484852097928524, -0.01657213643193245, 0.02571294829249382, -0.012976561672985554, -0.011754490435123444, -0.01394432969391346, -0.018592439591884613, -0.00620218925178051, -0.006558920722454786, -0.003256502328440547, 0.007706820499151945, 0.010786722414195538, -0.011846322566270828, -0.016190679743885994, 0.02608027495443821, 0.008822931908071041, 0.02889174595475197, -0.0036379583179950714, 0.0015955802518874407, 0.036874063313007355, -0.024639220908284187, -0.0044503179378807545, 0.014495320618152618, 0.0018101491732522845, -0.016105912625789642, 0.019341222941875458, 0.0166145209223032, -0.003030454507097602, -0.02403171733021736, -0.0088299959897995, 0.014481193386018276, -0.02408822812139988, -0.02801581099629402, 0.02073989436030388, 0.016600392758846283, 0.0066436887718737125, 0.006060909014195204, -0.004005285911262035, -0.013873688876628876, 0.008095339871942997, -0.031844496726989746, 0.018988022580742836, 0.015456024557352066, -0.005506385583430529, 0.007353620603680611, 0.003251204499974847, 0.00010165532876271755, 0.040942925959825516, -0.0017200831789523363, -0.028185347095131874, 0.0006163336802273989, -0.010779659263789654, -0.044757481664419174, 0.01756109483540058, 0.014248081482946873, 0.028623314574360847, 0.0008083861321210861, 0.02992308884859085, 0.03215531259775162, 0.011620274744927883, 0.0053262533619999886, -0.01133771426975727, -0.014304593205451965, 0.03613940626382828, -0.003510806243866682, 0.013690025545656681, 0.00966354738920927, -0.024752244353294373, 0.005439277272671461, -0.019185815006494522, 0.013619385659694672, -0.01702423207461834, -0.017688248306512833, 0.003539062337949872, 0.00472934590652585, 0.018394647166132927, 0.0039275819435715675, 0.006477684713900089, 0.012983625754714012, -0.01811208762228489, 0.005280337296426296, 0.015399512834846973, -0.006636624690145254, -0.017575222998857498, -0.01603527180850506, -0.025727076455950737, 0.004616321995854378, 0.008907699957489967, 0.01936947926878929, 0.007664436474442482, 0.010949194431304932, 0.021516934037208557, -0.029329713433980942, -0.014191568829119205, 0.0014101503184065223, -0.020768150687217712, -0.013216737657785416, -0.008632203564047813, -0.004383210092782974, -0.008420283906161785, 0.014092673547565937, -0.00041214004158973694, -0.047554824501276016, -0.01597876101732254, -0.022308101877570152, 0.005817200988531113, -0.009451627731323242, 0.000555406732019037, -0.011938154697418213, 0.016953591257333755, -0.015470152720808983, -0.0033200783655047417, -0.008568627759814262, 0.037100110203027725, -0.014721369370818138, -0.0003520960744936019, 0.007939931936562061, -0.012665745802223682, 0.026560626924037933, -0.0015116953290998936, -0.0022869689855724573, 0.0026136788073927164, -0.03201403096318245, 0.003948774188756943, -0.00045739379129372537, 0.019270582124590874, -0.016713416203856468, 0.007247660309076309, 0.010214539244771004, -0.014961544424295425, -0.03930407762527466, 0.031844496726989746, -0.0018490011570975184, -0.008844124153256416, 0.029527505859732628, -0.0055099171586334705, -0.0009889595676213503, -0.0011523144785314798, -0.011620274744927883, -0.02938622608780861, -0.013230865821242332, 0.014905032701790333, -0.026504116132855415, 0.0024388448800891638, 0.0024211849085986614, 0.027408307418227196, 0.014608344994485378, -0.03893674910068512, -0.04936320707201958, -0.0022481170017272234, -0.03953012451529503, -0.001459598308429122, -0.019765062257647514, 0.004782325588166714, 0.01054654736071825, 0.003803962143138051, -0.0015240572392940521, 0.020895302295684814, -0.01648736745119095, 0.001822511083446443, -0.021841878071427345, -0.004086521919816732, 0.014693113043904305, 0.011627338826656342, 0.03605463728308678, -0.012651617638766766, -0.05292346328496933, 0.0047964537516236305, 0.0154842808842659, 0.03351160138845444, 0.019411861896514893, 0.04119722917675972, -0.01737743243575096, -0.005654729437083006, -0.0047787935473024845, -0.005877245217561722, -0.01285647414624691, -0.005753625184297562, 0.01982157491147518, -0.06634505838155746, 0.0031275844667106867, 0.00013167731231078506, 0.009395115077495575, 0.013400401920080185, 0.0046975575387477875, -0.003304184414446354, -0.015526664443314075, 0.02449794113636017, -0.026701906695961952, -0.01612004078924656, -0.004224270116537809, -0.005559365265071392, 0.04029303789138794, -0.00921145174652338, 0.014255145564675331, 0.029951345175504684, 0.015399512834846973, 0.00787635613232851, -0.033426832407712936, 0.03571556508541107, -0.013167290017008781, -0.012630426324903965, 0.025458643212914467, -0.004019414074718952, 0.01236199401319027, -0.013654705137014389, 0.016459112986922264, -0.006053844932466745, -0.002592486795037985, -0.029781809076666832, -0.017914295196533203, -0.01802731864154339, 0.02295798808336258, -0.006555388681590557, -0.020810533314943314, -0.013774793595075607, 0.0020361971110105515, 0.009840147569775581, -0.00977657176554203, -0.009444563649594784, -0.003789834212511778, -0.008483859710395336, -0.006862672511488199, 0.00034481132752262056, -0.016190679743885994, 0.012912985868752003, 0.0031523085199296474, -0.017193768173456192, -0.039869196712970734, -0.008406155742704868, 0.1732657104730606, -0.003634426277130842, 0.02394694834947586, 0.02285909280180931, 0.008554499596357346, -0.0041854181326925755, -0.00991785153746605, -0.0006454726681113243, -0.026278067380189896, 0.013400401920080185, -0.00448210583999753, -0.0012679874198511243, -0.0058489893563091755, -0.005771285388618708, 0.009543459862470627, 0.007572604343295097, -0.04388154670596123, -0.027281155809760094, 0.0009942575125023723, -0.01145073864609003, 0.001406618277542293, 0.011217626743018627, -0.003535530297085643, -0.01603527180850506, -0.0020414949394762516, -0.022082053124904633, 0.012969497591257095, -0.015922248363494873, 0.010532419197261333, 0.024243636056780815, -0.016812311485409737, -0.0007955826004035771, -0.019044535234570503, -0.016727544367313385, -0.01583748124539852, -0.020768150687217712, 0.008554499596357346, -0.01068782713264227, 0.04857204109430313, 0.008116532117128372, 0.02277432568371296, -0.013103713281452656, -0.017010103911161423, -0.05117158964276314, 0.0023699707817286253, 0.007530220318585634, -0.003627362195402384, -0.0121783297508955, -0.019948726519942284, -0.0020467930007725954, -0.026334580034017563, 0.01782952807843685, 0.021799493581056595, 0.025698820129036903, -0.003447230439633131, 0.006806160788983107, 0.002117432886734605, 0.03509393334388733, 0.006488280836492777, 0.010207475163042545, -0.0009289155714213848, 0.020160647109150887, 0.023155780509114265, 0.02589661069214344, -0.008420283906161785, 0.004506829660385847, -0.017631735652685165, -0.015427768230438232, 0.02458270825445652, -0.020245414227247238, -0.003399548353627324, -0.006834416650235653, -0.010278115049004555, -0.0049977777525782585, -0.02947099320590496, -0.022308101877570152, 0.007530220318585634, 0.01575271226465702, 0.03147716820240021, 0.023381829261779785, 0.005852521397173405, 0.021940773352980614, -0.012658681720495224, 0.014057353138923645, -0.014113864861428738, -0.03724139183759689, 0.033116016536951065, -0.018959766253829002, -0.010101514868438244, -0.0016671031480655074, -0.031618449836969376, 0.013223801739513874, -0.0026419346686452627, -0.007586732506752014, -0.005269741639494896, -0.03291822597384453, -0.002182774944230914, -0.016741672530770302, -0.008957147598266602, 0.026504116132855415, -0.02924494631588459, 0.07476533949375153, 0.03752395138144493, -0.003480784362182021, 0.013386273756623268, -0.005305061582475901, -0.034472301602363586, 0.008455604314804077, 0.03500916808843613, -0.041451532393693924, 0.014113864861428738, -0.011514314450323582, -0.00991078745573759, -0.004941265564411879, -0.00826487597078085, 0.015724455937743187, 0.017631735652685165, -0.015286488458514214, 0.010334626771509647, 0.02146042138338089, -0.0198357030749321, -0.025416260585188866, -0.006322276778519154, 0.006689604837447405, 0.017546966671943665, -0.0028697485104203224, -0.0177023746073246, -0.019397735595703125, -0.015229976736009121, -0.014184504747390747, 0.036280687898397446, -0.0016609221929684281, 0.020259542390704155, -0.006039717234671116, 0.009041915647685528, -0.005962013266980648, 0.017094871029257774, -0.019948726519942284, 0.020047621801495552, 0.010391139425337315, -0.03944535553455353, -0.0008971275528892875, -0.01910104602575302, 0.014233953319489956, -0.0015496643027290702, -0.035319983959198, 0.004471509717404842, 0.00035231682704761624, 0.005425149574875832, -0.02784627489745617, -0.00202030292712152, -0.0020114730577915907, -0.005305061582475901, -0.02268955670297146, 0.020937686786055565, -0.03856942057609558, -0.016049399971961975, -0.019115174189209938, 0.0016512091970071197, 0.005947885103523731, -0.024610964581370354, 0.0017615841934457421, -0.008921828120946884, -0.007275916635990143, -0.012312546372413635, -0.024300148710608482, -0.18038621544837952, 0.022350484505295753, 0.009444563649594784, -0.011443674564361572, -0.010143899358808994, -0.001161144464276731, 0.016854695975780487, 0.0038145582657307386, -0.022421125322580338, 0.0177871435880661, 0.009275027550756931, 0.020768150687217712, -0.006968632806092501, -0.017914295196533203, 0.008067084476351738, 0.005771285388618708, -0.004086521919816732, -0.011987602338194847, 0.016911208629608154, 0.019849831238389015, 0.018083831295371056, -0.03862593322992325, 0.016995975747704506, -0.015258233062922955, 0.015145208686590195, 0.003343036398291588, 0.0033748243004083633, 0.035517774522304535, -0.03207054361701012, -0.008935955353081226, 0.00042604730697348714, 0.012206586077809334, 0.03478311747312546, 0.014290465041995049, 0.013619385659694672, 0.022011414170265198, -0.016416728496551514, -0.006929780822247267, 0.01369708962738514, 0.04071687534451485, -0.002043260959908366, 0.015215848572552204, -0.016784055158495903, -0.014947417192161083, -0.029668785631656647, 0.021983157843351364, 0.0006724041886627674, -0.0019302370492368937, 0.005520513281226158, -0.020118262618780136, 0.024455556645989418, -0.007629116531461477, 0.025388004258275032, 0.0029509845189750195, 0.010928003117442131, 0.03862593322992325, -0.0028344285674393177, 0.0003247231070417911, 0.0029474524781107903, -0.0006993356510065496, -0.023692645132541656, -0.010843235068023205, 0.00844147615134716, 0.0015761542599648237, -0.02408822812139988, -0.019496630877256393, -0.01710899919271469, 0.022915605455636978, -0.038512907922267914, 0.017419815063476562, 0.005170845426619053, 0.00016754916578065604, 0.008879443630576134, 0.001928471028804779, 0.016713416203856468, -0.014678984880447388, -0.008229556493461132, 0.0007792471442371607, 0.011055154725909233, -0.026136787608265877, -0.006859140936285257, 0.046198539435863495, -0.010864426381886005, -0.003323610406368971, 0.027309410274028778, -0.011669722385704517, 0.011083411052823067, 0.02168647013604641, -0.0021474550012499094, 0.008674588054418564, -0.0121571384370327, -0.022251589223742485, 0.024187125265598297, -0.0009924914920702577, 0.008844124153256416, 0.017659991979599, -0.012213650159537792, 0.010165090672671795, -0.005877245217561722, -0.011627338826656342, -0.005026033613830805, 0.0017006571870297194, -0.01260923407971859, 0.021036582067608833, 0.015950504690408707, 0.014678984880447388, -0.023692645132541656, 0.014664856716990471, 0.030996816232800484, -0.016360215842723846, -0.03503742441534996, 0.031081585213541985, 0.027959298342466354, 0.028496162965893745, 0.004337294027209282, 0.0047787935473024845, -0.010348754934966564, -0.012799961492419243, 0.02131914161145687, 0.00121677340939641, 0.03896500542759895, 0.02829837054014206, 0.0017280301544815302, 0.011005707085132599, 0.0021191989071667194, -0.028637442737817764, -0.08312911540269852, -0.02341008558869362, 0.00013609230518341064, 0.03842814266681671, -0.004280781839042902, 0.009635291062295437, -0.01285647414624691, 0.02665952406823635, 0.008921828120946884, 0.018210982903838158, -0.019892213866114616, -0.008794675581157207, 0.0121783297508955, 0.0016114742029458284, 0.0029174305964261293, -0.0033253764268010855, -0.007756268139928579, -0.01675580069422722, 0.0006975696887820959, 0.01702423207461834, -0.009359795600175858, -0.03238135948777199, 0.0073324283584952354, -0.017773015424609184, -0.01140835415571928, 0.010023810900747776, -0.02889174595475197, 0.036280687898397446, 0.010588930919766426, -0.001743924105539918, 0.01068076305091381, -0.008519180119037628, 0.024074099957942963, -0.039501868188381195, 0.00626929709687829, -0.0029350905679166317, -0.0049907136708498, -0.011090475134551525, 0.029527505859732628, -0.05094554275274277, 0.022421125322580338, 0.02620742656290531, 0.043175145983695984, -0.0022233929485082626, -5.557378608500585e-05, 0.0075514125637710094, -0.02807232178747654, 0.03681755065917969, 0.009712995029985905, -0.027916913852095604, -0.03467009589076042, -0.017363304272294044, -0.00595494918525219, -0.013047201558947563, 0.034020207822322845, -0.004284313879907131, -0.012263097800314426, 0.003800430102273822, -0.003212352516129613, -0.011471930891275406, -0.0231840368360281, -0.021305013447999954, -0.018055574968457222, 0.0003929348022211343, 0.024102356284856796, 0.013909009285271168, -0.024794628843665123, -0.0051637813448905945, 0.009331539273262024, -0.017038360238075256, -0.023424211889505386, 0.017546966671943665, -0.024158868938684464, -0.0028238326776772738, -0.008702843450009823, -0.0033395043574273586, -0.02033018134534359, -0.023212293162941933, 0.00368387415073812, -0.023523109033703804, -0.008144788444042206, -0.024286020547151566, -0.015003928914666176, -0.014099737629294395, 0.02417299710214138, 0.00505782151594758, 0.0055840895511209965, 0.010447651147842407, 0.02558579482138157, -0.035319983959198, 0.020174773409962654, 0.005142589565366507, 0.041168972849845886, 0.0012441463768482208, -0.02037256583571434, 0.0061138891614973545, 0.01358406525105238, -0.004626917652785778, -0.008448540233075619, 0.023523109033703804, -0.053403813391923904, 0.003611468244343996, -0.07663023471832275, 0.02227984555065632, 0.0070922523736953735, -0.013471041806042194, -0.009056043811142445, -0.023975204676389694, 0.02345246821641922, -0.016642775386571884, 0.007735076360404491, 0.0035090402234345675, -0.043175145983695984, -0.009296219795942307, 0.01106928288936615, -0.010850299149751663, -0.02417299710214138, -0.02268955670297146, 0.047244008630514145, -0.010059131309390068, 0.004807049874216318, 0.03820209205150604, 0.0018896190449595451, 0.01688295230269432, -0.004842369817197323, -0.00705340038985014, -0.04631156101822853, 0.00977657176554203, 0.006082101259380579, 0.019595526158809662, -0.022477637976408005, -0.007388940546661615, -0.002053857082501054, -0.034020207822322845, -0.004015882033854723, 0.030629489570856094, -0.013767729513347149, -0.000971299537923187, 0.007173488382250071, 0.023381829261779785, 0.030686000362038612, 0.02603789232671261, -0.023876309394836426, -0.037919532507658005, -0.0023735028225928545, -0.0050613535568118095, 0.0027832146733999252, 0.0004754952678922564, 0.002039728919044137, 0.00017008779104799032, 0.012912985868752003, -0.027408307418227196, 0.03743918240070343, -0.008837060071527958, -0.018945638090372086, -0.03133589029312134, 0.017320919781923294, -0.014495320618152618, 0.0014472362818196416, -0.0053827655501663685, -0.00442559365183115, -0.00742426048964262, 0.025105444714426994, -0.010906810872256756, 0.016317831352353096, -0.0374956950545311, 0.013485169969499111, -0.011500186286866665, -0.03656324744224548, -0.013146097771823406, -0.010744338855147362, 0.01725027896463871, -0.012976561672985554, 0.014332849532365799, 0.01828162372112274, 0.01093506719917059, 0.005697113461792469, -0.010002619586884975, 0.0027055107057094574, 0.010214539244771004, 0.006364660803228617, 0.013435721397399902, 0.024286020547151566, -0.013591129332780838, -0.01602114364504814, 0.008625139482319355, 0.01603527180850506, 0.023749155923724174, -0.005248549394309521, -0.007593796122819185, -0.013040137477219105, 0.016784055158495903, -0.012369058094918728, 0.004694025963544846, -0.010511226952075958, 0.0023664389736950397, -0.014431744813919067, 0.005167313385754824, -0.007975252345204353, -0.017603479325771332, 0.027309410274028778, 0.016642775386571884, 0.038823723793029785, 0.01170504279434681, 0.013633513823151588, -0.02521846815943718, -0.02811470627784729, -0.013329762034118176, -0.01897389441728592, -0.03246612846851349, 0.007388940546661615, -0.002106836996972561, -0.015696199610829353, 0.014043224975466728, -0.026829058304429054, 0.003396016312763095, -0.01432578545063734, 0.027125747874379158, -0.0028962385840713978, 0.004863561596721411, -0.009091363288462162, 0.04585946723818779, 0.015922248363494873, -0.004930669441819191, 0.011295330710709095, 0.003938178066164255, 0.017052488401532173, 0.010701955296099186, 0.00461985357105732, -0.02349485270678997, 0.01602114364504814, -0.018634822219610214, 0.005481661297380924, -0.006975696422159672, -0.01747632771730423, -0.02408822812139988, -0.034104976803064346, -0.025769459083676338, -0.014876777306199074, 0.009642355144023895, 0.01852179877460003, 0.08324213325977325, 0.03006437048316002, -0.00023730612883809954, -0.0008269291138276458, -0.0287080816924572, 0.00710638053715229, 0.015357128344476223, -0.0014163312735036016, 0.021700598299503326, -0.022293973714113235, 0.009656483307480812, 0.012771706096827984, -0.011055154725909233, -0.033116016536951065, 0.0039028581231832504, -0.0018913850653916597, 0.016402600333094597, 0.04020826891064644, -0.014431744813919067, -0.002212796825915575, 0.022477637976408005, 0.01579509675502777, -0.0073324283584952354, -0.0039840941317379475, -0.014622473157942295, -0.01982157491147518, 0.027874531224370003, -0.0014339913614094257, 0.002760256640613079, -0.04309038072824478, -0.007586732506752014, 0.02363613247871399, -0.01801319047808647, -0.012736385688185692, -0.011083411052823067, -0.01131652295589447, 0.024243636056780815, -0.0005355392349883914, 0.008222492411732674, 0.002525378717109561, 0.004941265564411879, 0.026179172098636627, -0.0009889595676213503, -0.024003461003303528, -0.02947099320590496, 0.0007359801675193012, -0.03577207773923874, -0.0016335492255166173, -0.03636545315384865] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.json b/database/embeddings/publications_txt/2021_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.json new file mode 100644 index 0000000000000000000000000000000000000000..40b76f9a4503c64ad56c3bae48fe8e510a6c454d --- /dev/null +++ b/database/embeddings/publications_txt/2021_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.json @@ -0,0 +1 @@ +[0.005927798338234425, 0.017850635573267937, 0.0115937115624547, 0.008309534750878811, 0.022026637569069862, -0.00316031277179718, -0.004989967681467533, -0.0018101903842762113, -0.010631107725203037, -0.031171372160315514, 0.03643738105893135, 0.010156883858144283, -0.016519976779818535, 0.010914226993918419, -0.008252911269664764, 0.027802258729934692, 0.032955020666122437, -0.017907259985804558, -0.031596049666404724, -0.004214929882436991, 0.010645263828337193, 0.00515983859077096, -0.02342807501554489, -0.025990299880504608, 0.00802641548216343, 0.02713692933320999, 0.024716265499591827, -0.03513503447175026, 0.009880843572318554, 0.0105320168659091, -0.00158015638589859, -0.00023556362430099398, 0.012528003193438053, -0.025551464408636093, -0.007523880340158939, -0.0065223476849496365, 0.01354015339165926, -0.02400846779346466, 0.002696705749258399, -0.02559393271803856, 0.03221891075372696, 0.005648218560963869, 0.0052341572009027, -0.021403776481747627, -0.0008922663400880992, 0.023031707853078842, 0.018190378323197365, -0.025268346071243286, -0.008953629992902279, 0.019521035254001617, 0.016760628670454025, 0.03853245824575424, -0.04142026975750923, 0.00436002854257822, -0.004993506707251072, -0.006851473357528448, -0.004289248492568731, 0.01407100073993206, -0.022720277309417725, -0.03632413223385811, 0.027193553745746613, -0.026726407930254936, -0.03805115818977356, -0.015698933973908424, -0.008592653088271618, -0.016888031736016273, -0.043260540813207626, 0.014226716011762619, -0.02233806811273098, -0.027094462886452675, 0.04764888063073158, 0.037003617733716965, 0.009265060536563396, -0.022649498656392097, 0.009979935362935066, -0.03219059854745865, -0.024065092206001282, 0.0066391341388225555, -0.015359191223978996, 0.01223072875291109, -0.0099374670535326, 0.01073019951581955, -0.005825167987495661, 0.007088585291057825, -0.0050819809548556805, 0.02188507653772831, 0.011572478339076042, -0.0067382254637777805, -0.02750498428940773, -0.01547243818640709, 0.025947831571102142, 0.010001168586313725, 0.013334891758859158, 0.004091065376996994, -0.009774673730134964, 0.02869408205151558, -0.023513009771704674, 0.007679595611989498, 0.01332781370729208, -0.02467379719018936, -6.663243402726948e-05, 0.03185085579752922, -0.008153819479048252, -0.026061078533530235, -0.0033337229397147894, -0.037881284952163696, 0.005552665796130896, 0.030010584741830826, 0.01950688101351261, 0.008153819479048252, -0.011402606964111328, 0.022507939487695694, -0.012343976646661758, -0.00590302562341094, 0.002809953410178423, -0.015939584001898766, 0.03318151459097862, -0.015571529977023602, 0.016010364517569542, -0.026188481599092484, 0.013625089079141617, 0.005694225430488586, 0.015911271795630455, -0.015415814705193043, 0.005205845460295677, 0.008472328074276447, -0.02456055022776127, -0.01139552891254425, -0.017864791676402092, -0.028212780132889748, 0.0042184689082205296, 0.01022766437381506, -0.01506191585212946, 0.02652822434902191, 0.006851473357528448, -0.00014078521053306758, 0.00227556680329144, -0.01470801793038845, -0.03315320238471031, -0.0532546304166317, -0.012159949168562889, 0.04948915168642998, -0.023654568940401077, 0.006196761038154364, -0.020158052444458008, 0.03901376202702522, -0.0064551071263849735, 0.006557737477123737, 0.02270612120628357, 0.004395418334752321, 0.00989499967545271, -0.002978055039420724, -0.01042584702372551, 0.009229670278728008, 0.014063922688364983, 0.0034788213670253754, 0.0028648076113313437, 0.02424911968410015, 0.013731257990002632, -0.018954798579216003, 0.015217631123960018, 0.009279216639697552, 0.0019446717342361808, -0.016477510333061218, -0.012216572649776936, 0.023484697565436363, 0.04711095616221428, 0.00745310029014945, 0.007141669746488333, -0.014389509335160255, -0.005609289743006229, 0.014219637960195541, -0.019832465797662735, -0.005853479728102684, -0.014000221155583858, 0.019620127975940704, 0.03227553516626358, -0.0033638044260442257, -0.0026365432422608137, -0.01027013175189495, 0.01735517755150795, 0.01741180196404457, 0.023300671949982643, 0.023852752521634102, -0.0054040285758674145, 0.01083636935800314, 0.03442723676562309, -0.021686894819140434, 0.0007405324140563607, -0.024178339168429375, 0.011345982551574707, -0.0024737499188631773, -0.005089059006422758, -0.00022494667791761458, -0.5861690044403076, 0.0009396002860739827, 0.004384801257401705, -0.026216793805360794, -0.025735491886734962, 0.03875895217061043, -0.0004483450320549309, 4.27719387516845e-05, -0.026542380452156067, 0.028863953426480293, -0.019563503563404083, -0.021601958200335503, 0.005920720286667347, -0.020837537944316864, -0.021134812384843826, -0.031199684366583824, 0.017709076404571533, -0.0019517496693879366, 0.01103455200791359, 0.015882959589362144, -0.009774673730134964, 0.009427853859961033, -0.001074966392479837, -0.0002943992440123111, -0.000463164527900517, 0.021262215450406075, 0.019110513851046562, -0.023229891434311867, 0.01264125108718872, 0.014396587386727333, -0.036210883408784866, 0.02474457584321499, 0.026245106011629105, -0.01261293888092041, 0.051867350935935974, -0.0009334070491604507, -0.03349294513463974, 0.02819862589240074, 0.0043246387504041195, 0.04328885301947594, -0.06404145807027817, -0.03309657797217369, -0.0002857729559764266, 0.021049877628684044, -0.01629348285496235, 0.007332774810492992, 0.01936531998217106, -0.01799219474196434, -0.008444015868008137, -0.031596049666404724, 0.005832245573401451, 0.013978987000882626, 0.00753095792606473, 0.011296437121927738, -0.0013014613650739193, -0.010418768972158432, 0.00012508097279351205, -0.007920246571302414, 0.008727135136723518, 0.006915174890309572, 0.004469736944884062, 0.013625089079141617, -0.007481412496417761, -0.021290527656674385, -0.006179066374897957, 0.0099374670535326, -0.003406272269785404, 0.008536029607057571, 0.024546394124627113, -0.02005896158516407, 0.016704004257917404, -0.0075026461854577065, 0.0020172209478914738, -0.02686796709895134, 0.01833193749189377, 0.02856667898595333, 0.02291846089065075, 0.007099201902747154, -0.014063922688364983, 0.0031939330510795116, -0.0012731495080515742, -0.016151923686265945, 0.0094066197052598, -0.026146015152335167, 0.011742348782718182, 0.008019337430596352, -0.01083636935800314, 0.0020012955646961927, 0.0020313768181949854, -0.020101429894566536, 0.007325697224587202, 0.035814519971609116, -0.014424898661673069, -0.026599004864692688, 0.01486373320221901, 0.036635562777519226, -0.010008246637880802, -0.011253969743847847, -0.012556315399706364, -0.022408846765756607, 0.002126929350197315, -0.015005292370915413, -0.008882850408554077, -0.012103325687348843, 0.04014623537659645, 0.006964720785617828, -0.03136955574154854, 0.0016995971091091633, 0.026429133489727974, -0.010064871050417423, -0.005361560732126236, 0.004947499837726355, -0.02400846779346466, 0.010723121464252472, 0.01759582944214344, -0.028849797323346138, 0.029104605317115784, 0.018275313079357147, -0.017312709242105484, 0.010248897597193718, -0.01717115007340908, 0.0020685361232608557, 0.004222007934004068, -0.012754498980939388, 0.009491555392742157, 0.027943817898631096, 0.03635244444012642, -0.037003617733716965, -0.026174325495958328, 0.014262105338275433, 0.003340800991281867, -0.008125507272779942, 0.020780913531780243, -0.008436937816441059, 0.04878135770559311, 0.0025710719637572765, 0.03357788175344467, -0.01732686534523964, -0.0021127734798938036, -0.03306826576590538, -0.024121714755892754, 0.001798688666895032, 0.0018792005721479654, -0.00014366063987836242, -0.022451315075159073, 0.03689036890864372, -0.034512173384428024, -0.0006971798720769584, 0.009201359003782272, 0.0070815072394907475, -0.01274742092937231, 0.01155124418437481, -0.012591705657541752, 0.012131636962294579, -0.029274476692080498, -0.028665771707892418, -0.0031373093370348215, -0.02562224492430687, -0.029529282823204994, -0.02756160870194435, 0.018077131360769272, 0.0205402635037899, -0.023866908624768257, -0.004006130155175924, -0.026669783517718315, 0.008670510724186897, -0.023484697565436363, 0.03360619395971298, 0.004168923012912273, -0.033124890178442, -0.01283943373709917, -0.02565055713057518, -0.019167138263583183, 0.029246164485812187, -0.009774673730134964, 0.0010351528180763125, 0.014120546169579029, 0.0205402635037899, -0.012181183323264122, -0.010673576034605503, -0.014120546169579029, 0.021686894819140434, -0.018162066116929054, -0.026330040767788887, 0.03102981299161911, 0.01565646566450596, 0.022720277309417725, -0.01690218783915043, -0.015203475952148438, -0.019549347460269928, 0.010857603512704372, 0.024928603321313858, -0.03725842386484146, 0.01844518445432186, -0.012931447476148605, 0.007123975083231926, -0.004529899451881647, -0.008946551941335201, -0.009958701208233833, 0.03966493159532547, 0.03428567945957184, 0.013894051313400269, -0.003406272269785404, -0.00515983859077096, -0.006586049217730761, -0.016236858442425728, 0.025721335783600807, -0.0004428153915796429, 0.003790251910686493, -0.004965194500982761, 0.03309657797217369, -0.005708381067961454, -0.02613185904920101, -0.004384801257401705, 0.008479406125843525, 0.014410743489861488, -0.02458886057138443, 0.011742348782718182, -0.02228144370019436, 0.0043246387504041195, -0.004314021673053503, -0.019379476085305214, 0.04430808126926422, 0.004296326544135809, -0.012846511788666248, 0.01445321086794138, 0.02710861712694168, 0.034059181809425354, 0.02188507653772831, -0.011982999742031097, -0.02398015558719635, 0.03468204289674759, -0.00910226721316576, -0.009611880406737328, 0.015359191223978996, 0.019775843247771263, 0.01595374010503292, 0.003512441646307707, 0.019917402416467667, -0.03134124353528023, 0.024206651374697685, 0.0030859941616654396, 0.03230384737253189, -0.015203475952148438, 0.007431866601109505, -0.028410963714122772, 0.0028400346636772156, 0.004908571019768715, -0.007538035977631807, 0.007523880340158939, -0.02819862589240074, 0.0198749341070652, -0.015557373873889446, -0.012145793065428734, 0.049432530999183655, 0.014325807802379131, -0.0032169364858418703, -0.003436353523284197, 0.03275683522224426, 0.038674019277095795, 0.0074035548605024815, -0.0043246387504041195, 0.013794959522783756, -0.021233905106782913, -0.021658582612872124, -0.017609985545277596, 0.018289469182491302, -0.01355430856347084, 0.009569413028657436, -0.016307638958096504, 0.020285457372665405, -0.02294677309691906, -0.007254917174577713, -0.03352125734090805, 0.013292424380779266, -0.004377723205834627, -0.0007737103733234107, 0.01963428407907486, 0.011282281018793583, 0.014722174033522606, -0.018346093595027924, -0.014764641411602497, -0.009038565680384636, 0.01238644402474165, 0.01095669437199831, -0.005934876389801502, 0.002038454869762063, 0.025877051055431366, -0.018983110785484314, -0.005439418368041515, 0.002933817682787776, 0.013490607030689716, -0.027915505692362785, -0.029897337779402733, -0.017397645860910416, -0.006462184712290764, 0.028736550360918045, 0.008238755166530609, -0.03210566192865372, 0.0002461805706843734, 0.006529425736516714, 0.011530010029673576, 0.0033584958873689175, -0.011600789614021778, 0.050649940967559814, -0.009689738042652607, -0.020766759291291237, -0.00794855784624815, 0.0008918239618651569, -0.004395418334752321, 0.011565400287508965, 0.007219527382403612, -0.035814519971609116, -0.015401658602058887, 0.008217521011829376, -0.007067351136356592, -0.005927798338234425, 0.0003738052037078887, 0.010793901048600674, -0.0036840823013335466, -0.013908207416534424, -0.03623919561505318, -0.033124890178442, -0.007601737976074219, 0.04388340190052986, 0.022408846765756607, -0.01659075729548931, 0.01836024969816208, 0.006893940735608339, 0.002525065094232559, -0.031567737460136414, -0.004314021673053503, -0.0006662137457169592, -0.006278157699853182, -0.007031961344182491, 0.006582510191947222, -0.021601958200335503, 0.0010820443276315928, 0.019917402416467667, 0.0040875268168747425, -0.006483418866991997, 0.000916596851311624, 0.0002901966799981892, 0.002755099209025502, 0.026358352974057198, 0.0031107671093195677, 0.026882123202085495, 0.016307638958096504, 0.0077716088853776455, -0.022635342553257942, 0.026768876239657402, 0.010114416480064392, -0.01635010726749897, -0.023597946390509605, -0.004614835139364004, 0.028495900332927704, 0.03066175803542137, -0.01144507434219122, -0.009810063987970352, 0.04062753543257713, 0.03145448863506317, 0.034115806221961975, 0.0005242120241746306, 0.013448139652609825, 0.021870922297239304, -0.003846875624731183, 0.012322742491960526, -0.01302346121519804, 0.014948668889701366, -0.0540473647415638, 0.004908571019768715, 0.02851005643606186, -0.02488613687455654, 0.008203364908695221, 0.04017454758286476, 0.005687147378921509, -0.037428297102451324, -0.014778797514736652, 0.012627094984054565, 0.015444126911461353, -0.008259988389909267, -0.004310482647269964, -0.007361087016761303, -0.04580860957503319, -0.009123501367866993, -0.016562445089221, -0.011947610415518284, 0.00018402717250864953, -0.0037477840669453144, -0.0005989730707369745, -0.013922363519668579, -0.013455217704176903, -0.006529425736516714, 0.027179397642612457, -0.003521289210766554, -0.030463574454188347, -0.04631822183728218, 0.005637601483613253, 0.018062975257635117, 0.019096357747912407, 0.03275683522224426, -0.005591594614088535, -0.017878947779536247, 0.0037017774302512407, -0.02297508530318737, -0.03499347344040871, -0.015019448474049568, -0.040740784257650375, -0.00010793901310535148, -0.027221865952014923, 0.01098500657826662, -0.002376427873969078, -0.016236858442425728, 0.008804992772638798, -0.0007511493749916553, -0.009725128300487995, 0.012506769970059395, -0.006610822398215532, 0.006720530800521374, 0.0352482795715332, 0.032841771841049194, 0.017454270273447037, 0.010822213254868984, -0.022437158972024918, 0.015345035120844841, 0.0009002290898934007, -0.016364261507987976, -0.03465373069047928, 0.009236748330295086, -0.00316031277179718, 0.009116423316299915, 0.01598205231130123, -0.015642309561371803, -0.001788956462405622, 0.039127007126808167, -0.018954798579216003, 0.0011006240965798497, 0.011282281018793583, 0.0076866731978952885, 0.03609763830900192, 0.027151085436344147, 0.014276261441409588, -0.011268124915659428, -0.005103215109556913, 0.005867635365575552, 0.008401548489928246, 0.03255865350365639, 0.01844518445432186, -0.0001789398811524734, 0.005917181260883808, -0.012761576101183891, -0.006766537670046091, -0.010800979100167751, -0.0028754244558513165, -0.010694810189306736, 0.019889090210199356, -0.020795069634914398, -0.04498756676912308, -0.007269073277711868, 0.004558211658149958, -0.01836024969816208, 0.015967896208167076, -0.01531672291457653, -0.032898396253585815, -0.006058740895241499, 0.0076866731978952885, -0.005308476276695728, 0.015203475952148438, 0.015047760680317879, -0.022465471178293228, -0.016732316464185715, -0.011317671276628971, 0.034540485590696335, 0.03097318857908249, -0.007778686936944723, 0.0004941306542605162, -0.006515269633382559, -0.01155124418437481, -0.006547120399773121, -0.025296658277511597, -0.02792966179549694, 0.016364261507987976, 0.031086435541510582, 0.006104747299104929, 0.041533518582582474, 0.002733865287154913, -0.009413697756826878, 0.025056006386876106, 0.00808303989470005, 0.001792495371773839, -0.0007772493991069496, -0.01114072185009718, -0.026938747614622116, 0.004374184180051088, 0.010355067439377308, -0.026160169392824173, 0.022054947912693024, -0.017213618382811546, 0.010171039961278439, 0.0017588750924915075, 0.004947499837726355, -0.03272852301597595, -0.009010253474116325, -0.040655847638845444, -0.004296326544135809, 0.03063344582915306, 0.00459006242454052, 0.0003054585540667176, -0.02011558599770069, -0.021814297884702682, 0.004115838557481766, 0.012988071888685226, 0.004052136559039354, -0.015415814705193043, 0.009909155778586864, -0.0005896832444705069, 0.008981941267848015, 0.007941479794681072, 0.025848738849163055, 0.004763472359627485, 0.0024489769712090492, -0.033323075622320175, 0.010914226993918419, 0.01001532468944788, -0.000250604294706136, 0.015146851539611816, 0.0001154593555838801, 0.002648929599672556, 0.002519756555557251, 0.023484697565436363, 0.009548178873956203, -0.007729141041636467, 0.009618958458304405, -0.007891934365034103, -0.024603016674518585, -0.016845563426613808, -0.01057448424398899, -0.003815024858340621, 0.014382431283593178, -0.003291255095973611, -0.0029497432988137007, 0.0034398925490677357, -0.019945714622735977, -0.027759790420532227, 0.01282527856528759, 0.02249378338456154, 0.02519756741821766, -0.01796388253569603, 0.009250904433429241, 0.015260099433362484, -0.004250319674611092, 0.012251962907612324, 0.007884856313467026, 0.03592776507139206, 0.022833524271845818, 0.016123611479997635, 0.01896895468235016, -0.009229670278728008, -0.025480685755610466, -0.0007100086659193039, 0.015245943330228329, -0.03502178564667702, -0.04173170030117035, 0.020922474563121796, 0.03060513362288475, 0.00040919502498582006, -0.011275202967226505, -0.03898544982075691, 0.009229670278728008, 0.013894051313400269, 0.0005742001812905073, 0.00028444585041143, 0.007700829301029444, -0.006203839089721441, 0.01144507434219122, 0.02005896158516407, 0.0005569476052187383, 0.02620263770222664, -0.002553377067670226, -0.020469482988119125, 0.006161371245980263, 0.008946551941335201, -0.023470541462302208, 0.011890986002981663, 0.00511383218690753, 0.02297508530318737, -0.02112065628170967, 0.005064286291599274, 0.027731478214263916, 0.004430808126926422, 0.015486594289541245, -0.011919298209249973, -0.009753440506756306, 0.034115806221961975, -0.002857729559764266, -0.016604913398623466, -0.016251014545559883, -0.0014978749677538872, 0.033719439059495926, -0.020384548231959343, 0.0032275535631924868, 0.0009776443475857377, -0.009038565680384636, -0.007884856313467026, 0.004041519947350025, 0.010857603512704372, -0.011714037507772446, 0.006419716868549585, 0.023866908624768257, -0.005273086484521627, -0.010673576034605503, 0.010255975648760796, -0.0006799272960051894, -0.023074176162481308, -0.021403776481747627, -0.02291846089065075, -0.015557373873889446, 0.009187202900648117, 0.011912220157682896, 0.00024175684666261077, 0.001861505676060915, 0.03272852301597595, -0.0035956078208982944, 0.003561987541615963, 0.012761576101183891, -0.020370392128825188, -0.02826940454542637, 0.01249261386692524, -0.0009077494032680988, -0.0099374670535326, 0.03646569326519966, -0.015486594289541245, -0.03020876832306385, -0.02361210249364376, -0.02829771675169468, -0.0003001500735990703, 0.009066876955330372, -0.01751089282333851, -0.0037513230927288532, 0.007955635897815228, -0.010793901048600674, -0.022026637569069862, -0.0241075586527586, 0.017043747007846832, -0.025707179680466652, -0.017949726432561874, 0.014134702272713184, -0.0011484003625810146, 0.037768036127090454, -0.028609147295355797, -0.0022490243427455425, 0.01249261386692524, -0.042779240757226944, -0.0030452958308160305, 0.0023180346470326185, 0.028000442311167717, -0.00797687005251646, -0.008953629992902279, 0.003114305902272463, -0.02838265150785446, -0.035786207765340805, 0.014495679177343845, 9.217947808792815e-05, -0.016335951164364815, 0.0012855359818786383, -0.002222481882199645, -0.0002164309989893809, 0.0014580613933503628, -0.025183411315083504, -0.020611044019460678, 0.003498285776004195, 0.021389620378613472, -0.029897337779402733, -0.019917402416467667, 0.010022402741014957, 0.026938747614622116, 0.01613776758313179, -0.028156157582998276, -0.035503089427948, -0.04396833851933479, -0.020143898203969002, -0.0021410854533314705, 0.009611880406737328, 0.012726186774671078, -0.01659075729548931, 0.019974026829004288, -0.006295852828770876, 0.006649751216173172, -0.01511854026466608, 0.008727135136723518, -0.0029408957343548536, 0.011579555459320545, -0.004122916609048843, 0.028226936236023903, 0.007467256393283606, -0.005637601483613253, -0.0492909699678421, 0.00312315346673131, 0.00918012484908104, 0.023357294499874115, 0.007545114029198885, 0.02051195129752159, 0.017298555001616478, 0.01103455200791359, -0.019124669954180717, -0.014849577099084854, -0.016449198126792908, -0.015882959589362144, 0.006363093387335539, -0.026117702946066856, -0.0049156490713357925, -0.009364151395857334, -0.008960708044469357, 0.010503704659640789, -0.002155241323634982, 0.021163124591112137, -0.030718382447957993, 0.018431028351187706, -0.004413112998008728, -0.01753920502960682, 0.0012996918521821499, -0.0027126313652843237, 0.02419249527156353, 0.017737388610839844, 0.02501353994011879, 0.03632413223385811, 0.00816089753061533, -0.007622971665114164, -0.0028117229230701923, 0.009689738042652607, -0.02708030678331852, -0.006444490049034357, 0.0347103551030159, 0.0044768149964511395, -0.0024065091274678707, -0.017482580617070198, 0.03139786794781685, -0.014693861827254295, -0.009668504819273949, -0.029614219442009926, -0.02556562051177025, -0.006009194999933243, 0.023173267021775246, 0.0015571529511362314, -0.008705900982022285, -0.02628757432103157, -0.006635595113039017, 0.006444490049034357, 0.004183079116046429, -0.0017916107317432761, -0.0015810411423444748, -0.006051662843674421, 0.005202306434512138, 0.001764183514751494, -0.019492724910378456, 0.007460178341716528, -0.022210663184523582, 0.0010740816360339522, -0.014467366971075535, -0.020200520753860474, 0.18108274042606354, -0.011317671276628971, 0.0017916107317432761, 0.042439498007297516, -0.001852658111602068, -0.017072059214115143, 0.030888253822922707, 0.02811368927359581, -0.008302456699311733, 0.02172936126589775, 0.01905388943850994, -0.023045863956212997, 0.004299865569919348, -0.005534971132874489, 0.03434230014681816, 0.001811075140722096, -0.02233806811273098, -0.04456288740038872, -0.0073823207058012486, -0.0015792716294527054, -0.006762998644262552, -0.0015783868730068207, -0.000900671468116343, -0.011197345331311226, 0.012924369424581528, -0.018473496660590172, -0.01095669437199831, -0.016873875632882118, 0.012223650701344013, 0.04883797839283943, -0.007906090468168259, 0.024843668565154076, 0.00414061127230525, 0.007962713949382305, -0.02464548498392105, -0.008712979033589363, 0.028764862567186356, -0.012556315399706364, 0.01073019951581955, 0.01376664824783802, -0.0024649023544043303, -0.025763804093003273, -0.0031567737460136414, -0.02085169404745102, 0.0247728880494833, 0.0069611817598342896, -0.014835420995950699, 0.012804044410586357, -0.01635010726749897, -0.006968259811401367, -0.030831629410386086, 0.013596776872873306, 0.02589120715856552, 0.019775843247771263, -0.007849466986954212, -0.017270242795348167, -0.001276688533835113, -0.0015474207466468215, 0.01984662190079689, 0.014446132816374302, 0.004108760505914688, 0.021177280694246292, -0.016675692051649094, 0.004650224931538105, 0.02294677309691906, 0.021531179547309875, -0.021899232640862465, 0.007375242654234171, 0.022380534559488297, -0.006716991774737835, -0.015585686080157757, -0.01022766437381506, -0.025947831571102142, 0.0033708822447806597, -0.017652451992034912, -0.019337009638547897, 0.019889090210199356, 0.01868583634495735, 0.04045766592025757, 0.033691126853227615, -0.01531672291457653, 0.04260936751961708, 0.011176112107932568, -0.02082338184118271, -0.008005182258784771, -0.0315394252538681, 0.03320982679724693, -0.00891823973506689, -0.014382431283593178, -0.023060020059347153, -0.026117702946066856, 0.01896895468235016, -0.005028896499425173, -0.027037838473916054, 0.003558448515832424, -0.01014980673789978, 0.01136721670627594, 0.011742348782718182, 0.011756504885852337, 0.027335112914443016, -0.024787044152617455, 0.0747433453798294, 0.034540485590696335, -0.007021344266831875, -0.006179066374897957, -0.008380314335227013, 0.007913168519735336, -0.003144387388601899, 0.020582731813192368, -0.0034752823412418365, -0.01744011417031288, -0.024546394124627113, 0.012273197062313557, -0.007778686936944723, -0.000496342487167567, 0.03473866730928421, -0.0018862785072997212, -0.03966493159532547, 0.01238644402474165, -0.023909376934170723, -0.01626517064869404, -0.02029961347579956, -0.016661537811160088, 0.011345982551574707, -0.0021092344541102648, -0.009626036509871483, -0.01957765966653824, -0.01208209153264761, -0.01509022805839777, -0.012506769970059395, 0.023144956678152084, -0.014155936427414417, 0.03386100009083748, -0.004363567568361759, 0.011437996290624142, -0.015217631123960018, 0.013582620769739151, 0.002029607305303216, -0.0022684887517243624, 0.005329709965735674, -0.017468424513936043, -0.0020614583045244217, 0.004430808126926422, 0.025268346071243286, -0.009930389001965523, -0.034540485590696335, -0.003938889130949974, -4.1997787775471807e-05, -0.015203475952148438, -0.03983480483293533, 0.0014147089095786214, -0.018303625285625458, -0.015175163745880127, -0.016661537811160088, 0.04348703473806381, -0.028623303398489952, -0.02313080057501793, -0.044846005737781525, 0.014764641411602497, -0.001216525794006884, -0.021531179547309875, -0.01574140042066574, 0.02114896848797798, -0.007474334444850683, -0.014580613933503628, -0.018303625285625458, -0.18040324747562408, 0.011558322235941887, 0.006373710464686155, -0.024277430027723312, -0.003754862118512392, 0.0027232482098042965, 0.04045766592025757, 0.005793316755443811, -0.025990299880504608, -0.002765716053545475, 0.013752492144703865, 0.0028648076113313437, -0.0016995971091091633, -0.023031707853078842, 0.009003175422549248, -0.0030081365257501602, -0.0020915395580232143, 0.021347152069211006, 0.01963428407907486, 0.022012481465935707, 0.021191436797380447, -0.040287796407938004, -0.008352002128958702, -0.006359554361552, -0.011176112107932568, 0.018487652763724327, -0.021106500178575516, 0.03725842386484146, -0.021318839862942696, -0.021743517369031906, 0.0015500750159844756, 0.005934876389801502, 0.012428912334144115, 0.026853810995817184, 0.007891934365034103, 0.006741764489561319, -0.017454270273447037, -0.006490496918559074, -0.019719218835234642, 0.021262215450406075, -0.001201485050842166, 0.015628153458237648, -0.015543217770755291, -0.011176112107932568, -0.019804155454039574, 0.0017049055313691497, 0.011586633510887623, -0.006171988323330879, 0.00899609737098217, -0.030038896948099136, 0.021290527656674385, -0.005648218560963869, 0.02935941144824028, -0.007304463069885969, 0.01626517064869404, 0.030095521360635757, 0.010935461148619652, -0.0025303736329078674, 0.009979935362935066, 0.012209494598209858, -0.013787881471216679, -0.021446242928504944, -0.010178118012845516, 0.004367106128484011, -0.028764862567186356, -0.02321573533117771, -0.03793790936470032, 0.018374405801296234, -0.04263767972588539, 0.017369333654642105, 0.0026347737293690443, 0.010390456765890121, 0.007010727655142546, -0.00013735682296101004, 0.04218469187617302, 0.010737277567386627, -0.009866687469184399, 0.022805213928222656, 0.0033018721733242273, -0.0104683144018054, -0.0011360138887539506, 0.03640906885266304, -0.0075026461854577065, -0.02710861712694168, 0.027703167870640755, -0.006104747299104929, 0.02456055022776127, 0.005039513111114502, -0.0019924480002373457, -0.007290306966751814, 0.006292313802987337, -0.003705316223204136, 0.015571529977023602, 0.0029249703511595726, 0.016873875632882118, 0.009364151395857334, 0.020979097113013268, -0.00899609737098217, 0.016760628670454025, -0.04173170030117035, -0.00866343267261982, 0.0033461095299571753, -0.01793557032942772, 0.0033956551924347878, 0.023852752521634102, 0.02422080747783184, -0.018926486372947693, 0.00866343267261982, 0.005729615222662687, -0.025961987674236298, -0.009824220091104507, 0.003938889130949974, 0.02683965489268303, 0.02708030678331852, -0.004653763957321644, 0.03674881160259247, -0.01744011417031288, -0.014778797514736652, 0.015245943330228329, -0.01966259628534317, 0.038419209420681, 0.021021565422415733, -0.006462184712290764, 0.01865752413868904, 0.0019995260518044233, -0.0280853770673275, -0.08470912277698517, -0.027575762942433357, 0.008224599063396454, 0.042326249182224274, -0.02674056403338909, 0.019322853535413742, -0.003176238154992461, 0.013334891758859158, -0.005460652522742748, 0.012513848021626472, -0.0033496483229100704, -0.008302456699311733, -0.005361560732126236, -0.003574373899027705, -0.0237111933529377, -0.01531672291457653, -0.0014562919968739152, -0.053934115916490555, 0.022536249831318855, 0.021177280694246292, 0.005382794886827469, -0.006005655974149704, -0.0027515601832419634, -0.015939584001898766, -0.014991136267781258, 0.008882850408554077, -0.024999383836984634, 0.021785985678434372, 0.008989019319415092, 0.032473716884851456, 0.02480120025575161, -0.011508775874972343, 0.011933454312384129, -0.020384548231959343, -0.010595718398690224, -0.024546394124627113, -0.005704842507839203, -0.029161227867007256, 0.028764862567186356, -0.04578029736876488, 0.02088000625371933, 0.017284398898482323, 0.04456288740038872, -0.008005182258784771, -0.024277430027723312, 0.03094487637281418, -0.044477950781583786, 0.040740784257650375, 0.030888253822922707, -0.030520198866724968, -0.014339962974190712, -0.013179176487028599, 0.015698933973908424, -0.017043747007846832, 0.026245106011629105, -0.00624630693346262, 0.007516802288591862, 0.016435042023658752, -0.031171372160315514, -0.017638295888900757, 0.005064286291599274, -0.019705062732100487, -0.0040344418957829475, 0.0066249780356884, 0.004604218062013388, 0.014120546169579029, -0.015245943330228329, -0.004045058973133564, -0.008394470438361168, -0.0225220937281847, -0.02373950555920601, 0.014049766585230827, -0.035757895559072495, 0.0030523736495524645, -0.00866343267261982, -0.01571309007704258, -0.0051669166423380375, -0.012365209870040417, 0.01264125108718872, 0.01027013175189495, -0.025537308305501938, -0.015557373873889446, 0.007693751249462366, -0.011706959456205368, -0.010546172969043255, -0.009555256925523281, -0.02236637845635414, 0.012237806804478168, 0.012195339426398277, -0.013186254538595676, 0.01817622222006321, 0.0015350343892350793, 0.021375464275479317, -0.008040571585297585, -0.01528841070830822, 0.014106390066444874, 0.001728793722577393, -0.002310956595465541, -0.009640192613005638, 0.018827395513653755, -0.053934115916490555, 0.006593127269297838, -0.0829537883400917, 0.016633225604891777, 0.003291255095973611, -0.012202417477965355, -0.01610945537686348, -0.024334054440259933, 0.010581562295556068, -0.012669563293457031, -0.00030391025939024985, -0.025551464408636093, -0.03513503447175026, -0.016364261507987976, 0.008635121397674084, 0.00910226721316576, -0.019110513851046562, -0.011827284470200539, 0.025721335783600807, -0.02255040593445301, 0.015345035120844841, 0.02228144370019436, -0.014750485308468342, 0.0033142585307359695, 0.025579776614904404, 0.02194170095026493, -0.01908220164477825, 0.0056729912757873535, 0.013476450927555561, 0.0032576348166912794, -0.020964941009879112, -0.009597725234925747, 0.004144150298088789, -0.0011696342844516039, 0.003259404329583049, 0.015231787227094173, -0.00907395500689745, -0.0002534797240514308, 0.020526107400655746, 0.010355067439377308, 0.018799083307385445, 0.03680543601512909, -0.024234963580965996, -0.03892882540822029, 0.026188481599092484, 0.017468424513936043, -0.00959064718335867, 0.0016872106352820992, 0.006494035944342613, 0.024900291115045547, 0.008436937816441059, 0.0033584958873689175, 0.02112065628170967, -0.013950674794614315, -0.011501697823405266, -0.028623303398489952, 0.034483861178159714, -0.019252073019742966, 0.01355430856347084, 0.002753329696133733, -0.027519140392541885, -0.016845563426613808, 0.02899135835468769, 0.0021163125056773424, 0.02400846779346466, -0.0007263764855451882, 0.018884018063545227, -0.007821154780685902, -0.03980649262666702, -0.013879895210266113, 0.002468441380187869, -0.012089169584214687, -0.014283339492976665, 0.0048979539424180984, 0.023045863956212997, 0.022833524271845818, -0.0031656213104724884, 0.0006746188155375421, -0.0004808594530913979, -0.011537088081240654, -0.006724069826304913, 0.012287352234125137, 0.02890642173588276, -0.019195450469851494, -0.017638295888900757, 0.011112409643828869, 0.02826940454542637, 0.00026077887741848826, -0.007205371744930744, 0.011416762135922909, -0.00372301135212183, 0.017581673339009285, 0.010178118012845516, 0.008486484177410603, 0.017341021448373795, -0.012485535815358162, 0.014290417544543743, 0.04178832471370697, -0.023286515846848488, 0.002018990460783243, 0.03672049939632416, 0.009385385550558567, 0.030520198866724968, 0.014934512786567211, 0.01565646566450596, -0.017468424513936043, -0.032502029091119766, 0.012145793065428734, -0.01128935907036066, -0.013271190226078033, 0.005584517028182745, -0.004147689323872328, -0.0019322852604091167, 0.010432925075292587, 0.002158780349418521, 0.01632179506123066, -0.025027696043252945, 0.022861836478114128, 0.0073823207058012486, -0.014623082242906094, -0.02398015558719635, 0.01896895468235016, -6.9017100940982345e-06, -0.014821264892816544, 0.029642529785633087, 0.005407567601650953, 0.025056006386876106, 0.004954577889293432, 0.02774563431739807, -0.03714517503976822, 0.028637459501624107, -0.01274742092937231, -0.0052200015634298325, -0.01282527856528759, 0.001605813973583281, -0.011869752779603004, -0.026641471311450005, 0.006837317254394293, 0.0006153408321551979, 0.00745310029014945, -0.005446496419608593, 0.0837465152144432, 0.013341969810426235, -0.0008188324281945825, -0.010928383097052574, -0.0037513230927288532, -0.015104384161531925, 0.020780913531780243, 0.021998325362801552, -0.007764530833810568, -0.029925649985671043, -0.004565289244055748, -0.010461237281560898, -0.02398015558719635, -0.026330040767788887, -0.02413587085902691, -0.014424898661673069, 0.007906090468168259, 0.03802284598350525, 0.00047732048551552, 0.008712979033589363, 0.024065092206001282, 0.017737388610839844, 0.005959649104624987, -0.0031815466936677694, -0.02689627930521965, -0.044449638575315475, 0.02249378338456154, 0.0070284223183989525, 0.03352125734090805, -0.0474223867058754, 0.016251014545559883, -0.01677478477358818, -0.021021565422415733, -0.0076725175604224205, -0.005524354055523872, 0.027604075148701668, 0.01126104686409235, -0.019563503563404083, 0.017496736720204353, 0.003719472326338291, -0.011303515173494816, 0.02681134268641472, -0.0026064617559313774, -0.029132917523384094, -0.00922259222716093, -0.004650224931538105, -0.043147291988134384, -0.0018057666020467877, -0.043685220181941986] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_httpsanrgusceduwwwpapersschedulingpdf.json b/database/embeddings/publications_txt/2021_httpsanrgusceduwwwpapersschedulingpdf.json new file mode 100644 index 0000000000000000000000000000000000000000..74db8f064bb0622cdad538db90946f90f3f1cf32 --- /dev/null +++ b/database/embeddings/publications_txt/2021_httpsanrgusceduwwwpapersschedulingpdf.json @@ -0,0 +1 @@ +[0.004556343890726566, 0.003826767671853304, 0.0065416330471634865, 0.005531450733542442, -0.0021869749762117863, 0.012304584495723248, -0.0038302752654999495, 0.008200718089938164, -0.017734315246343613, -0.03897620737552643, 0.027822108939290047, 0.018590163439512253, -0.0021203309297561646, 0.021438317373394966, -0.03176462650299072, 0.009140748530626297, 0.027331048622727394, -0.0286078080534935, 0.010066749528050423, 0.0002867445000447333, -0.011680235154926777, -0.0029288276564329863, -0.013518205843865871, 0.013560296967625618, -0.003263801336288452, 0.013314766809344292, 0.022434469312429428, -0.023823469877243042, 0.003344475757330656, 0.009035521186888218, -0.0038863965310156345, -0.013314766809344292, 0.0027043428272008896, -0.031091172248125076, 0.0036689266562461853, -0.019474074244499207, 0.0009110934333875775, 0.0007519370410591364, 0.024875743314623833, -0.015321101061999798, 0.012030992656946182, 0.01765013299882412, -0.0042792451567947865, -0.006436405703425407, 0.0058366102166473866, 0.008881187997758389, 0.03922875225543976, -0.028130777180194855, -0.017018768936395645, 0.03877978399395943, 0.017131011933088303, 0.03591759875416756, -0.03754511475563049, -0.004026699811220169, -0.024019895121455193, -0.00839714240282774, 0.006036541890352964, 0.027260897681117058, -0.018870770931243896, -0.01609276793897152, 0.03995833173394203, -0.01759401150047779, -0.016359344124794006, -0.005085988435894251, -0.017818497493863106, -0.012830721214413643, -0.03257838636636734, 0.01564379781484604, -0.014009267091751099, -0.0014424915425479412, 0.04116493836045265, 0.035777296870946884, -0.010494673624634743, -0.011399628594517708, 0.03182074800133705, -0.030810566619038582, -0.036029841750860214, 0.003953040577471256, -0.019684528931975365, 0.011069916188716888, -0.003518100827932358, -0.009014476090669632, 8.719619654584676e-05, -0.00944941584020853, 0.0019905506633222103, 0.01593843474984169, 0.022953590378165245, 0.007464126218110323, 0.0027692329604178667, -0.02755553461611271, 0.03047383949160576, 0.007695626467466354, 0.004651048686355352, -0.0059348223730921745, -0.03224165737628937, 0.023556895554065704, -0.016303222626447678, 0.02503007836639881, 0.03041771799325943, -0.026082351803779602, -0.0018607701640576124, 0.011147083714604378, -0.024202289059758186, -0.013826873153448105, -0.0018432323122397065, -0.005892731249332428, -0.014549434185028076, -0.019123315811157227, 0.013721645809710026, -0.0020484256092458963, -0.01407941896468401, 0.004507238045334816, -0.025465017184615135, -0.033307962119579315, 0.0005704198847524822, -0.02142428793013096, 0.014114494435489178, -0.026264745742082596, -0.0007970971055328846, -0.017313405871391296, 0.021592650562524796, 0.025254562497138977, 0.020442165434360504, -0.028228988870978355, 0.021761015057563782, 0.0043564122170209885, -0.012248462997376919, -0.018323587253689766, 0.007976233027875423, -0.006506557576358318, 0.002443028148263693, -0.005724367685616016, 0.0021396225783973932, 0.02926723100244999, 0.01588231325149536, 0.007246656343340874, -0.03493547812104225, -0.0008084967848844826, -0.02850959450006485, -0.06218234449625015, 0.016724132001399994, 0.03816245123744011, -0.011610083281993866, -0.02625071443617344, -0.007899065501987934, 0.013490145094692707, -0.0030621157493442297, 0.03097892925143242, 0.00513860210776329, 0.006776641122996807, 0.01735549606382847, 0.013391933403909206, -0.0014635369880124927, 0.02272910624742508, -0.003963563125580549, -0.003451456781476736, 0.0057524279691278934, 0.010242127813398838, 0.014647645875811577, -0.025212472304701805, 0.005443761125206947, 0.006548648234456778, -0.0060330345295369625, -0.01648561656475067, 0.017004739493131638, 0.029183050617575645, 0.03322378173470497, 0.01015794649720192, 0.0074290502816438675, 0.0017993876244872808, -0.01735549606382847, 0.008439232595264912, -0.02940753474831581, -0.01685040444135666, 0.01292191818356514, 0.0297723226249218, 0.025773683562874794, -0.0019309218041598797, -0.031904932111501694, -0.014409131370484829, -0.009624794125556946, 0.019979165866971016, 0.04167002812027931, 0.03271868824958801, -0.005962882656604052, 0.01885673962533474, 0.030838627368211746, -0.00822176318615675, 0.006096170749515295, -0.012872811406850815, 0.02921111136674881, 0.004728215280920267, -0.01901107281446457, -0.01562976837158203, -0.6200275421142578, -0.03684360161423683, 0.0035636993125081062, -0.0027815094217658043, -0.030277414247393608, 0.007022171281278133, 0.011925765313208103, 0.031203415244817734, -0.01628919318318367, 0.016261132434010506, -0.004342381842434406, 0.0012618512846529484, 0.008348035626113415, -0.020877104252576828, -0.0119187505915761, 0.001285527367144823, 0.01739758811891079, -0.02187325805425644, 0.023135986179113388, 0.006534617859870195, 0.0018327095312997699, 0.010024658404290676, -0.007358898874372244, -0.004489699844270945, -0.008832082152366638, 0.0029989792965352535, 0.044672515243291855, -0.023220166563987732, 0.01920749805867672, 0.009730021469295025, -0.03370080888271332, 0.004917624406516552, 0.023360470309853554, -0.009217915125191212, 0.04610360786318779, 0.02191534824669361, -0.028172867372632027, 0.0028762139845639467, 0.025156350806355476, 0.027934351935982704, -0.05135094374418259, -0.021803105250000954, 0.01224144734442234, 0.01926361955702305, 0.007786823436617851, 0.0043634274043142796, 0.008074444718658924, -0.004103866405785084, -0.009989582933485508, -0.028930503875017166, 0.005022851750254631, -0.005605109967291355, -0.008937309496104717, 0.0017204671166837215, 0.004826427437365055, -0.021985499188303947, -0.001855508773587644, -0.0240339245647192, 0.012760569341480732, -0.003400597022846341, 0.012585190124809742, 0.01259220577776432, -0.00015882751904428005, -0.03661911562085152, 0.008804021403193474, 0.009084627032279968, -0.007120383437722921, 0.017369527369737625, 0.021003378555178642, -0.018421800807118416, 0.016682041808962822, 0.018421800807118416, 0.0014302149647846818, -0.020021256059408188, 0.028130777180194855, 0.006471481639891863, 0.0391165129840374, -0.008909248746931553, -0.001030351035296917, 0.013616418465971947, -0.020778892561793327, -0.01683637499809265, -0.0055560036562383175, -0.01996513456106186, -0.001571394968777895, -0.015419313684105873, -0.025829805061221123, -0.017425648868083954, 0.00029288275982253253, -0.0035864985547959805, 0.015868283808231354, 0.006801194045692682, 0.005864670500159264, 0.010340340435504913, -0.006608277093619108, 0.03263450786471367, 0.016569798812270164, -0.013118342496454716, -0.0022308197803795338, -0.0025026570074260235, 0.007660550530999899, -0.012199357151985168, 0.005878700874745846, -0.011974872089922428, 0.02674177475273609, 0.021298013627529144, -0.015026465058326721, 0.005152632482349873, 0.04571075737476349, -0.011252311058342457, -0.006338193546980619, -0.019740650430321693, -0.03016517125070095, 0.002744679804891348, 0.011069916188716888, -0.03358856961131096, 0.02695222944021225, 0.0018853232031688094, -0.011119022965431213, 0.03016517125070095, 0.00414595752954483, 0.018239406868815422, 0.0008466416620649397, -0.017074890434741974, -0.008881187997758389, 0.02519844099879265, 0.021199801936745644, -0.03510384261608124, -0.0003748724120669067, -0.004728215280920267, 0.006250504404306412, 0.01038243155926466, 0.02971620112657547, -0.012992069125175476, 0.03608596324920654, -0.01103484071791172, 0.01214323565363884, -0.021999530494213104, -0.0034725023433566093, -0.05460597574710846, -0.015307070687413216, 0.0034549643751233816, 0.006439913529902697, -0.004728215280920267, -0.024777531623840332, -0.011448735371232033, -0.03555281087756157, -0.007085307966917753, -0.002832369413226843, 0.005815564654767513, -0.02700835093855858, 0.013960161246359348, 0.003798707155510783, 0.017453709617257118, -0.006552156060934067, -0.011406644247472286, -0.00485098036006093, 0.01076124981045723, -0.023248227313160896, 0.0034461955074220896, -0.0028656914364546537, 0.02348674274981022, -0.04526178911328316, -0.013153417967259884, 0.005478837061673403, 0.00811653584241867, 0.0008391880546696484, 0.011406644247472286, 0.015194828622043133, -0.027836140245199203, -0.010698113590478897, 0.010873491875827312, -0.0018748005386441946, 0.023711228743195534, -0.0126974331215024, 0.0054577914997935295, -0.0007935895700939, 0.0038618436083197594, -0.006117216311395168, -0.0005594586837105453, -0.016064707189798355, 0.02448289468884468, -0.006808209232985973, -0.03193299099802971, 0.0426240898668766, 0.017467739060521126, 0.003595267655327916, -0.00014972973440308124, 0.007548307999968529, 0.01259220577776432, -2.240191497548949e-05, 0.005703322123736143, -0.01856210269033909, 0.01367955468595028, 0.006310133263468742, 0.010094810277223587, -0.00662581529468298, -0.019221527501940727, -0.0006221566582098603, 0.01103484071791172, 0.03695584461092949, 0.015587677247822285, 0.0040828208439052105, -0.01990901306271553, -0.009568673558533192, -0.005657723639160395, 0.012199357151985168, -0.0041880481876432896, 0.020372014492750168, 0.009035521186888218, 0.03111923299729824, -0.017986860126256943, -0.02735910937190056, -0.007393974810838699, -0.005931314546614885, 0.023051803931593895, -0.016457555815577507, 0.008263854309916496, -0.0399022102355957, 0.0067275348119437695, -0.005650708451867104, -0.00871983915567398, 0.024216318503022194, -0.006731042638421059, -0.018281497061252594, 0.004619480576366186, 0.009344188496470451, 0.012978038750588894, 0.017664164304733276, -0.010235113091766834, -0.036170147359371185, -0.005075465422123671, -0.011525901965796947, -0.002264141570776701, 0.0056612309999763966, -0.00046738478704355657, 0.026320865377783775, -0.018127163872122765, 0.029996808618307114, -0.01960034668445587, 0.000981244957074523, 0.03670329600572586, 0.03645075112581253, -0.023164045065641403, -0.019530195742845535, -0.02960395999252796, 0.01910928636789322, 0.033111538738012314, -0.006801194045692682, 0.010887522250413895, -0.01734146662056446, 0.04049148038029671, -0.009989582933485508, -0.0003981101035606116, 0.04840457811951637, 0.008818051777780056, 0.006878360640257597, 0.016205010935664177, 0.020189620554447174, 0.02298165112733841, -0.004840457811951637, 0.0016950371209532022, 0.01960034668445587, 0.0016888988902792335, 0.024903804063796997, -0.014149569906294346, -0.0021361149847507477, -0.0012355444487184286, -0.019431982189416885, -0.03776960074901581, 0.006211920641362667, 0.010852446779608727, -0.010592886246740818, -0.028088685125112534, -0.0010163207771256566, -0.009519566781818867, 0.009996597655117512, -0.0037881843745708466, 0.01835164800286293, 0.006383792031556368, -0.012928932905197144, 0.0012486978666856885, 0.005212260875850916, 0.013784782029688358, 0.005377117078751326, -0.016022616997361183, 0.017888648435473442, 0.004984268452972174, -0.030754445120692253, 0.021831165999174118, 0.0015503495233133435, 0.012381751090288162, -0.0213120449334383, -0.011729341000318527, -0.024819623678922653, -0.0043739499524235725, 0.02156458981335163, 0.00897939968854189, -0.010200037620961666, -0.00606109481304884, 0.011196189559996128, 0.026980290189385414, 0.002749941311776638, -0.0021957438439130783, 0.028537655249238014, 0.0008001662790775299, 0.0023413083981722593, -0.0013819857267662883, 0.011911734938621521, 0.002458812203258276, 0.011294401250779629, -0.008551475591957569, -0.02011946775019169, -0.007295762654393911, 0.0057594431564211845, 0.0016187472501769662, 0.004149464890360832, 0.010677067562937737, 0.010543779470026493, -0.019937073811888695, -0.013925084844231606, -0.02327628806233406, -0.021578621119260788, 0.015405283309519291, 0.10258964449167252, 0.04116493836045265, -0.0019905506633222103, 0.012978038750588894, 0.010929613374173641, -0.019628407433629036, -0.02197146974503994, -0.030754445120692253, 0.0026832972653210163, -0.007786823436617851, -0.0034163810778409243, 0.004928147420287132, 0.013293720781803131, -0.004184540826827288, 0.009659870527684689, -0.02926723100244999, -0.005489359609782696, -0.011090962216258049, 0.024777531623840332, 0.010599900968372822, -0.006559171248227358, -0.010129885748028755, 0.0019993195310235023, 0.03224165737628937, -0.0011083947028964758, -0.009070596657693386, 0.03861141949892044, 0.015447374433279037, 0.005524435546249151, -0.015026465058326721, 0.014191661030054092, 0.03283093124628067, 0.01891286112368107, 0.01063497643917799, -0.03754511475563049, 0.023220166563987732, 0.020049316808581352, 0.016205010935664177, 0.009624794125556946, 0.017720283940434456, 0.014591525308787823, 0.017565950751304626, 0.0029744261410087347, -0.013412978500127792, 0.007878020405769348, -0.043073058128356934, 0.008144596591591835, 0.013462085276842117, -0.019193466752767563, -0.005454284138977528, 0.04043535888195038, -0.0009400309645570815, -0.01860419474542141, -0.015321101061999798, 0.024861713871359825, 0.006874853279441595, -0.004493207670748234, -0.0039740861393511295, -0.014423160813748837, -0.02730298787355423, -0.0067345499992370605, -0.024651259183883667, 0.009744051843881607, -0.00039920624112710357, -0.013104312121868134, 0.0019151376327499747, -0.02222401462495327, -0.011694265529513359, -0.00540517782792449, 0.017565950751304626, 0.005114048719406128, -0.01735549606382847, -0.03790990263223648, 0.015812162309885025, 0.0030077481642365456, 0.008411172777414322, 0.042006757110357285, -0.01562976837158203, 0.005299950484186411, -0.0016310238279402256, -0.031343717128038406, -0.029744261875748634, -0.018491951748728752, -0.04172614961862564, -0.010641992092132568, -0.01638740487396717, -0.027583593502640724, -0.002863937523216009, -0.014149569906294346, 0.012108159251511097, -0.007863990031182766, -0.015657829120755196, 0.00656267860904336, 0.0007269455818459392, -0.01946004293859005, 0.022504622116684914, 0.025100229308009148, 0.0111400680616498, -0.0007558831130154431, 0.00341988867148757, 0.006587231531739235, -0.01334984228014946, -0.015321101061999798, -0.00717650493606925, 0.007372929248958826, 0.00932314246892929, 0.01010182499885559, 0.010059733875095844, -0.015026465058326721, 0.009400309063494205, 0.02623668499290943, -0.03128759562969208, 0.004626495763659477, 0.018520012497901917, 0.020526347681879997, 0.031091172248125076, 0.004644033499062061, -0.0008497107774019241, 0.012318613938987255, -0.015068555250763893, -0.007365914061665535, -0.003377797780558467, 0.01397419162094593, 0.023865561932325363, -0.014479282312095165, 0.010270188562572002, -0.015517525374889374, -0.037376753985881805, -0.016710102558135986, -0.005320996046066284, -0.0031673430930823088, 0.003882888937368989, -4.033714867546223e-05, -0.02613847143948078, -0.02126995287835598, 0.016317253932356834, -0.014563464559614658, 0.009814203716814518, -0.0022413423284888268, -0.013384917750954628, -0.009961522184312344, 0.001741512562148273, 0.01574201136827469, 0.001135578379034996, 0.011182159185409546, -0.018421800807118416, -0.014563464559614658, 0.0031620815861970186, 0.008782975375652313, 0.027415230870246887, 0.017285345122218132, 0.030109049752354622, -0.010003612376749516, 0.01020705234259367, -0.0055560036562383175, -0.03137177973985672, -0.021550560370087624, -0.01598052680492401, 0.03645075112581253, 0.0067345499992370605, 0.04065984487533569, -0.008060414344072342, 0.005135094281286001, 0.006867838092148304, 0.025619350373744965, 0.012515039183199406, 0.004079313483089209, -0.002336047124117613, -0.018674345687031746, 0.005475329235196114, 0.03535638749599457, -0.009210900403559208, 0.01683637499809265, 0.007520247716456652, 0.0026306835934519768, -0.011062901467084885, 0.005692799109965563, -0.024342592805624008, -0.00717650493606925, -0.0511825792491436, -0.0039740861393511295, 0.024412743747234344, -0.028074655681848526, -0.00430029071867466, -0.026475200429558754, -0.012886841781437397, 0.019698558375239372, 0.01257115975022316, -0.012199357151985168, 0.006695966701954603, 0.0143530098721385, -0.004949192516505718, 0.043213363736867905, -0.0075272624380886555, 0.01795879937708378, -0.0039670709520578384, 0.004717692732810974, -0.03022129274904728, 0.0037671388126909733, 0.01880061812698841, 0.003988116513937712, 0.015293040312826633, 0.010242127813398838, -0.010066749528050423, 0.007583383936434984, 0.007067769765853882, 0.010228097438812256, -0.017018768936395645, 0.00998256728053093, -0.016120828688144684, -0.015293040312826633, -0.03148402273654938, -0.03429008275270462, -0.01885673962533474, -0.007092323154211044, -0.015194828622043133, 0.0007650904590263963, 0.0039670709520578384, -0.018365679308772087, -0.026685655117034912, 0.004437086172401905, -0.00015773141058161855, 0.023893622681498528, -0.010340340435504913, 0.019277649000287056, 0.013805827125906944, -0.023220166563987732, -0.01555961649864912, 0.03148402273654938, 0.004075805656611919, 0.009610763750970364, 0.02177504450082779, 0.009358218871057034, -0.00662230746820569, -0.020596498623490334, 0.0014889668673276901, -0.0009303850820288062, -0.024426773190498352, -0.021592650562524796, 0.007379944436252117, -0.01683637499809265, -0.017116980627179146, -0.0015810407930985093, 0.0028463995549827814, -0.022701045498251915, 0.018786588683724403, 0.004195063374936581, -0.004380965139716864, -0.0035356387961655855, -0.020736802369356155, -0.007835929282009602, -0.0032374945003539324, -0.006688951514661312, 0.02524053305387497, 0.010473628528416157, -0.022111771628260612, -0.012311599217355251, -0.009870325215160847, -0.014100464060902596, -0.006583724170923233, -0.007828914560377598, 0.013013115152716637, -0.02796241268515587, 0.006313640624284744, 0.0033742901869118214, 0.002141376491636038, -0.014268827624619007, 0.008277884684503078, -0.012374735437333584, 0.026433108374476433, -0.0035531765315681696, -0.00328133930452168, 0.02463722787797451, 0.01568588986992836, 0.014535403810441494, -0.022588802501559258, 0.006425883155316114, -0.008439232595264912, -0.01212218962609768, -0.011778447777032852, -0.005640185438096523, 0.006057587452232838, -0.015924405306577682, -0.008348035626113415, 0.014591525308787823, -0.009175824001431465, 0.002737664617598057, 0.02016155980527401, 0.0009251237497664988, 0.005187707953155041, -0.01875852793455124, -0.01854807324707508, -0.027162684127688408, -0.002711357781663537, 0.006478496827185154, 0.0038863965310156345, -0.011953826062381268, 0.01574201136827469, -0.02780807949602604, 0.018674345687031746, 0.0026166532188653946, 0.00190461496822536, -0.016962647438049316, -0.010473628528416157, -0.0052438294515013695, -0.024496925994753838, 0.024623198434710503, -0.00970196072012186, -0.03925681486725807, -0.009680915623903275, 0.010494673624634743, 0.014086433686316013, -0.000494130072183907, 0.012613250873982906, 0.004093343857675791, 0.00965285487473011, -0.011890689842402935, -0.02372525818645954, -0.03740481287240982, 0.05255755037069321, 0.004654556047171354, -0.005780488718301058, 0.0020063347183167934, -0.015587677247822285, 0.02940753474831581, -0.007485171779990196, 0.008376096375286579, 0.015447374433279037, -0.034205902367830276, -0.01219234149903059, 0.014703767374157906, 0.04071596637368202, -0.023669136688113213, -0.0021466377656906843, 0.010564825497567654, -0.02609638124704361, -0.020596498623490334, 0.02845347300171852, -0.010873491875827312, -0.010894537903368473, 0.01048064325004816, -0.0055700340308249, 0.02146637812256813, -0.006759102921932936, 0.0009032013476826251, -0.030782505869865417, 0.005952360108494759, -0.011238280683755875, -0.013840903528034687, -0.0008207733044400811, 0.004619480576366186, 0.015924405306577682, 0.011392613872885704, -0.028930503875017166, -0.03041771799325943, -0.02554919943213463, -0.024805592373013496, -0.0019659975077956915, 0.000956691917963326, 0.013721645809710026, 0.020091407001018524, 0.004493207670748234, 0.0065416330471634865, 0.017678193747997284, -0.02815883792936802, 0.021508468315005302, -0.006197890732437372, 0.006036541890352964, 0.010803340934216976, 0.015264979563653469, 0.010010628029704094, 0.017986860126256943, -0.034009478986263275, 0.016022616997361183, 0.017285345122218132, 0.014647645875811577, 0.0032602939754724503, 0.016373375430703163, -0.00027797557413578033, -0.008369081653654575, -0.0022238045930862427, -0.016653981059789658, -0.012002931907773018, -0.009687930345535278, -0.005931314546614885, -0.031399838626384735, 0.0044616395607590675, -0.010319294407963753, 0.00391094945371151, 0.005043897312134504, -0.012430856935679913, -0.010150930844247341, -0.030249353498220444, 0.009231945499777794, -0.02623668499290943, -0.01669607125222683, -0.010375415906310081, -0.012935948558151722, 0.031708505004644394, 0.01634531468153, 0.01940392144024372, 0.03047383949160576, -0.00033650826662778854, -0.005089495796710253, -0.0065311104990541935, 0.0052438294515013695, -0.014689736999571323, -0.018463890999555588, 0.024749470874667168, -0.00777980824932456, -0.004977253265678883, -0.0012679895153269172, 0.012760569341480732, -0.01844986155629158, -0.014816010370850563, -0.028439443558454514, -0.019431982189416885, -0.021087558940052986, 0.016920557245612144, -0.005019344389438629, -0.04335366562008858, -0.013188493438065052, 0.007492186967283487, 0.003882888937368989, -0.013356857933104038, -0.005461299326270819, 0.00811653584241867, -0.014381070621311665, -0.0060540796257555485, -0.01153993234038353, -0.01588231325149536, 0.004044237546622753, -0.007772793062031269, -0.0018923383904621005, -0.021592650562524796, 0.009842264465987682, 0.1763329654932022, -0.011960841715335846, 0.01297102402895689, 0.031848810613155365, -0.00023369239352177829, -0.005426223389804363, 0.027794048190116882, 0.014191661030054092, -0.01214323565363884, 0.013279690407216549, -0.00413543451577425, 0.020329922437667847, -0.014942282810807228, -0.005278904922306538, 0.0014354763552546501, -0.01936183124780655, -0.05306264013051987, -0.032887052744627, -0.02991262637078762, -0.008832082152366638, -0.003995131701231003, -0.023613015189766884, 0.01153993234038353, -0.0014056619256734848, -0.000125724749523215, -0.021648772060871124, -0.012676387093961239, 0.0025657934602349997, 0.014170615933835506, 0.0222801361232996, -0.024047955870628357, 0.012823705561459064, -0.019446013495326042, 0.0001689118071226403, -0.028720049187541008, -0.004009161610156298, -0.002197497757151723, -0.00388990412466228, 0.02660147286951542, 0.0012864043237641454, 0.006748580373823643, -0.02810271643102169, 0.005461299326270819, -0.02025977149605751, 0.004458131734281778, 0.038190510123968124, -0.014787949621677399, -0.011722326278686523, -0.03041771799325943, 0.014675706624984741, -0.04113687574863434, 0.0015398267423734069, 0.03956548124551773, 0.005071958061307669, 0.003735570702701807, 0.009421355091035366, -0.0009856295073404908, 0.020652620121836662, 0.009126718156039715, 0.016064707189798355, 0.0062399813905358315, 0.01121021993458271, 0.015713950619101524, -0.008235793560743332, -0.0019887967500835657, 0.02358495444059372, -0.02519844099879265, -0.011427689343690872, 0.02960395999252796, -0.018239406868815422, 0.0031743582803756, -0.01981080137193203, -0.0007764900801703334, -0.0021817137021571398, -0.017257284373044968, -0.020175589248538017, 0.03344826400279999, 0.010824386030435562, 0.04388681799173355, 0.03821857273578644, -0.006987095810472965, -0.00041082510142587125, 0.00806742999702692, -0.01234667468816042, 0.005433238577097654, -0.03695584461092949, 0.02790629118680954, -0.013279690407216549, -0.02996874786913395, 0.013265660032629967, -0.009547627530992031, 0.00782189890742302, -0.010389446280896664, -0.010017642751336098, -0.0002319385966984555, -0.01759401150047779, 0.016275161877274513, 0.006762610748410225, 0.007569353561848402, 0.028425412252545357, -0.02855168655514717, 0.0774473249912262, 0.03670329600572586, -0.0015003664884716272, -0.010087794624269009, -0.009954506531357765, 0.0009847525507211685, 0.024104077368974686, 0.025114258751273155, -0.014465251937508583, 0.0002165929472539574, 0.003868858562782407, 0.012893857434391975, -0.014465251937508583, -0.00095230748411268, 0.03137177973985672, -0.005601602140814066, -0.03423396125435829, 0.0026552367489784956, -0.02251865155994892, -0.02749941311776638, -0.04040729999542236, -0.0037636312190443277, 0.032297778874635696, 0.003791691968217492, -0.00656267860904336, -0.030782505869865417, 0.01198890246450901, -0.013286706060171127, -0.033813051879405975, 0.04268021136522293, -0.012851766310632229, 0.0063452087342739105, 0.015124676749110222, 0.003693479811772704, -0.014135539531707764, 0.0016599613009020686, -0.0059348223730921745, 0.009091642685234547, -0.0020554407965391874, -0.011834568344056606, -0.018169254064559937, -0.001099625718779862, 0.0078078689984977245, -0.003158573992550373, -0.011785462498664856, -0.00998256728053093, -0.009505536407232285, -0.017608042806386948, -0.03434620425105095, 0.003091930178925395, -0.023290319368243217, 0.006604769732803106, -0.02634892612695694, 0.038443055003881454, -0.009610763750970364, -0.02152249962091446, -0.037180326879024506, -0.009021490812301636, 0.00524032162502408, -0.024623198434710503, -0.011048871092498302, 0.019923044368624687, -0.004808889701962471, 0.0011162867303937674, -0.008460278622806072, -0.180598184466362, 0.03378499299287796, 0.025507107377052307, -0.020947257056832314, -0.006916943937540054, 0.011048871092498302, 0.023739289492368698, 0.002053686883300543, -0.0024202289059758186, -0.003595267655327916, 0.03574923798441887, 0.032550323754549026, -0.025619350373744965, -0.008754914626479149, -0.00804638396948576, 0.0030901762656867504, -0.004921132232993841, 0.002336047124117613, 0.017818497493863106, 0.009463446214795113, 0.014914222061634064, -0.03734869137406349, 0.0009856295073404908, -0.015349161811172962, -0.008502369746565819, 0.0457388199865818, -0.01659785956144333, 0.031231475993990898, -0.004703662358224392, -0.00589623861014843, -0.008102505467832088, 0.019389891996979713, 0.028285110369324684, 0.02107352949678898, 0.006720519624650478, 0.02096128650009632, -0.020021256059408188, -0.016261132434010506, -0.015587677247822285, 0.04279245436191559, 0.0037180327344685793, 0.005524435546249151, 0.005429730750620365, -0.03269062936306, 0.004030207172036171, 0.01749579980969429, 0.003917964641004801, 0.0035496691707521677, 0.008761930279433727, -0.0195582564920187, 0.00965285487473011, 0.0007707902695983648, 0.030024869367480278, 0.006667905952781439, 0.020736802369356155, 0.01598052680492401, 0.002286941045895219, -0.009014476090669632, -0.0018011414213106036, 0.012108159251511097, -0.015293040312826633, -0.02232222631573677, -0.0029235663823783398, -0.0007392221014015377, -0.010677067562937737, -0.01010182499885559, -0.015208858996629715, 0.017608042806386948, -0.03807826712727547, 0.0072326259687542915, -0.004167002625763416, 0.0060540796257555485, 0.015194828622043133, -0.019474074244499207, 0.019979165866971016, -0.006383792031556368, -0.020231710746884346, 0.006015496328473091, 0.0025447478983551264, -0.004191556014120579, -0.01093662902712822, 0.04526178911328316, -0.0019063687650486827, -0.011575007811188698, 0.017018768936395645, -0.012956993654370308, -0.004159987438470125, -0.012171296402812004, -0.0042687226086854935, -0.013090281747281551, 0.0010154438205063343, -0.028243018314242363, -0.00021955247211735696, -0.0011136560933664441, 0.0032287256326526403, 0.005983928218483925, 0.002116823336109519, -0.002072978764772415, -0.019572285935282707, -0.027036411687731743, 0.0013512944569811225, -0.013932100497186184, -0.010677067562937737, 0.017818497493863106, 0.004896578844636679, 0.02841138280928135, -0.02016155980527401, 0.013370887376368046, 0.03462681174278259, 0.007569353561848402, -0.008474308997392654, 0.03437426686286926, 0.02675580605864525, 0.03342020511627197, 0.01708891987800598, 0.03532832860946655, -0.01153993234038353, -0.012704447843134403, 0.00920388475060463, -0.018842710182070732, 0.04189451411366463, 0.0029077823273837566, -0.011981886811554432, 0.007906081154942513, -0.0019835354760289192, -0.031006990000605583, -0.09630406647920609, -0.00612072367221117, 0.015770072117447853, 0.03226971998810768, -0.01284475065767765, -0.004402010701596737, -0.011974872089922428, 0.021606681868433952, -0.0019730126950889826, 0.02755553461611271, -0.016471587121486664, -0.0127956448122859, 0.005331518594175577, -0.002939350437372923, 0.005548988468945026, -0.014844070188701153, -0.012781614437699318, -0.033504385501146317, 0.01118917390704155, 0.030782505869865417, -0.009161793626844883, -0.03193299099802971, 0.0024325053673237562, -0.02580174431204796, -0.0028849830850958824, 0.0009444153984077275, -0.03591759875416756, 0.01523691974580288, 0.02623668499290943, 0.01297102402895689, -0.015040495432913303, -0.003321676515042782, -0.01174337137490511, -0.021227862685918808, 0.0008010431774891913, -0.013448054902255535, -0.0212138332426548, -0.016359344124794006, 0.021887287497520447, -0.03125953674316406, 0.015924405306577682, 0.007085307966917753, 0.03137177973985672, -0.023767350241541862, -0.000997029128484428, 0.006082140374928713, -0.03429008275270462, 0.029042746871709824, 0.016611890867352486, -0.03462681174278259, -0.020077377557754517, 0.000107858024421148, -0.01480197999626398, -0.020975317806005478, 0.03765735775232315, -0.011119022965431213, 0.011834568344056606, 0.003386566648259759, -0.015419313684105873, -0.023304348811507225, 0.008565505966544151, -0.021382195875048637, -0.00755532318726182, 0.022841349244117737, 0.01108394656330347, -0.0028534147422760725, -0.021354135125875473, -0.014675706624984741, 0.01555961649864912, -0.024356622248888016, -0.017032800242304802, -0.005833102390170097, -0.03824663162231445, 0.0011215481208637357, -0.013476114720106125, 0.009751067496836185, -0.03875172138214111, -0.034514568746089935, 0.03257838636636734, -0.008390126749873161, 0.0016099783824756742, -0.016934586688876152, 0.003547915257513523, -0.002700835233554244, 0.013405963778495789, 0.00490359403192997, -0.022939560934901237, 0.013960161246359348, 0.025100229308009148, -0.021480407565832138, 0.02755553461611271, 0.02070874162018299, -6.960350583540276e-05, -0.0018449861090630293, 0.017734315246343613, 0.04088433086872101, 0.006467974279075861, -0.01015794649720192, -0.016878465190529823, 0.03041771799325943, -0.0383308120071888, -0.0015512264799326658, -0.08025338500738144, 0.036226265132427216, 0.0029411043506115675, -0.005482344422489405, -0.017860587686300278, 0.013370887376368046, 0.010010628029704094, -0.010845431126654148, -0.004591419827193022, 0.011750387027859688, -0.04646839573979378, 0.007878020405769348, 0.002385153202340007, 0.003042824100703001, -0.02679789625108242, -0.019979165866971016, 0.03830275312066078, -0.0198528915643692, 0.018211346119642258, 0.024707380682229996, 0.005194723140448332, 0.006808209232985973, 0.027836140245199203, 0.022841349244117737, -0.015713950619101524, 0.010466612875461578, 0.019628407433629036, 0.0047738137654960155, -0.02292553149163723, -0.0009733529295772314, 0.011848598718643188, -0.01407941896468401, 0.006376776844263077, -0.0009338926756754518, -0.007379944436252117, 0.019221527501940727, 0.013756721280515194, 0.016625920310616493, 0.005478837061673403, 0.048741307109594345, -0.018127163872122765, -0.032353900372982025, 0.018379708752036095, -0.013897024095058441, -0.009821218438446522, 0.01915137656033039, -0.013286706060171127, 0.015054524876177311, -0.0037951995618641376, -0.009337172843515873, -0.001994058256968856, -0.0027411722112447023, -0.01564379781484604, -0.02025977149605751, 0.03532832860946655, 0.01759401150047779, 0.037432875484228134, 0.01624710112810135, -0.016303222626447678, -0.030782505869865417, 0.009680915623903275, -0.019894983619451523, 0.03148402273654938, -0.006762610748410225, 0.021592650562524796, -0.023346440866589546, -0.015756040811538696, -0.01546140480786562, -0.005478837061673403, -0.015166767872869968, -0.003931995015591383, -0.0032585400622338057, 0.004549328703433275, 0.026433108374476433, -0.014381070621311665, 0.005071958061307669, 0.0055454811081290245, 0.01290087215602398, -0.019488103687763214, 0.006664398591965437, 0.01815522462129593, -0.001962489914149046, -0.024174228310585022, 0.009645840153098106, 0.019137347117066383, 0.023318380117416382, -0.0005160524160601199, 0.013181478716433048, -0.014044342562556267, 0.020147528499364853, 0.0037531086709350348, 0.011932780966162682, 0.0013574326876550913, -0.023051803931593895, -0.00887417234480381, 0.017818497493863106, -0.004587912000715733, 0.0027797557413578033, 0.034065600484609604, 0.04464445263147354, 0.0286078080534935, 0.01689249649643898, 0.03263450786471367, -0.010452582500874996, -0.041501663625240326, -0.013995236717164516, -0.018534041941165924, -0.003721540328115225, 0.005387640092521906, -0.0007129152654670179, -0.0032515248749405146, 0.02055440843105316, -0.011960841715335846, 0.014409131370484829, -0.02378137968480587, 0.006980080623179674, -0.016920557245612144, -0.019474074244499207, -0.027274927124381065, 0.03434620425105095, -0.0027534489054232836, -0.004938669968396425, 0.007899065501987934, 0.012353690341114998, 0.04237154498696327, 0.019417952746152878, 0.018491951748728752, -0.007260686717927456, -0.012634295970201492, -0.008972384966909885, -0.005671754013746977, 0.019740650430321693, -0.022462530061602592, -0.00717650493606925, 0.003297123359516263, -0.00920388475060463, -0.008656702935695648, 0.01186262909322977, -0.0021448840852826834, 0.06313640624284744, 0.00942836981266737, 0.0023500772658735514, -0.00023106171283870935, -0.006138261873275042, -0.012578175403177738, 0.009540612809360027, 0.0019221528200432658, 0.0005064065917395055, -0.023192105814814568, -0.001538073061965406, 0.0034795175306499004, -0.002067717257887125, -0.024973956868052483, 0.007899065501987934, -0.00942836981266737, 0.011617098934948444, 0.05645797774195671, 0.004089836031198502, -0.005910268984735012, 0.007590399123728275, 0.012030992656946182, 0.0075272624380886555, 0.00623296620324254, -0.023921683430671692, -0.010663037188351154, 0.02744329161942005, -0.01718713343143463, 0.008467293344438076, -0.04037924110889435, -0.007856975309550762, 0.006303118076175451, -0.043914876878261566, -0.010452582500874996, 0.017888648435473442, 0.001339017995633185, -0.0045247757807374, -0.006559171248227358, 0.015812162309885025, -0.0007129152654670179, -0.00502635957673192, 0.028691988438367844, -0.02488977462053299, -0.034318145364522934, -0.021803105250000954, -0.024651259183883667, -0.03538444638252258, -0.013714630156755447, -0.04063178598880768] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_jupiter_a_networked_computing_architecture.json b/database/embeddings/publications_txt/2021_jupiter_a_networked_computing_architecture.json new file mode 100644 index 0000000000000000000000000000000000000000..840361cc851531d3bd23ae02062b6c69c29caa56 --- /dev/null +++ b/database/embeddings/publications_txt/2021_jupiter_a_networked_computing_architecture.json @@ -0,0 +1 @@ +[0.001815981580875814, 0.007538169156759977, 0.00888125691562891, -0.012587055563926697, 0.01974550262093544, 0.003373541636392474, -0.015976417809724808, 0.014598171226680279, -0.015526378527283669, -0.04399140551686287, 0.02226291410624981, 0.017368730157613754, -0.006504483986645937, 0.020012713968753815, -0.013529326766729355, 0.012347971089184284, 0.02916821464896202, -0.02296610176563263, -0.027818094938993454, -0.0025982775259763002, 0.012242493219673634, -0.011904963292181492, -0.010154026560485363, 0.002668596338480711, 0.0007458181935362518, 0.02283952757716179, 0.026903951540589333, -0.029590127989649773, -0.010568907484412193, 0.002800443908199668, 0.018451638519763947, -0.010723608545958996, -0.0027740744408220053, -0.009183627553284168, 0.010336855426430702, -0.007285021711140871, 0.021700363606214523, -0.029421363025903702, 0.007699902635067701, -0.024274030700325966, 0.02358490601181984, 0.024189647287130356, 0.018803231418132782, -0.030996501445770264, -0.019154826179146767, 0.013374624773859978, 0.03243100643157959, -0.014309864491224289, 0.0022765693720430136, 0.021503472700715065, -0.0021341738756746054, 0.035581283271312714, -0.0432882197201252, 0.004208576865494251, -0.01022434514015913, -0.002983272774145007, -0.020800285041332245, 0.014738808386027813, 0.005122720263898373, -0.025427257642149925, 0.018986061215400696, -0.00022919515322428197, -0.03912534937262535, -0.001394069055095315, -0.001034564571455121, -0.019084507599473, -0.024794388562440872, 0.017917215824127197, -0.008374962024390697, -0.03192470967769623, 0.04362574964761734, 0.03982853516936302, -0.013388688676059246, -0.010857214219868183, 0.007214703131467104, -0.023823989555239677, -0.018001599237322807, -0.013079286552965641, -0.009394584223628044, 0.02004084177315235, -0.00736237270757556, 0.003737441264092922, -0.007629583589732647, 0.011820580810308456, 0.007938986644148827, 0.0008921690750867128, -0.011011915281414986, -0.003994104452431202, -0.014795063994824886, -0.01132131740450859, 0.008888289332389832, 0.001274527283385396, 0.022009767591953278, 0.007678806781768799, -0.008972671814262867, 0.025047536939382553, -0.014949765056371689, -0.0025103790685534477, 0.00471135601401329, -0.024302158504724503, 0.0035106632858514786, 0.00877577904611826, -0.014183290302753448, -0.017073391005396843, 0.011560401879251003, -0.015104466117918491, -0.008825002238154411, 0.011574464850127697, 0.02326144091784954, 0.0030676552560180426, -0.0021746072452515364, 0.027536820620298386, -0.009331297129392624, -0.006086087319999933, -0.006972103379666805, -0.02870411053299904, 0.0351874977350235, -0.010618130676448345, 0.006360330153256655, -0.010983787477016449, 0.03057458996772766, 0.01051265187561512, 0.008030400611460209, -0.019112635403871536, 0.014752872288227081, 0.01272066030651331, -0.014612235128879547, -0.03763459250330925, -0.010625162161886692, -0.0167358610779047, -0.004064423497766256, 0.007685838732868433, 0.0015927195781841874, 0.02416151948273182, -0.0001951345184352249, 8.58657804201357e-05, -0.004060907289385796, -0.011729166842997074, -0.01921107992529869, -0.04345698282122612, -0.0127417566254735, 0.04238813742995262, -0.02350052446126938, -0.008002272807061672, -0.02594761736690998, 0.02388024516403675, 0.00034763829899020493, 0.023486459627747536, 0.011018946766853333, 0.0015900825383141637, 0.005403995513916016, 0.008677332662045956, -0.026833632960915565, 0.008459344506263733, 0.004500399809330702, 0.006996714975684881, 0.008480440825223923, 0.03307793661952019, 0.01742498390376568, -0.018887614831328392, 0.01821255497634411, 0.026003871113061905, -0.017987534403800964, -0.021883193403482437, 0.001262221485376358, 0.034681204706430435, 0.04292256012558937, -0.007601456250995398, 0.006353298667818308, -0.02098311297595501, -0.022980164736509323, 0.015104466117918491, -0.025961680337786674, -0.009654763154685497, 0.0027371570467948914, 0.030602717772126198, 0.03217785805463791, 0.01942203752696514, -0.01373325102031231, -0.02908383309841156, 0.012516736052930355, -0.0017518156673759222, 0.0070494539104402065, 0.02598980814218521, -0.0026334370486438274, 0.009753209538757801, 0.01408484485000372, -0.01961893029510975, 0.022544188424944878, -0.003733925288543105, 0.026327338069677353, 0.017171837389469147, -0.02392243593931198, 0.004282411653548479, -0.6179048418998718, -0.02251606248319149, 0.01759374886751175, -0.02238948829472065, -0.02883068472146988, 0.024386540055274963, 0.012221397832036018, 0.023472396656870842, 0.00300964224152267, 0.035553157329559326, -0.024527177214622498, 0.012488609179854393, -0.003776116529479623, 0.0041663856245577335, -0.023106738924980164, -0.0025314746890217066, 0.004500399809330702, -0.024794388562440872, 0.007109224796295166, -0.0011549853952601552, -0.01053374819457531, 0.013079286552965641, -0.00807259138673544, -0.003603835590183735, 0.0010943354573100805, 0.0036706384271383286, 0.04255690425634384, -0.045622799545526505, 0.011040043085813522, 0.0072498624213039875, -0.0271852258592844, 0.022614508867263794, 0.021911321207880974, -0.014443470165133476, 0.050545111298561096, -0.011975281871855259, -0.03057458996772766, 0.015540442429482937, 0.020912794396281242, 0.039519134908914566, -0.046747900545597076, -0.02618670091032982, 0.007967113517224789, 0.020462755113840103, -0.022670762613415718, -0.01115255244076252, 0.02603199891746044, -0.026411719620227814, -0.011595561169087887, -0.016384268179535866, 0.0032979489769786596, 0.003762052860110998, 0.004925827961415052, 0.0016814969712868333, 0.004278895445168018, -0.008867193944752216, 0.008867193944752216, -0.019281400367617607, 0.005207103211432695, 0.022937973961234093, 0.017087453976273537, 0.01303006336092949, -0.016088929027318954, -0.027213353663682938, 0.020504945889115334, 0.002382047474384308, -0.020392436534166336, 0.011447891592979431, 0.024752197787165642, -0.0220660213381052, 0.017537495121359825, -0.005815360229462385, 0.010491556487977505, -0.01916888915002346, 0.03310606628656387, 0.011229903437197208, 0.027579011395573616, -0.004236704204231501, -0.012980840168893337, 0.015371677465736866, -0.007924922741949558, -0.021208133548498154, -0.02065964788198471, -0.013599645346403122, 0.036256343126297, 0.0030518334824591875, -0.0205752644687891, 0.005421575158834457, -0.0015619550831615925, -0.013916078954935074, 0.004517979454249144, 0.0231348667293787, -0.015681080520153046, -0.023514587432146072, -0.01175026223063469, 0.02582104317843914, -0.008206197060644627, -0.007643647491931915, -0.008515600115060806, -0.008979703299701214, 0.0068349819630384445, -0.007432691287249327, -0.0005326644750311971, -0.030827736482024193, 0.03032144159078598, 0.025581959635019302, -0.02366928942501545, -0.001547891297377646, 0.025919489562511444, -0.01115255244076252, -0.006437681149691343, 0.0013035336742177606, -0.02763526700437069, 0.0029094379860907793, 0.016679605469107628, -0.032571643590927124, 0.03400614485144615, 0.02004084177315235, -0.010364983230829239, 0.007292053662240505, -0.0007559264777228236, -0.007552233058959246, -0.0034297967795282602, -0.004546106792986393, -0.00403981190174818, 0.02053307369351387, 0.030518334358930588, -0.06413069367408752, -0.02445685863494873, 0.01714370958507061, 0.011869804002344608, 0.007981177419424057, 0.02251606248319149, -0.001815981580875814, 0.025666341185569763, -0.010815022513270378, 0.011862772516906261, -0.01599048264324665, 0.001733357086777687, -0.033893633633852005, -0.00573097774758935, 0.002033969620242715, 0.0004860783228650689, -0.004718387499451637, -0.028521282598376274, 0.003566918196156621, -0.029196342453360558, 0.013536358252167702, -0.000411584391258657, 0.017790641635656357, -0.02494909055531025, 0.03597506880760193, -0.0021253840532153845, 0.01656709611415863, -0.00855075940489769, -0.00720767118036747, 0.0018493829993531108, -0.03338734060525894, -0.023613033816218376, -0.021264387294650078, 0.005495409946888685, 0.03946287930011749, -0.042444393038749695, 0.003188955131918192, -0.003726893337443471, 0.005069981329143047, -0.00970398634672165, 0.0016050253761932254, 0.004271863494068384, -0.02019554376602173, -0.010069644078612328, -0.02272701822221279, -0.002364467829465866, 0.01755155809223652, -0.008874225430190563, 0.004932859912514687, 0.006272431928664446, 0.005495409946888685, -0.002673870185390115, 0.00409958278760314, -0.005389931611716747, 0.014120004139840603, -0.010168090462684631, -0.02213633991777897, 0.03738144412636757, 0.024091200903058052, 0.030349569395184517, 0.006975619588047266, -0.009106277488172054, -0.012896457687020302, -0.0015830507036298513, 0.037240806967020035, -0.010709544643759727, 0.020378371700644493, -0.025103790685534477, -0.006135310512036085, 0.002861972898244858, -0.006947491783648729, 0.0034825357142835855, 0.017481239512562752, 0.043935149908065796, 0.003549338551238179, 0.0022484418004751205, -0.0037901801988482475, -0.005558696575462818, -0.026425784453749657, 0.008782811462879181, -0.007868667133152485, 0.005822392180562019, -0.003762052860110998, 0.02012522518634796, -0.01599048264324665, -0.01705932803452015, -0.001108399243094027, 0.014921637251973152, 0.03181219846010208, -0.015301358886063099, 0.00011558643745956942, -0.030912119895219803, 0.001006436999887228, -0.006817402318120003, -0.013255083002150059, 0.04250064864754677, -0.0007260410347953439, -0.005752073135226965, 0.015216976404190063, 0.02870411053299904, 0.024766260758042336, 0.015062275342643261, -0.013726218603551388, -0.021841002628207207, 0.019731439650058746, 1.6535892427782528e-05, 0.010857214219868183, 0.0037409572396427393, 0.016876498237252235, 0.02251606248319149, -0.008705460466444492, 0.018662594258785248, -0.015132593922317028, 0.02094092220067978, 0.018311001360416412, 0.03349984809756279, -0.01776251383125782, 0.013191795907914639, -0.002554328413680196, 0.0037690845783799887, 0.013114445842802525, -0.017410920932888985, -0.004975051153451204, -0.018704785034060478, 0.016215503215789795, -0.011574464850127697, 0.009929006919264793, 0.05957404151558876, 0.0038921425584703684, 0.005558696575462818, 0.000290943804429844, 0.007460818625986576, 0.019562674686312675, 0.028155624866485596, 0.007608488202095032, 0.002730125328525901, 0.007119772955775261, 0.005857551470398903, -0.02680550515651703, -0.006131794303655624, -0.0007045058882795274, 0.008733588270843029, -0.013459007255733013, 0.010097771883010864, -0.02217853255569935, -0.011300222016870975, -0.029758892953395844, 0.009035958908498287, -0.0019900205079466105, -0.008269484154880047, 0.012544863857328892, 0.022417616099119186, 0.0071936072781682014, -0.02144721709191799, -0.01203856896609068, -0.007580360397696495, 0.019843949005007744, 0.019112635403871536, -0.02011116035282612, 0.0114619554951787, -0.0025930036790668964, -0.009169564582407475, 0.0009176596067845821, 0.008086655288934708, 0.008754683658480644, -0.0142325134947896, -0.025750724598765373, -0.02750869281589985, -0.01693275384604931, 0.01995646022260189, -0.008058528415858746, -0.02081434801220894, -0.01406374853104353, 0.01365590002387762, 0.01912669837474823, 0.013248051516711712, -0.005625499412417412, 0.0533016063272953, -0.007573328912258148, -0.008585918694734573, -0.0028022020123898983, 0.014668489806354046, 0.002705513732507825, 0.004960987251251936, -0.0011215839767828584, -0.026017935946583748, -0.012003409676253796, 0.0035317589063197374, -0.0028672467451542616, -0.0008877741638571024, -0.0032399361953139305, 0.01727028377354145, 0.01648271270096302, 0.006307591218501329, -0.025975743308663368, -0.030546462163329124, 0.007995241321623325, 0.05164208635687828, 0.023148929700255394, 0.015385741367936134, 0.004289443604648113, 0.0062583680264651775, -0.01855008490383625, -0.038900330662727356, 0.0002021663822233677, 0.008670301176607609, 0.004001136403530836, 0.007070549763739109, -0.002835603430867195, 0.0030922668520361185, -0.012833170592784882, 0.01904231496155262, -0.010906437411904335, -0.01202450506389141, -0.007608488202095032, 0.019759567454457283, -0.004416017327457666, 0.021292515099048615, -0.02995578572154045, 0.006335719022899866, 0.013177732937037945, 0.016370203346014023, -0.0205752644687891, 0.030040167272090912, 0.01677805185317993, 0.0035141792614012957, -0.008607014082372189, 0.0017737903399392962, 0.013859824277460575, 0.020870603621006012, 0.0073553407564759254, -0.01260111853480339, 0.036256343126297, 0.02102530375123024, 0.03586255759000778, 0.015146657824516296, 0.013585581444203854, 0.0038499513175338507, 0.021700363606214523, 0.003705797716975212, -0.011771357618272305, 0.00010168749577132985, -0.030265187844634056, -0.004658616613596678, 0.02532881125807762, -0.015202912501990795, -0.008360899053514004, 0.04531339928507805, 0.007397531997412443, -0.029815146699547768, -0.022825464606285095, 0.011715102940797806, 0.025975743308663368, -0.0022203142289072275, -0.009183627553284168, -0.009577413089573383, -0.045510292053222656, -0.008796874433755875, -0.002086708787828684, -0.021292515099048615, -0.0035159371327608824, 0.0035229690838605165, -0.01622956618666649, -0.01772032305598259, -0.040334831923246384, -0.01639833115041256, 0.012530799955129623, -0.018085980787873268, -0.014309864491224289, -0.04607284069061279, 0.013156636618077755, 0.016749924048781395, 0.004735967610031366, 0.027480565011501312, -0.012108887545764446, -0.00262816296890378, -0.0034895676653832197, -0.030180804431438446, -0.010815022513270378, -0.014654425904154778, -0.049841925501823425, -0.004953955300152302, -0.0026299210730940104, -0.005952481646090746, -0.0003649982390925288, -0.0008205318590626121, 0.01336759328842163, -0.020589327439665794, -0.015441996045410633, 0.0020638550631701946, 0.01041420642286539, 0.011764326132833958, 0.013726218603551388, 0.03456869348883629, 0.020772157236933708, 0.01797347143292427, -0.0075452011078596115, -0.000355549156665802, -0.011722134426236153, -0.00038741232128813863, -0.017045263200998306, 0.012010441161692142, 0.017157774418592453, 0.002200976712629199, 0.007137352600693703, -0.033527977764606476, -0.010357950814068317, 0.008093687705695629, -0.016328012570738792, 0.012073728255927563, 0.001320234383456409, 0.012875362299382687, 0.029477616772055626, 0.013979366049170494, -0.0064447131007909775, -0.00011580617865547538, 0.002167575294151902, -0.00877577904611826, 0.008213229477405548, 0.018071917816996574, 0.008065559901297092, 0.0017702743643894792, 0.03403427079319954, -0.006975619588047266, -0.01489351037889719, -0.020715901628136635, -0.003969493322074413, 0.011272094212472439, 0.02573665976524353, 0.01080095861107111, -0.0392378605902195, -0.02012522518634796, 0.00030764451366849244, -0.016707733273506165, -0.01759374886751175, -0.0178047064691782, -0.020589327439665794, -0.018437575548887253, -0.009275042451918125, 0.011117393150925636, 0.004971535410732031, 0.00445117661729455, -0.028493154793977737, -0.013754346407949924, -0.00278813811019063, 0.014879446476697922, 0.01718590036034584, -0.007137352600693703, 0.004148805979639292, 0.0014661458553746343, -0.0033383823465555906, -0.030293315649032593, -0.027621202170848846, -0.015596697106957436, -0.011490082368254662, 0.036453235894441605, 0.021742556244134903, 0.030799610540270805, -0.0023433722089976072, -0.0006526458309963346, 0.009654763154685497, 0.004247251898050308, -0.007826476357877254, -0.0064763561822474, -0.0203643087297678, -0.008037432096898556, -0.012137015350162983, 0.007439723238348961, -0.023641161620616913, 0.011511178687214851, 0.0008552517392672598, 0.018732912838459015, 0.013747313991189003, -0.0030307378619909286, -0.01547012384980917, -0.006870141252875328, -0.049588777124881744, 0.011293190531432629, 0.021953511983156204, -0.016960881650447845, 0.0010723609011620283, -0.01891574263572693, -0.0123128117993474, 0.02268482744693756, 0.008452313020825386, -0.0005374989123083651, -0.00877577904611826, 0.014112971723079681, -0.019928332418203354, 0.028535345569252968, 0.015385741367936134, 0.008396058343350887, -0.0028971321880817413, -0.000907990790437907, -0.028394708409905434, 0.020054906606674194, 0.020392436534166336, 0.004082003142684698, 0.020420562475919724, -0.00685607735067606, 0.00888125691562891, 0.013599645346403122, 0.03094024769961834, 0.011511178687214851, 0.0060685076750814915, 0.00608257157728076, -0.028043115511536598, -0.015892036259174347, -0.030462080612778664, -0.01590609923005104, -0.005910290405154228, -0.010280600748956203, -0.0008934875368140638, -0.007105709053575993, 0.0003047877980861813, -0.02123626135289669, -0.013684027828276157, 0.015624824911355972, 0.00824135635048151, 0.025342876091599464, -0.01689056307077408, 0.023078611120581627, 0.03898471221327782, -0.0005687028169631958, 0.0073553407564759254, -0.013894983567297459, 0.004577750340104103, 0.007017810828983784, 0.011609625071287155, 0.023739608004689217, -0.011061138473451138, -0.013346497900784016, 0.005488377995789051, 0.004187481012195349, -0.02004084177315235, -0.03673451021313667, 0.00859295018017292, 0.01863446645438671, -0.012115919962525368, -0.013508230447769165, -0.034146782010793686, -0.002056823344901204, 0.018803231418132782, -0.018043790012598038, -0.00859295018017292, -0.010815022513270378, -0.0028953743167221546, 0.019393909722566605, 0.020842475816607475, -0.0038112758193165064, 0.049588777124881744, -0.0036706384271383286, -0.02433028630912304, 0.00824135635048151, -0.007749125361442566, -0.01718590036034584, -0.011208808049559593, 0.009795401245355606, 0.026172636076807976, -0.01776251383125782, 0.003853467060253024, 0.016538968309760094, 0.00035686761839315295, 0.008030400611460209, -0.006391973700374365, -0.013930142857134342, 0.0334717221558094, 0.013212892226874828, 0.003969493322074413, 0.017607813701033592, 0.0009238125057891011, 0.029336979612708092, -0.012657374143600464, 0.017214028164744377, 0.007903826422989368, 0.0064201015047729015, 0.0005300275515764952, 0.006922880187630653, -0.005330160725861788, 0.00848747231066227, -0.0012165142688900232, 0.02961825579404831, -0.013451975770294666, -0.0017799432389438152, 0.005105140618979931, -0.002651016693562269, -0.035918813198804855, -0.015498250722885132, -0.0076506794430315495, -0.03316231817007065, 0.005801296327263117, 0.011468986980617046, 0.0047570629976689816, -0.0037233775947242975, 0.02936510741710663, -0.009493030607700348, 0.008747652173042297, 0.02639765664935112, -0.020715901628136635, -0.02136283367872238, 0.0053969635628163815, -0.0006776968948543072, -0.004728935658931732, 0.036959532648324966, -0.003111604368314147, -0.040166065096855164, -0.018029725179076195, -0.011757293716073036, 0.010850181803107262, 0.011954186484217644, 0.0013246292946860194, 0.006733019836246967, -0.005017242394387722, -0.0056290156207978725, -0.01829693652689457, -0.015723271295428276, 0.028479091823101044, -0.014696617610752583, -0.0012965018395334482, 0.02305048331618309, -0.0035475806798785925, 0.020547136664390564, -0.0178047064691782, -0.008389025926589966, -0.0013641836121678352, -0.0432882197201252, -0.01615924760699272, 0.0066591850481927395, 0.02115187793970108, -0.010146995075047016, 0.014809127897024155, 0.0056536272168159485, -0.03296542540192604, -0.02850721962749958, -0.003426280803978443, -0.00727095827460289, 0.01547012384980917, 0.018001599237322807, 0.0064587765373289585, 0.01499195583164692, -0.007341276854276657, -0.0028022020123898983, -0.04320383444428444, -0.013051158748567104, 0.002127141924574971, -0.027832157909870148, -0.0181281715631485, 0.0030571073293685913, 0.027860285714268684, 0.02015335112810135, -0.03217785805463791, -0.05183897912502289, -0.021784747019410133, -0.006342750508338213, -0.006560738664120436, 0.0010916985338553786, 0.006947491783648729, 0.005534084979444742, 0.010111835785210133, 0.012650341726839542, 0.02354271523654461, -0.008754683658480644, 0.019014189019799232, 0.00637087831273675, -0.005175459664314985, -0.009436774998903275, 0.0004777279682457447, 0.004183965269476175, -0.02350052446126938, -0.05743635073304176, -0.01742498390376568, 0.007140868343412876, 0.020054906606674194, 0.00013448459503706545, 0.005084045231342316, -0.0011180680012330413, -0.0016366688068956137, -0.0047816745936870575, -0.011454923078417778, -0.0038675309624522924, 0.0012086033821105957, 0.027297737076878548, -0.051867105066776276, 0.0033682677894830704, 0.004767610691487789, -0.025356939062476158, -0.00017337965255137533, -0.007868667133152485, 0.021742556244134903, -0.017298411577939987, 0.010322791524231434, -0.024724069982767105, -0.0181281715631485, 0.009964166209101677, -0.0073694041930139065, 0.026861760765314102, -0.01767813228070736, 0.005727461539208889, 0.03085586428642273, 0.02019554376602173, -0.006413069553673267, -0.006423617247492075, -0.0012068453943356872, -0.02094092220067978, -0.024724069982767105, 0.025553831830620766, -0.015315422788262367, -0.019689248874783516, -0.0009589718538336456, 0.014682553708553314, -0.017410920932888985, -0.009929006919264793, -0.0330498106777668, -0.011004883795976639, -0.0033348663710057735, 0.015104466117918491, 0.020758092403411865, -0.006448228843510151, -0.022375423461198807, -0.009626636281609535, 0.012284684926271439, -0.021883193403482437, -0.010477492585778236, 0.0089023532345891, -0.016721798107028008, -0.011004883795976639, 0.016257693991065025, -0.02995578572154045, 0.0015874456148594618, -0.020026778802275658, -0.0017447838326916099, -0.005906774662435055, -0.023162994533777237, 0.18879176676273346, -0.001803675782866776, 0.011004883795976639, 0.03378112614154816, 0.005790748633444309, -0.01966112107038498, 0.020083032548427582, 0.012291716411709785, 0.0034368284977972507, 0.008979703299701214, 0.000353131938027218, 0.017214028164744377, -0.0016981976805254817, -0.004785190336406231, 0.020561201497912407, -0.0089023532345891, -0.032121602445840836, -0.03296542540192604, -0.012776915915310383, -0.013719187118113041, 0.0015865666791796684, -0.01022434514015913, 0.010751736350357533, -0.0180156622081995, 0.009514125995337963, -0.03254351392388344, -0.007056485861539841, -0.00907111819833517, 0.02255825325846672, 0.02358490601181984, -0.01260111853480339, 0.02234729751944542, 0.010709544643759727, -0.008417153730988503, -0.007168996147811413, -0.021756619215011597, 0.017157774418592453, -0.004198029171675444, 0.023275503888726234, 0.0015074580442160368, -0.005119204521179199, -0.03147466853260994, 0.001489878399297595, -0.03605945035815239, 0.01697494462132454, 0.006500967778265476, -0.011025979183614254, -0.023697417229413986, -0.012369067408144474, 0.011447891592979431, -0.03310606628656387, 0.009507094509899616, 0.03510311618447304, 0.0282540712505579, -0.01714370958507061, 0.005780200939625502, 0.002508621197193861, 0.043485112488269806, 0.003807760076597333, 0.01144085917621851, 0.0056676906533539295, 0.028029050678014755, -0.009021895006299019, 0.011300222016870975, 0.012340939603745937, 0.006768179126083851, -0.01863446645438671, -0.0058434875681996346, 0.031418412923812866, 0.0044863359071314335, 0.003737441264092922, -0.006261884234845638, -0.009725082665681839, -7.625189027749002e-05, -0.006275947671383619, -0.020589327439665794, 0.020265862345695496, 0.012003409676253796, 0.0244146678596735, 0.04039108753204346, 0.0019443132914602757, 0.036340728402137756, -0.007390500046312809, -0.007383468095213175, -0.01272066030651331, -0.037606462836265564, 0.03780335560441017, -0.021700363606214523, -0.02085653878748417, -0.010449365712702274, -0.023697417229413986, 0.01669367030262947, -0.02089873142540455, -0.025497576221823692, 0.010871278122067451, 0.0005427728174254298, 0.0055481488816440105, 0.004834413528442383, -0.002229104284197092, 0.026172636076807976, -0.02144721709191799, 0.07150010019540787, 0.0310246292501688, -0.009809465147554874, -0.012249525636434555, -0.00784757174551487, 0.001721051288768649, 0.01099081989377737, 0.02771964855492115, -0.009260978549718857, -0.01607486419379711, -0.023022357374429703, 0.0048871529288589954, -0.01833912916481495, -0.0002575423859525472, 0.036537621170282364, -0.011954186484217644, -0.004873089026659727, 0.01175026223063469, -0.007580360397696495, 0.0029656931292265654, -0.019112635403871536, -0.01284723449498415, 0.011926058679819107, -0.008396058343350887, -0.019112635403871536, -0.024611560627818108, -0.01301599945873022, -0.03465307876467705, -0.013430880382657051, 0.03665012866258621, 0.0006394610973075032, 0.02449905127286911, -0.013662931509315968, 0.0035317589063197374, -0.011651815846562386, 0.018437575548887253, -0.013459007255733013, 0.0074256593361496925, 0.006813886109739542, -0.013451975770294666, -0.0203643087297678, 0.007404563948512077, 0.0233458224684, -0.013353529386222363, -0.03192470967769623, 0.01035091932862997, -0.02011116035282612, -0.008747652173042297, -0.032824788242578506, 0.004577750340104103, -0.019450165331363678, -0.0008803028031252325, -0.0123128117993474, 0.035918813198804855, -0.02251606248319149, 0.00691936444491148, -0.04148805886507034, -0.005006694700568914, -0.014028589241206646, -0.04494773969054222, 0.0004416895972099155, 0.013634804636240005, -0.00023666652850806713, -0.02234729751944542, -0.00923285074532032, -0.18114107847213745, 0.00637087831273675, 0.013290242291986942, 0.00036521797301247716, 0.0038675309624522924, 0.0121018560603261, 0.022319169715046883, 0.000692639616318047, -0.016201438382267952, -0.0048062861897051334, 0.02478032559156418, 0.014309864491224289, -0.009858688339591026, -0.025581959635019302, -0.016004545614123344, -0.010456397198140621, -0.012418290600180626, 0.010491556487977505, 0.016426458954811096, 0.018690722063183784, 0.014851318672299385, -0.03184032812714577, -0.0033436561934649944, -0.023852117359638214, -0.005186007358133793, 0.01784689724445343, -0.01511853002011776, 0.03783148527145386, -0.01833912916481495, -0.006915848236531019, -0.0025631182361394167, -0.0016735860845074058, 0.046747900545597076, 0.01727028377354145, 0.0059630293399095535, 0.01607486419379711, -0.022783273831009865, -0.012565959244966507, -0.011412732303142548, 0.03324670344591141, 0.02255825325846672, 0.026960207149386406, -0.0012358519015833735, -0.01648271270096302, -0.004830897785723209, -0.004370309878140688, -0.0008508568280376494, -0.003983556758612394, 0.00906408578157425, -0.02614450827240944, 0.01035091932862997, -0.010568907484412193, 0.011644784361124039, 0.0013044127263128757, 0.006525579374283552, 0.023739608004689217, 0.003308496903628111, 0.015962354838848114, 0.011708070524036884, -0.007946018129587173, -0.03192470967769623, -0.02776183933019638, -0.004370309878140688, -0.0012727692956104875, 0.002958661178126931, -0.029477616772055626, -0.027452437207102776, -0.0004408106324262917, -0.04258503019809723, 0.012200302444398403, -0.01373325102031231, -0.006813886109739542, 0.01970331184566021, 0.016637414693832397, 0.012179206125438213, 0.006399005651473999, -0.025961680337786674, 0.036003198474645615, -0.0016630382742732763, -0.014696617610752583, 0.011841676197946072, 0.033978015184402466, -0.004813318140804768, -0.011124425567686558, 0.006789274513721466, -0.029224470257759094, 0.01727028377354145, 0.004904732573777437, 0.018071917816996574, 0.0020058422815054655, 0.0035176952369511127, -0.01330430619418621, -0.006683796644210815, -0.013972334563732147, 0.02012522518634796, -0.011701039038598537, 0.0022625054698437452, 0.007158447988331318, 0.003726893337443471, -0.024555305019021034, 0.010807991027832031, 0.007024842314422131, -0.023683352395892143, 0.005048885941505432, 0.019450165331363678, 0.02366928942501545, -0.012122951447963715, 0.013789505697786808, 0.03999730199575424, -0.0011892657494172454, -0.04089738056063652, 0.0282540712505579, 0.01846570149064064, 0.03279666230082512, -0.0013782473979517817, 0.023978691548109055, -0.004570718389004469, -0.019970523193478584, 0.025314748287200928, -0.005224682856351137, 0.049841925501823425, 0.02705865353345871, -0.008670301176607609, 0.022656699642539024, 0.004183965269476175, -0.029477616772055626, -0.08089468628168106, -0.02738211862742901, 0.0048062861897051334, 0.04399140551686287, -0.031615305691957474, 0.0008214108529500663, 0.0001294304383918643, 0.02321925014257431, -0.024752197787165642, 0.016581159085035324, 0.0022923911456018686, -0.02089873142540455, 0.004423048812896013, -0.014963828958570957, 0.007077581714838743, -0.02603199891746044, -0.012699564918875694, -0.03383737802505493, 0.012551895342767239, 0.021587854251265526, 0.015076338313519955, -0.03589068725705147, -0.007988208904862404, -0.006543159019201994, -0.006057959981262684, -0.004669164773076773, -0.02032211609184742, 0.0065396432764828205, 0.017368730157613754, 0.010343886911869049, 0.005734493490308523, -0.019590802490711212, 0.0039905887097120285, -0.011068169958889484, 0.0025525703094899654, -0.02701646089553833, -0.006325170863419771, -0.01104707457125187, 0.03783148527145386, -0.04458208382129669, 0.016201438382267952, 0.014077812433242798, 0.04759172722697258, 0.001009952975437045, -0.014042653143405914, 0.019548611715435982, -0.03690327703952789, 0.01735466532409191, 0.0025402645114809275, -0.024878771975636482, -0.016792116686701775, -0.02362709864974022, 0.005214134696871042, -0.01139866840094328, 0.03313419222831726, -0.011722134426236153, 0.0127417566254735, 0.016834307461977005, -0.018184427171945572, -0.014879446476697922, 0.000514205836225301, -0.010364983230829239, -0.010048548690974712, 0.013817633502185345, 0.008726555854082108, 0.004732451401650906, -0.029336979612708092, 0.0008117419783957303, 0.007014294620603323, -0.014781000092625618, -0.023444268852472305, 0.008494503796100616, -0.016088929027318954, -0.006413069553673267, -0.003466714173555374, -0.03361235931515694, -0.012235461734235287, 0.000637263641692698, 0.020603392273187637, 0.006493935827165842, -0.015681080520153046, -0.021531598642468452, 0.011658847332000732, -0.00919065997004509, 0.02714303508400917, 0.019717376679182053, -0.008283548057079315, -0.009837592020630836, 0.02544132061302662, -0.021531598642468452, 0.00906408578157425, -0.001686770818196237, 0.015723271295428276, -0.0063392347656190395, -0.01660928688943386, -0.00012108008377254009, -0.001563713070936501, -0.01301599945873022, -0.006022800225764513, 0.023402078077197075, -0.047113560140132904, 0.014696617610752583, -0.08106344938278198, 0.02594761736690998, 0.02040649950504303, -0.022276978939771652, -0.004373826086521149, -0.007341276854276657, -0.002582455985248089, -0.010913468897342682, -0.012052632868289948, 0.009085182100534439, -0.03470933064818382, 0.006606446113437414, 0.004539074841886759, 0.002701997756958008, -0.012425322085618973, -0.005126236472278833, 0.03307793661952019, -0.03805650398135185, 0.0035844980739057064, 0.021334707736968994, -0.0069299121387302876, 0.019858013838529587, 0.0129527123644948, 0.012242493219673634, -0.03960351645946503, -0.00900783110409975, 0.007056485861539841, -0.015793589875102043, -0.02264263480901718, -0.005041853990405798, 0.0036530587822198868, -0.029674509540200233, -0.002795170061290264, 0.0178047064691782, 0.009633667767047882, -0.0016788600478321314, 0.011581497266888618, 0.005069981329143047, -0.003786664456129074, 0.055664315819740295, -0.031165266409516335, -0.041994355618953705, 0.008339802734553814, 0.0028707627207040787, 0.0010108319111168385, -0.0038323714397847652, 0.01324101909995079, 0.009746178053319454, 0.004813318140804768, 0.0054778303019702435, 0.02338801510632038, 0.009457871317863464, -0.009493030607700348, -0.027522755786776543, 0.009633667767047882, 0.009014862589538097, 0.0013720944989472628, 0.022769208997488022, -0.014865382574498653, -0.016328012570738792, 0.035046860575675964, -0.008951576426625252, 0.00714790029451251, -0.0016674331855028868, 0.020420562475919724, -0.018282873556017876, -0.023373950272798538, -0.007481914479285479, 0.000901837891433388, -0.012994904071092606, -0.007728029973804951, -0.007671774830669165, 0.010674385353922844, 0.027114907279610634, 0.0019935364834964275, -0.01419032271951437, -0.013191795907914639, 0.005636047106236219, 0.0007616399088874459, 0.0019531031139194965, 0.028240008279681206, -0.022853592410683632, -0.02264263480901718, 0.0067963064648211, 0.019942395389080048, 0.0038218237459659576, 0.011454923078417778, 0.009844624437391758, -0.002009358024224639, 0.02110968716442585, -0.001323750359006226, 0.013346497900784016, 0.01710151880979538, 0.01214404683560133, -0.012868329882621765, 0.015976417809724808, -0.013648868538439274, -0.008002272807061672, 0.03875968977808952, 0.03434367477893829, 0.006522063631564379, 0.01040717400610447, 0.015062275342643261, -0.023570843040943146, -0.03445618599653244, 0.00015019644342828542, -0.005136784166097641, -0.036453235894441605, 0.01425360981374979, 0.006367362104356289, -0.00377963250502944, 0.010857214219868183, 0.0044863359071314335, 0.010041516274213791, -0.0066591850481927395, 0.02705865353345871, -0.0010670869378373027, -0.00020952787599526346, -0.02908383309841156, 0.012875362299382687, 0.010730640031397343, -0.008290579542517662, 0.019604865461587906, -0.005657142959535122, 0.04778861999511719, 0.016623351722955704, 0.026833632960915565, -0.03403427079319954, 0.00601928448304534, -0.01297380868345499, 0.005660658702254295, 0.004595329985022545, -0.0015250378055498004, -0.005340708419680595, -0.02635546587407589, 0.0009255704935640097, -0.004595329985022545, 0.006557222921401262, -0.006152890156954527, 0.0957460030913353, 0.014056717045605183, -0.01961893029510975, 0.0022836013231426477, -0.020265862345695496, -0.01680617965757847, 0.014837254770100117, 0.003737441264092922, 0.013676995411515236, -0.029336979612708092, -0.011194744147360325, 0.00720767118036747, -0.013719187118113041, -0.02532881125807762, 0.008058528415858746, -0.02053307369351387, 0.007657711394131184, 0.03439993038773537, -0.014112971723079681, 0.009844624437391758, 0.02631327323615551, 0.022150404751300812, 0.002009358024224639, 0.0024980732705444098, -0.029730765148997307, -0.015357613563537598, 0.026242954656481743, 0.00039202699554152787, 0.022291041910648346, -0.06379316747188568, 0.018184427171945572, -0.007172511890530586, -0.03243100643157959, -0.015849845483899117, 0.007938986644148827, 0.004011684563010931, 0.00030324957333505154, -0.013156636618077755, 0.020954985171556473, -0.009696954861283302, 0.022248851135373116, 0.026046061888337135, -0.02260044403374195, -0.029196342453360558, 0.013346497900784016, -0.016384268179535866, -0.034934353083372116, -0.011947154998779297, -0.040925510227680206] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_largescale_urban_iot_activity_data_for_ddos_attack_emulation.json b/database/embeddings/publications_txt/2021_largescale_urban_iot_activity_data_for_ddos_attack_emulation.json new file mode 100644 index 0000000000000000000000000000000000000000..15e25663166b5a7fe3049a53438a1d497706bb0c --- /dev/null +++ b/database/embeddings/publications_txt/2021_largescale_urban_iot_activity_data_for_ddos_attack_emulation.json @@ -0,0 +1 @@ +[-0.00715306680649519, 0.007244322914630175, 0.005345496349036694, -0.0063703712075948715, -0.003174656070768833, 0.02878074161708355, -0.009960943832993507, 0.024597004055976868, -0.023530010133981705, -0.059246208518743515, 0.006819631438702345, 0.033301424235105515, -0.01816696487367153, 0.0011801858199760318, -0.004857627674937248, 0.02209799364209175, 0.02849995344877243, -0.002372656250372529, -0.013990247622132301, -0.003560739103704691, 0.009434467181563377, -0.002262095920741558, -0.015288891270756721, 0.003028997452929616, -0.0016601573443040252, 0.005731579381972551, 0.023010553792119026, -0.04531913623213768, -0.02160661481320858, -0.010824366472661495, 0.005145434755831957, -0.021255629137158394, -0.006258056033402681, 0.0016145294066518545, 0.002960555488243699, 0.010557617992162704, 0.018026571720838547, -0.008360453881323338, 0.021761048585176468, -0.01900932751595974, 0.004889216274023056, 0.007272401824593544, 0.010957740247249603, -0.035688117146492004, -0.0001882155193015933, 0.0060544852167367935, 0.02590266615152359, -0.009715255349874496, -0.008297276683151722, 0.030662018805742264, 0.01017855480313301, 0.026253651827573776, -0.02764355018734932, -0.005250730086117983, -0.01771770417690277, 0.009490625001490116, 0.012860077433288097, -0.0008625447517260909, 0.005447281524538994, -0.029847733676433563, 0.0025235796347260475, -0.019570903852581978, -0.03428417816758156, 0.00545079167932272, -0.008486808277666569, -0.0084095923230052, -0.024302177131175995, 0.02055366151034832, 0.005089277401566505, -0.010669932700693607, 0.027657590806484222, 0.024863751605153084, 0.011687788181006908, -0.03052162379026413, 0.015190615318715572, -0.028205126523971558, -0.008964147418737411, -0.009813530370593071, -0.004496113397181034, 0.019107604399323463, 0.0020620347931981087, -0.021985678002238274, -0.013175963424146175, 0.015527560375630856, 0.018209083005785942, 0.0297915767878294, -0.018012531101703644, 0.01147017814218998, -0.015597757883369923, -0.010599736124277115, 0.0014135906239971519, -0.0016250589396804571, 0.022280504927039146, 0.006507255136966705, -0.004738292656838894, 0.02383887767791748, -0.026562517508864403, 0.03259945288300514, 0.00022298493422567844, -0.021396024152636528, -0.002458647359162569, -0.012130029499530792, -0.0295950248837471, -0.025692075490951538, -0.004257443826645613, 0.0055104587227106094, -0.00484358798712492, 0.019472628831863403, 0.0005146312178112566, 0.008444690145552158, -0.015302930027246475, 0.010908602736890316, -0.0202728733420372, -0.020371148362755775, -0.005071728024631739, -0.0084095923230052, 0.01106303557753563, 0.013688401319086552, -0.0006888073403388262, -0.024007350206375122, 0.04470140486955643, -0.005538537632673979, 0.008851832710206509, -0.015822388231754303, 0.027545275166630745, -0.0046961745247244835, 0.008858852088451385, -0.012249364517629147, 0.008922029286623001, -0.012733723036944866, -0.002695562085136771, 0.009982002899050713, -0.00195498438552022, -0.0020392208825796843, 0.00845171045511961, 0.02862630784511566, -0.0141867995262146, -0.0036748091224581003, -0.016566475853323936, -0.053574297577142715, 0.004899745807051659, 0.0462176576256752, -0.039422594010829926, -0.0020023672841489315, -0.006802082527428865, 0.025397248566150665, 0.001397796324454248, 0.020539620891213417, 0.013898991979658604, 0.01641204208135605, -0.0014916846994310617, -0.01017855480313301, -0.03450880944728851, 0.03198172152042389, -0.011294686235487461, 0.002495500724762678, -0.010038160718977451, 0.025916706770658493, 0.009715255349874496, -0.01982361264526844, 0.01924799755215645, 0.027292566373944283, -0.026576558127999306, -0.015990860760211945, -0.003260647412389517, 0.019837651401758194, 0.03793441876769066, -0.0017970413900911808, 0.0034308747854083776, -0.0239231139421463, -0.024779515340924263, 0.01408852357417345, -0.0056227738969028, -0.006433548405766487, 0.006458117626607418, 0.05104720592498779, 0.04964326694607735, 0.01203877292573452, -0.003560739103704691, -0.009399368427693844, 0.007567228749394417, -0.008872891776263714, 0.028317440301179886, 0.021410062909126282, 0.004457504954189062, 0.03417186439037323, 0.02813492901623249, -0.012839018367230892, -0.001942700007930398, -0.013505889102816582, 0.04223047196865082, 0.02111523598432541, -0.019037406891584396, 0.004232874605804682, -0.6002117991447449, -0.004260953515768051, 0.012502073310315609, -0.007251342758536339, -0.020974842831492424, 0.016692830249667168, 0.003508091438561678, 0.004650546703487635, -0.010220672935247421, 0.039141807705163956, -0.02221030741930008, 0.0013504134258255363, -0.007742721121758223, -0.014685197733342648, -0.015527560375630856, 0.012761801481246948, 0.0034291199408471584, -0.010290869511663914, 0.03259945288300514, 0.007869075983762741, 0.00798841007053852, 0.018181003630161285, -0.010971779935061932, -0.005970248952507973, -0.010564637370407581, 0.018517950549721718, 0.010227692313492298, -0.026295769959688187, 0.014867709949612617, 0.01001008227467537, -0.02923000045120716, 0.005131395533680916, 0.04849203675985336, 0.016355885192751884, 0.048828981816768646, -0.014769433997571468, -0.017493074759840965, 0.03599698469042778, 0.02237877994775772, 0.05259153991937637, -0.04127579554915428, -0.028387637808918953, 0.009392349049448967, 0.016959577798843384, -0.0012995206052437425, -0.002714866306632757, 0.03271177038550377, -0.020174596458673477, -0.018152926117181778, -0.021943559870123863, -0.03004428558051586, -0.0002777166082523763, 0.0013065403327345848, -0.009265994653105736, 0.025060303509235382, -0.0030518113635480404, 0.011048996821045876, -0.0011468423763290048, 0.0233053807169199, 0.0055104587227106094, 0.007475973106920719, 0.019360313192009926, 0.006142231170088053, -0.01274776179343462, -0.00241301953792572, -0.006609040778130293, 0.002800857415422797, -0.0019725337624549866, 0.014994064345955849, -0.04065806046128273, 0.019683219492435455, 0.020090360194444656, 0.01333741657435894, -0.01783001981675625, 0.012158107943832874, 0.028682464733719826, 0.031925562769174576, 0.01483963057398796, -0.033020634204149246, 0.01485367026180029, -0.00695300567895174, 0.002527089323848486, -0.01585046574473381, -0.016650712117552757, 0.017001695930957794, 0.021466221660375595, -0.013618203811347485, 0.012698624283075333, -0.00559469498693943, -0.0009151924750767648, 0.010810326784849167, 0.029033450409770012, -0.022645529359579086, -0.01982361264526844, -0.006286134943366051, 0.028724582865834236, -0.0016171617899090052, 0.025551682338118553, -0.013302317820489407, -0.007672524079680443, -0.0077286818996071815, -0.009518703445792198, 0.010733110830187798, -0.00786205567419529, 0.04301667958498001, 0.010220672935247421, -0.01098581962287426, 0.007735701743513346, 0.010080278851091862, -0.009525722824037075, -0.011624610982835293, 0.0028429755475372076, -0.03855215385556221, -0.00019413838163018227, 0.015092339366674423, -0.027264486998319626, 0.01973937638103962, -0.00012098001752747223, 0.007953312247991562, 0.010726090520620346, 0.003741496242582798, 0.009280034340918064, 0.019444549456238747, -0.01360416505485773, -0.006275605410337448, 0.018588146194815636, 0.03077433444559574, -0.028808819130063057, -0.003190450370311737, -0.011294686235487461, 0.015878545120358467, -0.022154150530695915, 0.012895176187157631, -0.013021530583500862, 0.03911373019218445, 0.0020585248712450266, 0.03495807200670242, -0.016805144026875496, 0.012045793235301971, -0.017858099192380905, -0.01634184457361698, -0.012207245454192162, -0.0007177636143751442, -0.014018326997756958, -0.030718175694346428, -0.011301705613732338, -0.013140864670276642, 0.01709997095167637, 0.007756760809570551, 0.010880524292588234, -0.0055631063878536224, 0.023937152698636055, 0.0015680239303037524, 0.0032044898252934217, -0.026043061167001724, -0.018868934363126755, -0.002686787396669388, -0.025186657905578613, -0.01110515370965004, -0.004594388883560896, -0.0029851244762539864, 0.028401676565408707, -0.01950070634484291, -0.006236996967345476, -0.010712051764130592, 0.02216818928718567, 0.013849854469299316, 0.00573508907109499, 0.004966432694345713, -0.03268368914723396, -0.0028131420258432627, -0.014881748706102371, -0.015457363799214363, 0.020118439570069313, -0.01183520257472992, 0.021424103528261185, -0.026169415563344955, 0.005124375689774752, -0.005724559538066387, -0.00041350378887727857, -0.004141618963330984, 0.007791859097778797, -0.01071907114237547, -0.004103010520339012, 0.028345519676804543, 0.007616366725414991, 0.02242089994251728, 0.010655893944203854, -0.007107438985258341, 0.002262095920741558, 0.005177023354917765, -0.001781247090548277, -0.014074483886361122, 0.01102793775498867, -0.019921887665987015, 0.01585046574473381, 0.0038924196269363165, -0.01565391570329666, -0.010073259472846985, 0.027011778205633163, 0.04150042310357094, 0.016678789630532265, 0.006788042839616537, 0.005829854868352413, -0.019486667588353157, -0.020455384626984596, 0.009925846010446548, -0.006879298947751522, 0.019627060741186142, 0.002678012941032648, 0.03619353473186493, -0.0033062752336263657, -0.033497974276542664, 0.00642652902752161, -0.028668425977230072, 0.03551964461803436, 0.0018637285102158785, 0.008241119794547558, -0.02216818928718567, 0.006310703698545694, -0.00467160576954484, -0.02712409384548664, 0.035407330840826035, -0.012452934868633747, -0.003888909937813878, -0.0004490409919526428, 0.015625836327672005, 0.033862996846437454, 0.01483963057398796, -0.016103174537420273, -0.02513050101697445, 0.025228776037693024, 0.01329529844224453, 0.0194585882127285, -0.005520988255739212, -0.0168191846460104, 0.02298247441649437, 0.0009450261713936925, 0.033497974276542664, -0.02091868408024311, 0.022547254338860512, 0.03268368914723396, 0.03492999076843262, -0.03989993408322334, 0.01267054583877325, -0.02748911641538143, 0.0061211721040308475, 0.022799963131546974, -0.002939496422186494, 0.0015732886968180537, 0.0064230188727378845, 0.018517950549721718, -0.006352821830660105, 0.006096603348851204, 0.030072364956140518, -0.011617591604590416, -0.02030095085501671, 0.00027201310149393976, 0.031757090240716934, 0.00845171045511961, 0.03422802314162254, 0.008992226794362068, -0.006072034128010273, 0.024990106001496315, 0.0018602185882627964, -0.030549703165888786, 0.002141006290912628, 0.020778290927410126, -0.0044996230863034725, -0.008542966097593307, -0.001105601666495204, -0.030268914997577667, -0.004018774256110191, -0.0202728733420372, 0.004457504954189062, 0.009989023208618164, 0.007735701743513346, -0.008767596445977688, 0.02420390024781227, 0.011645670048892498, -0.03144822269678116, -0.017787901684641838, -0.0013047853717580438, 0.01864430494606495, 0.02513050101697445, -0.015948742628097534, -0.005506949033588171, 0.016383962705731392, -0.025186657905578613, -0.02703985758125782, 0.026239611208438873, 0.01913568191230297, -0.008213040418922901, -0.021676812320947647, -0.035295017063617706, -0.0003246607957407832, 0.0441959872841835, -0.010417223908007145, -0.020174596458673477, -0.006026406306773424, 0.02115735411643982, 0.010003061965107918, -0.015962781384587288, -0.0006102745537646115, 0.04666691645979881, -0.009139640256762505, -0.0063177235424518585, 0.004001224879175425, 0.0011714112479239702, 0.007426835130900145, -0.0008985206950455904, 0.0003351903287693858, -0.02184528484940529, 0.028893055394291878, -0.0005523620638996363, -0.00431711133569479, 0.029538867995142937, 0.00038761866744607687, 0.0087184589356184, 0.0008831651066429913, 0.011048996821045876, -0.056410253047943115, -0.03377876058220863, 0.020497502759099007, 0.055034391582012177, 0.0348738357424736, -0.005696480628103018, 0.00826919823884964, 0.0004883073852397501, -0.026955621317029, -0.03307679295539856, 0.011077075265347958, 0.005931640509516001, 0.003030752297490835, -0.03024083748459816, 0.018096767365932465, 0.010347027331590652, 0.003850301494821906, 0.02302459254860878, -0.01102793775498867, 0.010003061965107918, -0.013877932913601398, 0.00402228394523263, -0.003262402256950736, 0.0003713856276590377, -0.026520399376749992, -0.005159474443644285, 0.017366720363497734, 0.040433429181575775, -0.02367040514945984, 0.035407330840826035, 0.0216908510774374, 0.006616060622036457, 0.003097439417615533, 0.002033956116065383, 0.0340595506131649, 0.025888627395033836, -0.0060018375515937805, -0.02671695128083229, 0.02643616311252117, 0.020623857155442238, 0.016931498423218727, 0.021761048585176468, 0.005292848218232393, 0.025032224133610725, 0.0025393739342689514, -0.0027517196722328663, 0.002885093679651618, -0.0005602592136710882, -0.06233487278223038, -0.002225242555141449, 0.032374825328588486, -0.012193206697702408, -0.026380006223917007, 0.02484971284866333, 0.0011275381548330188, -0.03928220272064209, -0.04321322962641716, 0.03097088448703289, -0.013540987856686115, 0.0036783190444111824, -0.016805144026875496, -0.01666475087404251, -0.023656364530324936, -0.021999716758728027, -0.002800857415422797, 0.003227303735911846, -0.016748987138271332, -0.032936397939920425, -0.005864953622221947, -0.016510317102074623, 0.00484358798712492, -0.023403655737638474, 0.006967045366764069, -0.011680768802762032, -0.01281093992292881, -0.05233883112668991, 0.005201592575758696, 0.02529897354543209, -0.006826651282608509, 0.02708197571337223, -0.010157495737075806, -0.004067912232130766, -0.009273014031350613, -0.03198172152042389, -0.005124375689774752, -0.00968717597424984, -0.02557976171374321, -0.011533355340361595, -0.0030623411294072866, -0.01563987508416176, -0.0031430674716830254, -7.924575584183913e-06, 0.02497606724500656, -0.01319702249020338, -0.023824837058782578, 0.0016285687452182174, 0.00036568212090060115, 0.007398756220936775, 0.01677706651389599, 0.02878074161708355, 0.009013285860419273, 0.011687788181006908, -0.00031018268782645464, 0.01666475087404251, -0.013632243499159813, -0.014881748706102371, -0.020216714590787888, 0.006184349302202463, -0.007321539800614119, 0.005345496349036694, -0.004103010520339012, 5.187991700950079e-05, 0.016145294532179832, 0.03436841815710068, -0.010262791067361832, -0.0026569536421447992, -0.008500847965478897, 0.019570903852581978, -0.004948883317410946, 0.012186186388134956, -0.026702912524342537, 0.009013285860419273, 0.004425916355103254, -0.021255629137158394, -0.00441889651119709, 0.020764252170920372, 0.019725337624549866, 0.017324602231383324, 0.04113540053367615, -0.004797960165888071, -0.0275593139231205, -0.05214227735996246, 0.007848016917705536, -0.0002821038942784071, 0.01848987117409706, -0.010613775812089443, -0.03863639011979103, -0.009743333794176579, -0.0032027349807322025, -0.009813530370593071, 0.007121478207409382, -0.007230283692479134, -0.025692075490951538, -0.005893032066524029, 0.009420427493751049, 0.0006730130407959223, 0.0025165597908198833, 0.005784227047115564, -0.029314236715435982, -0.025200696662068367, 0.009539762511849403, 0.03167285397648811, 0.014657118357717991, -0.006440568249672651, -0.0016110194846987724, -0.0027657588943839073, -0.008367474190890789, -0.03574427589774132, -0.02951078861951828, -0.03866446763277054, 0.013533967547118664, 0.027025816962122917, 0.01702977530658245, 0.0490536130964756, 0.02557976171374321, 0.014558843336999416, 0.018096767365932465, 6.098358062445186e-05, 0.006833671126514673, 0.0010389145463705063, -0.02440045215189457, -0.004878686740994453, 0.0014662384055554867, 0.027376802638173103, -0.0017145599704235792, 0.017380759119987488, -0.005278808996081352, -0.006236996967345476, 0.0035554743371903896, 0.002586756832897663, -0.029735419899225235, -0.017324602231383324, -0.025158578529953957, 0.012277442961931229, 0.011336804367601871, 0.019528785720467567, 0.02351597137749195, -0.03975953906774521, 0.0009652077569626272, 0.02497606724500656, -0.013470790348947048, -0.006616060622036457, -0.006040445528924465, 0.026815226301550865, -0.007314519956707954, 0.007644445635378361, 0.017900217324495316, 0.01258630957454443, -0.013126825913786888, 0.0030009187757968903, -0.017450956627726555, -0.014629039913415909, 0.027980495244264603, -0.0020427305717021227, 0.0023831857834011316, 0.002284910064190626, 0.0052612596191465855, 0.006472156848758459, 0.013225100934505463, 0.016061056405305862, -0.007454914040863514, -0.029763497412204742, -0.023937152698636055, -0.018630264326930046, -0.017408838495612144, -0.0429605208337307, -0.016917459666728973, -0.0021515358239412308, 0.00013852925621904433, -0.006079053971916437, 0.002602551132440567, -0.009104541502892971, -0.013000471517443657, 0.012754782103002071, 0.013042589649558067, 0.016889380291104317, -0.016734948381781578, 0.020244793966412544, 0.021831244230270386, 0.00906242337077856, -0.010087298229336739, 0.005714030005037785, 0.006623080000281334, -0.013800716027617455, 0.014867709949612617, -0.006682747509330511, -0.017661547288298607, -0.01475539430975914, 0.028471874073147774, -0.0009151924750767648, -0.00020521633268799633, -0.041079241782426834, 0.03335757926106453, 0.0182371623814106, 0.0007199572282843292, -0.009855648502707481, -0.03215019404888153, -0.003508091438561678, 0.0035940827801823616, -0.015990860760211945, 0.005794756580144167, 0.030998963862657547, -0.00417671725153923, 0.016383962705731392, 0.0028815839905291796, -0.023600207641720772, 0.03683934733271599, -0.02038518898189068, -0.003948577214032412, 0.020399227738380432, -0.009329171851277351, -0.018939131870865822, -0.0216908510774374, 0.0009511683601886034, 0.01986573077738285, -0.012782860547304153, 0.0020585248712450266, 0.032655611634254456, 0.004032813478261232, 0.028120890259742737, 0.007525110617280006, -0.00555257685482502, 0.0340595506131649, -0.0016768291825428605, -0.006072034128010273, 0.012186186388134956, -0.013049609027802944, 0.009013285860419273, 0.003085155040025711, 0.015443324111402035, -0.019570903852581978, -0.015696033835411072, -0.016285687685012817, 0.008472769521176815, -0.0021462710574269295, 0.022308584302663803, 0.009820550680160522, 0.0013539232313632965, -0.04433637857437134, 0.010676953010261059, 0.003499316982924938, -0.0031588617712259293, -0.007672524079680443, -0.013646283186972141, 0.006623080000281334, -0.022715726867318153, 0.01917780004441738, 0.015008103102445602, 0.014060445129871368, 0.008950108662247658, 0.0208765659481287, -0.024990106001496315, -0.02031499147415161, 0.008030528202652931, 0.005191063042730093, -0.018223121762275696, 0.013583105988800526, -0.0062264674343168736, 0.006191369146108627, 0.024091586470603943, 0.0015969801461324096, -0.03678319230675697, -0.025074342265725136, -0.02609921805560589, -0.012087911367416382, -0.0036221614573150873, -0.010627814568579197, 0.022069914266467094, 0.0017180697759613395, -0.014783472754061222, -0.02214011177420616, -0.019107604399323463, 0.0437748059630394, -0.015541600063443184, 0.009581880643963814, 0.0304093100130558, 0.0011705338256433606, 0.03655856102705002, -0.020581739023327827, -0.0062264674343168736, -0.017787901684641838, -0.030381230637431145, -0.013772637583315372, -0.01177904475480318, 0.030493546277284622, -0.02607113867998123, 0.0014188553905114532, 0.014643079601228237, -0.01888297311961651, -0.03790634125471115, 0.008374493569135666, 0.014151700772345066, 0.013225100934505463, 0.021943559870123863, 0.0068301609717309475, 0.010389145463705063, -0.0036607699003070593, -0.008184961974620819, -0.03215019404888153, -0.021747007966041565, 0.0015618816250935197, -0.020399227738380432, -0.00730750011280179, 0.016369923949241638, 0.018616225570440292, 0.006756454240530729, -0.02468124032020569, -0.04877282679080963, -0.02180316671729088, -0.01608913578093052, -0.014446527697145939, -0.0031290280167013407, -0.007595307659357786, 0.0027657588943839073, 0.009904786944389343, 0.002635894576087594, 0.017324602231383324, -0.01629972644150257, 0.00902030523866415, -0.0043802885338664055, -0.003832752350717783, -0.016973616555333138, 0.0068828086368739605, 0.007784839253872633, -0.02059577964246273, -0.05247922241687775, -0.022350702434778214, 0.013990247622132301, 0.00081954913912341, -0.004032813478261232, 0.01754923164844513, -0.0046435268595814705, -0.00437677837908268, -0.018503909930586815, -0.0012495053233578801, -0.03509846329689026, -0.012789880856871605, 0.00591760128736496, -0.05424818769097328, -0.021269669756293297, -0.011013898067176342, 0.013323376886546612, -0.002530599245801568, -0.023319419473409653, 0.024344295263290405, -0.002244546776637435, -0.004173207562416792, -0.015527560375630856, -0.0004479441558942199, -0.007244322914630175, -0.014116602018475533, 0.025846509262919426, 0.0013583105755969882, 0.004155658185482025, 0.031195515766739845, 0.0105365589261055, 0.01258630957454443, -0.028163008391857147, 0.017296522855758667, -0.017563272267580032, -0.0021515358239412308, 0.0289772916585207, -0.016398003324866295, -0.0077146426774561405, -0.02315094694495201, 0.027306605130434036, -0.028808819130063057, -0.013744558207690716, -0.030577782541513443, -0.01431315392255783, -0.010417223908007145, 0.011821162886917591, 0.021578535437583923, -0.025916706770658493, -0.02115735411643982, -0.0007287318585440516, -0.010452322661876678, -0.019725337624549866, -0.005836874712258577, 0.01475539430975914, -0.03088664822280407, -0.0037871242966502905, 0.006819631438702345, -0.019163761287927628, 0.008465749211609364, -0.015948742628097534, -0.0023428224958479404, -0.030746255069971085, -0.00044553112820722163, 0.1800410896539688, -0.016243569552898407, 0.007665504701435566, 0.01372349914163351, -0.0043276408687233925, -0.01023471262305975, 0.012551210820674896, -1.3881716768082697e-05, -0.022238386794924736, -0.001685603754594922, -0.010494440793991089, 0.0148957883939147, -0.012895176187157631, -0.007195185404270887, 0.019809573888778687, 0.012347639538347721, -0.03838368132710457, -0.01343569252640009, 0.0087184589356184, -0.011203429661691189, -0.013849854469299316, -0.015415245667099953, -0.02096080221235752, -0.01877065934240818, 0.013533967547118664, -0.025158578529953957, -0.0035572294145822525, -0.015401205979287624, 0.03537925332784653, 0.04138810932636261, -0.013505889102816582, 0.015780270099639893, 0.024049468338489532, -0.002590266754850745, -0.01107005588710308, -0.005570126231759787, 0.010789267718791962, -0.021045038476586342, 0.028106849640607834, -0.01597682014107704, 0.010971779935061932, -0.02242089994251728, 0.0048014698550105095, -0.020371148362755775, -0.004506642930209637, 0.016369923949241638, -0.016805144026875496, -0.014629039913415909, -0.005440262146294117, -0.0027745335828512907, -0.015106379054486752, -0.008416611701250076, 0.007356638088822365, 0.02068001590669155, -0.0148957883939147, 0.003427365096285939, 0.012803919613361359, 0.022083953022956848, 0.0016075096791610122, 0.014242956414818764, 0.0204694252461195, 0.02732064388692379, -0.0040924809873104095, 0.014242956414818764, -0.010389145463705063, 0.005878992844372988, -0.0289772916585207, 0.014783472754061222, 0.0006752067129127681, -0.009308112785220146, -0.02282804064452648, -0.03209403529763222, -0.014249976724386215, 0.0027499645948410034, -0.016117215156555176, -0.02173296920955181, 0.0027008268516510725, 0.019121643155813217, 0.03790634125471115, 0.04346593841910362, -0.0043416800908744335, 0.00804456789046526, -0.003906459081918001, 0.017647508531808853, 0.002892113523557782, -0.03215019404888153, 0.04144426807761192, -0.021873362362384796, -0.02630980871617794, 0.003427365096285939, -0.02257533185184002, 0.0032378332689404488, -0.011294686235487461, -0.01589258387684822, -0.004794450011104345, -0.026253651827573776, 0.030100442469120026, -0.0029833693988621235, 0.005994817707687616, 0.007869075983762741, -0.02072213403880596, 0.07586883753538132, 0.0320097990334034, -0.017942335456609726, -0.0033887566532939672, -0.01372349914163351, 0.005636813584715128, 0.022266466170549393, 0.009989023208618164, -0.022912276908755302, -0.025762272998690605, -0.0486324317753315, -0.005166493821889162, 0.010073259472846985, -0.004941863939166069, 0.026113256812095642, -0.00109419459477067, -0.0056473431177437305, -0.004103010520339012, -0.015232733450829983, -0.018756618723273277, -0.02489183098077774, -0.0057772072032094, -0.003567758947610855, 0.0004505765391513705, -0.012424856424331665, -0.013126825913786888, -0.0035554743371903896, -0.03627777099609375, -0.03737284615635872, 0.039338357746601105, -0.007974371314048767, 0.033020634204149246, 0.0004869911936111748, 0.009083482436835766, 0.005127885844558477, 0.012846037745475769, -0.015260811895132065, 0.026113256812095642, 0.027741827070713043, -0.01812484674155712, -0.03619353473186493, -0.0019707786850631237, 0.0035063365940004587, -0.0011442099930718541, -0.03125167265534401, 0.014460567384958267, 0.006363351363688707, -0.012817959301173687, -0.03551964461803436, -0.007665504701435566, -0.0101364366710186, -0.007756760809570551, 0.00013710337225347757, 0.022280504927039146, -0.015962781384587288, -0.004401347599923611, -0.028752662241458893, -0.0012451179791241884, -0.0050647081807255745, -0.038243286311626434, 0.00027069690986536443, 0.013512908481061459, 0.008943088352680206, -0.030633939430117607, -0.012024734169244766, -0.17936719954013824, 0.02115735411643982, 0.027938377112150192, -0.03189748525619507, -6.931946700206026e-05, 0.014994064345955849, 0.014432488940656185, -0.009862668812274933, -0.00559469498693943, -0.014629039913415909, 0.03372260555624962, -0.004110030364245176, 0.0029517807997763157, -0.005187552887946367, -0.001800551195628941, 0.0013363740872591734, 0.026969660073518753, 0.0010266300523653626, 0.026014981791377068, 0.010789267718791962, 0.020216714590787888, -0.035575803369283676, -0.0021515358239412308, -0.004099500831216574, 0.001974288607016206, 0.0225051362067461, -0.015134457498788834, 0.02124159038066864, -0.006205408368259668, -0.02667483314871788, 0.010866484604775906, -0.011610572226345539, 0.04402751475572586, 0.00863422267138958, 0.007812918163836002, 0.022645529359579086, 0.018209083005785942, 0.007651465013623238, -0.012354659847915173, 0.03417186439037323, 0.0112455477938056, 0.030128521844744682, 0.00897818710654974, -0.013028549961745739, -0.005893032066524029, 0.00782695785164833, 0.01023471262305975, -0.010129416361451149, 0.0014083258574828506, -0.025649957358837128, 0.009932865388691425, -0.00542271276935935, 0.01705785281956196, 0.0014021836686879396, -0.004106520209461451, 0.031560540199279785, 0.008199001662433147, 0.0011626366758719087, 0.007475973106920719, -0.004011754412204027, -0.0008647384238429368, -0.009441486559808254, 0.003544944804161787, -0.007412795443087816, -0.018756618723273277, -0.022182229906320572, -0.019556865096092224, 0.021339865401387215, -0.028528030961751938, 0.008395552635192871, -0.022715726867318153, -0.0134778106585145, -0.0034466690849512815, -0.0007660239934921265, 0.034761518239974976, -0.003544944804161787, -0.03478959947824478, 0.01853198930621147, 0.01649627834558487, -0.0055104587227106094, 0.004401347599923611, 0.047453124076128006, -0.016398003324866295, 0.0035853080917149782, 0.016426080837845802, -0.014214877970516682, 0.002871054457500577, 0.007672524079680443, -0.0011819407809525728, 0.004738292656838894, 0.0180406104773283, -0.008711438626050949, 0.02379675954580307, -0.015429285354912281, 0.00374500616453588, -0.0038643409498035908, 0.005601714830845594, 0.01832139864563942, -0.012052812613546848, 0.00460140872746706, -0.012860077433288097, -0.012860077433288097, -0.002316498663276434, 0.016931498423218727, 0.018433714285492897, 0.008760577067732811, -0.00542271276935935, 0.0045382315292954445, 0.020371148362755775, -0.021466221660375595, -0.024217940866947174, 0.019121643155813217, 0.023852916434407234, 0.026843305677175522, -0.007546169683337212, 0.026618676260113716, -0.016103174537420273, -0.01217916700989008, 0.005317417439073324, -0.029173843562602997, 0.03653048351407051, 0.01808272860944271, 0.008163902908563614, 0.021789126098155975, -0.0031079689506441355, -0.021466221660375595, -0.08749344944953918, -0.0033203146886080503, 0.027868181467056274, 0.018209083005785942, -0.023445773869752884, 0.010957740247249603, 0.0018128356896340847, 0.03478959947824478, -0.00812880415469408, 0.00968717597424984, -0.026113256812095642, -0.01666475087404251, -0.010690992698073387, -0.01686130277812481, 0.0007467198302038014, -0.01709997095167637, -0.0148957883939147, -0.03186940401792526, 0.006956515833735466, 0.039422594010829926, 0.0021655752789229155, -0.009932865388691425, 0.005401653703302145, -0.016468198969960213, -0.004597899038344622, 0.010627814568579197, -0.04310091584920883, 0.030016206204891205, 0.014179779216647148, 0.017366720363497734, 0.02858418971300125, -0.025846509262919426, 0.012172147631645203, -0.020623857155442238, -0.0022673606872558594, -0.016117215156555176, 0.00014949751493986696, -0.004015264101326466, 0.032936397939920425, -0.02906152792274952, 0.0028271812479943037, 0.031644776463508606, 0.05278808996081352, -0.005426222458481789, -0.014965984970331192, -0.012066852301359177, -0.03361028805375099, 0.036867428570985794, -0.002916682278737426, -0.04779006913304329, -0.014600961469113827, -0.024274097755551338, 0.0025446387007832527, -0.004654056392610073, 0.007475973106920719, 0.01288815587759018, 0.0038467918056994677, 0.012824978679418564, -0.037709791213274, -0.007121478207409382, -0.018630264326930046, -0.020806370303034782, -0.015050221234560013, 0.02699773944914341, 0.012108970433473587, 0.0014065710129216313, -0.022547254338860512, -0.01396216917783022, -0.006335272919386625, -0.02233666181564331, -0.011491237208247185, -0.0025042754132300615, -0.017647508531808853, -0.02776990458369255, -0.014544803649187088, -0.010775228962302208, 0.0013776146806776524, -0.016369923949241638, 0.016103174537420273, -0.00849382858723402, -0.004390818066895008, -0.016355885192751884, -0.013351456262171268, -0.02278592251241207, 0.013920051045715809, -0.006665198598057032, 0.006644139531999826, 0.002972839865833521, 0.014207858592271805, -0.013969188556075096, -0.0015820632688701153, 0.00972929410636425, 0.027952417731285095, 0.0174369178712368, -0.016426080837845802, 0.005692970938980579, 0.0008980819839052856, -0.01568199321627617, -0.014446527697145939, 0.007883114740252495, -0.05528710037469864, 0.02091868408024311, -0.06985998153686523, 0.01739479973912239, 0.01722632721066475, -0.009448506869375706, -0.011477197520434856, -0.017900217324495316, 0.004496113397181034, 0.009925846010446548, -0.01750711351633072, 0.010290869511663914, -0.009982002899050713, -0.005682441405951977, 0.011863281019032001, 0.032206349074840546, -0.029117686673998833, -0.025692075490951538, 0.0297915767878294, -0.009069442749023438, 0.008858852088451385, 0.009518703445792198, -0.025692075490951538, 0.015780270099639893, 0.02023075520992279, 0.02233666181564331, -0.021129274740815163, 0.0023393125738948584, 0.0038994394708424807, -0.0028815839905291796, -0.02038518898189068, -0.00822708010673523, -0.009623998776078224, -0.0381028912961483, -0.027882220223546028, 0.00879567489027977, -0.0026464241091161966, -0.013934090733528137, -0.008472769521176815, 0.012319561094045639, 0.018251201137900352, 0.02654847875237465, -0.02557976171374321, -0.02873862348496914, 0.009736314415931702, -0.024189861491322517, -0.014783472754061222, 0.0009467810741625726, 0.004850607831031084, 0.0028236715588718653, -0.0035572294145822525, -0.00642652902752161, 0.035772353410720825, 0.005868463311344385, -0.0364743247628212, -0.02278592251241207, 0.013772637583315372, 0.0031114788725972176, 0.012614388018846512, 0.022434938699007034, -0.0002834200859069824, 0.011722886934876442, 0.021901441738009453, -0.01507830061018467, 0.03492999076843262, 0.011708847247064114, -0.003727457020431757, 0.0038397719617933035, -0.03206595778465271, -0.012979412451386452, -0.0033255794551223516, 0.005717539694160223, -0.0025920215994119644, -0.0031448223162442446, 0.016229530796408653, 0.014741354621946812, 0.002283155219629407, 0.012389757670462132, -0.0008098970865830779, -0.005731579381972551, -0.004243404138833284, -0.007209224626421928, 0.02703985758125782, 0.0021181923802942038, -0.014060445129871368, 0.012031753547489643, 0.02156449668109417, 0.009448506869375706, -0.002800857415422797, 0.031841326504945755, -0.007553189527243376, 0.00924493558704853, -0.024709319695830345, 0.012452934868633747, 0.00756020937114954, 0.0023059691302478313, -0.0152046550065279, 0.027180250734090805, 0.0014811551664024591, 0.0005870218155905604, 0.03080241195857525, 0.03473344072699547, 0.027053896337747574, 0.010592716746032238, 0.006503745447844267, -0.03116743639111519, -0.040938850492239, 0.01690342091023922, 0.0010792778339236975, -0.008332375437021255, 0.00831131637096405, -0.0016452404670417309, -0.02663271501660347, 0.01933223381638527, 0.004429426044225693, 0.0087184589356184, -0.006858239881694317, 0.034761518239974976, 0.014867709949612617, -0.024175822734832764, -0.024147743359208107, 0.04312899336218834, 0.014172759838402271, -0.0008463117410428822, 0.019627060741186142, -0.007286441046744585, 0.029538867995142937, 0.013842834159731865, 0.014116602018475533, -0.02326326258480549, 0.01125256810337305, -0.007595307659357786, 0.020048242062330246, -0.01267054583877325, -0.014699236489832401, -0.001436404651030898, -0.02143814228475094, -0.011561433784663677, -0.005398144014179707, 0.013695420697331429, -0.00938532967120409, 0.08822350203990936, 0.022996513172984123, -0.009581880643963814, -0.017254404723644257, -0.021718930453062057, -0.01483963057398796, -0.0018409144831821322, 0.01071907114237547, -0.004450485110282898, -0.03588467091321945, 0.011336804367601871, 0.0023621267173439264, -0.0218874029815197, -0.041893526911735535, -0.004004734568297863, -0.011540374718606472, -0.005387614481151104, 0.0324309803545475, -0.007468953263014555, 0.005559596698731184, 0.03310487046837807, 0.005320927128195763, 0.00011472810729173943, 0.005668402183800936, -0.020988881587982178, -0.007139027584344149, 0.023361537605524063, -0.020258832722902298, 0.005780716892331839, -0.053574297577142715, 0.004018774256110191, 0.010248751379549503, -0.03352605178952217, -0.015401205979287624, 0.00238669547252357, 0.03498614951968193, 0.028598228469491005, -0.01933223381638527, 0.02285612002015114, -0.0168191846460104, 0.0015855730744078755, 0.0381028912961483, -0.0031834307592362165, -0.029623104259371758, 0.005401653703302145, -0.011161311529576778, -0.03481767699122429, -0.018377555534243584, -0.04835164546966553] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_revealing_a_hidden_stable_spectral_structure_of_urban_vehicular_traffic.json b/database/embeddings/publications_txt/2021_revealing_a_hidden_stable_spectral_structure_of_urban_vehicular_traffic.json new file mode 100644 index 0000000000000000000000000000000000000000..2a9a097f23eeefa5241d18ab572cf82bebb4d0b4 --- /dev/null +++ b/database/embeddings/publications_txt/2021_revealing_a_hidden_stable_spectral_structure_of_urban_vehicular_traffic.json @@ -0,0 +1 @@ +[0.027207205072045326, 0.02225538343191147, 0.03391164168715477, 0.005407362710684538, 0.005480388179421425, 0.0003042728058062494, -0.03057333268225193, -0.0074903275817632675, -0.027346301823854446, -0.03424547240138054, 0.008714373223483562, 0.02521813102066517, -0.017526114359498024, 0.017414838075637817, -0.007379050366580486, 0.0009580246987752616, 0.030350778251886368, -0.021086975932121277, -0.004604082554578781, -0.011635392904281616, -0.013033309020102024, -0.013464506715536118, -0.04548443853855133, 0.0028306066524237394, 0.0018204208463430405, 0.020572319626808167, 0.03349435329437256, -0.033188339322805405, -0.01811031810939312, -0.0020412360318005085, 0.01759566180408001, -0.019487369805574417, -0.00865873508155346, -0.02277003973722458, 0.0032357240561395884, -0.009152526035904884, 0.0072747282683849335, -0.023062141612172127, 0.02361852489411831, -0.01086340844631195, 0.003531303256750107, 0.004437167197465897, -7.139544322853908e-05, -0.020544501021504402, -3.3307005651295185e-05, 0.0247869323939085, 0.034356746822595596, -0.012323918752372265, -0.013186314143240452, 0.01731747016310692, 0.003327875165268779, 0.01206659059971571, -0.03213120996952057, -0.010355708189308643, -0.00711476756259799, -0.009799323044717312, 0.005480388179421425, 0.03399509936571121, -0.035024408251047134, -0.038362715393304825, 0.01439645141363144, -0.01698363944888115, -0.042591240257024765, -0.0011588447960093617, -0.013979162089526653, -0.02089224010705948, -0.0021455581299960613, 0.038307078182697296, -0.0007893706206232309, 0.00607850169762969, 0.017665211111307144, 0.018986623734235764, -0.005838560871779919, -0.014911106787621975, 0.02012721262872219, -0.024912118911743164, -0.02051668055355549, -0.014869377948343754, -0.01698363944888115, -0.0013909614644944668, -0.002380282850936055, -0.011183329857885838, -0.014841558411717415, 0.03188083693385124, 0.019320454448461533, 0.021295620128512383, -0.0012449105270206928, 0.015370124019682407, -0.01811031810939312, 0.0019160493975505233, 0.001432690303772688, 0.01322108879685402, 0.0014770271955057979, -0.0074555533938109875, -0.009848007000982761, 0.013909614644944668, -0.016955820843577385, 0.027902686968445778, 0.018277233466506004, -0.005271743983030319, 0.013965252786874771, -0.00467015290632844, -0.02073923498392105, -0.019306544214487076, -0.015342304483056068, -0.01834678091108799, -0.014605095610022545, 0.00982714258134365, 0.0025298111140727997, 0.009437673725187778, -0.01698363944888115, 0.023354243487119675, -0.01664980873465538, -0.0032183369621634483, -0.008213627152144909, 0.0016726311296224594, 0.007358185946941376, 0.0007315587718039751, -0.005848993081599474, -0.010508713312447071, 0.038919102400541306, -0.014716371893882751, -0.007212135009467602, -0.0398927740752697, 0.03154700621962547, 0.0035226098261773586, 7.6557211286854e-05, -0.027207205072045326, -0.0009502005414105952, -0.02619180455803871, -0.008144079707562923, 0.006589679978787899, -0.006822665687650442, 0.018569335341453552, 0.007191270589828491, 0.012928986921906471, 0.00025124242529273033, 0.0006059375591576099, -0.02845907025039196, -0.0535241961479187, -0.007097380701452494, 0.03663792461156845, -0.04228522628545761, -0.006175868678838015, 0.007069561630487442, 0.009152526035904884, -0.0011797092156484723, 0.006325397174805403, 0.008617006242275238, 0.00413811020553112, 0.024119270965456963, -0.02286740578711033, -0.017762577161192894, 0.03649882972240448, -0.0023176895920187235, 0.015843050554394722, -0.011871855705976486, 0.022895226255059242, 0.0038494858890771866, -0.0032704980112612247, 0.01169103104621172, 0.031491365283727646, 0.008004982955753803, -0.017512204125523567, 0.014507727697491646, 0.010772996582090855, 0.021504264324903488, -0.0001756088895490393, -0.021671179682016373, -0.0042493874207139015, -0.034551482647657394, 0.010265295393764973, -0.013186314143240452, -0.030740248039364815, -0.006259326357394457, 0.04873928800225258, 0.04712577536702156, -0.006374080665409565, -0.04058825597167015, -0.013374093919992447, 0.011844037100672722, 0.017609572038054466, 0.05124301835894585, 0.02690119482576847, 0.007104335352778435, 0.03883564472198486, 0.033939458429813385, -0.012198732234537601, 0.012052681297063828, -0.01542576216161251, 0.049879878759384155, 0.020210670307278633, 0.009298576973378658, 0.0098758265376091, -0.6062366366386414, -0.01684454269707203, 0.011976177804172039, -0.01237260177731514, -0.012894212268292904, 0.014507727697491646, 0.017581753432750702, 0.011127691715955734, -0.026845555752515793, 0.012296099215745926, -0.012998534366488457, 0.01361751276999712, -0.008756102062761784, -0.022213654592633247, -0.01722010225057602, -0.010647810064256191, 0.0037103896029293537, -0.009667182341217995, 0.029877852648496628, 0.01352709997445345, 0.011551935225725174, 0.04303634539246559, -0.011990088038146496, 0.015022384002804756, 0.02583015337586403, 0.02530158869922161, 0.024995576590299606, -0.02559369057416916, 0.030517693608999252, -0.009569814428687096, -0.04303634539246559, 0.019362183287739754, 0.0257745161652565, 0.0010353969410061836, 0.04328671842813492, 0.0010206180159002542, -0.005619484465569258, 0.022617032751441002, 0.019640374928712845, 0.02761058509349823, -0.011092917993664742, -0.02854252979159355, -0.0023142120335251093, 0.006238461937755346, -0.027596674859523773, -0.004850978031754494, 0.0333830751478672, -0.01324195321649313, -0.0009814971126616001, -0.033605627715587616, 0.0011171159567311406, 0.0014778965851292014, -0.007476417813450098, 0.0007489458075724542, 0.027902686968445778, -0.023395972326397896, 0.026219623163342476, -0.02727675437927246, -0.003371342783793807, 0.011218104511499405, 0.021003518253564835, 0.009402899071574211, 0.013088947162032127, -0.04017096757888794, -0.001742179156281054, 0.028987636789679527, 0.006909600924700499, 0.009667182341217995, 0.00825535599142313, -0.0030027381144464016, -0.000541605637408793, 0.03491313382983208, 0.007010445464402437, -0.02788877673447132, 0.025106854736804962, 0.028055692091584206, 0.03132444992661476, 0.011030323803424835, 0.0012935941340401769, 0.019250907003879547, 0.00531347282230854, 0.005748148076236248, -0.010119244456291199, -0.023409880697727203, -0.0009806278394535184, -0.010348753072321415, -0.029794394969940186, -0.010223566554486752, 0.007427734322845936, 0.0015683090314269066, 0.014535547234117985, 0.00790066085755825, 0.015244937501847744, -0.01919526793062687, -0.0021698998752981424, 0.045317523181438446, 0.002522856229916215, 0.02079487405717373, -0.014069574885070324, -0.021657269448041916, -0.02549632266163826, -0.010779950767755508, 0.01385397557169199, -0.01767911948263645, 0.03430110961198807, 0.01463291421532631, 0.0024863434955477715, -0.02690119482576847, 0.021504264324903488, -0.01740092784166336, 0.018652793020009995, -0.008533548563718796, -0.014236490242183208, -0.013179359957575798, 0.000623324594926089, -0.03622063621878624, 0.036387551575899124, 0.00714954175055027, -0.01100250519812107, 0.002955793170258403, -0.005939405411481857, 0.024147091433405876, 0.016441164538264275, -0.0028219129890203476, 0.005814218893647194, 0.01467464305460453, 0.02948838286101818, -0.012553427368402481, -0.010411346331238747, -0.004190271254628897, 0.023576796054840088, 0.0045484439469873905, 0.04117245972156525, -0.01133633591234684, 0.03227030485868454, -0.012741207145154476, 0.02737412042915821, -0.01439645141363144, -0.014187806285917759, -0.028153060004115105, -0.018082499504089355, 0.007351231295615435, -0.0038738276343792677, -0.0249816682189703, -0.046124283224344254, -0.0036756156478077173, -0.036999575793743134, 0.023882808163762093, 0.005737715866416693, 0.008867379277944565, -0.01787385530769825, -0.0023003024980425835, -0.006506222300231457, 0.005289130844175816, -0.011183329857885838, -0.016872363165020943, 0.02154599316418171, -0.01166321150958538, -0.013951343484222889, -0.0005411709425970912, -0.01684454269707203, 0.00983409769833088, -4.322304084780626e-05, -0.005014415830373764, -0.0006585333030670881, 0.009507221169769764, -0.008776966482400894, 0.01613515242934227, -0.0039955368265509605, -0.029098913073539734, -0.009952329099178314, -0.024300096556544304, -0.015620497055351734, 0.017247922718524933, -0.034356746822595596, 0.0060159084387123585, -0.014521637931466103, -0.012546472251415253, -0.023117778822779655, -0.00661054439842701, -0.0036443190183490515, 0.018277233466506004, -0.0227144006639719, -0.0158013217151165, 0.031602643430233, 0.03015604428946972, 0.02249184623360634, 0.006068069487810135, 0.008895198814570904, 0.0049553001299500465, 0.002058622892946005, 0.015912599861621857, -0.0030340347439050674, 0.01984901912510395, -0.019529098644852638, 0.020447133108973503, -0.011976177804172039, -0.010599126107990742, -0.0077893841080367565, 0.035441696643829346, 0.026136165484786034, 0.024258367717266083, -0.015411852858960629, 0.005049190018326044, 0.01538403332233429, -0.014591185376048088, 0.005497775040566921, -0.006749640218913555, 0.01980729028582573, 0.009368125349283218, 0.04025442525744438, -0.0077893841080367565, -0.03405073657631874, -0.004158974625170231, -0.010974685661494732, 0.027109839022159576, -0.016677627339959145, -0.0012475185794755816, -0.014869377948343754, -0.005998521111905575, -0.01126678753644228, -0.014076530002057552, 0.03975367918610573, 0.0013744437601417303, -0.02681773714721203, -0.0030757635831832886, 0.0022516187746077776, 0.04451076686382294, 0.022978683933615685, -0.01310285646468401, -0.02808351069688797, 0.03883564472198486, 0.0166915375739336, 0.0023750667460262775, -0.0020168940536677837, 0.0011310254922136664, 0.0337725430727005, -0.011079007759690285, 0.04417693614959717, -0.021100884303450584, 0.020530590787529945, 0.05077009275555611, 0.03029514104127884, -0.024425283074378967, 0.01890316605567932, -0.021462535485625267, 0.004492805339396, 0.018611064180731773, 0.0046944948844611645, 0.0014248661464080215, -0.0044023930095136166, 0.015314485877752304, -0.0009580246987752616, -0.0048753200098872185, 0.03015604428946972, 0.006266281474381685, -0.0018708431161940098, -0.0031140148639678955, 0.016941910609602928, 0.01363837718963623, 0.026956832036376, 0.005532549228519201, 0.005198718514293432, 0.02233884111046791, -0.012010952457785606, -0.00759464967995882, -0.009848007000982761, 0.02559369057416916, -0.008686554618179798, -0.011364155448973179, -0.005414317362010479, -0.022658761590719223, -0.0019977684132754803, -0.011739715002477169, 0.026219623163342476, 0.005449091549962759, 0.010105335153639317, 0.016162972897291183, 0.01947345957159996, 0.022783948108553886, -0.005511684808880091, -0.007977164350450039, 0.009966238401830196, 0.01545358169823885, -0.0005781183717772365, -0.033522170037031174, 0.014869377948343754, -0.00752510130405426, -0.016107333824038506, -0.02393844723701477, 0.015550948679447174, -0.0018743205582723022, -0.04228522628545761, -0.015286666341125965, -0.050630997866392136, 0.0065757702104747295, 0.047153592109680176, -0.013707924634218216, 0.00024885169113986194, 0.01674717664718628, -0.008178853429853916, 0.017651300877332687, -0.009548950009047985, 0.01062694564461708, 0.024007994681596756, -0.009848007000982761, 0.005626439116895199, -0.012622974812984467, 0.012268279679119587, -0.008554412983357906, -0.002030803821980953, -0.009423763491213322, -0.045234065502882004, -0.013805292546749115, 0.008617006242275238, -0.0039051242638379335, 0.026789916679263115, -0.0059428829699754715, 0.02982221357524395, -0.005612529348582029, 0.017289651557803154, -0.02535722777247429, -0.0248843003064394, 0.011670166626572609, 0.0517437644302845, 0.027457578107714653, 0.012755116447806358, 0.010849499143660069, -0.0008550066268071532, -0.026469996199011803, -0.03847399353981018, -0.005191763397306204, 0.005431704223155975, -0.004541489295661449, -0.01943173073232174, -0.009110797196626663, 0.004663198255002499, 0.00044597702799364924, 0.026358719915151596, -0.005351724103093147, -0.027721861377358437, -0.013040263205766678, 0.018054679036140442, -0.007601604331284761, -0.023493338376283646, -0.023729803040623665, 0.02544068545103073, 0.005014415830373764, 0.008151033893227577, -0.017373109236359596, 0.014493818394839764, 0.017971221357584, 0.0038877371698617935, -0.017999041825532913, 0.009764549322426319, 0.023729803040623665, 0.03263195604085922, 0.0026932491455227137, -0.026122255250811577, -0.000771548948250711, 0.04106118157505989, 0.01571786403656006, 0.01274816133081913, 0.02144862525165081, 0.003713867161422968, 0.014911106787621975, 0.0166915375739336, 0.008617006242275238, 0.00870046392083168, -0.043119803071022034, 0.01211527455598116, 0.014952835626900196, -0.0048022945411503315, -0.007705926429480314, 0.023743711411952972, 0.008783921599388123, -0.020155031234025955, -0.02308996021747589, 0.015356214717030525, 0.015537039376795292, 0.009354216046631336, -0.01829114370048046, -0.006102843210101128, -0.022311022505164146, -0.007726790849119425, -0.005685554817318916, 0.011697986163198948, -0.01989074796438217, -0.0020707938820123672, 0.013930479064583778, -0.03521914407610893, -0.014897197484970093, -0.03171392157673836, 0.014799829572439194, 0.014006981626152992, -0.0054351817816495895, -0.04929567500948906, -0.004805771633982658, 0.0038460083305835724, -0.004524101968854666, 0.026456085965037346, -0.01623252034187317, -0.013186314143240452, 0.0057968320325016975, -0.017053186893463135, -0.038640908896923065, 0.0032704980112612247, -0.037834152579307556, -0.013561873696744442, -0.0036025901790708303, -0.008790876716375351, -0.013408868573606014, 0.005890721920877695, 0.018499787896871567, -0.013374093919992447, -0.01025138609111309, 0.008533548563718796, -0.02727675437927246, 0.010529577732086182, 0.021128704771399498, 0.014201716519892216, 0.005661213304847479, 0.01913962885737419, 0.002768013160675764, 0.018569335341453552, -0.007865887135267258, 0.002654997631907463, -0.02162945084273815, 0.02423054911196232, 0.00837358832359314, -0.00319225643761456, -0.00215772888623178, -0.007330366875976324, 0.0051361252553761005, 0.0011092917993664742, -0.022380569949746132, -0.005525594111531973, 0.009660227224230766, 0.014785920269787312, 0.003978149965405464, -0.0039607626385986805, -0.008943881839513779, 0.005264788866043091, -0.02549632266163826, -0.015217117965221405, -0.0016422038897871971, 0.015356214717030525, -0.0003862091398332268, -0.0037347315810620785, 0.03254849836230278, -0.013408868573606014, -0.006200210656970739, -0.019348273053765297, -0.002684555482119322, 0.02008548378944397, 0.019529098644852638, -0.009194254875183105, -0.050074610859155655, -0.0158013217151165, -0.012970715761184692, 0.0011266787769272923, -0.015578768216073513, -0.020544501021504402, -0.016621990129351616, -0.014062619768083096, 0.020850511267781258, 0.002973180031403899, 0.010613035410642624, 0.02060013823211193, -0.023076049983501434, -0.006155004259198904, 0.015690045431256294, -0.008178853429853916, 0.03477403521537781, -0.005602097138762474, 0.009910600259900093, -0.0019977684132754803, -0.0059081087820231915, -0.02445310167968273, -0.04848891496658325, -0.037945427000522614, 0.008881288580596447, 0.014730282127857208, 0.008895198814570904, 0.05346855893731117, 0.014243445359170437, 0.00605763727799058, 0.019918568432331085, -0.009771504439413548, 0.013311500661075115, -0.007295592688024044, 0.009013430215418339, -0.017971221357584, 0.022978683933615685, 0.03385600075125694, -0.003964240197092295, 0.010640854947268963, -0.004134633112698793, 0.005104828625917435, 0.03471839800477028, -0.005087441299110651, -0.007747655268758535, -0.011635392904281616, -0.023854989558458328, -0.017623482272028923, 0.005605574697256088, -0.009347260929644108, -0.0005376935587264597, -0.04726487025618553, -0.012991580180823803, 0.0025193789042532444, -0.007177361287176609, -0.01674717664718628, 0.0021142615005373955, 0.023368151858448982, -0.008060622029006481, 0.025899702683091164, -0.009882780723273754, 0.005612529348582029, 0.002524595009163022, 0.0026323944330215454, -0.03602590039372444, -0.00872828345745802, 0.006857439875602722, -0.0041033364832401276, 0.02507903426885605, 0.014382541179656982, 0.012859438546001911, 0.006739208009094, 0.023688074201345444, 0.028166968375444412, -0.01290812250226736, 0.0009510698728263378, -0.0005789877031929791, -0.033800363540649414, 0.0005442136898636818, -0.04690321907401085, -0.03499659150838852, -0.003519132500514388, -0.0022133674938231707, -0.020920060575008392, 0.012247415259480476, -0.025176402181386948, -0.027179386466741562, 0.023674163967370987, 0.011809262447059155, 0.01201790664345026, -0.010425255633890629, 0.016858452931046486, 0.02893199771642685, -0.022088468074798584, -0.004680585116147995, 0.014758100733160973, 0.007851976901292801, -0.010028831660747528, 0.013464506715536118, -0.005233492236584425, -0.028055692091584206, -0.02921019122004509, 0.024202728644013405, 0.017567843198776245, -0.027527127414941788, -0.03847399353981018, 0.0014535547234117985, 0.04086644574999809, 0.007629423402249813, -0.011225058697164059, 0.001116246567107737, -0.01692800037562847, 0.018263323232531548, 0.0034078555181622505, 0.019932476803660393, 0.008637870661914349, 0.015676135197281837, 0.00027514956309460104, 0.0180685892701149, -0.011795353144407272, 0.03368908539414406, 0.006826143246144056, -0.026776008307933807, 0.015731774270534515, 0.008505729027092457, 0.005459523759782314, 0.008004982955753803, 0.00797020923346281, 0.032993607223033905, -0.03546951711177826, 0.01206659059971571, 0.030795887112617493, 0.0029679639264941216, 0.0036582285538315773, -0.008547457866370678, -0.007177361287176609, 0.03385600075125694, -0.0018152047414332628, -0.0068296208046376705, 0.015592677518725395, 0.015703953802585602, 0.003724299371242523, 0.0008954314398579299, -0.003079240908846259, -0.018930984660983086, -0.01838850975036621, -0.00400944659486413, 0.007747655268758535, 0.014925016090273857, 0.008192762732505798, 0.003559122560545802, 0.010668674483895302, -0.010578261688351631, 0.008248401805758476, 0.018277233466506004, -0.0025350272189825773, -0.019459551200270653, -0.02215801551938057, 0.004075516946613789, -0.011830126866698265, 0.02436964400112629, 0.00872828345745802, 0.0029940444510430098, 0.014312993735074997, 0.03627627342939377, -0.01731747016310692, -0.010028831660747528, 0.015328395180404186, 0.00010530012514209375, -0.03043423593044281, -0.006085456348955631, -0.0017960789846256375, -0.013506235554814339, 0.009722820483148098, -0.0022516187746077776, -0.04031006246805191, -0.018165957182645798, -1.8242784790345468e-05, 0.010334843769669533, -0.0017960789846256375, -0.004837068263441324, -0.003852963214740157, 0.014465998858213425, 0.006447106134146452, -0.009569814428687096, -0.0197516530752182, 0.031213175505399704, -0.01098164077848196, 0.009479402564466, 0.01998811587691307, -0.013109811581671238, 0.042034853249788284, -0.004791862331330776, -0.008408362045884132, -0.0008945621084421873, -0.012275234796106815, -0.01754002459347248, -0.01858324557542801, 0.01984901912510395, -0.021991100162267685, -0.011238968931138515, 0.02553805150091648, -0.02263094298541546, -0.03438456729054451, 0.02065577730536461, -0.016260338947176933, -0.013930479064583778, 0.023715892806649208, -0.011308516375720501, -0.0004990074085071683, -0.017512204125523567, -0.015300575643777847, -0.019598646089434624, 0.004409347660839558, 0.007330366875976324, -0.006075024139136076, -0.014285174198448658, 0.0044684638269245625, 0.03460711985826492, 0.016482893377542496, -0.026066618040204048, -0.02036367543041706, -0.022144105285406113, -0.02484257146716118, 0.017665211111307144, 0.004357186611741781, 0.0031035826541483402, -0.004245909862220287, -0.009152526035904884, 0.0007663328433409333, 0.0029175416566431522, -0.020669687539339066, 0.020753145217895508, 0.004864887800067663, -0.011294607073068619, -0.001825636951252818, 0.0007663328433409333, 0.023827169090509415, 0.0025332884397357702, -0.0531347282230854, -0.004871842451393604, 0.006617499049752951, 0.022311022505164146, 0.027068110182881355, 0.03533042222261429, -0.012469969689846039, 0.009722820483148098, -0.0062036882154643536, 0.004461508709937334, -0.014535547234117985, -0.01363837718963623, -0.0005203065229579806, -0.05672340840101242, -0.008443135768175125, -0.008742192760109901, -0.018096407875418663, 0.0028271290939301252, 0.010919047519564629, 0.009110797196626663, 0.000924120016861707, 0.020266307517886162, -0.012859438546001911, -0.018040770664811134, 0.011030323803424835, -0.020377585664391518, 0.02239448018372059, 0.02553805150091648, 0.0055812327191233635, 0.04284161329269409, 0.022519666701555252, 0.014883287250995636, -0.0118023082613945, 0.025204220786690712, -0.020015934482216835, 0.010300069116055965, 0.008241446688771248, -0.009771504439413548, 0.02187982387840748, -0.0196542851626873, 0.008297084830701351, -0.006071546580642462, 0.009507221169769764, -0.022324930876493454, -0.023312514647841454, -0.020335856825113297, 0.024119270965456963, 0.001246649189852178, -0.006415809504687786, -0.019682103767991066, -0.0256771482527256, -0.016149062663316727, -0.0006628800765611231, 0.00015822186833247542, 0.010188792832195759, -0.025176402181386948, 0.010974685661494732, -0.01390265952795744, -0.00943071860820055, 0.012247415259480476, 0.006641841027885675, -0.008596141822636127, -0.04595736786723137, -0.00023320337641052902, 0.1753724217414856, -0.001898662419989705, 0.010167928412556648, 0.02521813102066517, -0.0071564968675374985, -0.019543008878827095, 0.021003518253564835, -0.006961761973798275, -0.016816724091768265, -0.0027819229289889336, 0.013860930688679218, 0.003526087151840329, -0.019320454448461533, -0.005021370947360992, 0.014966744929552078, 0.013367139734327793, -0.06075719743967056, -0.024397464469075203, -0.012143093161284924, 0.004732746165245771, -0.003651273902505636, -0.028820721432566643, -0.008874334394931793, -0.02620571292936802, 0.002752364845946431, -0.01093295682221651, 0.006109798327088356, -0.01970992423593998, 0.0019821200985461473, 0.0355529747903347, -0.0033209205139428377, -0.0038008021656423807, -0.011927494779229164, -0.002409840701147914, -0.010042741894721985, -0.004148542415350676, 0.0038181892596185207, -0.004353709518909454, 0.013304546475410461, 0.033883821219205856, -0.01142674870789051, -0.018430238589644432, -0.011148556135594845, -0.041701022535562515, -0.03029514104127884, -0.01477201096713543, -0.015815231949090958, 0.004983119200915098, -0.012003997340798378, -0.010919047519564629, -0.02624744176864624, 0.011976177804172039, 0.02638653852045536, 0.009194254875183105, -0.005264788866043091, 0.009966238401830196, 0.022783948108553886, 0.03566425293684006, 0.018638882786035538, -0.002847993513569236, -0.003946852870285511, 0.02164335921406746, -0.00719822570681572, -0.011127691715955734, 0.0016265555750578642, 0.01708100736141205, -0.005824651103466749, -0.0030827182345092297, 0.035914625972509384, -0.016997549682855606, -0.011920539662241936, -0.0023333379067480564, -0.013791382312774658, 0.0038946920540183783, -0.023131689056754112, -0.025148583576083183, 0.017247922718524933, -0.013311500661075115, 0.03316052258014679, 0.03146354854106903, -0.013415822759270668, 0.01702536828815937, -0.003435674821957946, -0.01046698447316885, -0.01594041846692562, -0.02324296534061432, 0.03138009086251259, 0.0027819229289889336, 0.004677108023315668, -0.013081992045044899, -0.025385046377778053, -0.006965239532291889, -0.0032618045806884766, -0.02144862525165081, -0.008088440634310246, -0.009924509562551975, 0.005946360062807798, 0.0013414084678515792, 0.003468709997832775, 0.03480185568332672, -0.014000026509165764, 0.07283074408769608, 0.029710937291383743, -0.00017300082254223526, 0.0015865653986111283, -0.0054351817816495895, 0.006367126014083624, 0.006443629041314125, 0.0001496370241511613, -0.03763941675424576, -0.014966744929552078, -0.03488531336188316, -0.0014040017267689109, -0.004649288486689329, 0.006707911379635334, 0.019556917250156403, 0.003061853814870119, -0.02441137284040451, 0.029238009825348854, -0.004551921505481005, -0.020947879180312157, -0.022895226255059242, 0.0270541999489069, 0.0032618045806884766, 0.007615514099597931, 0.021740727126598358, -0.03057333268225193, 0.002644565422087908, -0.011225058697164059, -0.0036025901790708303, 0.03227030485868454, 0.012935941107571125, 0.0073095024563372135, 0.005928973201662302, 0.003967717755585909, -0.007712881080806255, -0.007441643625497818, -0.01688627153635025, 0.022269293665885925, 0.008825650438666344, -0.01098164077848196, -0.023632435128092766, 0.012629929929971695, 0.008895198814570904, -0.020530590787529945, -0.014952835626900196, -0.006892214063555002, -0.02050277218222618, -0.014869377948343754, -0.02982221357524395, 0.020405404269695282, -0.03738904371857643, -0.0019664717838168144, -0.028570348396897316, 0.03808452561497688, -0.03043423593044281, -0.00418679416179657, -0.03474621847271919, 0.005021370947360992, 0.009618498384952545, -0.009604589082300663, 0.007566830143332481, 0.010001013055443764, 0.010383526794612408, -0.014911106787621975, -0.0098758265376091, -0.17759795486927032, 0.02624744176864624, 0.02004375495016575, -0.027930505573749542, -0.0166915375739336, 0.0038738276343792677, 0.019223086535930634, -0.004232000093907118, -0.03213120996952057, 0.00940985418856144, 0.02229711227118969, 0.006325397174805403, -0.0256771482527256, -0.02681773714721203, -0.009604589082300663, 0.011475431732833385, -0.017178373411297798, 0.013200224377214909, 0.019403912127017975, 0.008735237643122673, 0.017790397629141808, -0.052995629608631134, 0.01862497441470623, -0.025051215663552284, -0.004284161143004894, 0.002493298379704356, -0.006704434286803007, 0.022366659715771675, -0.02117043361067772, -0.007253863848745823, 0.007726790849119425, 0.0019038785248994827, 0.011670166626572609, -0.008957792073488235, 0.02455046959221363, 0.02723502553999424, -0.011273742653429508, -0.014827649109065533, -4.951225037075346e-06, 0.048182904720306396, 0.011218104511499405, 0.019348273053765297, -0.0036999573931097984, -0.010995550081133842, -0.0062767136842012405, 0.01660807989537716, -0.010460030287504196, 0.016246430575847626, 0.02573278732597828, -0.023131689056754112, 0.00973672978579998, -0.007323412224650383, 0.04106118157505989, -0.0015996056608855724, 0.017470475286245346, 0.029766574501991272, -0.004604082554578781, 0.006718343589454889, 0.02610834687948227, -0.0032044274266809225, -0.023354243487119675, -0.017971221357584, 0.008290130645036697, 0.013881795108318329, -0.019209178164601326, -0.010188792832195759, -0.029655298218131065, 0.0010562613606452942, -0.017985131591558456, 0.018458059057593346, -0.007740700617432594, 0.0016543747624382377, -0.008151033893227577, -0.009166436269879341, 0.023882808163762093, 0.0029123255517333746, -0.016023876145482063, 0.0067565953359007835, 0.0072747282683849335, -0.013367139734327793, -0.0065688155591487885, 0.04690321907401085, -0.006224552635103464, 0.006047205068171024, 0.024870390072464943, -0.016023876145482063, 0.009701956063508987, -0.002842777408659458, -0.003435674821957946, 0.007013923022896051, 0.011120736598968506, -0.029432743787765503, -0.0017169680213555694, -0.028765082359313965, 0.010738221928477287, 0.002768013160675764, -0.004416302777826786, 0.025844063609838486, -0.004412825219333172, -0.023952355608344078, 0.00040316148079000413, -0.009548950009047985, -0.013269771821796894, 0.019682103767991066, 0.009249893948435783, 0.036471009254455566, -0.011697986163198948, 0.010307024233043194, 0.026414357125759125, -0.005445613991469145, -0.03366126865148544, 0.012170912697911263, 0.025983160361647606, 0.009590678848326206, -0.014243445359170437, 0.009917555376887321, -0.02224147319793701, -0.007921525277197361, 0.01820768602192402, -0.011725804768502712, 0.030462056398391724, 0.029460564255714417, 0.011440658010542393, 0.01740092784166336, -0.00841531716287136, -0.03538605943322182, -0.07906224578619003, -0.02464783750474453, 0.009778458625078201, 0.01683063432574272, -0.02224147319793701, 0.007692016661167145, -0.010752132162451744, 0.017818216234445572, 0.004357186611741781, 0.020989608019590378, 0.007698971778154373, -0.022450117394328117, -0.0053552016615867615, -0.015370124019682407, -0.005967224482446909, -0.016009965911507607, -0.010404391214251518, -0.008171898312866688, -0.011294607073068619, 0.023270785808563232, -0.012706432491540909, -0.012497788295149803, 0.0003859917924273759, -0.01514757052063942, -0.011906630359590054, -0.008783921599388123, -0.029043275862932205, 0.019501280039548874, 0.006440151482820511, 0.0005972440703772008, 0.015411852858960629, -0.01133633591234684, 0.01477201096713543, -0.031101897358894348, -0.006238461937755346, -0.006864394526928663, 0.012956805527210236, -0.011190284974873066, 0.020474951714277267, -0.0454288013279438, 0.0013448857935145497, 0.010703448206186295, 0.03683266043663025, 0.0014074791688472033, -0.008846514858305454, -0.009597633965313435, -0.033577810972929, 0.05271743983030319, 0.01575959287583828, -0.03405073657631874, -0.0008863032562658191, -0.016246430575847626, 0.01420867070555687, -0.03382818400859833, 0.03132444992661476, -0.014869377948343754, -0.0008684815256856382, 0.0018604109063744545, -0.037138670682907104, -0.010307024233043194, -0.017484385520219803, -0.006054159719496965, -0.018416330218315125, 0.04768215864896774, 0.0012240461073815823, -0.005887244362384081, -0.01518929935991764, -0.01909790001809597, 0.009388989768922329, -0.03983713686466217, -0.0309071633964777, 0.006012430880218744, -0.019974205642938614, 0.012650794349610806, -0.0012040509609505534, -0.007323412224650383, -0.018972713500261307, -0.008846514858305454, 0.009194254875183105, -0.012539517134428024, -0.0023020412772893906, -0.022130196914076805, 0.0010814724955707788, -0.0217268168926239, 0.014577276073396206, 0.020029844716191292, -0.0011779704364016652, 0.011544980108737946, 0.024300096556544304, -0.007420779205858707, 0.030044768005609512, 0.008164944127202034, 0.0217268168926239, -0.0150084737688303, -0.031630463898181915, 0.014257354661822319, -0.01319326926022768, -0.004405870568007231, -0.031491365283727646, 0.02210237644612789, -0.050630997866392136, 0.0016961036017164588, -0.07155105471611023, 0.022936955094337463, 0.02506512589752674, -0.024105362594127655, -0.013700970448553562, 0.005560368299484253, 0.007532056421041489, -0.012323918752372265, -0.01706709712743759, 0.010049696080386639, -0.036999575793743134, 0.009792368859052658, 0.013652286492288113, 0.012163957580924034, -0.016566351056098938, -0.003724299371242523, 0.013026353903114796, -0.01607951521873474, 0.0044023930095136166, 0.021671179682016373, 0.0017873854376375675, 0.021712908521294594, 0.03215903043746948, 0.011232013814151287, -0.04467768222093582, 0.015203208662569523, 0.0022533575538545847, 0.002860164502635598, -0.011176375672221184, -0.014952835626900196, 0.005407362710684538, -0.03521914407610893, -0.017289651557803154, 0.03413419425487518, 0.0016961036017164588, -0.015231028199195862, 0.004913571290671825, 0.0028566871769726276, 0.012504743412137032, 0.033800363540649414, -0.029877852648496628, -0.027248933911323547, -0.006676614750176668, 0.017999041825532913, -0.03010040521621704, -0.006301055196672678, 3.2301821192959324e-05, 0.001856933580711484, 0.005734238773584366, -0.00934030581265688, 0.014646824449300766, -0.005991566460579634, -0.01830505207180977, -0.019487369805574417, 0.024188820272684097, 0.0054560462012887, -0.023354243487119675, 0.02521813102066517, -0.018791889771819115, -0.01683063432574272, 0.030601151287555695, 0.002204673830419779, 0.018458059057593346, -0.010021877475082874, -0.0014796352479606867, -0.014382541179656982, -0.029989128932356834, -0.0008293607388623059, -0.010355708189308643, -0.005296085495501757, -0.009653272107243538, 0.0030027381144464016, 0.02530158869922161, 0.032715413719415665, 0.00019136586342938244, -0.0020655777771025896, 0.01314458530396223, -0.004677108023315668, -0.0006841791328042746, 0.025788424536585808, 0.02379935048520565, -0.006109798327088356, -0.005532549228519201, -0.0056542581878602505, 0.03663792461156845, 0.02051668055355549, -0.017345288768410683, 0.0217268168926239, -0.005602097138762474, 0.006843530107289553, -0.011329380795359612, 0.004944867920130491, 0.005741193424910307, -0.00035904193646274507, 0.000200059381313622, 0.0028532096184790134, -0.00936117023229599, -0.011308516375720501, 0.03697175532579422, 0.019918568432331085, 0.00663140881806612, 0.005626439116895199, 0.018235504627227783, -0.023076049983501434, -0.02028021775186062, 0.011211149394512177, -0.02342379093170166, -0.020002026110887527, -0.022283202037215233, -0.0038390536792576313, -0.0062767136842012405, 0.02996131032705307, -0.01326281763613224, 0.0008580493158660829, -0.012977669946849346, 0.016009965911507607, 0.002272483194246888, 0.003706912277266383, -0.01745656691491604, 0.023827169090509415, 0.005459523759782314, -0.005007461179047823, 0.01439645141363144, -0.003418287727981806, 0.03928074985742569, 0.009868871420621872, 0.013791382312774658, -0.020057663321495056, 0.01290812250226736, -0.0454288013279438, 0.013916568830609322, -0.006544473581016064, -0.014326903037726879, -0.013130676001310349, -0.03316052258014679, 0.010640854947268963, -0.01549531053751707, -0.010397437028586864, -0.01133633591234684, 0.08223363757133484, 0.00467015290632844, 0.0008928233874030411, -0.005042235367000103, -0.026511725038290024, -0.003738208906725049, 0.02389671839773655, 0.02398017607629299, -0.0074555533938109875, -0.022895226255059242, 0.004541489295661449, -0.0018847527680918574, -0.0050630997866392136, -0.03485749289393425, 0.005883766803890467, 0.016343796625733376, -0.0019977684132754803, 0.020711416378617287, -0.008436181582510471, 0.01852760650217533, 0.013207178562879562, 0.007782429456710815, 0.00377993774600327, 0.008568322286009789, -0.02219974435865879, -0.015481401234865189, 0.02610834687948227, 0.0031053214333951473, -0.005536026321351528, -0.06387294828891754, -0.005226537585258484, 0.015787411481142044, -0.0218241848051548, -0.025287678465247154, 0.007302547805011272, -0.0005359548376873136, -0.01829114370048046, -0.035024408251047134, 0.01866670325398445, -0.001297940849326551, 0.01759566180408001, 0.027596674859523773, -0.0011458045337349176, -0.02704028971493244, -0.0009788890602067113, -0.015537039376795292, -0.02322905696928501, -0.012337828055024147, -0.037083033472299576] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_simulating_the_makerdao_stablecoin.json b/database/embeddings/publications_txt/2021_simulating_the_makerdao_stablecoin.json new file mode 100644 index 0000000000000000000000000000000000000000..d6da66142a7277a624054f3964a37c07657d046b --- /dev/null +++ b/database/embeddings/publications_txt/2021_simulating_the_makerdao_stablecoin.json @@ -0,0 +1 @@ +[-0.01242795493453741, 0.012273482978343964, -0.006600156892091036, -0.01440800167620182, -0.01578420400619507, 0.026709571480751038, -0.023578006774187088, 0.009822999127209187, -0.019028112292289734, -0.047970499843358994, 0.01900002546608448, 0.033309727907180786, -0.0033176320139318705, 0.032045867294073105, -0.000450688909040764, 0.01782042346894741, 0.014534387737512589, -0.030866265296936035, 0.0007903512450866401, 0.013109034858644009, 0.014871416613459587, -0.0066563282161951065, -0.03333781287074089, 0.016247620806097984, -0.013804157264530659, 0.018873639404773712, 0.03732599318027496, -0.022946076467633247, -0.007590180262923241, 0.0023732478730380535, -0.00181855377741158, -0.015334832482039928, -0.009036597795784473, -0.024027379229664803, 0.00410754419863224, 0.006596646271646023, -0.005353850778192282, -0.008847018703818321, 0.026807870715856552, -0.011234309524297714, -0.019954942166805267, 0.013755007646977901, 0.017792336642742157, -0.010349607095122337, -0.011753896251320839, 0.015643775463104248, 0.036146391183137894, -0.015489304438233376, -0.012863283976912498, 0.02463122271001339, -3.8096815842436627e-05, 0.03257949650287628, -0.022988205775618553, 0.010005556978285313, 0.0033422070555388927, -0.011999647133052349, 0.024968253448605537, 0.008825954049825668, -0.024238022044301033, -0.02290394902229309, 0.01457651611417532, -0.01023024320602417, -0.029602404683828354, -0.0014929344179108739, -0.023493750020861626, -0.016753163188695908, -0.0044375522993505, 0.025923168286681175, 0.0016640820540487766, 0.011536231264472008, 0.035528503358364105, 0.018269795924425125, 0.008587225340306759, -0.021626045927405357, 0.008046573959290981, -0.027580229565501213, -0.03263567015528679, -0.00049545057117939, -0.002785757649689913, 0.007709544617682695, -0.00537842558696866, 0.004100522957742214, -0.003774025710299611, 0.002037973841652274, 0.018634911626577377, 0.020488571375608444, -0.017300836741924286, 0.018213624134659767, -0.006758139468729496, -0.002425908576697111, 0.01935109868645668, 0.023606091737747192, 0.0005042274133302271, 0.015742076560854912, -0.012308590114116669, 0.02603551186621189, -0.014077994041144848, 0.04853221774101257, 0.009605334140360355, -0.03710130602121353, 0.016233576461672783, -0.006013866048306227, -0.024996338412165642, -0.024406537413597107, -0.004813199397176504, -0.024954209104180336, 0.0028717704117298126, 0.014134165830910206, 0.001328808139078319, 0.018620867282152176, -0.03165266662836075, 0.009022554382681847, -0.003092945786193013, -0.029799005016684532, -0.00020866852719336748, -0.015699947252869606, -0.009373626671731472, 0.02415376529097557, 0.007442730013281107, -0.015461218543350697, 0.035500418394804, 0.006477281451225281, 0.008615311235189438, -0.022510748356580734, -0.009317455813288689, 0.013347763568162918, -0.02074134349822998, -0.01836809515953064, 0.008151895366609097, -0.018817467615008354, 0.016036976128816605, 0.004606066737323999, -0.0003736724320333451, 0.02484186738729477, 0.004613088443875313, 0.028984518721699715, -0.04224100336432457, 0.008032531477510929, -0.014927588403224945, -0.04252186045050621, 0.0033299194183200598, 0.035388074815273285, -0.0368766188621521, -0.00025869629462249577, -0.007484858855605125, 0.013453085906803608, 0.000840378983411938, -0.0010918343905359507, 0.01628974825143814, 0.017623823136091232, -0.0006314910715445876, 0.015643775463104248, -0.022229889407753944, 0.015559518709778786, 0.0013762029120698571, 0.017581693828105927, 0.0018799914978444576, 0.023746522143483162, 0.030164120718836784, 0.0027524058241397142, 0.016514435410499573, 0.03361866995692253, -0.017862552776932716, -0.0033369408920407295, 0.009078726172447205, 0.016668906435370445, 0.06139549985527992, -0.011051751673221588, -0.013902457430958748, -0.029265375807881355, -0.02192094549536705, -0.013305635191500187, -0.022566918283700943, -0.009443840943276882, -0.022791605442762375, 0.04606067016720772, 0.03564084693789482, 0.00363710755482316, -0.01878938265144825, -0.004816710017621517, -0.0031701817642897367, 0.007779759354889393, 0.024532923474907875, 0.037550680339336395, 0.016107190400362015, 0.018803425133228302, 0.022005204111337662, -0.017132321372628212, 0.007175914943218231, -0.012856262736022472, 0.04417892172932625, 0.01836809515953064, 0.01141686737537384, 0.015082060359418392, -0.5963171720504761, -0.012793069705367088, -0.01732892170548439, -0.017160408198833466, -0.026007426902651787, 0.017104236409068108, 0.02019367180764675, 0.00689154677093029, -0.00792720913887024, 0.028872175142169, -0.0025206981226801872, -0.011662617325782776, -0.004374359268695116, -0.01892981119453907, -0.006319298874586821, -0.021597959101200104, 0.02227201871573925, -0.03457358852028847, -0.000644656247459352, 0.000770164595451206, 0.009008511900901794, 0.027102772146463394, -0.013684793375432491, -0.010110878385603428, -0.008868083357810974, 0.005733008496463299, 0.013291592709720135, -0.01947748474776745, 0.03224246948957443, 0.004097012337297201, -0.035500418394804, 0.022215846925973892, 0.029461976140737534, -0.013446063734591007, 0.04333634674549103, 0.00894531887024641, -0.025712525472044945, 0.009703634306788445, 0.013474149629473686, 0.049037761986255646, -0.03367484360933304, -0.013130099512636662, 0.00761826615780592, 0.015910590067505836, -0.010813022963702679, -0.008271260187029839, 0.042690373957157135, 0.006203445140272379, -0.010946430265903473, -0.03173692524433136, -0.028647489845752716, -0.021106459200382233, -0.01678125001490116, -0.003071881365031004, 0.013073927722871304, -0.005497789941728115, 0.028521103784441948, -0.03005177713930607, 0.0015728033613413572, 0.028577273711562157, 0.030810093507170677, 0.01579824835062027, -0.009303412400186062, -0.03763493523001671, 0.01496971771121025, 0.006484303157776594, 0.014204380102455616, 0.004511277191340923, 0.007407622877508402, -0.059598010033369064, -3.52992101397831e-05, 0.02149965986609459, -0.01734296604990959, -0.017160408198833466, 0.01961791329085827, 0.02227201871573925, 0.034770186990499496, 0.026892127469182014, -0.01933705434203148, 0.029770920053124428, -0.0012866795295849442, 0.00792720913887024, -0.003436996601521969, -0.02923729084432125, 0.03033263608813286, 0.0012182204518467188, -0.010419822297990322, -0.021260930225253105, 0.019814513623714447, 0.022861819714307785, 0.014085015282034874, 0.025080595165491104, -0.006322809960693121, -0.011360695585608482, 0.012133054435253143, 0.02839471772313118, 0.0035844468511641026, 0.005785669200122356, -0.00492203189060092, -0.0243644081056118, 9.819049591897056e-05, 0.023957164958119392, -0.003840729594230652, 7.844268839107826e-05, 0.031090950593352318, 0.012154118157923222, -0.028647489845752716, 0.01433778740465641, 0.03356250002980232, -0.011880282312631607, 0.0015570051036775112, -0.018410224467515945, -0.007849973626434803, -0.00562066538259387, 0.01155729591846466, -0.04738070070743561, 0.036174476146698, -0.015924634411931038, -0.00041294863331131637, 0.020165584981441498, 0.01071472279727459, 0.02804364450275898, 0.01071472279727459, 0.0062841917388141155, -0.008636374957859516, 0.019814513623714447, 0.016654863953590393, -0.04055585712194443, -0.006582603324204683, 0.02901260368525982, 0.03283226862549782, 0.0024662818759679794, 0.04403849318623543, -0.016893593594431877, 0.029799005016684532, -0.0020941453985869884, 0.007323365658521652, -0.025993382558226585, 0.0074006011709570885, -0.020755385980010033, -0.013516278937458992, -0.008208067156374454, -0.00775869470089674, -0.03019220568239689, -0.05462682992219925, -0.021401358768343925, -0.028001517057418823, 0.016682948917150497, 0.010419822297990322, 0.011676660738885403, -0.017062107101082802, 0.015742076560854912, -0.007555073127150536, 0.005813755095005035, -0.017637865617871284, -0.021541789174079895, 0.007063571829348803, -0.005241507664322853, -0.012013689614832401, -0.002785757649689913, -0.003598489798605442, 0.02095198631286621, -0.03507913276553154, -0.02199115976691246, -0.020081328228116035, 0.010763872414827347, -0.00436382694169879, 0.006954739801585674, 0.006551006808876991, -0.028872175142169, -0.028001517057418823, -0.013460107147693634, -0.011037709191441536, 0.017174450680613518, 0.003135074395686388, 0.01085515134036541, 0.011255374178290367, 0.0034387519117444754, -0.02345162071287632, -0.011676660738885403, -0.01690763607621193, 0.0043603163212537766, -0.025389539077878, -0.00988619215786457, 0.03328164294362068, 0.015770161524415016, 0.023297149688005447, -0.0018817468080669641, 0.02533336728811264, 0.005827798042446375, -0.008931276388466358, 0.013614579103887081, 0.0013279304839670658, 0.010321522131562233, -0.007667416241019964, 0.005403000861406326, -0.011543252505362034, -0.023269062861800194, -2.4245920940302312e-05, 0.023578006774187088, 0.031905438750982285, 0.02923729084432125, 0.007010911125689745, -0.014176294207572937, -0.015882505103945732, -0.023915035650134087, 0.033506326377391815, -0.003540562931448221, 0.014288636855781078, 0.019449397921562195, 0.04651004076004028, -0.0008302856585942209, -0.01831192523241043, 0.006027908995747566, 0.013270528055727482, 0.014422045089304447, -0.01650039106607437, 0.0014139431295916438, -0.014155229553580284, 0.024954209104180336, -0.02484186738729477, -0.02588104084134102, 0.016682948917150497, -0.014267573133111, -0.003208799520507455, 0.006610688753426075, 0.01699189282953739, 0.00767443748190999, 0.014773116447031498, -0.009064683690667152, -0.03286035358905792, -0.0066247317008674145, -0.016542520374059677, -0.017371051013469696, 0.01197156123816967, -0.018817467615008354, 0.028352588415145874, -0.005655772518366575, 0.02721511386334896, -0.01991281285881996, -0.003935519140213728, 0.019435355439782143, 0.021626045927405357, -0.020488571375608444, 0.022932033985853195, -0.022735433652997017, -0.0009241974912583828, 0.024406537413597107, -0.010103857144713402, 0.019294926896691322, -0.0247014369815588, 0.03934817016124725, -0.01381117943674326, 0.006463238503783941, 0.03493870049715042, -0.009415755979716778, -0.012575404718518257, -0.0033299194183200598, 0.014759073965251446, -0.0005612766253761947, 0.003935519140213728, 0.013530321419239044, -0.012968606315553188, 0.03019220568239689, 0.0023223424796015024, -0.005125653464347124, -0.010504079051315784, -0.001853661029599607, -0.008622332476079464, -0.012954562902450562, 0.01977238431572914, -0.00880489032715559, -0.006852928549051285, -0.0002821742673404515, 0.015699947252869606, -0.002626019762828946, 0.013642664067447186, -0.00206079357303679, 0.02046048641204834, -0.0006911733071319759, -0.02881600335240364, -0.02024984359741211, 0.007576137315481901, 0.0019642487168312073, 0.006273659877479076, -0.019519612193107605, 0.0023205869365483522, -0.01082706544548273, -0.03954476863145828, 0.011746875010430813, 0.003672214923426509, -0.00894531887024641, -0.02971474826335907, -0.03325355425477028, -0.002696234267205, -0.011852196417748928, 0.025431668385863304, -0.00950001273304224, -0.018255753442645073, -0.004465638194233179, 0.026948299258947372, 0.007372515741735697, 0.01843830943107605, -0.027664486318826675, 0.047212183475494385, -0.013621600344777107, 0.01440800167620182, 0.0015227755066007376, 0.02185073122382164, -0.002578624989837408, 0.02081155776977539, -0.01211198978126049, -0.041370343416929245, 0.004272548481822014, 0.03263567015528679, -0.011880282312631607, 0.014815245755016804, 0.010237264446914196, 0.012126032263040543, 0.005992801859974861, -0.001320909010246396, -0.013432021252810955, -0.02915303222835064, 0.012589448131620884, 0.039629027247428894, 0.014077994041144848, 0.010735786519944668, 0.023620136082172394, 0.0046973456628620625, -0.009127876721322536, -0.024546965956687927, -0.023437578231096268, -0.002578624989837408, 0.00697580398991704, -0.025515925139188766, -0.02012345753610134, -0.00029928903677500784, -0.002645328873768449, 0.01970217004418373, -0.008292324841022491, -0.03535998985171318, -0.011325588449835777, 0.024940166622400284, -0.011430909857153893, 7.131153688533232e-05, 0.0011892570182681084, -0.003805622225627303, 0.023507792502641678, 0.009717677719891071, -0.012224333360791206, 0.00926128402352333, 0.01732892170548439, 0.0025312304496765137, -0.01864895410835743, 0.015180360525846481, 0.016682948917150497, 0.016879549250006676, 0.018747253343462944, -0.0006626487011089921, 0.00537842558696866, 0.031147122383117676, 0.03257949650287628, 0.009443840943276882, 0.010483015328645706, 0.002085368614643812, -0.002269681543111801, 0.007751673460006714, 0.0090436190366745, 0.000828969175927341, -0.055778346955776215, -0.023563964292407036, 0.015096102841198444, -0.001038295915350318, -0.02420993708074093, 0.026948299258947372, 0.0055399187840521336, -0.032186295837163925, -0.03530381619930267, 0.029770920053124428, 0.015082060359418392, -0.005367893259972334, -0.004872881807386875, -0.0030034224037081003, -0.033506326377391815, -0.022566918283700943, -0.003036774229258299, 0.0010734031675383449, -0.0006727420259267092, -0.022075418382883072, -0.00012057134881615639, -0.025937212631106377, 0.002920920494943857, -0.02079751528799534, 0.01643017679452896, -0.007189957890659571, -0.0009031331283040345, -0.050638649612665176, -0.011789003387093544, 0.00029138990794308484, -0.0010786692146211863, 0.02637254074215889, -0.015966761857271194, -0.005824287422001362, 0.006670371163636446, -0.025206981226801872, -0.029911348596215248, -0.011753896251320839, -0.047633472830057144, -0.01322839967906475, 0.006761650089174509, -0.012491147965192795, -0.011423888616263866, -0.009443840943276882, 0.039909884333610535, -0.004535852465778589, -0.0030595939606428146, -0.013958629220724106, -0.01312307734042406, -0.005452150944620371, 0.019730255007743835, 0.023395448923110962, 0.02037622779607773, -0.0010163539554923773, 0.021457530558109283, 0.01753956638276577, -0.010216199792921543, -0.028759831562638283, -0.009071704931557178, 0.009851085022091866, -0.023226935416460037, -0.012975627556443214, 0.0031280529219657183, -0.02318480610847473, 0.014702902175486088, 0.009338519535958767, -0.020980073139071465, -0.004086480010300875, -0.005957694724202156, 0.002963049104437232, -0.0023346298839896917, -0.008594246581196785, 0.0010514610912650824, -0.012238375842571259, -0.00720400083810091, 0.008404667489230633, 0.012547319754958153, 0.026737656444311142, 0.033450156450271606, 0.005434597376734018, 0.02630232647061348, -0.01141686737537384, -0.022496704012155533, -0.026470841839909554, 0.017216579988598824, 0.010117899626493454, 0.019014067947864532, -0.03384335711598396, -0.037606850266456604, -0.017371051013469696, 0.006596646271646023, -0.014211401343345642, -0.00775869470089674, -0.014422045089304447, -0.009605334140360355, 0.004900967702269554, 0.003256194293498993, -0.006231531035155058, 0.0048202211037278175, 0.01356542855501175, -0.025347409769892693, -0.023915035650134087, 0.00649132439866662, 0.027594272047281265, 0.028141945600509644, -0.005199378821998835, 0.014120122417807579, -0.017272749915719032, -0.011248352006077766, -0.006178870331496, -0.03257949650287628, -0.009401712566614151, 0.005575025919824839, 0.009689591825008392, 0.03300078213214874, 0.037831537425518036, 0.028717704117298126, 0.02109241671860218, 0.02093794383108616, 0.00047526395064778626, -0.001163804205134511, 0.00285246130079031, -0.005525875836610794, -0.017581693828105927, 0.002836663043126464, 0.008165938779711723, 0.0015710479347035289, 0.022103503346443176, -0.001125186332501471, 0.019884727895259857, 0.005610133055597544, 0.00810274574905634, -0.0019765363540500402, -0.004089990630745888, -0.017216579988598824, -0.005023842677474022, 0.01745530776679516, -0.006979314610362053, -0.0030789028387516737, -0.0333939865231514, -0.014393959194421768, 0.026063598692417145, -0.0017895903438329697, -0.0013235420919954777, -0.004061905201524496, 0.025782739743590355, -0.0009136653388850391, 0.03847751021385193, 0.008524032309651375, 0.02561422623693943, 0.027116814628243446, -0.007653373293578625, -0.03839325159788132, 0.0007100434741005301, 0.03283226862549782, -0.009170005097985268, 0.033169299364089966, 0.03870219737291336, 0.01977238431572914, 0.003586202161386609, 0.02317076362669468, 0.01259646937251091, 0.0036160433664917946, 0.005659283138811588, -0.0033580053132027388, -0.01878938265144825, -0.022595005109906197, -0.047773901373147964, 0.0036511505022644997, 0.004040840547531843, -0.0022310635540634394, -0.000797372660599649, 0.01016002893447876, -0.007130275946110487, -0.007646352052688599, 0.022861819714307785, -0.004546384792774916, 0.022735433652997017, 0.0008061494445428252, 0.018410224467515945, 0.028984518721699715, -0.015952719375491142, -0.0034071553964167833, 0.007372515741735697, 0.004423509351909161, 0.0025522946380078793, 0.009275326505303383, 0.0281840730458498, -0.025909125804901123, -0.01767999492585659, 0.019800471141934395, 0.005645240657031536, -0.028563231229782104, -0.01866299659013748, 0.004683302715420723, 0.019575783982872963, -0.004693835042417049, -0.021977117285132408, -0.011458995752036572, -0.0006692313472740352, -0.006638774648308754, -0.02269330434501171, -0.004623620305210352, 0.00841871090233326, -0.021766474470496178, 0.03069774992763996, -0.026878084987401962, 0.0023679817095398903, 0.02845088765025139, 0.002417131792753935, -0.03069774992763996, -0.0014999558916315436, -0.0006407066830433905, -0.022370317950844765, 0.004879903048276901, 0.008011466823518276, 0.031287550926208496, -0.016949763521552086, 0.016865506768226624, 0.016177404671907425, 0.012828176841139793, 0.010145985521376133, -0.01315116323530674, -0.002571603748947382, 0.025235068053007126, 0.001552616711705923, -0.0015227755066007376, 0.023437578231096268, -0.028226202353835106, -0.005694390740245581, 0.002492612460628152, 0.015110146254301071, -0.00995640642940998, -0.020081328228116035, 0.0013928788248449564, 0.008594246581196785, 0.006824843119829893, 0.005725987255573273, 0.007597201503813267, -0.007196979597210884, -0.026218069717288017, 0.019800471141934395, 0.0005086158053018153, -0.005434597376734018, -0.02246861904859543, -0.005269593093544245, -0.004746495746076107, -0.01690763607621193, 0.012196247465908527, 0.02672361396253109, 0.01148708164691925, 0.014716945588588715, 0.010904301889240742, -0.020221756771206856, 0.002441706834360957, -0.0010374182602390647, -0.029967520385980606, -0.015110146254301071, -0.009387670084834099, -0.011374738067388535, -0.0010997335193678737, 0.013874372467398643, -0.0011418622452765703, -0.02248266153037548, -0.018480438739061356, -0.012119011022150517, -0.002829641569405794, -0.009064683690667152, 0.0025294749066233635, 0.002826130948960781, 0.025979340076446533, -0.008531053550541401, -0.005529386457055807, -0.018325967714190483, 0.04120182991027832, -0.004047862254083157, 0.0021187204401940107, 0.020235799252986908, 0.003988179843872786, 0.025417625904083252, -0.022566918283700943, 0.0035897130146622658, -0.018045108765363693, -0.03611830621957779, -0.010195136070251465, 0.004142651800066233, 0.018620867282152176, -0.023086505010724068, -0.016247620806097984, 0.010567272081971169, -0.015742076560854912, -0.03238289803266525, 0.028844090178608894, 0.013726921752095222, -0.00031750090420246124, 0.02763640135526657, 0.014801202341914177, 0.024167807772755623, -0.0021854243241250515, -0.004500745330005884, -0.0156578179448843, -0.006196423899382353, 0.019323011860251427, -0.012083903886377811, -0.003896901151165366, 0.012575404718518257, 0.02492612414062023, 0.025515925139188766, -0.03732599318027496, -0.05965418368577957, -0.01613527722656727, -0.026751698926091194, -0.0028349077329039574, -0.010974516160786152, -0.0028120880015194416, -0.006319298874586821, -0.01817149482667446, 0.001120797940529883, 0.048672646284103394, -0.019168540835380554, -0.0014824022073298693, -0.03266375511884689, -0.008194024674594402, 0.006884525064378977, -0.003612532513216138, 0.004771070554852486, 0.005146718118339777, -0.018466396257281303, 0.007144318427890539, 0.020783472806215286, 0.027524057775735855, 0.008194024674594402, 0.02081155776977539, 0.01266668364405632, -0.0156578179448843, -0.0039249868132174015, -0.007010911125689745, -0.026316368952393532, -0.013551386073231697, 0.012013689614832401, -0.038983054459095, -0.013719900511205196, 0.005002778489142656, -0.010447908192873001, 0.009808956645429134, -0.0012954563135281205, -0.003131563775241375, 0.009380647912621498, 0.015194403007626534, -0.02338140644133091, -0.002317076316103339, 0.010981537401676178, 0.0021942011080682278, 0.019814513623714447, -0.010005556978285313, -0.003335185581818223, 0.03752259165048599, 0.0030034224037081003, -0.006919632665812969, -0.037971965968608856, 0.0233111921697855, -0.019716212525963783, -0.010307478718459606, 0.008306367322802544, -0.007842952385544777, 0.02010941319167614, -0.026428712531924248, 0.003675725543871522, -0.019238755106925964, -0.005725987255573273, -0.026625312864780426, -0.025852954015135765, -0.023086505010724068, 0.02317076362669468, 0.0033843356650322676, -0.02074134349822998, -0.024125680327415466, -0.0023311192635446787, 0.005294168367981911, -0.012329654768109322, -0.0074286870658397675, -0.008847018703818321, -0.020643044263124466, 0.00015666594845242798, -0.01092536561191082, -0.017244664952158928, 0.026498926803469658, -0.00753400893881917, -0.008896168321371078, -0.023437578231096268, -0.004244462586939335, 0.17705272138118744, 0.0024557497818022966, 0.00862935371696949, 0.046594299376010895, 0.00727421510964632, -0.017483394593000412, 0.0070284646935760975, 0.0027243199292570353, -0.0166969932615757, 0.001101488946005702, 0.0009636930772103369, 0.014450130052864552, 0.004146162420511246, -0.0020485061686486006, 0.018129367381334305, -0.003280769335106015, -0.032045867294073105, -0.030248377472162247, -0.037410251796245575, -0.009556184522807598, -0.006838886067271233, -0.009373626671731472, -0.019252797588706017, -0.02234223298728466, 0.002085368614643812, -0.02010941319167614, -0.0028945901431143284, -0.023620136082172394, 0.025586139410734177, 0.03075392171740532, -0.007526987232267857, 0.004079458769410849, 0.0026909681037068367, 0.010504079051315784, -0.02971474826335907, -0.025249110534787178, 0.009408733807504177, -0.009514056146144867, 0.03019220568239689, 0.004946606699377298, 0.01037067174911499, -0.03387144207954407, -0.005617154762148857, -0.03715747967362404, -0.01419735886156559, 0.019645998254418373, -0.008095724508166313, -0.015082060359418392, 0.009254262782633305, -0.0022433511912822723, -0.036286819726228714, 0.0024101105518639088, 0.027369586750864983, 0.016065062955021858, -0.015475261025130749, -0.007814866490662098, 0.01607910543680191, 0.0306134931743145, 0.002069570356979966, 0.009268305264413357, 0.01016002893447876, 0.017160408198833466, 0.00832041073590517, 0.0029964009299874306, -0.023563964292407036, 0.01537696085870266, -0.02303033508360386, 0.029658576473593712, 0.01970217004418373, -0.021527744829654694, -0.009219154715538025, -0.038589853793382645, -0.018115323036909103, -0.001132207689806819, -0.01607910543680191, -0.027158942073583603, 0.013214356265962124, 0.028296416625380516, 0.028619403019547462, 0.04229717329144478, -0.013909479603171349, 0.006856439635157585, -0.026878084987401962, 0.01787659525871277, -0.0012612267164513469, -0.026821913197636604, 0.03934817016124725, -0.02526315301656723, -0.012434976175427437, -0.006073548458516598, -0.025389539077878, 0.004146162420511246, -0.007906145416200161, 0.005887480452656746, -0.0023539389949291945, -0.037269823253154755, 0.015025888569653034, -0.004040840547531843, 0.004560427274554968, 0.01998302713036537, -0.01551738940179348, 0.08414497971534729, 0.009254262782633305, 0.001042684307321906, 0.01102366577833891, -0.013319677673280239, -0.014983760192990303, -0.0003817909746430814, 0.005747051443904638, -0.03527573123574257, -0.02100815810263157, -0.033028870820999146, 0.00928936991840601, -0.006621221080422401, -0.013291592709720135, 0.025656353682279587, 0.015826333314180374, 0.001214709714986384, 0.025768697261810303, -0.007323365658521652, -0.04049968719482422, -0.006859950255602598, 0.001618442707695067, 0.011178137734532356, 0.009521077387034893, 0.00041338748997077346, -0.013193292543292046, -0.002889323979616165, -0.03168075159192085, -0.021134544163942337, 0.044291265308856964, 0.01815745234489441, 0.01419033668935299, 0.005034375004470348, 0.013733942992985249, -0.0005042274133302271, 0.023058420047163963, -0.007323365658521652, 0.0035686485935002565, 0.01450630184262991, -0.02665339969098568, -0.015770161524415016, 0.003837218740954995, -0.008889147080481052, -6.939160812180489e-05, -0.04476872459053993, -0.00041031560976989567, -0.005178314633667469, -0.010490036569535732, -0.007976359687745571, -0.0031262976117432117, -0.024308236315846443, -0.004374359268695116, -0.03238289803266525, 0.02756618708372116, -0.006845907308161259, 0.0002832713653333485, -0.04417892172932625, 0.001696556224487722, -0.009408733807504177, -0.027889173477888107, 0.0036230648402124643, 0.00793423131108284, 0.005199378821998835, -0.011213244870305061, -0.012624555267393589, -0.17918723821640015, 0.031147122383117676, 0.020657086744904518, -0.017427222803235054, 0.0003811327333096415, -0.012891369871795177, 0.033085040748119354, -0.0035598718095570803, -0.00602088775485754, -0.004630642011761665, 0.021963074803352356, 0.012905413284897804, 0.0026944789569824934, -0.009738742373883724, 0.010672593489289284, 0.04260611906647682, -0.009205112233757973, -0.013993736356496811, 0.02241244725883007, 0.030220292508602142, 0.031231380999088287, -0.03241098299622536, 0.014267573133111, -0.015601647086441517, 0.0003297884250059724, 0.015812290832400322, -0.016036976128816605, 0.008032531477510929, -0.019800471141934395, -0.015124188736081123, -0.008208067156374454, 0.006607178132981062, 0.02652701362967491, 0.010433864779770374, 0.020151542499661446, 0.027875130996108055, -0.01704806461930275, -0.002661127131432295, -0.007260172627866268, 0.04724027216434479, -0.00142710842192173, 0.043954234570264816, -0.015025888569653034, -0.027608314529061317, 0.007253150921314955, 0.02561422623693943, 0.010026620700955391, -0.0024048443883657455, -0.00024399516405537724, -0.026709571480751038, 0.02324097789824009, -0.01530674658715725, 0.02478569559752941, -0.004304144997149706, 0.001834352035075426, 0.05002076178789139, 0.010798979550600052, -0.019463440403342247, 0.005115121603012085, 0.007625287398695946, -0.011992624960839748, -0.027664486318826675, 0.011402823962271214, -0.0011971561471000314, -0.00817296002060175, -0.014857374131679535, -0.02826833166182041, 0.012273482978343964, -0.028226202353835106, 0.010405778884887695, -0.0033264087978750467, -0.009464905597269535, 0.011838153935968876, -0.005216932389885187, 0.004872881807386875, 0.007892102003097534, -0.006301745306700468, 0.0038828582037240267, 0.023395448923110962, -0.017581693828105927, -0.019238755106925964, 0.042634204030036926, -0.01385330781340599, -0.006849417928606272, 0.013747986406087875, -0.012259440496563911, 0.021752431988716125, -0.0027102772146463394, -0.007814866490662098, 0.0022152652963995934, 0.01534887496381998, -0.008285303600132465, -0.007175914943218231, -0.01141686737537384, -0.007611244451254606, 0.008615311235189438, -0.02443462237715721, 0.008362539112567902, 0.009942363947629929, -0.011522188782691956, 0.007253150921314955, 0.00459553487598896, -0.009794913232326508, 0.01885959692299366, 0.0023820246569812298, 0.006543985102325678, -0.030641578137874603, -0.004233930259943008, 0.024757608771324158, -0.013137120753526688, -0.02442057989537716, 0.011128988116979599, 0.017244664952158928, 0.03645533323287964, -0.0018782360712066293, 0.013726921752095222, -0.018143409863114357, -0.02156987413764, 0.015980804339051247, -0.007997424341738224, 0.04738070070743561, 0.014815245755016804, -0.006354406476020813, 0.030810093507170677, -0.020853687077760696, -0.024617180228233337, -0.08583012223243713, -0.0403592549264431, -0.0027927791234105825, 0.03957285359501839, -0.01346712838858366, 0.01206986140459776, 0.0001778399891918525, -0.003178958548232913, -0.011529210023581982, 0.00846083927899599, -0.013495214283466339, -0.021176673471927643, -0.012259440496563911, -0.016472306102514267, 0.005353850778192282, -0.009563205763697624, -0.009900235570967197, -0.014829288236796856, 0.018325967714190483, 0.02283373475074768, -0.0006635264144279063, -0.01998302713036537, 0.021401358768343925, -0.017160408198833466, -0.002645328873768449, 0.012364761903882027, -0.029686663299798965, 0.014660773798823357, 0.0037248756270855665, 0.03033263608813286, -0.0037248756270855665, -0.005683858413249254, -0.006396534852683544, -0.028549188748002052, -0.014316722750663757, -0.010848130099475384, -0.010363650508224964, -0.02246861904859543, 0.029181119054555893, -0.02457505092024803, 0.013382870703935623, 0.01516631804406643, 0.0333939865231514, -0.007253150921314955, -0.020067285746335983, 0.010518122464418411, -0.014885460026562214, 0.03578127548098564, 0.0034352410584688187, -0.036567676812410355, -0.03266375511884689, -0.009703634306788445, 0.017553608864545822, 0.0028717704117298126, 0.037971965968608856, 0.006838886067271233, 0.005729497876018286, 0.025487840175628662, -0.01551738940179348, -0.017764251679182053, -0.01970217004418373, -0.00057444185949862, -0.02797343023121357, -0.0012884348398074508, -0.002613732358440757, -0.011107923462986946, -0.020306013524532318, 0.0008201923337765038, 0.013116056099534035, -0.02213159017264843, -0.0012550830142572522, 0.004774581640958786, -0.0278470441699028, -0.015924634411931038, -0.008748718537390232, -0.004532341845333576, -0.016865506768226624, -0.034826360642910004, 0.004957139026373625, -0.007849973626434803, -0.015025888569653034, -0.018129367381334305, -0.02811385877430439, -0.023830778896808624, 0.016191449016332626, 0.009794913232326508, 0.011501124128699303, 0.0069968681782484055, 0.030501149594783783, -0.02603551186621189, 0.01852256804704666, 0.002445217687636614, 0.017076149582862854, -0.003577425377443433, -0.01593867689371109, -0.0023153210058808327, 0.008847018703818321, -0.022384362295269966, -0.021949032321572304, 0.010145985521376133, -0.06414790451526642, 0.006129720248281956, -0.08032531291246414, 0.019575783982872963, -0.012399869039654732, -0.023058420047163963, -0.007892102003097534, -0.01940726861357689, 8.07465985417366e-05, -0.003084169002249837, 0.0005441618850454688, -0.0005898012313991785, -0.03423655778169632, -0.008158917538821697, -0.009661505930125713, 0.011873261071741581, -0.023156721144914627, -0.018143409863114357, 0.04092097282409668, -0.011227288283407688, 0.011114944703876972, 0.02325502038002014, -0.019814513623714447, 0.021836688742041588, 0.01725870743393898, 0.020558785647153854, -0.03255141153931618, 0.00894531887024641, 0.018269795924425125, 0.015952719375491142, -0.036511506885290146, 0.00848892517387867, -0.015039931982755661, -0.016739120706915855, -0.012196247465908527, 0.03224246948957443, -0.00834849663078785, 0.0008469616295769811, 0.009450863115489483, 0.016163362190127373, 0.03266375511884689, 0.022651176899671555, -0.02186477556824684, -0.010433864779770374, 0.0038863688241690397, -0.017230622470378876, -0.018045108765363693, -0.004089990630745888, -0.009338519535958767, 0.009303412400186062, 0.018480438739061356, -0.017904680222272873, 0.01643017679452896, 0.0014472950715571642, -0.003995201084762812, -0.022665219381451607, 0.017553608864545822, -0.0023047886788845062, 0.010223221965134144, 0.009808956645429134, -0.008650418370962143, -0.010532164946198463, 0.023690350353717804, -0.016725078225135803, 0.021260930225253105, -0.018985982984304428, 0.02790321595966816, -0.007379536982625723, -0.03252332657575607, 0.018564695492386818, 0.0032825248781591654, 0.007126764860004187, -0.020474528893828392, -0.008495946414768696, -0.00569087965413928, 0.008931276388466358, 0.013902457430958748, 0.003960093948990107, 0.005919076967984438, 0.0012498169671744108, -0.0023346298839896917, 0.01301073469221592, 0.02915303222835064, 0.010658551007509232, -0.01970217004418373, 0.0013867351226508617, 0.018761295825242996, 0.0208817720413208, -0.00506597151979804, -0.0003563382488209754, -0.001219098106957972, -0.0007828909438103437, -0.014169272966682911, 0.0046376632526516914, 0.009471926838159561, 0.0008329187403433025, -0.004974692594259977, 0.009787891991436481, -0.01753956638276577, -0.0004945729160681367, 0.033085040748119354, 0.02589508332312107, 0.03083817847073078, 0.0025838911533355713, 0.006322809960693121, -0.025080595165491104, -0.03903922438621521, 0.006614199839532375, -0.015053974464535713, -0.03005177713930607, 0.007365494035184383, -0.02086772955954075, -0.018971940502524376, 0.026498926803469658, -0.02478569559752941, 0.011746875010430813, -0.01523653231561184, 0.021752431988716125, -0.01506801787763834, 0.018059153109788895, -0.022791605442762375, 0.049318619072437286, -0.0140990586951375, -0.0027295860927551985, 0.00908574741333723, -0.003136829938739538, 0.029405804350972176, 0.004577981308102608, 0.024097593501210213, -0.03151223808526993, 0.01273689791560173, -0.006003334186971188, 0.019435355439782143, 0.008439774625003338, 0.0013016000157222152, -0.027790872380137444, -0.0043884022161364555, -0.011065795086324215, -0.012090925127267838, 0.01093238778412342, -0.0032755034044384956, 0.08538074791431427, 0.03917965292930603, -0.006565049756318331, -0.001559638069011271, -0.009008511900901794, -0.0006455339607782662, 0.0038266866467893124, 1.346690896752989e-05, -0.006087591405957937, -0.027538100257515907, 0.0074357083067297935, 0.006982825230807066, -0.03154032304883003, -0.024392494931817055, 0.017019979655742645, 0.012905413284897804, -0.012989670038223267, 0.043532948940992355, -0.008502967655658722, -0.008734675124287605, 0.016865506768226624, 0.05066673457622528, 0.01054620835930109, 0.002292501274496317, -0.014562473632395267, -0.014049908146262169, 0.02860536053776741, -0.01082706544548273, -0.007990402169525623, -0.06049675494432449, 0.0018115324201062322, 0.009324477054178715, -0.030388806015253067, -0.009556184522807598, -0.006364938337355852, 0.022103503346443176, 0.02185073122382164, 0.0140920365229249, 0.016739120706915855, -0.00012144902575528249, -0.008046573959290981, 0.01947748474776745, -0.0008460839162580669, -0.03749450668692589, -0.015096102841198444, 0.0024364409036934376, -0.0166969932615757, -0.008474881760776043, -0.06830459833145142] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_simulationbased_analysis_of_covid19_spread_through_classroom_transmission_on_a_university_campus.json b/database/embeddings/publications_txt/2021_simulationbased_analysis_of_covid19_spread_through_classroom_transmission_on_a_university_campus.json new file mode 100644 index 0000000000000000000000000000000000000000..6ed55345cbb9ba3608bf5c4269c07f9c55d44053 --- /dev/null +++ b/database/embeddings/publications_txt/2021_simulationbased_analysis_of_covid19_spread_through_classroom_transmission_on_a_university_campus.json @@ -0,0 +1 @@ +[0.0032237274572253227, 0.01984930783510208, -0.008239604532718658, -0.016793370246887207, 0.012502207420766354, -0.0009514101548120379, -0.008318144828081131, -0.004248322919011116, -0.023819169029593468, -0.027717629447579384, 0.0013441122137010098, 0.019549425691366196, -0.009560511447489262, 0.0157223641872406, -0.002666804473847151, 0.0033379681408405304, 0.030559364706277847, -0.015251122415065765, 0.008518066257238388, 0.008746547624468803, -0.0039948513731360435, 0.0011200935114175081, -0.039812855422496796, -0.008432385511696339, -0.036699797958135605, 0.015551003627479076, 0.029988162219524384, -0.022034158930182457, -0.011045639403164387, -0.008867927826941013, 0.007632701192051172, -0.010731478221714497, -0.017792975530028343, -0.027731910347938538, 0.003662839764729142, -0.0008385083056055009, 0.009846113622188568, 0.003652129787951708, 0.030416565015912056, -0.013773133978247643, 0.01310197077691555, 0.024861615151166916, -0.012180905789136887, -0.012859209440648556, 0.017021851614117622, 0.007839762605726719, 0.030416565015912056, -0.016022246330976486, -0.023462167009711266, 0.024119051173329353, 0.00016968748241197318, 0.031501851975917816, -0.011623983271420002, 0.009774712845683098, -0.011973844841122627, -0.005405009258538485, 0.010952819138765335, 0.020349109545350075, -0.02316228486597538, -0.026817984879016876, 0.03392946347594261, -0.026817984879016876, -0.05432141199707985, -0.010381615720689297, -0.013109111227095127, 0.0004451367713045329, -0.023919129744172096, 0.017807256430387497, -0.008182484656572342, 0.013444692827761173, 0.031530410051345825, 0.03164464980363846, 0.006069032941013575, -0.011809623800218105, 0.02634674310684204, -0.01280208956450224, -0.023390766233205795, 0.010652937926352024, -0.005415719468146563, 0.014922680333256721, 0.0030505815520882607, 0.007811202201992273, -0.015136881731450558, 0.01299487054347992, 0.0218342375010252, 0.019235264509916306, 0.0032737075816839933, 0.03724244236946106, -0.006311794277280569, -0.010952819138765335, 0.0036449898034334183, 0.0064581651240587234, 0.011452621780335903, 0.0033665280789136887, -0.004708855412900448, 0.03832772746682167, -0.01876402087509632, 0.05152251943945885, 0.030702166259288788, -0.03207305446267128, 0.006243963725864887, -0.009874673560261726, -0.04281167313456535, -0.013473252765834332, -0.015836605802178383, -0.014422877691686153, -0.0032094472553581, 0.028802916407585144, 0.005504969973117113, -0.01984930783510208, -0.04398263618350029, 0.014422877691686153, -0.023947689682245255, -0.01859266124665737, 0.006215403787791729, -0.021562917158007622, 0.005551380105316639, 0.012759248726069927, -0.015136881731450558, -0.013616053387522697, 0.03835628554224968, 0.0009282050305046141, 0.010581537149846554, -0.036242835223674774, 0.01079573854804039, 0.01004603412002325, -0.023990530520677567, -0.02260536141693592, 0.006336784455925226, -0.017250332981348038, 0.002465098397806287, 0.006736626382917166, 0.0046338848769664764, 0.028688674792647362, 0.011802483350038528, 0.030702166259288788, -0.01579376496374607, 0.00834670476615429, -0.020377669483423233, -0.03735668212175369, 0.006347494199872017, 0.040127016603946686, -0.016864771023392677, -0.004358993377536535, -0.02243400178849697, 0.009389150887727737, 0.012659288011491299, 0.0013833824777975678, 0.015393923036754131, 0.01023881509900093, -0.0062832338735461235, -0.005519249942153692, 0.0013574998592957854, 0.014244376681745052, 0.009132109582424164, 0.00698652770370245, -0.004626744892448187, 0.02826027199625969, 0.009117829613387585, -0.010660077445209026, 0.015950845554471016, 0.020906032994389534, -0.005669190548360348, 0.006240393500775099, -0.0033558181021362543, 0.010096014477312565, 0.04381127655506134, 0.00601905258372426, 0.002258037216961384, 0.006925837602466345, -0.03290129825472832, 0.014322916977107525, -0.020920313894748688, -0.010467296466231346, 0.0036842599511146545, 0.032929856330156326, 0.024775933474302292, 0.004091242328286171, 0.0041483622044324875, -0.029331278055906296, -0.010774318128824234, 0.02176283672451973, 0.02837451361119747, 0.01666484959423542, 0.0007755866972729564, 0.005319328512996435, 0.02801751159131527, -0.019549425691366196, -0.003923451062291861, 0.00023383626830764115, 0.04738129675388336, 0.019763626158237457, 0.0011504386784508824, 0.005015877075493336, -0.5922233462333679, -0.01932094432413578, -0.0043375734239816666, -0.007561300881206989, -0.016436368227005005, 0.0029452659655362368, 0.015608124434947968, 0.010274515487253666, -0.025032974779605865, 0.04626744985580444, -0.008853647857904434, 0.005886961705982685, 0.010838578455150127, -0.02110595442354679, -0.0015395708614960313, -0.018007177859544754, 0.013558933511376381, -0.010874278843402863, 0.010031754150986671, 0.006476014852523804, -0.015379643067717552, 0.028131751343607903, 0.0005752193392254412, 0.006704496219754219, -0.010781458579003811, 0.0335296206176281, 0.015251122415065765, -0.017593055963516235, 0.02173427678644657, -0.0031273369677364826, -0.025618458166718483, 0.006843727082014084, 0.04363991692662239, -0.01673625037074089, 0.04860938340425491, -0.0059726424515247345, -0.02396196871995926, 0.01637924835085869, 0.024518892168998718, 0.03241577371954918, -0.0415835864841938, -0.03133048862218857, -0.0018349898746237159, 0.013159090653061867, -0.0008875960484147072, -0.0037949304096400738, 0.008746547624468803, -0.004683865234255791, -0.007904022932052612, -0.05732022970914841, -0.019677946344017982, -0.003798500634729862, -0.0011825688416138291, 0.00011301342601655051, 0.0377279631793499, 0.0007260526763275266, 0.017792975530028343, -0.02704646624624729, 0.014401458203792572, -0.013259051367640495, 0.005012307316064835, -0.002050976036116481, 0.023919129744172096, -0.013259051367640495, 0.006633095908910036, 0.0021830666810274124, 0.00939629040658474, 0.002859585452824831, 0.014808439649641514, -0.044982243329286575, -0.0014155126409605145, 0.027717629447579384, -0.013716014102101326, -0.003787790425121784, 0.02424757182598114, 0.02466169372200966, 0.01579376496374607, -0.005894101690500975, -0.012916330248117447, 0.017664454877376556, -0.0015850885538384318, 0.0008599283755756915, 0.006101163104176521, -0.0011736438609659672, 0.010695777833461761, -0.0061154430732131, -0.013558933511376381, 0.008775107562541962, -0.00430544326081872, 0.011338381096720695, 0.026318181306123734, 0.03969861567020416, 0.00621897354722023, -0.003564664162695408, 0.01118130050599575, 0.029816800728440285, 0.011395501904189587, 0.007661261595785618, -0.025418536737561226, -0.007368519902229309, -0.0047409855760633945, -0.015165441669523716, 0.0070186578668653965, -0.018335619941353798, 0.030587924644351006, 0.0049052066169679165, -0.005255068186670542, -0.0008621596498414874, 0.02697506546974182, -0.0020206309854984283, -0.0036324947141110897, -0.023447886109352112, -0.028588714078068733, -0.005340748932212591, 0.018321339040994644, -0.0370425209403038, 0.04598184674978256, 0.004608894698321819, 0.009860393591225147, 0.0005301478668116033, -0.005954792257398367, 0.0016921891365200281, -0.004473234061151743, -0.009474831633269787, -0.009424851275980473, 0.019063903018832207, 0.025761259719729424, -0.03193025290966034, -0.009124969132244587, -0.0023901278618723154, 0.032844178378582, -0.009417710825800896, 0.021677156910300255, -0.006483154837042093, 0.034043703228235245, -0.009917513467371464, 0.01282350905239582, -0.02700362540781498, 0.011988124810159206, -0.030330883339047432, -0.028417354449629784, -0.0018126772483810782, 0.000523900322150439, -0.01862122118473053, -0.04244038835167885, -0.004755265545099974, -0.028288831934332848, -0.0007189126336015761, 0.014301497489213943, -0.012694988399744034, -0.01423723716288805, 0.008582326583564281, 0.0019278103718534112, 0.008253884501755238, -0.019206704571843147, -0.012402246706187725, -0.005758441053330898, -0.020077789202332497, -0.018506979569792747, -0.002272317185997963, 0.011659682728350163, 0.0335296206176281, -0.013865955173969269, 0.0018653350416570902, -0.002759624971076846, 0.018949663266539574, -0.019677946344017982, 0.03430074453353882, 0.025032974779605865, -0.03484338894486427, 0.002172356704249978, -0.004837376065552235, -0.015079761855304241, 0.021948479115962982, -0.009560511447489262, 0.0017385993851348758, -0.014201536774635315, 0.022134119644761086, -0.03515755012631416, -0.01645064912736416, -0.007604141253978014, 0.020149188116192818, -0.020877473056316376, -0.0035860843490809202, 0.018149977549910545, 0.007868322543799877, 0.03438642621040344, -0.022476840764284134, -0.002461528405547142, 0.022719603031873703, -0.004226902965456247, 0.007839762605726719, -0.019021062180399895, 0.02581837959587574, -0.00037619078648276627, 0.01011743489652872, 0.007311399560421705, -0.006258243694901466, -0.011466901749372482, 0.028774354606866837, 0.021362995728850365, 0.020777512341737747, -0.006144003011286259, -0.007782642263919115, 0.00339330337010324, -0.012395107187330723, 0.013244771398603916, 0.00119238649494946, 0.04632456973195076, 0.01118130050599575, 0.04683865234255791, -0.003455778583884239, -0.01859266124665737, -0.015365363098680973, -0.014322916977107525, 0.02120591513812542, -0.017764415591955185, 0.022176960483193398, -0.038870371878147125, 0.0024829483591020107, -0.016821930184960365, 0.00026975959190167487, 0.042011987417936325, 0.009160669520497322, -0.011409781873226166, -0.0019420904573053122, 0.014501417987048626, 0.00746848015114665, 0.04206910729408264, -0.018264219164848328, -0.0279461108148098, 0.0064367447048425674, 0.018978223204612732, -0.004244753159582615, -0.0082110445946455, -0.005080137401819229, 0.034672025591135025, -0.004455383867025375, 0.031216248869895935, -0.014665639027953148, -0.006318934261798859, 0.028203152120113373, 0.032615695148706436, -0.028274552896618843, 0.02142011560499668, -0.024019090458750725, 0.021705716848373413, 0.006929407361894846, 0.008475225418806076, 0.012116645462810993, 0.003495048964396119, 0.019749347120523453, -0.008618026971817017, 0.009003588929772377, 0.038099244236946106, 0.0065545556135475636, -0.00574773084372282, -0.000771570426877588, 0.03255857527256012, 0.01934950426220894, -0.0028238852974027395, -0.013873094692826271, 0.01425151713192463, -0.006561695598065853, -0.020391950383782387, -0.00268108444288373, -0.03744236379861832, -0.014294357039034367, -0.015665244311094284, 0.007439920213073492, 0.0016930816927924752, -0.011402641423046589, -0.013408992439508438, 0.012830649502575397, 0.0024061929434537888, 0.02074895240366459, -0.014537118375301361, -0.013980195857584476, 0.029145637527108192, 0.014365757815539837, -0.04738129675388336, -0.02364780753850937, 8.234751476265956e-06, 0.020491911098361015, -0.009567651897668839, -0.01416583638638258, 0.015279682353138924, 0.003937731496989727, -0.04064109921455383, 0.00906784925609827, 0.015251122415065765, 0.011745363473892212, -0.035585951060056686, -0.020691832527518272, -0.021791398525238037, -0.010838578455150127, 0.036699797958135605, 0.0052157980389893055, -0.026718024164438248, 0.025004414841532707, 0.003959151450544596, 0.004351853393018246, -0.015065480954945087, 0.0026685893535614014, 0.025589898228645325, 0.005926231853663921, 0.02364780753850937, -0.020291989669203758, -0.0027132146060466766, 0.010310215875506401, 0.014822720550000668, -0.0053800190798938274, -0.03801356628537178, 0.0157223641872406, 0.02166287787258625, 0.00612258305773139, 0.013873094692826271, -0.02243400178849697, 0.010824298486113548, -0.01579376496374607, -0.006079742684960365, -0.028317393735051155, -0.033586740493774414, 0.015765205025672913, 0.05480693653225899, 0.02494729496538639, -0.018121417611837387, 0.016079366207122803, -0.0002400837984168902, -0.02117735520005226, -0.03461490571498871, -0.00468029547482729, -0.005865541752427816, -0.013944495469331741, -0.023276526480913162, 0.010188834741711617, 0.023490726947784424, 0.003138046944513917, 0.01395877543836832, -0.019163863733410835, 0.0001106705967686139, -0.00420191278681159, 0.02354784682393074, -0.010374476201832294, 0.013230491429567337, -0.009046428836882114, 0.012787808664143085, 0.010467296466231346, 0.02634674310684204, -0.024447491392493248, 0.02016346901655197, 0.02833167277276516, 0.0022990924771875143, -0.009224929846823215, 0.010288795456290245, 0.03852764889597893, 0.020877473056316376, 0.002143796533346176, -0.007207869086414576, 0.02627534233033657, 0.038727570325136185, 0.017550215125083923, 0.006540275178849697, -0.012609308585524559, 0.022234080359339714, 0.03361530229449272, 0.007032937835901976, 0.005394299048930407, 0.009817552752792835, -0.04221190884709358, 0.006629525683820248, 0.016222167760133743, -0.006622385699301958, -0.031844571232795715, 0.021163074299693108, 0.00901072844862938, -0.029388397932052612, -0.03895604982972145, 0.0218342375010252, -0.00727569917216897, 0.0035343191120773554, -0.0013815974816679955, -0.011466901749372482, -0.015908006578683853, -0.04178350418806076, -0.025147216394543648, 0.027546267956495285, 0.0028970707207918167, -0.04004133492708206, -0.005222938023507595, -0.0038127806037664413, 0.003734240075573325, -0.036071475595235825, 0.01317337155342102, 0.0044910842552781105, -0.03267281502485275, -0.03727100044488907, 0.001259324257262051, 0.008339565247297287, 0.001552065834403038, -0.0048944964073598385, -0.01378027442842722, -0.01970650628209114, -0.012916330248117447, -0.027132146060466766, -0.017807256430387497, -0.008196764625608921, -0.04626744985580444, 0.007911162450909615, -0.007775501813739538, -0.010495856404304504, -0.010160274803638458, 0.005590650252997875, 0.02864583395421505, -0.012409387156367302, -0.011409781873226166, -0.007782642263919115, -0.013051990419626236, 0.003705680137500167, 0.013923075050115585, 0.020520471036434174, 0.023290805518627167, -0.007032937835901976, -0.00822532456368208, 0.0133661525323987, -0.015008361078798771, -0.002052761148661375, -0.010774318128824234, -0.010438736528158188, -0.01271640881896019, -0.010702918283641338, 0.01739313453435898, -0.03978429362177849, 0.0023276526480913162, 0.015208282507956028, -0.015065480954945087, 0.012359406799077988, -0.004273313097655773, 0.026503823697566986, 0.009517671540379524, 0.017907217144966125, -0.009410571306943893, 0.007247139234095812, -0.014001615345478058, -0.009689032100141048, 0.001494945609010756, 0.01437289733439684, 0.03304409980773926, -0.0023722779005765915, 0.029645441100001335, -0.004994457121938467, -0.028517313301563263, -0.05303620547056198, 0.0011308036046102643, 0.0022758874110877514, 0.03367242217063904, -0.0008179806754924357, -0.03692828118801117, -0.026575224474072456, -0.018421299755573273, -0.012359406799077988, -0.020691832527518272, 0.002459743293002248, -0.020620431751012802, -0.013194791041314602, 0.007447060197591782, 0.0005399654037319124, 0.003561094170436263, 0.010567257180809975, -0.025946900248527527, -0.004162642639130354, 0.04049829766154289, 0.02693222463130951, 0.02144867554306984, 0.004444674123078585, -0.0017323518404737115, -0.017721576616168022, -0.0015261832159012556, -0.020206309854984283, -0.01777869649231434, -0.022176960483193398, 0.0028613705653697252, 0.011609702371060848, 0.007165028713643551, 0.061404332518577576, 0.019792186096310616, 0.0011754288570955396, 0.015451043844223022, 0.016193607822060585, 0.006265383679419756, 0.004448243882507086, 0.0025971890427172184, -0.012902049347758293, 0.011331241577863693, 0.02564701810479164, -0.012873489409685135, 0.019649386405944824, -0.009481971152126789, 0.0012825294397771358, -0.0015538509469479322, 0.010310215875506401, -0.012302286922931671, -0.013401851989328861, -0.03541459143161774, 0.004273313097655773, 0.004687435459345579, 0.0019581555388867855, 0.00650814501568675, -0.047809697687625885, -0.013544653542339802, 0.019135303795337677, -0.007868322543799877, -0.021777117624878883, 0.0010942108929157257, -0.003830630797892809, -0.0015074406983330846, 0.02036339044570923, -0.015136881731450558, 0.01719321310520172, 0.005997632630169392, 0.004030551761388779, -0.03067360632121563, -0.019135303795337677, 0.020863192155957222, -0.02260536141693592, 0.01966366544365883, 0.019606545567512512, 0.009596211835741997, 0.0026364591903984547, 0.0218342375010252, 0.020734671503305435, -0.01806429773569107, 0.012009545229375362, -0.014979801140725613, -0.013716014102101326, -0.021719997748732567, -0.015551003627479076, -0.00735423993319273, -0.006179703399538994, -0.005008737090975046, 0.005647770594805479, 0.012495067901909351, -0.015136881731450558, -0.004912346601486206, 0.021719997748732567, 0.01579376496374607, 0.0363285169005394, -0.006368914619088173, 0.014272937551140785, 0.030702166259288788, -0.03130193054676056, -0.01977790705859661, 0.005294338800013065, 0.0004922164371237159, -0.004309013485908508, 0.01509404182434082, 0.006136863026767969, -0.017650175839662552, -0.0019153153989464045, 0.005933371838182211, 0.0225339625030756, -0.01949230581521988, -0.03724244236946106, 0.017792975530028343, 0.035128988325595856, -0.012937749736011028, -0.02519005537033081, -0.017493095248937607, -0.029331278055906296, 0.009182089939713478, -0.012602168135344982, -0.019135303795337677, 0.0101317148655653, -0.011059919372200966, 0.00945341121405363, 0.010995659045875072, 0.02347644604742527, 0.027746189385652542, 0.01425151713192463, -0.01946374587714672, 0.016536328941583633, -0.018992502242326736, -0.017935777083039284, -0.00801826361566782, -0.0025257887318730354, 0.016893330961465836, -0.01081001851707697, 0.010038894601166248, 0.031387608498334885, -0.0024865183513611555, -0.0029149206820875406, 0.018335619941353798, -0.03255857527256012, 0.030159523710608482, -0.00602619256824255, -0.02207699976861477, -0.019577985629439354, -0.00439469376578927, 0.014001615345478058, -0.008710847236216068, 0.010195975191891193, -0.0020491911564022303, -0.005244358442723751, -0.00878938753157854, 0.02571841888129711, 0.02511865645647049, 0.012794949114322662, 0.006590255536139011, 0.012552187778055668, 0.003719960106536746, 0.002499013440683484, -0.0039091710932552814, -0.014215816743671894, -0.02990248240530491, -0.01404445618391037, -0.0022508972324430943, 0.002095601288601756, 0.028288831934332848, 0.013580352999269962, 0.011174160055816174, 0.018264219164848328, 0.027260666713118553, -0.04361135512590408, -0.003723530098795891, 0.0022990924771875143, -0.031501851975917816, -0.0058905319310724735, 0.003966291435062885, -0.0022169819567352533, -0.017307452857494354, 0.028988556936383247, 0.009896093048155308, -0.027817590162158012, -0.022562522441148758, -0.01669340953230858, 0.006850867066532373, 0.006518855225294828, -0.02871723473072052, 0.014737039804458618, 0.004366133362054825, -0.016622010618448257, -0.01350181270390749, -0.02424757182598114, 0.047638338059186935, -0.010174554772675037, -0.004369703587144613, 0.021020272746682167, 0.003934161271899939, 0.031530410051345825, -0.0239334087818861, 0.014265797100961208, -0.001999210799112916, -0.029302718117833138, -0.01503692101687193, 0.007368519902229309, 0.0060333325527608395, -0.004551774822175503, -0.024361811578273773, 0.025804098695516586, -0.012473647482693195, -0.030930647626519203, 0.003180887084454298, -0.011673962697386742, -0.003391518257558346, -0.012373686768114567, -0.011609702371060848, 0.0015654534799978137, 0.010174554772675037, -0.012109505012631416, -0.031073447316884995, 0.00966047216206789, 0.024019090458750725, -0.025547057390213013, -0.01659344881772995, 0.029931042343378067, 0.02072039246559143, 0.010731478221714497, -0.029759680852293968, -0.0499517098069191, -0.0349290668964386, -0.03335826098918915, 0.0033272579312324524, -0.022376880049705505, 0.013316172175109386, -0.005854831542819738, 0.008967888541519642, -0.010403036139905453, 0.013344732113182545, -0.018706900998950005, 0.007689821533858776, -0.02470453269779682, 0.0018385599832981825, 0.007518460508435965, 0.01823565922677517, -0.0024383231066167355, -0.002916705794632435, -0.0349290668964386, 0.00243296823464334, 0.03587155416607857, 0.012216606177389622, 0.011702523566782475, 0.016964731737971306, -0.015051200985908508, -0.014851280488073826, 0.0010344131151214242, -0.0017180717550218105, 0.0019028203096240759, -0.00801826361566782, 0.0024936585687100887, -0.04164070636034012, -0.016307847574353218, 0.02714642696082592, 0.009824693202972412, 0.023876288905739784, -0.003844910766929388, 0.008967888541519642, -0.010581537149846554, 0.01669340953230858, -0.017107533290982246, -0.009667612612247467, 0.022833842784166336, -0.023005204275250435, 0.021991318091750145, -0.003677119966596365, 0.01984930783510208, 0.02731778845191002, 0.007300689350813627, 0.0018439149716868997, -0.029931042343378067, 0.008189624175429344, 0.0014458578079938889, -0.008046823553740978, 0.028845755383372307, 0.0014065875438973308, -0.001831419882364571, -0.013516092672944069, 0.009339170530438423, -0.02459029294550419, -0.012495067901909351, -0.01767873577773571, -0.016821930184960365, -0.010053174570202827, 0.029959602281451225, 0.025932619348168373, -0.03518611192703247, -0.007768361829221249, -0.008182484656572342, -0.00891076773405075, -0.014422877691686153, 0.0013048420660197735, 0.009374870918691158, -0.003927021287381649, -0.003171962220221758, -0.02127731405198574, -0.02159147709608078, 0.014501417987048626, -0.00555494986474514, 0.0020152758806943893, -0.026261061429977417, -0.023505007848143578, 0.16256439685821533, -0.004469664301723242, 0.019092462956905365, 0.014737039804458618, -0.012045244686305523, -0.01697901263833046, 0.0028667254373431206, 0.0031969521660357714, -0.023005204275250435, 0.005019447300583124, 0.002882790518924594, 0.012252306565642357, 0.002836380386725068, -0.0037271000910550356, -0.019749347120523453, 0.013915935531258583, -0.037299562245607376, -0.029674001038074493, -0.02301948517560959, 0.006172563415020704, 0.015779485926032066, -0.014494278468191624, -0.013930215500295162, -0.02246256172657013, 0.025218617171049118, -0.02016346901655197, -0.019449464976787567, -0.012302286922931671, 0.02459029294550419, 0.008239604532718658, -0.0011316961608827114, 0.017907217144966125, -0.0018689051503315568, -0.004266173113137484, -0.030102401971817017, -0.006318934261798859, 0.00774694187566638, -0.01890682242810726, 0.048409461975097656, 0.022176960483193398, -0.012252306565642357, -0.022519681602716446, 0.00678660674020648, -0.03272993862628937, -0.012380827218294144, 0.02120591513812542, -0.020491911098361015, -0.004226902965456247, 0.0017841171938925982, -0.010738617740571499, -0.024990135803818703, 0.0003148310643155128, 0.004712425637990236, 0.00348969385959208, -0.006069032941013575, -0.003923451062291861, 0.016921890899538994, 0.017007572576403618, 0.014822720550000668, 0.011209860444068909, -0.004666015040129423, 0.014615658670663834, -0.005969072226434946, 0.011809623800218105, -0.012045244686305523, 0.01984930783510208, -0.014094436541199684, 0.02340504713356495, -0.005872681736946106, -0.01775013655424118, -0.014737039804458618, -0.01777869649231434, -0.018249938264489174, -0.020877473056316376, -0.0325014553964138, -0.007011517882347107, 0.006165423430502415, 0.010081734508275986, 0.03972717374563217, 0.04006989672780037, -0.024404652416706085, 0.013644613325595856, -0.02142011560499668, 0.010831438936293125, -0.0024686683900654316, -0.0433257557451725, 0.028731515631079674, -0.016093647107481956, -0.020620431751012802, 0.020977433770895004, -0.02316228486597538, 0.02099171280860901, -0.0075898608192801476, 0.007200729101896286, 0.01252362783998251, -0.013316172175109386, 0.02596118114888668, 0.0021205914672464132, 0.0024775934871286154, 0.037013959139585495, -0.0325014553964138, 0.08122508227825165, 0.024618852883577347, -0.022876683622598648, 0.015351083129644394, -0.008603746071457863, -0.007654121145606041, -0.0012521842727437615, 0.03321545943617821, -0.03287273645401001, -0.005094417370855808, -0.02533285692334175, 0.003787790425121784, 0.003969861660152674, 0.012473647482693195, 0.016793370246887207, 0.030559364706277847, 0.0018367748707532883, 0.009124969132244587, -0.007425640244036913, -0.022405441850423813, -0.006422464735805988, 0.003766370238736272, 0.013387572020292282, 0.01502264104783535, 0.00016700995911378413, -0.031701769679784775, 0.003523609135299921, -0.024861615151166916, -0.010845718905329704, 0.05377877131104469, 0.019092462956905365, 0.005776291247457266, -0.016864771023392677, 0.00565134035423398, -0.025932619348168373, 0.01542248297482729, -0.019478024914860725, 0.010495856404304504, 0.00746848015114665, -0.02190563827753067, -0.022890964522957802, 0.0020545460283756256, 0.008061103522777557, -0.016721969470381737, -0.03612859547138214, 0.017107533290982246, -0.0015467108460143209, -0.008853647857904434, -0.025218617171049118, 0.002757839858531952, -0.04024125635623932, -0.00813964381814003, -0.027203546836972237, 0.011881024576723576, -0.025132935494184494, 0.009739012457430363, -0.030445124953985214, -0.014244376681745052, -0.0022990924771875143, -0.005454989615827799, 0.01252362783998251, -0.002782830037176609, -0.005965502467006445, -0.020806072279810905, -0.014558538794517517, -0.18312771618366241, 0.014979801140725613, 0.016964731737971306, -0.011488322168588638, -0.010367335751652718, 0.0057120309211313725, 0.012473647482693195, 0.011217000894248486, -0.008232464082539082, 0.004830236081033945, 0.0162507276982069, 0.008846507407724857, 0.0032040923833847046, 0.01557956449687481, 0.014451437629759312, 0.011531162075698376, 0.004516074433922768, -0.001668091514147818, 0.036528438329696655, 0.016579169780015945, 0.024333251640200615, -0.054549895226955414, 0.004483944270759821, -0.006415324751287699, -0.022833842784166336, 0.007375659886747599, -0.019292384386062622, 0.014837000519037247, -0.017892936244606972, -0.026560943573713303, -0.0009969278471544385, -0.0006943687330931425, 0.030930647626519203, 0.0031773170921951532, 0.019835026934742928, 0.015008361078798771, -0.01859266124665737, -0.016779091209173203, -0.004269742872565985, 0.05126547813415527, 0.025661299005150795, 0.02089175209403038, -0.034186504781246185, -0.027160705998539925, -0.028345953673124313, 0.006086882669478655, 0.016707690432667732, 0.018949663266539574, 0.0335296206176281, -0.021819958463311195, -0.004276883322745562, -0.011231280863285065, 0.025932619348168373, -0.004948046524077654, -0.013901655562222004, 0.012595027685165405, 0.005201518069952726, -0.0030969916842877865, 0.013801694847643375, 0.004516074433922768, -0.013230491429567337, -0.017978617921471596, -0.0058905319310724735, 0.0006002095178700984, -0.013844534754753113, -0.024161890149116516, -0.009196369908750057, 0.015379643067717552, -0.033729542046785355, -0.0031880273018032312, -0.007525600492954254, -0.006861577276140451, 0.007846902124583721, 0.0008532346109859645, 0.020149188116192818, 0.01348753273487091, -0.014615658670663834, 0.028974276036024094, 0.021562917158007622, 0.0032237274572253227, -0.0003375899395905435, 0.04975178837776184, -0.004101952072232962, 0.006051182746887207, 0.012502207420766354, -0.02770335040986538, 0.0040055615827441216, -0.008796527981758118, -0.001976005733013153, -0.00018262880621477962, 0.008582326583564281, -0.010874278843402863, -0.005583510268479586, -0.02239116095006466, -0.010660077445209026, 0.00848950631916523, -0.006990097928792238, -0.007789782248437405, 0.001403910107910633, -0.009146389551460743, 0.007918302901089191, 0.0033094079699367285, -0.028103191405534744, 0.007989702746272087, 0.029359837993979454, -0.00411266228184104, -0.03584299236536026, 0.0011656113201752305, 0.03884181007742882, -0.02082035318017006, -0.024190450087189674, 0.009003588929772377, 0.03618571534752846, 0.007689821533858776, 0.0018082148162648082, 0.0363285169005394, -0.017978617921471596, -0.017478814348578453, 0.012787808664143085, 0.006572405342012644, 0.026332462206482887, 0.016122207045555115, 0.0009058924042619765, 0.02224835939705372, -0.03881324827671051, -0.03524323180317879, -0.07248567044734955, -0.02347644604742527, 0.001874260138720274, 0.04324007406830788, -0.025932619348168373, 0.005033727269619703, -0.013637473806738853, 0.0068758572451770306, 0.00486593646928668, 0.01185960415750742, 0.0024954434484243393, -0.014579959213733673, -0.019592266529798508, -0.0016886191442608833, -0.013037710450589657, -0.021948479115962982, -0.00476954597979784, -0.028674395754933357, 0.011802483350038528, 0.029931042343378067, 0.01299487054347992, -0.02120591513812542, -0.0017796546453610063, 0.0034486385993659496, -0.002283027395606041, -0.004619604907929897, -0.03475770726799965, 0.02082035318017006, 0.011045639403164387, 0.024161890149116516, 0.015194002538919449, -0.011531162075698376, 0.0032772778067737818, -0.02970256097614765, -0.02700362540781498, -0.0017323518404737115, -0.006443884689360857, -0.020734671503305435, 0.028131751343607903, -0.03898461163043976, 0.0267323050647974, 0.03881324827671051, 0.0235764067620039, -0.009196369908750057, -0.011909584514796734, -0.012209465727210045, -0.03221585229039192, 0.04269742965698242, -0.02299092337489128, -0.04441104084253311, -0.003595009446144104, -0.02417617104947567, -0.014344337396323681, -0.023419326171278954, 0.029445519670844078, -0.0013235847000032663, -0.0016877265879884362, 0.004544634371995926, -0.029388397932052612, -0.024504613131284714, -0.022619642317295074, -0.008639446459710598, -0.017764415591955185, 0.019820747897028923, 0.007475620601326227, -0.02616110071539879, -0.011516882106661797, -0.014351477846503258, 0.02371920831501484, -0.025975460186600685, -0.02036339044570923, -0.025875499472022057, -0.024119051173329353, -0.0064260344952344894, -0.013630333356559277, -0.003719960106536746, -0.010552977211773396, -0.025861220434308052, 0.015265402384102345, -0.011695383116602898, 0.0015467108460143209, -0.01317337155342102, 0.007215009070932865, -0.028174592182040215, 0.01802145689725876, 0.014994081109762192, -0.005462129600346088, 0.011752503924071789, -0.0030255913734436035, -0.004226902965456247, 0.0005537992692552507, 0.007425640244036913, 0.009817552752792835, 0.005604930222034454, -0.016165047883987427, 0.014108716510236263, -0.004726705607026815, -0.017164653167128563, -0.0200920682400465, 0.028103191405534744, -0.07117190212011337, 0.01900678314268589, -0.07328535616397858, 0.014137276448309422, 0.023890569806098938, -0.024019090458750725, 0.00023205125762615353, -0.013744574040174484, 0.01299487054347992, -0.0026435991749167442, 0.017978617921471596, 0.015436763875186443, -0.013844534754753113, 0.008510925807058811, -0.007925442419946194, 0.026532383635640144, -0.022476840764284134, -0.004376843571662903, 0.03098776750266552, -0.01509404182434082, 0.02173427678644657, 0.017336012795567513, -0.0054871197789907455, 0.02047763019800186, 0.016193607822060585, 0.03812780603766441, -0.018435578793287277, 0.024647412821650505, 0.024061929434537888, -0.002959545934572816, -0.028588714078068733, 0.00901072844862938, -0.00985325314104557, -0.027474869042634964, -0.01579376496374607, 0.02763194963335991, 0.015293962322175503, -0.008096803911030293, 0.028531594201922417, 0.022091278806328773, 0.027974670752882957, 0.03864188864827156, -0.012116645462810993, -0.015136881731450558, 0.006351064424961805, -0.015465323813259602, 0.013737434521317482, 0.01802145689725876, -0.008746547624468803, 0.013908795081079006, -0.0026507393922656775, -0.004180492367595434, 0.024447491392493248, -0.00678660674020648, -0.02221979945898056, -0.02176283672451973, 0.03532890975475311, -0.0005903919227421284, 0.011316961608827114, -0.002436538226902485, 0.0002345056418562308, -0.011167020536959171, 0.014601378701627254, -0.005976212210953236, 0.012687848880887032, -0.0065938257612288, 0.0017564494628459215, -0.012395107187330723, -0.026218222454190254, 0.002090246183797717, -0.029674001038074493, 0.0046553052961826324, -0.011638263240456581, -0.005894101690500975, 0.001316444599069655, 0.04021269828081131, -0.011574002914130688, 0.01757877506315708, -0.004366133362054825, 0.019306663423776627, 0.006472445093095303, 0.01292346976697445, 0.03067360632121563, -0.014751319773495197, -0.03050224483013153, -0.0071828789077699184, 0.029359837993979454, 0.02456173300743103, -0.009703312069177628, 0.012380827218294144, -0.01032449584454298, 0.014879840426146984, -0.01107420027256012, 0.020291989669203758, 0.011052779853343964, -0.008825087919831276, 0.021320154890418053, 0.01977790705859661, 0.007040077820420265, 6.119236059021205e-05, 0.04164070636034012, 0.028388792648911476, 0.027060747146606445, 0.0036271396093070507, 0.009996053762733936, -0.04189774766564369, -0.055806539952754974, 0.009174949489533901, -0.005897671915590763, -0.02207699976861477, -0.004890926647931337, -0.002118806354701519, -0.011224140413105488, 0.01910674385726452, -0.005437139421701431, 0.003527179127559066, -0.013123391196131706, 0.012095225043594837, -0.006351064424961805, -0.0038056406192481518, -0.041098061949014664, 0.03938445448875427, -0.006525995209813118, -0.003744950285181403, 0.008639446459710598, -0.004312583245337009, 0.014951241202652454, 0.0064581651240587234, -0.00034406062331981957, -0.019121022894978523, 0.026175381615757942, -0.012944890186190605, 0.0024722383823245764, 0.008689426816999912, -0.009546231478452682, -0.019235264509916306, -0.014851280488073826, 0.0025436386931687593, 0.0016475638840347528, 0.004091242328286171, 0.00869656726717949, 0.07922586798667908, 0.030902087688446045, -0.0018546250648796558, -0.010781458579003811, -0.026018301025032997, 0.004705285653471947, 0.03315833956003189, 0.007118618581444025, 0.007497040554881096, -0.03892749175429344, -0.02666090428829193, -0.00034673811751417816, -0.02064899168908596, -0.023533567786216736, -0.014651359058916569, -0.00649029528722167, 0.0089964484795928, 0.026746584102511406, -0.016236448660492897, 0.02291952446103096, 0.03253001719713211, 0.013708873651921749, 0.017892936244606972, 0.01072433777153492, -0.00955337192863226, -0.004598184954375029, 0.009417710825800896, -0.005376448854804039, 0.008046823553740978, -0.04135510325431824, 0.0013717799447476864, 0.005940512288361788, -0.044839441776275635, -0.031987372785806656, -0.0021937768906354904, 0.013394712470471859, -0.005108697805553675, -0.01178820338100195, 0.023590687662363052, -0.005501399748027325, 0.015122601762413979, 0.02067755162715912, -0.014994081109762192, -0.046553052961826324, -0.02142011560499668, 0.0018849702319130301, -0.031244808807969093, -0.002627534093335271, -0.06271810084581375] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_tactical_jupiter_dynamic_scheduling_of_dispersed_computations_in_tactical_manets.json b/database/embeddings/publications_txt/2021_tactical_jupiter_dynamic_scheduling_of_dispersed_computations_in_tactical_manets.json new file mode 100644 index 0000000000000000000000000000000000000000..6ac316b4a23ebdc16c04cad597c8bd96de79671f --- /dev/null +++ b/database/embeddings/publications_txt/2021_tactical_jupiter_dynamic_scheduling_of_dispersed_computations_in_tactical_manets.json @@ -0,0 +1 @@ +[-0.015162049792706966, 0.01054324023425579, 0.0053277756087481976, 0.0016004384960979223, -0.005805099382996559, 0.024792758747935295, -0.014993581920862198, 0.005980586167424917, -0.010585356503725052, -0.04447534307837486, 0.027165338397026062, 0.02035645581781864, -0.011511926539242268, 0.0346200130879879, -0.001916314591653645, 0.004797806032001972, 0.03888784721493721, -0.02096012979745865, -0.019668547436594963, -0.0024146968498826027, 0.024610253050923347, -0.004246777854859829, -0.016102658584713936, 0.005113681778311729, -0.009799175895750523, 0.005826157983392477, 0.039224784821271896, -0.030801422894001007, -0.008584808558225632, -0.007637180387973785, 0.004302933346480131, -0.013168520294129848, 0.0028534133452922106, -0.02504546009004116, 0.005320756230503321, -0.010051877237856388, 0.021395336836576462, -0.025129692628979683, 0.027446117252111435, -0.02703898772597313, 0.012382340617477894, 0.033216118812561035, 0.020300298929214478, -0.029594074934720993, -0.0232765544205904, 0.01600438542664051, 0.03930901736021042, -0.012550807558000088, -0.01715557835996151, 0.021325141191482544, 0.0026867010165005922, 0.03169991448521614, -0.027024948969483376, -0.005169837735593319, -0.01392662338912487, -0.0024041675496846437, 0.01054324023425579, 0.026645896956324577, -0.005039977375417948, -0.03897208347916603, 0.027291689068078995, -0.02630896307528019, -0.03473232313990593, 0.011926074512302876, -0.0006387715111486614, -0.024876991286873817, -0.04284682869911194, 0.020553000271320343, -0.014853192493319511, -0.01142769306898117, 0.03330035135149956, 0.035602737218141556, 0.0021514666732400656, -0.012270028702914715, 0.014270576648414135, -0.0227009579539299, -0.032064925879240036, -0.004734630696475506, -0.008591827936470509, 0.015400711447000504, 0.005601535085588694, -0.005605044774711132, -0.018980639055371284, 0.01400383748114109, 0.014516258612275124, 0.011589140631258488, -0.010550259612500668, 0.004116917494684458, -0.002348011825233698, -0.018868327140808105, 0.016523826867341995, -0.01296495646238327, 0.01823657564818859, 0.0163413193076849, -0.019837014377117157, 0.025592977181077003, -0.03504117950797081, 0.009820234961807728, 0.009223580360412598, -0.02261672355234623, 0.01150490716099739, -0.002985028550028801, -0.033637288957834244, -0.015414750203490257, -0.004555634222924709, -0.014530297368764877, 0.0017583766020834446, 0.024722563102841377, 0.011322400532662868, 0.005847216118127108, -0.028358647599816322, 0.017646940425038338, -0.0060753487050533295, -0.018489276990294456, -0.010346694849431515, -0.021254947409033775, 0.009532436728477478, -0.004674965050071478, -0.0016302713192999363, -0.028049791231751442, 0.04467188939452171, -0.010725745931267738, -0.00016583492106292397, -0.017295967787504196, 0.006507046055048704, -0.004211680497974157, -0.0030780364759266376, -0.021984972059726715, -0.0020040578674525023, -0.018952561542391777, 0.004215190187096596, 0.00014839592040516436, -0.001352124847471714, 0.01976682059466839, 0.009665806777775288, 0.018896406516432762, -0.021591881290078163, 0.002562105655670166, -0.029818696901202202, -0.0473112091422081, -0.005808609072118998, 0.045064978301525116, -0.020019520074129105, 0.0001046339311869815, -0.019064873456954956, 0.02566317282617092, 0.02031433768570423, 0.005920920521020889, 0.010725745931267738, 0.013589688576757908, 0.006457909941673279, 0.013645844534039497, -0.040684834122657776, 0.005436577368527651, -0.020482804626226425, 0.005475184414535761, -0.011975211091339588, 0.01877005584537983, 0.04147101193666458, -0.027137260884046555, 0.04211680218577385, 0.020595116540789604, 0.003801041515544057, -0.016411514952778816, 0.030211787670850754, 0.03257032856345177, 0.03650122880935669, -0.004183602519333363, -0.0008598847198300064, 0.008191718719899654, -0.018250614404678345, -0.015288399532437325, -0.0033904027659446, -0.012894761748611927, -0.01596226915717125, 0.05107364431023598, 0.033833831548690796, -0.004980312194675207, -0.004576692823320627, -0.007482752203941345, 0.009307813830673695, 0.007602083031088114, 0.016060540452599525, 0.02727765031158924, -0.0032780913170427084, 0.02073550596833229, 0.019359691068530083, -0.013449299149215221, 0.000733973050955683, -0.01335102692246437, 0.03824205696582794, 0.011897996999323368, -0.016832683235406876, 0.002799012465402484, -0.6055834889411926, -0.011540004052221775, 0.007763530593365431, -0.021184751763939857, -0.0284709595143795, 0.013884506188333035, 0.011385575868189335, 0.008149601519107819, -0.021395336836576462, 0.02823229692876339, -0.012578885070979595, 0.02181650511920452, -0.00021979707526043057, -0.014074032194912434, -0.024483902379870415, -0.02004759944975376, 0.015091855078935623, -0.004187112208455801, 0.01877005584537983, 0.016453631222248077, 0.010634493082761765, 0.0010406359797343612, 0.005419028922915459, -0.009258677251636982, 0.0010336166014894843, -0.004060762003064156, 0.042453739792108536, -0.03543427214026451, 0.023065969347953796, 0.02677224762737751, -0.02538239397108555, 0.019991442561149597, 0.026716092601418495, -0.01631324179470539, 0.04512113705277443, -0.005847216118127108, -0.041414856910705566, 0.03214915841817856, 0.016902877017855644, 0.03358113020658493, -0.05688576400279999, -0.011905016377568245, 0.004394186660647392, 0.029594074934720993, -0.015456867404282093, -0.0005997257540002465, 0.018166381865739822, -0.017759252339601517, -0.020145870745182037, -0.03916862607002258, 0.009188482537865639, 0.008907703682780266, -0.0014600491849705577, 0.0010397585574537516, 0.014895309694111347, -0.008886645548045635, 0.005948998499661684, -0.01784348674118519, -0.011554042808711529, 0.013947681523859501, 0.0050680553540587425, 0.012663118541240692, -0.009125307202339172, -0.018952561542391777, 0.02316424250602722, 0.01511993259191513, -0.014417985454201698, 0.013063228689134121, 0.0319245383143425, -0.034479621797800064, 0.013224676251411438, 0.014797037467360497, 0.0005220728926360607, -0.03304765373468399, 0.02708110399544239, 0.0036641620099544525, 0.024876991286873817, 0.004745159763842821, -0.005475184414535761, 0.015723606571555138, 0.005513791460543871, -0.011455770581960678, -0.01054324023425579, -0.02995908632874489, 0.03543427214026451, -0.0011283793719485402, -0.009834273718297482, 0.002425225917249918, 0.012277048081159592, -0.001272278488613665, 0.006826431956142187, 0.021956894546747208, -0.013540551997721195, -0.008886645548045635, -0.0018355906940996647, 0.012361281551420689, 0.004032684024423361, 0.008935782127082348, -0.0006357005331665277, -0.008297010324895382, -0.015260322019457817, -0.008886645548045635, 0.013835369609296322, -0.018840249627828598, 0.017478473484516144, 0.021760348230600357, -0.015555139631032944, -0.006180640775710344, 0.021184751763939857, -0.0006716752541251481, 0.004889058880507946, 0.00030907592736184597, -0.03139105811715126, 0.01861562766134739, 0.03636084124445915, -0.0369223989546299, 0.036641620099544525, 0.009160405024886131, -0.016720371320843697, 0.01907891221344471, -0.0015591991832479835, -0.00383262918330729, 0.01715557835996151, -0.009048093110322952, -0.0034430488012731075, 0.030520644038915634, 0.03605198487639427, -0.04416648671030998, -0.017646940425038338, 0.007349382154643536, 0.012038386426866055, 0.018222536891698837, 0.022588646039366722, 0.0051663280464708805, 0.022364022210240364, -0.007208992727100849, 0.025242004543542862, -0.03066103346645832, 0.005713846534490585, -0.02619665116071701, -0.010030819103121758, 0.002723553217947483, -0.006559692323207855, -0.017745213583111763, -0.034479621797800064, -0.017211733385920525, -0.030436409637331963, 0.010164188221096992, -0.00430644303560257, 0.023220397531986237, -0.025185849517583847, 0.03287918493151665, -0.006619357503950596, 0.00965176708996296, -0.006412283517420292, -0.021226869896054268, -0.0013880996266379952, -0.010788921266794205, -0.008318068459630013, -0.011343459598720074, -0.0006471071392297745, 0.01916314661502838, -0.028864050284028053, -0.0009862350998446345, -0.002386618871241808, 0.011252205818891525, -0.01693095453083515, 0.007328324019908905, 0.014488180167973042, -0.044756121933460236, -0.012220892123878002, -0.01804003119468689, -0.012606963515281677, 0.012031367048621178, -0.026477430015802383, 0.005654180888086557, -0.00013139565999154001, 0.003629064653068781, -0.00020718396990559995, 0.0031412115786224604, -0.027095144614577293, 0.018980639055371284, -0.011371537111699581, -0.015597255900502205, 0.02942560613155365, 0.026252808049321175, 0.021409375593066216, 0.006770275998860598, -0.017520589753985405, 0.0030359195079654455, 0.0013556346530094743, 0.014614530839025974, -0.005482203792780638, 0.012866683304309845, -0.02738996222615242, -0.007251109927892685, -0.009792156517505646, -0.008051329292356968, -0.002128653461113572, 0.023290593177080154, 0.04697427526116371, 0.008788373321294785, 0.007265148684382439, -0.02465236932039261, -0.015583217144012451, -0.023445021361112595, 0.003973018378019333, -0.010901232250034809, 0.022686919197440147, -0.0041906218975782394, 0.03431115671992302, -0.010739784687757492, -0.027726896107196808, -0.01127326488494873, 0.005482203792780638, 0.02272903546690941, -0.010522181168198586, 0.008802412077784538, -0.03203684836626053, 0.004913627170026302, -0.0025234983768314123, -0.023178281262516975, 0.028597310185432434, -0.010922291316092014, -0.004474910441786051, 0.009953605011105537, 0.037792813032865524, 0.008514613844454288, 0.004495968576520681, -0.0031131338328123093, -0.02369772084057331, 0.01985105313360691, 0.006815902888774872, 0.003706278745085001, 0.014151246286928654, -0.0044047157280147076, 0.03136298060417175, -0.004222209565341473, 0.025550860911607742, -0.01735212281346321, 0.019935287535190582, 0.022223632782697678, 0.03804551437497139, -0.007293226663023233, 0.0032587877940386534, -0.012656099162995815, 0.01327381283044815, -0.005699807312339544, -0.01429163571447134, 0.008191718719899654, -0.0141372075304389, 0.004232738632708788, -0.007177405524998903, -0.006240306422114372, 0.05497646704316139, 0.0016408005030825734, 0.004109898116439581, -0.008332107216119766, 0.008023250848054886, 0.019949326291680336, 0.014186343178153038, 0.005938469432294369, 0.011799724772572517, 0.021704193204641342, 0.003965998999774456, -0.03285110741853714, -0.011996269226074219, -0.005159308668226004, -0.001448642578907311, -0.02538239397108555, 0.012333204038441181, -0.021605920046567917, -0.00817065965384245, -0.022448256611824036, 0.010648531839251518, -0.0007567863212898374, 0.008339127525687218, 0.0018935012631118298, 0.018489276990294456, 0.0042292289435863495, -0.02300981432199478, -0.02065127342939377, -0.006314010825008154, 0.017394239082932472, 0.015555139631032944, -0.005110172089189291, 0.021830543875694275, -0.0016206195577979088, -0.022953657433390617, -0.006243816111236811, 0.011111816391348839, 0.008914723061025143, -0.022953657433390617, -0.024413706734776497, -0.024062734097242355, -0.023051930591464043, 0.013231695629656315, -0.0018952562240883708, -0.0176890566945076, -0.015611295588314533, 0.030436409637331963, 0.031868383288383484, 0.004699533339589834, 0.002721798373386264, 0.04492459073662758, 0.004288894589990377, -0.010655551217496395, -0.004562653601169586, -0.002077762270346284, 0.005938469432294369, 0.01777329109609127, -0.010838057845830917, -0.03158760443329811, -0.010501123033463955, 0.02834460884332657, 0.0018127774819731712, -0.002904304536059499, -0.008107484318315983, 0.022588646039366722, -0.006215738132596016, 0.0023831091821193695, -0.012929858639836311, -0.023402903228998184, 0.014045953750610352, 0.05896352604031563, 0.01843312196433544, 0.014474141411483288, 0.0010371262906119227, 0.008114504627883434, -0.016678255051374435, -0.04147101193666458, -0.0021233889274299145, 0.005822648294270039, -0.013751136139035225, 0.004369618371129036, 0.009392047300934792, -0.007953056134283543, -0.009806196205317974, 0.02869558148086071, -0.02223767153918743, -0.012431476265192032, -0.0043275016359984875, 0.023136164993047714, -0.004478420130908489, 0.03184030205011368, -0.03324419632554054, -0.0017697832081466913, 0.011673374101519585, 0.026954755187034607, -0.024020617827773094, 0.03293533995747566, 0.012922839261591434, 0.001675897859968245, -0.017281929031014442, 0.005762982647866011, 0.029706384986639023, 0.02272903546690941, 0.007574005052447319, -0.016327280551195145, 0.023838110268115997, 0.021591881290078163, 0.026828404515981674, 0.017366161569952965, 0.013680941425263882, 0.011406634002923965, 0.003436029190197587, 0.010774882510304451, -0.012410418130457401, 0.018854288384318352, -0.04573884978890419, -0.002530517987906933, 0.025607015937566757, -0.011736549437046051, -0.014530297368764877, 0.03700663149356842, 0.023290593177080154, -0.02743207849562168, -0.027263611555099487, 0.01342824101448059, 0.02774093486368656, 0.011371537111699581, -0.0018426101887598634, -0.011736549437046051, -0.043913789093494415, -0.0038993139751255512, -0.01565341278910637, 0.006082368548959494, -0.005994624923914671, -0.022097282111644745, -0.0026638878043740988, -0.02858327142894268, -0.01996336504817009, -0.023416941985487938, 0.018334848806262016, -0.005240032449364662, -0.0037975318264216185, -0.047985076904296875, 0.001963695976883173, 0.01958431303501129, -0.0015521796885877848, 0.04119023308157921, -0.019893169403076172, -0.002002303022891283, -0.002790238242596388, -0.04239758104085922, -0.014024895615875721, -0.007335343398153782, -0.05104556679725647, 0.0030920752324163914, -0.013919604010879993, -0.01465664803981781, -0.0005690155667252839, -0.005015409551560879, 0.03585543856024742, -0.025719327852129936, -0.007651219144463539, 0.004657416604459286, 0.005499752704054117, 0.013000053353607655, 0.023669643327593803, 0.028639426454901695, 0.007545927539467812, 0.018517354503273964, 0.022364022210240364, -0.005359363276511431, -0.016411514952778816, -0.01861562766134739, -0.02873769961297512, 0.004064271692186594, 0.015246283262968063, -0.0029025496914982796, 0.002376089571043849, -0.02215343900024891, -0.005931450054049492, 0.020216066390275955, -0.02177438698709011, 0.006145543418824673, -0.0029095693025738, 0.01841908134520054, 0.023571372032165527, 0.01653786562383175, -0.006464929319918156, 0.003474636236205697, -0.011532984673976898, -0.017759252339601517, 0.0019338632700964808, 0.016355358064174652, 0.0019461472984403372, 0.005678749177604914, 0.03338458761572838, -0.010213324800133705, -0.014207402244210243, -0.025101615116000175, -0.0033728540875017643, 0.007791608572006226, 0.022097282111644745, -0.009413105435669422, -0.039982885122299194, -0.013098325580358505, 0.003321962896734476, -0.015035699121654034, -0.0007620509131811559, -0.01511993259191513, -0.02104436233639717, -0.008268932811915874, 0.01722577214241028, 0.00958157330751419, 0.013358046300709248, 0.005215464159846306, -0.02166207693517208, -0.02635107934474945, 0.011399614624679089, 0.024455824866890907, 0.029706384986639023, -0.007230051327496767, 0.023150203749537468, -0.006956291850656271, -0.01761886291205883, -0.021760348230600357, -0.02730572782456875, -0.01684672199189663, -0.005657690577208996, 0.042790673673152924, 0.02316424250602722, 0.030015241354703903, -0.0101010138168931, -0.009700903668999672, 0.0019321084255352616, 0.003167534712702036, 0.01622900925576687, 0.0016048257239162922, -0.007566985674202442, -0.008289990946650505, -0.010704687796533108, 0.025185849517583847, -0.008430380374193192, 0.011329419910907745, 0.006356127560138702, 0.011687412858009338, 0.0075318883173167706, -0.018011953681707382, -0.025705289095640182, -0.009104249067604542, -0.04363301023840904, 0.008079406805336475, 0.014130187220871449, 0.0018338358495384455, 0.005956017877906561, -0.03588351607322693, -0.007644199766218662, 0.0503997765481472, 0.018517354503273964, -0.006794844288378954, 0.003839648561552167, 0.0031412115786224604, -0.02011779323220253, 0.025017380714416504, 0.013603727333247662, 0.008542691357433796, 0.017436357215046883, 0.0010871399426832795, -0.03543427214026451, 0.0037413761019706726, 0.013828350231051445, -0.0010169453453272581, 0.0070124478079378605, 0.013828350231051445, 0.01009399350732565, 0.015344555489718914, 0.019949326291680336, 0.027979597449302673, 0.00041063883691094816, -0.006598299369215965, -0.013877486810088158, -0.01669229380786419, -0.018587550148367882, -0.019092950969934464, -0.011238167062401772, 0.015513022430241108, -0.019247379153966904, 0.008149601519107819, -0.008704139851033688, -0.010564298368990421, -0.004274855367839336, 0.0361642949283123, -0.002298875479027629, 0.01896660029888153, -0.011897996999323368, 0.011132875457406044, 0.03981442004442215, -0.005794570315629244, 0.0029411567375063896, 0.0015574443386867642, 0.01761886291205883, 0.01127326488494873, 0.014825114980340004, 0.012417437508702278, -0.010009760037064552, -0.00869010016322136, 0.008212776854634285, 0.014839153736829758, -0.023781955242156982, -0.015049737878143787, 0.0029306276701390743, 0.01754866912961006, -0.006317520514130592, -0.020665312185883522, -0.016060540452599525, -0.026800327003002167, 0.01854543201625347, -0.015007620677351952, 0.004517027176916599, -0.0017206468619406223, 0.0028060320764780045, 0.017281929031014442, 0.024750642478466034, 0.0001492733572376892, 0.029594074934720993, 0.007293226663023233, -0.01834888756275177, 0.0029797637835144997, -0.011750588193535805, -0.014256537891924381, -0.01592015102505684, 0.014740881510078907, 0.023950422182679176, -0.02254652976989746, 0.020553000271320343, 0.014249518513679504, 0.00036852204357273877, 0.010662570595741272, -0.016285164281725883, 0.006594789680093527, 0.030604876577854156, 0.012178775854408741, 0.016636136919260025, 0.02376791648566723, -0.011968191713094711, 0.01649574749171734, -0.00221113208681345, 0.018938522785902023, -0.0002454619971103966, 0.00438365712761879, 0.0002086097956635058, -0.003951960243284702, 0.025649134069681168, -0.006443871185183525, 0.007840745151042938, 0.02442774549126625, -0.02308000810444355, 0.005271620117127895, 0.0074546742253005505, -0.014614530839025974, -0.019893169403076172, -0.01792771928012371, 0.0002487523597665131, -0.02515777014195919, -0.003562379628419876, 0.013723058626055717, 0.008226815611124039, -0.003772963769733906, 0.028372686356306076, -0.013449299149215221, 0.004618809558451176, 0.006893116980791092, -0.007258129306137562, -0.032907262444496155, -0.00958157330751419, 0.004467891063541174, -0.014038934372365475, 0.03520964831113815, -0.008016231469810009, -0.026098379865288734, -0.016551904380321503, 0.0036080062855035067, -0.009034054353833199, 0.0012196324532851577, -0.006573731079697609, 0.005243542138487101, -0.001768028363585472, -0.005334794986993074, -0.011525965295732021, -0.02646339125931263, 0.04469996690750122, -0.007121249567717314, 0.020875895395874977, 0.02088993415236473, -0.00014104742149356753, 0.03523772582411766, -0.026140496134757996, 0.004299423657357693, 0.013126404024660587, -0.027783051133155823, -0.0028639426454901695, -0.007321304176002741, 0.03495694696903229, 0.00032311485847458243, -0.012192814610898495, -0.007037016097456217, -0.017899641767144203, -0.029790619388222694, 0.023627527058124542, -0.005998134613037109, 0.009995721280574799, 0.02272903546690941, 0.009518397971987724, 0.02743207849562168, 0.0004966272972524166, -0.014839153736829758, -0.040291741490364075, -0.010627473704516888, -0.004187112208455801, -0.020749544724822044, -0.01596226915717125, 0.0012547298101708293, 0.014839153736829758, 0.010627473704516888, -0.02831653133034706, -0.048799335956573486, -0.03026794269680977, -0.012592924758791924, -0.014417985454201698, 0.007700355723500252, -0.0009195501916110516, -0.0014310939004644752, 0.008977898396551609, -0.007180915214121342, 0.03088565543293953, -0.012768411077558994, 0.0028709620237350464, 0.007889880798757076, -0.018447160720825195, -0.014432025142014027, 0.02230786718428135, 0.012740333564579487, -0.020019520074129105, -0.055566102266311646, -0.008030270226299763, 0.01179270539432764, 0.011631256900727749, 0.0006598299369215965, 0.00430644303560257, -0.0066298870369791985, -0.003571154084056616, -0.013000053353607655, -0.0009300794336013496, -0.019106989726424217, -0.002318179002031684, 0.02685648202896118, -0.04295913875102997, -0.007623141631484032, -0.003822099883109331, -0.010234382934868336, -0.0029885382391512394, -0.010978447273373604, 0.006893116980791092, -0.03360920771956444, 0.022265750914812088, -0.003021880751475692, -0.023627527058124542, 0.006801863666623831, -0.010627473704516888, 0.03265456110239029, -0.009665806777775288, -0.0024708525743335485, 0.0009897449053823948, 0.01335102692246437, -0.004274855367839336, -0.012087523005902767, 0.02261672355234623, -0.007672277744859457, -0.009160405024886131, 0.03506925702095032, -0.013919604010879993, -0.001847874722443521, -0.019401807337999344, 0.018980639055371284, -0.012480612844228745, -0.005054016597568989, -0.03900016099214554, -0.02011779323220253, -0.010760843753814697, 0.01573764532804489, 0.032598406076431274, -0.02657570317387581, -0.030745266005396843, -0.010655551217496395, 0.008718178607523441, -0.01565341278910637, 0.0033956672996282578, 0.0023462569806724787, -0.019598351791501045, -0.005113681778311729, 0.004562653601169586, -0.02265883982181549, 0.006689552217721939, -0.011111816391348839, -0.0018320810049772263, -0.011989249847829342, -0.0035764186177402735, 0.16880415380001068, -0.007967095822095871, 0.016439592465758324, 0.03610813990235329, 0.003962489310652018, 0.021100519225001335, 0.022644801065325737, -0.0015995610738173127, -0.0055945152416825294, 0.01589207351207733, 0.00633857911452651, 7.414312131004408e-05, -0.0008340004715137184, -0.0075318883173167706, 0.013112365268170834, 0.007974115200340748, -0.03686624392867088, -0.043829552829265594, -0.021297063678503036, 0.002744611818343401, 0.0031254177447408438, -0.00766525836661458, 0.0002478749374859035, -0.01607457920908928, 0.014347790740430355, -0.039449404925107956, -0.0055945152416825294, -0.009974663145840168, 0.02246229536831379, 0.01753462851047516, -0.03023986518383026, 0.01611669734120369, -0.007517849560827017, -0.0008019741508178413, -0.020496845245361328, -0.010880174115300179, -0.004130956716835499, -0.01017822790890932, 0.03453578054904938, -0.010374772362411022, -0.006145543418824673, -0.03678200766444206, -5.300246266415343e-05, -0.0519440583884716, 0.016355358064174652, 0.025438548997044563, -0.008556731045246124, -0.004081820137798786, -0.01615881361067295, 0.010290538892149925, -0.03265456110239029, 0.004166053608059883, 0.0369223989546299, 0.021128596737980843, -0.0031429664231836796, 0.006963311694562435, 0.011989249847829342, 0.03234570473432541, 0.016411514952778816, 0.008977898396551609, 0.007177405524998903, 0.024146966636180878, -0.0029955576173961163, 0.0020637232810258865, 0.01098546665161848, 0.022055165842175484, -0.019724702462553978, -0.008128543384373188, 0.014326732605695724, 0.006092897616326809, -0.012621002271771431, -0.009490319527685642, -0.009237619116902351, 0.0020531942136585712, 0.0009581572958268225, -0.029565995559096336, -0.0014284616336226463, 0.0037799831479787827, 0.016973072662949562, 0.02920098416507244, -0.008332107216119766, 0.017183655872941017, -0.011540004052221775, 0.0024146968498826027, 0.0020075675565749407, -0.03119451180100441, 0.03557465970516205, -0.00840230192989111, -0.025957990437746048, 0.00023230048827826977, -0.0357712060213089, 0.013624786399304867, -0.009406086057424545, -0.007707375101745129, 0.009757059626281261, -0.0077284337021410465, 0.01784348674118519, -0.004215190187096596, 0.00041217435500584543, 0.020833779126405716, -0.02869558148086071, 0.0881083533167839, 0.03661354258656502, -0.01869986020028591, -0.006998409051448107, -0.005071565043181181, -0.0019198242807760835, 0.013224676251411438, 0.022799229249358177, -0.019022757187485695, -0.01244551595300436, -0.02197093330323696, 0.013063228689134121, -0.004706552717834711, -0.009883410297334194, 0.02119879052042961, 0.006478968076407909, -0.00921656098216772, 0.025957990437746048, -0.008233834989368916, 0.003927391953766346, -0.018629666417837143, 0.006194679997861385, -0.001530243898741901, -0.006092897616326809, -0.018025992438197136, -0.03057679906487465, -0.010192266665399075, -0.02480679750442505, -0.001525856670923531, 0.03992673009634018, -0.005755963269621134, 0.019177185371518135, -0.006254345178604126, 0.0036360840313136578, -0.01592015102505684, 0.004074800759553909, -0.0010222098790109158, 0.0202020276337862, 0.011645296588540077, -0.017801368609070778, -0.02053896151483059, 0.003657142398878932, 0.011575101874768734, 0.010550259612500668, -0.03782089054584503, 0.009623689576983452, -0.019373729825019836, -0.018587550148367882, -0.03299149498343468, 0.020440688356757164, -0.026491468772292137, -0.010487084276974201, -0.010150149464607239, 0.03728741034865379, -0.027825167402625084, -0.0020549490582197905, -0.05087709799408913, 0.0035395664162933826, -0.0026726622600108385, -0.025438548997044563, 0.005261090584099293, 0.025213927030563354, -0.009356949478387833, -0.029790619388222694, -0.001165231573395431, -0.17992298305034637, 0.029678307473659515, 0.01823657564818859, 0.00039901284617371857, -0.0016258840914815664, -0.012543788179755211, 0.032401859760284424, -0.004629338625818491, -0.01907891221344471, -0.006135014351457357, 0.03172799199819565, 0.02642127498984337, -0.02173227071762085, -0.01777329109609127, -0.01421442162245512, -0.0016583491815254092, -0.010957388207316399, 0.00322720012627542, 0.004878529813140631, 0.015302438288927078, 0.004562653601169586, -0.029762541875243187, 0.018166381865739822, -0.013308909721672535, -0.01596226915717125, 0.01669229380786419, -0.004734630696475506, 0.025129692628979683, -0.031166434288024902, -0.008409322239458561, 0.003744885791093111, -0.004015135113149881, 0.04680580645799637, 0.01371603924781084, 0.03158760443329811, 0.022251712158322334, -0.025831639766693115, -0.00508911395445466, -0.004446832463145256, 0.03299149498343468, -0.0011643541511148214, 0.014853192493319511, -0.008584808558225632, -0.017646940425038338, -0.011834821663796902, -0.0031622699461877346, -0.003944940399378538, 0.017057305201888084, 0.005812118761241436, -0.03481655940413475, 0.024287356063723564, -0.02469448558986187, -0.0020935561042279005, -0.008058348670601845, 0.01431269384920597, 0.03619237244129181, 0.01861562766134739, -0.014516258612275124, 0.014242499135434628, -0.00335179571993649, -0.03141913563013077, -0.023150203749537468, -0.009834273718297482, -0.00434505008161068, -0.01947200298309326, -0.025101615116000175, -0.028035752475261688, 0.010030819103121758, -0.03189646080136299, 0.027095144614577293, -0.005222483538091183, 0.013491416350007057, 0.009721961803734303, 0.007433615624904633, 0.02343098260462284, -0.004499478731304407, -0.01830677129328251, 0.010662570595741272, 0.005917410831898451, -0.007595063652843237, -0.0038080608937889338, 0.04323991760611534, -0.027375921607017517, -0.004331011325120926, 0.01950008049607277, -0.01653786562383175, 0.013582669198513031, -0.001641677925363183, 0.007180915214121342, -0.0025638605002313852, -0.002811296610161662, -0.016832683235406876, 0.0022321906872093678, -0.013891525566577911, 0.00641579320654273, 0.002648093970492482, -0.0007462571375072002, 0.0044503421522676945, -0.0024690977297723293, -0.019443923607468605, 0.011834821663796902, -0.003193857613950968, -0.022897502407431602, 0.017745213583111763, -0.004162543918937445, 0.019050834700465202, -0.009546475484967232, 0.0012740333331748843, 0.02869558148086071, -0.012129639275372028, -0.025410471484065056, 0.01846119947731495, 0.013308909721672535, 0.03220531716942787, 0.006468439009040594, 0.021072441712021828, -0.0016364132752642035, -0.017759252339601517, 0.05211252346634865, -0.013056209310889244, 0.04997860640287399, 0.002437510062009096, -0.011280284263193607, 0.019261417910456657, -0.013077267445623875, -0.037989355623722076, -0.08574981242418289, -0.023150203749537468, 0.0033465309534221888, 0.030717188492417336, -0.028639426454901695, 0.007159856613725424, -0.0035448309499770403, 0.014186343178153038, -0.011371537111699581, 0.011125856079161167, -0.009918507188558578, -0.009279735386371613, -0.006321030203253031, -0.016790565103292465, -0.007251109927892685, -0.02400657720863819, -0.008367205038666725, -0.036753930151462555, 0.017745213583111763, 0.02416100725531578, 0.01436884980648756, -0.03815782442688942, -0.007609102409332991, -0.01646766997873783, -0.012136658653616905, 0.007230051327496767, -0.025368355214595795, 0.008886645548045635, 0.020763583481311798, 0.011736549437046051, 0.012550807558000088, -0.019626431167125702, 0.0009344666032120585, -0.021984972059726715, -0.0012485877377912402, -0.012971975840628147, -0.005075074732303619, -0.005794570315629244, 0.02292557992041111, -0.025087576359510422, 0.005015409551560879, 0.012431476265192032, 0.03880361467599869, -0.018068108707666397, -0.009314833208918571, -0.008598847314715385, -0.02953791804611683, 0.023136164993047714, 0.01569552905857563, -0.03751203417778015, -0.013393143191933632, -0.022027088329195976, -0.002339237369596958, -0.02993100881576538, 0.010220344178378582, 0.005545379128307104, 0.0030938303098082542, 0.008760294876992702, -0.024975264444947243, -0.018278691917657852, -0.012845625169575214, -0.01834888756275177, -0.00681941257789731, 0.016608059406280518, 0.014530297368764877, 0.0029130789916962385, -0.036950476467609406, -0.028709622099995613, 0.012010308913886547, -0.019837014377117157, -0.024287356063723564, 0.013414202257990837, -0.033019572496414185, -0.006461419630795717, -0.01622900925576687, -0.012270028702914715, -0.009876390919089317, -0.004071291070431471, 0.024708524346351624, -0.013596707955002785, -0.010318617336452007, -0.022644801065325737, 0.011645296588540077, -0.018166381865739822, 0.024441784247756004, 0.010915271937847137, -0.011336439289152622, 0.010718726553022861, 0.033412665128707886, -0.016481708735227585, -0.0016372906975448132, 0.00730024604126811, 0.02065127342939377, -0.006507046055048704, -0.019528158009052277, 0.010732765309512615, 0.002330463146790862, -0.024708524346351624, 0.0015574443386867642, 0.02261672355234623, -0.04557038098573685, 0.02265883982181549, -0.09052304923534393, 0.024245239794254303, 0.007756511215120554, -0.021030323579907417, -0.022209594026207924, 0.008065368048846722, 0.007426596246659756, -0.022335944697260857, 0.00965176708996296, 0.007602083031088114, -0.018826210871338844, -0.010957388207316399, 0.006900136359035969, 0.005899862386286259, -0.007314284797757864, 0.0037308468017727137, 0.021283024922013283, -0.026140496134757996, -0.00019928706751670688, 0.008711159229278564, -0.0005953385843895376, 0.01408105157315731, 0.03026794269680977, 0.005661200266331434, -0.039337094873189926, 0.006545653101056814, 0.021521687507629395, -0.008914723061025143, -0.03335651010274887, -0.0018075128318741918, 0.006033231969922781, -0.024189084768295288, -0.003407951444387436, 0.01693095453083515, -0.0031517408788204193, -0.005043487064540386, 0.01662209816277027, 0.017899641767144203, -0.004309952724725008, 0.04183602333068848, -0.021395336836576462, -0.022602684795856476, 0.018713898956775665, -0.0014091581106185913, -0.0028639426454901695, 0.008268932811915874, 0.004274855367839336, 0.00832508783787489, 0.010873154737055302, 9.032079833559692e-05, 0.026786286383867264, -0.004913627170026302, -0.011076719500124454, -0.018068108707666397, 0.023136164993047714, 0.006306991446763277, 0.01098546665161848, 0.015569178387522697, -0.020553000271320343, -0.025915872305631638, 0.017099421471357346, -0.007128268945962191, 0.013365065678954124, -0.0036255549639463425, 0.01502166036516428, -0.011659335345029831, -0.024259278550744057, 0.004997860640287399, -0.017015188932418823, -0.00913232658058405, -0.030183710157871246, -7.16753420419991e-05, 0.014460102654993534, 0.010676609352231026, 0.008893664926290512, -0.0009581572958268225, 0.002262023277580738, 0.012003288604319096, 0.00585774565115571, 0.023725800216197968, 0.036950476467609406, -0.026435313746333122, -0.018559470772743225, 0.008739236742258072, 0.01857350952923298, 0.016018424183130264, -0.01223493181169033, 0.016608059406280518, -0.005468165036290884, 0.011743568815290928, -0.008928762748837471, 0.0009458732092753053, 0.015948230400681496, 0.012396379373967648, -0.008233834989368916, 0.009167424403131008, -0.011848860420286655, 0.0004654784279409796, 0.02423120103776455, 0.037989355623722076, 0.0020058127120137215, 0.0030464488081634045, 0.024750642478466034, -0.007988153956830502, -0.04057252034544945, -0.001847874722443521, -0.02900443971157074, -0.01869986020028591, 0.0022286807652562857, 0.002695475472137332, -0.0033079239074140787, 0.01938776858150959, -0.0021514666732400656, 0.0038431582506746054, -0.018068108707666397, 0.019486041739583015, -0.002349766669794917, 0.014797037467360497, -0.014256537891924381, 0.04439111053943634, 0.009855331853032112, -0.015232243575155735, 0.016257086768746376, -0.015498983673751354, 0.026996871456503868, 0.004302933346480131, 0.023318670690059662, -0.033103808760643005, 0.00508911395445466, 0.007391498889774084, 0.01673441007733345, 0.010662570595741272, -0.011708470992743969, 0.0020461746025830507, -0.027095144614577293, -0.0014416230842471123, -0.025185849517583847, 0.015358594246208668, -0.005762982647866011, 0.07985346019268036, 0.013021111488342285, -0.009434163570404053, -0.001956676598638296, -0.014923387207090855, -0.0038185901939868927, 0.007763530593365431, 0.01569552905857563, -0.008268932811915874, -0.03226147219538689, -0.010564298368990421, 0.007602083031088114, -0.01186991948634386, -0.0330757312476635, -0.008584808558225632, -0.014923387207090855, 0.006886097602546215, 0.03388998657464981, 0.0004755689005833119, 0.005706826690584421, 0.044643811881542206, 0.03057679906487465, -0.016832683235406876, 0.014010856859385967, -0.030520644038915634, -0.014544336125254631, 0.025017380714416504, -5.080887785879895e-05, 0.023725800216197968, -0.06132206693291664, 0.009686864912509918, -0.016102658584713936, -0.03557465970516205, -0.02431543543934822, -0.010157168842852116, 0.007517849560827017, 0.008304029703140259, -0.0028762267902493477, 0.012943897396326065, 0.010304577648639679, 0.005306717474013567, 0.03257032856345177, -0.021058401092886925, -0.04585115984082222, -0.007826706394553185, -0.008549710735678673, -0.028864050284028053, -0.0060893879272043705, -0.05208444595336914] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2021_team_trilateration_for_exploration_and_mapping_with_robotic_networks.json b/database/embeddings/publications_txt/2021_team_trilateration_for_exploration_and_mapping_with_robotic_networks.json new file mode 100644 index 0000000000000000000000000000000000000000..5dcc8d06c8c40f8fc4ebdd4beea547fa8e2056d6 --- /dev/null +++ b/database/embeddings/publications_txt/2021_team_trilateration_for_exploration_and_mapping_with_robotic_networks.json @@ -0,0 +1 @@ +[0.001939164474606514, 0.01744176633656025, 0.016813235357403755, -0.004821127280592918, 0.012992044910788536, 0.017541760578751564, -0.01638469099998474, -0.008320908062160015, -0.016927514225244522, -0.05711071565747261, 0.0035087093710899353, 0.04245448857545853, -0.026698332279920578, 0.0034872819669544697, -0.013006329536437988, 0.0007562027312815189, 0.023441392928361893, -0.026398349553346634, -0.022670011967420578, 0.02079869993031025, 0.006463881582021713, -0.00896372552961111, -0.0054960851557552814, -0.0011927825398743153, -0.011385003104805946, 0.006774576380848885, 0.014970492571592331, -0.0489969365298748, 0.019098807126283646, 0.009277991950511932, 0.017027506604790688, -0.003928326070308685, -0.028026819229125977, -0.015156195499002934, 0.0008285196381621063, -0.014670511707663536, 0.02974099852144718, -0.01422053948044777, 0.021327238529920578, -0.0152704743668437, -0.0001117675710702315, 0.02355566993355751, -0.007120983675122261, -0.027555420994758606, -0.011742123402655125, 0.002453417982906103, 0.011277866549789906, -0.0268554650247097, -0.01539903786033392, 0.018884534016251564, -0.016556108370423317, 0.03334077447652817, -0.02556983008980751, -0.013813422061502934, -0.0025891237892210484, -0.024384189397096634, -0.006442454643547535, 0.008749453350901604, 0.010985027998685837, -0.004771130159497261, 0.01617041788995266, 0.0005655896384268999, -0.042911604046821594, -0.008735168725252151, 0.003223012899979949, -0.01422053948044777, -0.019141661003232002, 0.025955520570278168, -0.00412831362336874, 0.0013133108150213957, 0.00602105213329196, 0.01811315305531025, 0.026398349553346634, -0.03468354791402817, 0.054853715002536774, -0.010485058650374413, -0.011377859860658646, 0.004988973960280418, -0.011692126281559467, 0.02658405341207981, -0.0035122805275022984, -0.00973510555922985, -0.015327613800764084, 0.0012963475892320275, 0.005253243260085583, 0.019098807126283646, 0.0009526190115138888, 0.01080646738409996, -0.011249297298491001, 0.009692251682281494, 0.005035399459302425, 0.02208433486521244, 0.01221352256834507, -0.01602756977081299, -0.013506298884749413, -0.0005330024287104607, -0.02724115364253521, 0.03548349812626839, 0.0008441436802968383, -0.03456926718354225, 0.0011320720659568906, 0.0005651432438753545, -0.02154151163995266, -0.01604185439646244, -0.021455802023410797, -0.010392207652330399, -0.009820815175771713, 0.026526913046836853, 0.013277741149067879, -0.011220727115869522, -0.042711615562438965, 0.02012731321156025, -0.007356683257967234, 0.007142410613596439, 0.0043997252359986305, -0.02515557035803795, 0.0065495907329022884, 0.014856214635074139, -0.002285571536049247, -0.00791379064321518, 0.05682501941919327, -0.013477728702127934, 0.005553224124014378, -0.007620952092111111, 0.02322711981832981, 0.009642254561185837, 0.012999187223613262, -0.011363575235009193, 0.0023248547222465277, -0.028769630938768387, -0.012563500553369522, 0.009106573648750782, -0.0016007928643375635, 0.015884721651673317, 0.013949127867817879, 0.02865535207092762, -0.008956583216786385, -0.021770067512989044, -0.03228369727730751, -0.036540571600198746, 0.0024052069056779146, 0.025784103199839592, -0.017156070098280907, 0.0019480924820527434, -0.00848518405109644, 0.012049246579408646, -0.003248011227697134, 0.007320971228182316, 0.018941672518849373, 0.008542323485016823, -0.010170793160796165, -0.014670511707663536, -0.0055425106547772884, 0.022198611870408058, 0.003996178973466158, -0.008613747544586658, -0.019784478470683098, 0.03751194104552269, 0.008606605231761932, -0.04328300803899765, -0.00729954382404685, 0.028341086581349373, -0.027155445888638496, -0.021827207878232002, 0.01049934420734644, 0.02892676368355751, 0.038826145231723785, 0.023112840950489044, -0.0258412417024374, -0.006738864351063967, -0.018941672518849373, 0.014770505018532276, 0.0008423580438829958, -0.011777834966778755, 0.0015945432242006063, 0.02502700686454773, 0.030483808368444443, -0.004678279161453247, -0.006574589293450117, -0.018670260906219482, 0.012434937059879303, -0.0018391708144918084, -0.009942235425114632, 0.02127010002732277, -0.00635674549266696, 0.011742123402655125, 0.0016829305095598102, -0.009163713082671165, 0.03245511278510094, -0.005171105265617371, 0.03576919436454773, 0.01771317794919014, 0.004553286824375391, 0.016284696757793427, -0.5846491456031799, -0.03782620653510094, 0.013406304642558098, -0.015113340690732002, -0.024241341277956963, 0.01617041788995266, 0.027412572875618935, 0.016813235357403755, -0.013984840363264084, 0.04079744964838028, -0.026798324659466743, 0.0024712742306292057, -0.013149178586900234, -0.02925531379878521, -0.02288428321480751, -0.011820689775049686, -0.007513816002756357, -0.014813359826803207, 0.02838394045829773, 0.012127813883125782, -0.016398975625634193, 0.009442267008125782, 0.0004874695441685617, 0.0012159954058006406, -9.195853635901585e-05, 0.03119805082678795, 0.01871311664581299, -0.03451212868094444, 0.018413135781884193, -0.003703339956700802, -0.05025400221347809, 0.010277928784489632, 0.022384315729141235, -0.0174560509622097, 0.04879695177078247, -0.013513441197574139, -0.03548349812626839, 0.028769630938768387, 0.013849134556949139, 0.029769567772746086, -0.02368423342704773, -0.04525431618094444, 0.003814047435298562, 0.007942360825836658, -0.022912854328751564, -0.0028641067910939455, 0.03322649374604225, 0.001753461780026555, -0.021327238529920578, -0.053796637803316116, -0.024598462507128716, 0.0028819628059864044, -0.0016606105491518974, -0.0031837294809520245, 0.016341835260391235, -0.01589900627732277, 0.0053746639750897884, -0.01584186777472496, 0.0034462132025510073, -0.0011579632991924882, -0.014441954903304577, 0.004117599688470364, 0.008806592784821987, -0.0051211086101830006, -0.017613185569643974, 0.02208433486521244, 0.002996241208165884, 0.0074852462857961655, 0.0012650995049625635, -0.013142035342752934, 0.020098743960261345, 0.025384128093719482, 0.02007017470896244, -0.011949253268539906, 0.011784977279603481, 0.033255062997341156, 0.035797763615846634, 0.0068852840922772884, -0.00652459217235446, 0.01972733810544014, 0.01804172992706299, -0.008170917630195618, -0.020841553807258606, -0.02844107896089554, 0.027126876637339592, -0.006931709591299295, -0.01415625773370266, 0.017527475953102112, 0.02671261690557003, 0.006206755060702562, 0.01049934420734644, 0.03374074772000313, -0.017298918217420578, -0.008613747544586658, 0.0044425795786082745, 0.01631326600909233, -0.016256127506494522, 0.010485058650374413, 0.010392207652330399, -0.03214084729552269, -0.027626844123005867, -0.0007062058430165052, 0.025655539706349373, -0.023841366171836853, 0.008749453350901604, 0.017284633591771126, -0.0016266840975731611, 0.014449097216129303, 0.027298294007778168, 0.0035819190088659525, -0.018670260906219482, 0.005192532669752836, -0.021912915632128716, 0.014606229960918427, 0.016127564013004303, -0.02195577137172222, 0.0037676217034459114, -0.011827832087874413, 0.016198987141251564, -0.00595677038654685, 0.001567759201861918, -0.011327863670885563, 0.019427357241511345, -0.0071495529264211655, -0.006363887805491686, 0.003974751569330692, 0.03648343309760094, -0.0281839519739151, -0.005578222684562206, 0.027555420994758606, -0.0033087218180298805, -0.0025284134317189455, 0.020641567185521126, -0.00424259202554822, 0.02738400362432003, -0.00396046694368124, 0.009649396874010563, -0.03074093535542488, 0.010042229667305946, -0.009142286144196987, -0.023298542946577072, -0.018470274284482002, 0.012456363998353481, -0.014141973108053207, -0.025184139609336853, -0.03145517781376839, -0.016256127506494522, 0.007153124548494816, -0.0032783665228635073, 0.002628407208248973, 0.012370655313134193, 0.018941672518849373, 0.005860348232090473, 0.011806405149400234, 0.009677966125309467, -0.014334818348288536, -0.016527539119124413, -0.036540571600198746, -0.01624184288084507, -0.0238270815461874, 0.007306686136871576, 0.021112965419888496, -0.014584803022444248, -0.023798512294888496, 0.015199050307273865, -0.008013784885406494, -0.007670949213206768, 0.0025766247417777777, 0.0009597614407539368, -0.033455051481723785, -0.003380145877599716, -0.004403296392410994, -0.019741622731089592, 0.012342086061835289, -0.03525494039058685, 0.025269849225878716, -0.007456677034497261, -0.010563625022768974, 0.0008057532249949872, -0.00563536211848259, -0.02275571972131729, 0.04242591932415962, -0.023569954559206963, -0.018813109025359154, 0.015241904184222221, 0.012320658192038536, 0.02134152315557003, 0.009649396874010563, -0.01919879950582981, 0.010513628832995892, -0.01026364415884018, 0.005967484321445227, -0.007999500259757042, 0.02247002348303795, 0.009449409320950508, 0.031169479712843895, 0.0038640443235635757, -0.007556670345366001, -0.008620889857411385, 0.0342264324426651, -0.0018222075887024403, 0.014434811659157276, 4.053876182297245e-05, -0.01589900627732277, -0.009613685309886932, -0.010413634590804577, 0.00976367574185133, -0.01698465272784233, 0.030683796852827072, -0.01208495907485485, 0.030683796852827072, -0.012284946627914906, -0.01689894311130047, -0.019698768854141235, 0.009877953678369522, 0.030683796852827072, -0.01927022449672222, 0.013142035342752934, -0.020298730581998825, 0.005406804848462343, -0.0003515405405778438, -0.011556420475244522, 0.04394011199474335, -0.0077280886471271515, -0.0071031274273991585, -0.012463506311178207, 0.026198362931609154, 0.010113653726875782, 0.020013034343719482, -0.009727963246405125, -0.012227807193994522, 0.029426733031868935, 0.03648343309760094, 0.015199050307273865, -0.002639120677486062, 0.0005530904163606465, 0.028955332934856415, 0.0016998937353491783, 0.038026195019483566, -0.014913354068994522, -0.00862803217023611, 0.03471211716532707, 0.016798950731754303, -0.027869686484336853, 0.01669895648956299, -0.002803396200761199, 0.008592319674789906, 0.016684671863913536, 0.012720633298158646, 0.028569642454385757, -0.040026068687438965, 0.02012731321156025, -0.028555357828736305, 0.005749640520662069, 0.020113028585910797, 0.0025980519130825996, -0.00858517736196518, -0.011549278162419796, 0.03342648223042488, 0.009306561201810837, 0.03414072468876839, 0.02831251546740532, -0.0012472434900701046, 0.021312953904271126, 0.007117412518709898, -0.01764175482094288, 0.002719472860917449, -0.014856214635074139, 0.014070549048483372, -0.032912228256464005, 0.01859883777797222, -0.01472765114158392, -0.01214924082159996, -0.002719472860917449, 0.02119867503643036, 0.015356183052062988, 0.0013695572270080447, -0.0021320097148418427, 0.01785602606832981, 0.025484122335910797, -0.015327613800764084, -0.014170543290674686, 0.017413197085261345, 0.03005526401102543, -0.008385189808905125, -0.03782620653510094, 0.0033837170340120792, 0.0006526377983391285, -0.028155382722616196, 0.010842179879546165, 0.016670387238264084, -0.003703339956700802, -0.01637040451169014, -0.0036176310386508703, -0.023541385307908058, 0.008799450471997261, 0.036283448338508606, -0.013799137435853481, -0.012806342914700508, -0.022784290835261345, -0.005413947161287069, 0.011027881875634193, 0.005231815855950117, -0.01322060264647007, 0.046597085893154144, -0.019027382135391235, 0.01638469099998474, -0.022455738857388496, -0.006978135090321302, -0.004385440144687891, -0.004956833086907864, -0.006863856688141823, 0.010356495156884193, 0.003689055098220706, 0.013877703808248043, -0.013806279748678207, 0.021155821159482002, -0.006867427844554186, 0.009242279455065727, 0.005292526446282864, -0.024112777784466743, -0.036397725343704224, -0.00939941219985485, 0.02912675030529499, 0.028955332934856415, 0.035740625113248825, 0.024441329762339592, 0.006924567278474569, -0.0030390957836061716, -0.008378047496080399, -0.04816841706633568, -0.040026068687438965, 0.0028016106225550175, 0.010092226788401604, -0.002319497987627983, 0.006056764163076878, -0.0076566641218960285, -0.01665610261261463, 0.02174149826169014, 0.0018570268293842673, 0.013606292195618153, -0.03276938199996948, 0.03379788622260094, 0.003814047435298562, 0.013770568184554577, -0.029626719653606415, 0.007556670345366001, 0.009078004397451878, 0.01677037961781025, -0.017670324072241783, 0.030083833262324333, 0.01771317794919014, 0.005985340103507042, -0.004539002198725939, 0.009078004397451878, 0.014106261543929577, 0.008028069511055946, -0.011256439611315727, -0.012156383134424686, 0.02019873820245266, 0.032855089753866196, 0.026926888152956963, 0.03528350964188576, -0.0007602203404530883, 0.005778210237622261, 0.036883410066366196, -0.005631790962070227, -0.004214022308588028, 0.013227744959294796, -0.06285321712493896, -0.006899568717926741, 0.028469650074839592, -0.00206415681168437, -0.01016365084797144, 0.019213084131479263, 0.003349790582433343, -0.010799325071275234, -0.05476800724864006, 0.012106386013329029, 0.002814109902828932, 0.010585052892565727, -0.0152704743668437, 0.004981831647455692, -0.041568830609321594, 0.00852803885936737, -0.018441705033183098, 0.028883909806609154, -0.006038908381015062, -0.013534868136048317, -0.023941360414028168, -0.033255062997341156, -0.012863481417298317, -0.02101297304034233, 0.020455865189433098, -0.02235574647784233, -0.027483996003866196, -0.029341023415327072, 0.009870811365544796, 0.029169606044888496, 0.004406867548823357, 0.01218495238572359, -0.00011042836558772251, -0.015013347379863262, 0.006153186783194542, -0.01678466610610485, 0.0017731034895405173, 0.02067013643682003, -0.04299731180071831, 0.000445284676970914, -0.004646138288080692, -0.016541823744773865, -0.012099243700504303, 0.008706598542630672, -0.004139027092605829, 0.00491397874429822, -0.020784415304660797, 0.021755782887339592, 0.02262715809047222, 0.01927022449672222, 0.021241528913378716, 0.00825662724673748, 0.006878141313791275, 0.031369466334581375, 0.022770006209611893, -0.0016686457674950361, -0.03571205213665962, -0.021584365516901016, -0.025141285732388496, 0.015884721651673317, 0.026341211050748825, 0.0033587187062948942, 0.009820815175771713, -0.018355995416641235, -0.010885033756494522, 0.012270662002265453, -0.015784727409482002, 0.018298856914043427, -0.001732034608721733, 0.02549840696156025, 0.007045987993478775, 0.000955297437030822, -0.006163900252431631, 0.009599399752914906, -0.004510432481765747, -0.015941860154271126, -0.0041104573756456375, 0.007456677034497261, 0.010942173190414906, 0.008999437093734741, 0.016484683379530907, -0.017298918217420578, -0.034597836434841156, -0.029341023415327072, -0.0024927014019340277, 0.013449159450829029, 0.032655101269483566, 0.003867615479975939, -0.02844107896089554, -0.022441454231739044, -0.022898569703102112, -0.0020427294075489044, -0.013870561495423317, -0.020970117300748825, -0.012770630419254303, -0.0014052692567929626, 0.027284009382128716, 0.01107787899672985, 0.003835474606603384, 0.012106386013329029, -0.019955895841121674, 0.005553224124014378, 0.013649147003889084, 0.01591329090297222, 0.02745542675256729, 0.024927012622356415, 0.022869998589158058, -0.02381279692053795, -0.0074852462857961655, -0.0321979857981205, -0.02925531379878521, -0.03988322243094444, 0.012192094698548317, 0.020027318969368935, 0.016627531498670578, 0.030883783474564552, 0.02288428321480751, 0.019370218738913536, 8.414652984356508e-05, 0.011556420475244522, 0.016927514225244522, -0.00906371884047985, 0.003208728041499853, -0.004524717107415199, 0.002424848498776555, 0.007978072389960289, -0.0008410188602283597, 0.008278054185211658, -0.00367477023974061, 0.0034944245126098394, 0.02858392708003521, -0.00795664545148611, 0.003248011227697134, 0.023769943043589592, -0.036197736859321594, 0.002621264662593603, 0.005217531230300665, 0.015599025413393974, 0.007720945868641138, -0.03434070944786072, -0.019570205360651016, 0.023569954559206963, 0.005985340103507042, -0.005260385572910309, 0.0016829305095598102, 0.011663557030260563, -0.02544126659631729, 0.02408420853316784, 0.006660297978669405, 0.014456239528954029, 0.009770818054676056, -0.006799574941396713, -0.041311703622341156, -0.000987438252195716, 0.004771130159497261, 0.0009392270003445446, 0.009585115127265453, 0.00845661386847496, 0.006403171457350254, -0.0019016668666154146, 0.014006267301738262, 0.020427294075489044, -0.006706723477691412, -0.041968803852796555, -0.0032640816643834114, -0.014984778128564358, -0.004574714228510857, -0.021841492503881454, -0.0010169007582589984, 0.001921308459714055, 0.0021480799186974764, 0.012927763164043427, 0.0241699181497097, -0.024669887498021126, -0.012299231253564358, 0.010727901011705399, 0.013363450765609741, 0.022498594596982002, 0.0024766309652477503, 0.005781781394034624, 0.01582758128643036, -0.00029551723855547607, -0.014713366515934467, 0.0034408564679324627, -0.0008017356158234179, 0.008935156278312206, 0.023527100682258606, 0.01872740127146244, -0.01851312816143036, -0.014841929078102112, 0.026755470782518387, 0.01472765114158392, -0.02005589008331299, -0.041368842124938965, 0.023398537188768387, 0.016470398753881454, -0.01064219232648611, -0.009406554512679577, -0.02214147336781025, -0.01959877461194992, 0.023841366171836853, -0.019884470850229263, -0.007556670345366001, -0.007281687576323748, 0.009563688188791275, -0.015156195499002934, 0.018970243632793427, 0.0058782040141522884, 0.03662628307938576, 0.006010338664054871, -0.004356870427727699, 0.016556108370423317, 0.003562277415767312, -0.015241904184222221, 0.008078066632151604, 0.015856152400374413, 0.010763612575829029, -0.00875659566372633, 0.014277678914368153, 0.013399162329733372, 0.022512879222631454, -0.0005780888604931533, -0.0025587687268853188, 0.002107011154294014, 0.034997813403606415, -0.01697036810219288, -0.003699768800288439, 0.01499906275421381, -0.015241904184222221, 0.011392145417630672, -0.017684608697891235, 0.0010508272098377347, -0.010506486520171165, -0.003631915897130966, -0.00819234549999237, 0.01509905606508255, 0.005142535548657179, -0.012320658192038536, -0.004085458815097809, 0.005560366902500391, -0.018870249390602112, 0.0030462380964308977, -0.00952797569334507, -0.024469899013638496, -0.02745542675256729, -0.003964038100093603, 0.008663744665682316, 0.015556170605123043, 0.036283448338508606, 0.0048711239360272884, 0.005278241354972124, -0.001935593318194151, 0.027398288249969482, -0.03179801255464554, 0.00630674883723259, 0.005910344887524843, -0.0026480488013476133, -0.015784727409482002, -0.014899068512022495, -0.01080646738409996, -0.017598900943994522, 0.025326987728476524, -0.020184453576803207, -0.025526976212859154, -0.007356683257967234, -0.011692126281559467, 0.0023534244392067194, -0.009185140021145344, -0.03576919436454773, 0.021184390410780907, -0.006153186783194542, -0.0009401197894476354, -0.008506610989570618, -0.011777834966778755, 0.039483245462179184, -0.0019927325192838907, 0.024269912391901016, 0.008042354136705399, -0.014970492571592331, 0.02181292325258255, -0.015813296660780907, -0.008656601421535015, -0.0012865267926827073, -0.029541010037064552, 0.003821189748123288, 0.013027757406234741, 0.02631264179944992, -0.015684733167290688, -0.025198424234986305, 0.01509905606508255, -0.008156633004546165, -0.034597836434841156, 0.0012883123708888888, 0.0014936566585674882, -6.534189742524177e-05, 0.014984778128564358, -0.005524654872715473, 0.005392520222812891, -0.014713366515934467, -0.007070986554026604, -0.028341086581349373, -0.009006580337882042, 0.020855840295553207, -0.007231690920889378, -0.025755533948540688, 0.003303365083411336, 0.03596917912364006, 0.015884721651673317, -0.055596526712179184, -0.02784111723303795, -0.023441392928361893, -0.026155509054660797, -0.02812681347131729, 0.0014008053112775087, -0.00014429901784751564, 0.012927763164043427, 0.0006325497524812818, -0.013813422061502934, 0.02892676368355751, -0.015170480124652386, -0.002508771838620305, 0.016213271766901016, -0.005471086595207453, 0.004117599688470364, -0.011192157864570618, -0.005296097602695227, -0.013070611283183098, -0.06965278834104538, -0.005528226029127836, 0.040768880397081375, -0.0014847286511212587, 0.00829233881086111, 0.03074093535542488, -0.02792682684957981, -0.005106823518872261, 0.0027480425778776407, 0.008370905183255672, -0.011349290609359741, -0.011385003104805946, 0.010827894322574139, -0.05879632383584976, -0.004471149295568466, -0.007024561055004597, -0.015241904184222221, 0.008885159157216549, 0.0009704750846140087, 0.02255573309957981, 0.002839108230546117, 0.02616979368031025, -0.00858517736196518, -0.012527788057923317, 0.014163400046527386, -0.011627844534814358, 0.032312266528606415, 0.01151356566697359, -0.0007651307387277484, 0.030855214223265648, 0.016741810366511345, 0.006417456082999706, -0.03725481405854225, -0.004167596809566021, -0.018484558910131454, 0.004799699876457453, 0.006113903596997261, 0.0033962163142859936, 0.012034961953759193, -0.021627219393849373, 0.007320971228182316, -0.019570205360651016, -0.00395689532160759, -0.020784415304660797, -0.006403171457350254, -0.018084583804011345, 0.017356058582663536, 0.022498594596982002, -0.03148374706506729, -0.014477666467428207, -0.01194211095571518, 0.00434615695849061, 0.001329381251707673, -0.008178059943020344, -0.002226646523922682, -0.0018766684224829078, -0.022370031103491783, -0.010849322192370892, -0.03716910630464554, -0.0011784977978095412, -0.00303731020539999, -0.006792432628571987, -0.022041479125618935, -0.014799075201153755, 0.1751890480518341, -0.021441517397761345, 0.026626907289028168, 0.008706598542630672, -0.008778022602200508, 0.0052889552898705006, 0.03436927869915962, 0.007885221391916275, 0.011099305935204029, -0.006706723477691412, 0.011220727115869522, 0.022098619490861893, -0.00267483270727098, -0.004560429137200117, -0.00042184864287264645, 0.02656976878643036, -0.023112840950489044, -0.04931120201945305, -0.023669948801398277, 0.013570580631494522, -0.0036265591625124216, -0.008463757112622261, -0.015556170605123043, -0.023598525673151016, 0.008313765749335289, -0.006542448420077562, -0.016956083476543427, -0.023912791162729263, 0.02784111723303795, 0.02087012492120266, -0.023784227669239044, 0.0025819814763963223, 0.03388359770178795, 0.022227182984352112, 0.0007785227498970926, 0.01382056437432766, 0.01571330428123474, -0.007310257293283939, 0.029083896428346634, -0.009163713082671165, -0.01539903786033392, -0.047939859330654144, 0.013499156571924686, -0.0435972735285759, -0.008892301470041275, 0.0145990876480937, 0.0015213334700092673, -0.0018963100155815482, -0.007585240062326193, 0.017813172191381454, -0.014034837484359741, 0.005156820639967918, 0.02745542675256729, 0.017884597182273865, -0.01604185439646244, -0.016556108370423317, 0.006542448420077562, 0.03602632135152817, 0.006781719159334898, 0.02515557035803795, -0.0181274376809597, 0.011484996415674686, -0.002978385193273425, 0.0046175685711205006, 0.002614122349768877, 0.03842616826295853, -0.010249359533190727, 0.026155509054660797, 0.02731257863342762, -0.021112965419888496, 0.009349416010081768, -0.01765603944659233, -0.0036104887258261442, 9.179113840218633e-05, -0.018641691654920578, -0.04454007372260094, 0.016798950731754303, 0.004510432481765747, 0.03391216695308685, 0.022527163848280907, 0.01891310326755047, 0.017556045204401016, -0.01170641090720892, 0.0010454703588038683, -0.017198925837874413, -0.025469835847616196, 0.011649271473288536, 0.0010204719146713614, -0.0017793531296774745, 0.013699144124984741, -0.016998937353491783, 0.0019302364671602845, -0.002183792181313038, -0.01824171654880047, 0.00040756381349638104, 0.001990946941077709, 0.02985527738928795, 0.0012570642866194248, -0.009899381548166275, 0.004371155519038439, -0.01604185439646244, 0.05745355039834976, 0.04368298500776291, 0.004131884779781103, -0.008170917630195618, -0.011392145417630672, -0.013741998001933098, 0.012449221685528755, 0.011127876117825508, -0.009349416010081768, -0.012720633298158646, -0.01577044278383255, 0.003237297758460045, 0.0018730972660705447, 0.02074156142771244, 0.02475559525191784, -0.0027266154065728188, 0.006146044470369816, 0.017898881807923317, -0.0047854152508080006, 0.003076593391597271, -0.030712366104125977, -0.001907023717649281, 0.0007169194868765771, -0.015941860154271126, -0.00852089561522007, -0.03496924415230751, -0.0061746141873300076, -0.03659771382808685, -0.012770630419254303, 0.01658467762172222, 0.0025194853078573942, 0.02368423342704773, -0.004078316502273083, 0.018941672518849373, -0.024684172123670578, -0.0024337763898074627, -0.006785290315747261, -0.024684172123670578, 0.008220914751291275, -0.0004379190504550934, -0.023327114060521126, 0.001620434457436204, 0.018841680139303207, -0.01744176633656025, -0.02865535207092762, -0.0003341308911330998, 0.004542573355138302, -0.004199737682938576, -0.014684796333312988, 0.024927012622356415, -0.019313078373670578, 0.01738462783396244, -0.013999124988913536, 0.02771255373954773, -0.03536921739578247, -0.0030748078133910894, -0.03842616826295853, 0.0013802709290757775, -0.020184453576803207, -0.03202657029032707, 0.011927826330065727, 0.006992420181632042, -0.03645486384630203, -0.0174560509622097, 0.0037319096736609936, -0.18295998871326447, 0.009620827622711658, 0.00674600712954998, -0.02121295966207981, -0.0064317407086491585, -0.008178059943020344, 0.0349121019244194, 0.020841553807258606, -0.027569705620408058, -0.011027881875634193, 0.03528350964188576, 0.01617041788995266, -0.02341282181441784, -0.010656476952135563, -0.015027632005512714, 0.026155509054660797, 0.004356870427727699, 0.012742061167955399, 0.004331872332841158, 0.007978072389960289, 0.010613622143864632, -0.04591141641139984, 0.017298918217420578, -0.005478228908032179, -0.0039033275097608566, 0.015784727409482002, -0.012806342914700508, 0.007206692360341549, -0.012356370687484741, -0.014956207945942879, -0.018298856914043427, -0.002526627853512764, 0.03302650898694992, 0.012934905476868153, 0.029569581151008606, 0.0321979857981205, -0.015141910873353481, 0.007642379496246576, -0.01254921592772007, 0.04956832900643349, -0.0060496218502521515, 0.04194023460149765, -0.02067013643682003, -0.019355932250618935, -0.017813172191381454, 0.024241341277956963, 0.0003792173811234534, 0.010177935473620892, 0.009499406442046165, -0.03456926718354225, -0.00824948400259018, -0.0020837984047830105, 0.015341898426413536, -0.0017873882316052914, 0.032712239772081375, 0.02308427169919014, 0.00997080560773611, -0.01564187929034233, 0.02509843185544014, 0.009620827622711658, -0.042711615562438965, -0.022098619490861893, 0.006196041125804186, -0.024127064272761345, -0.022455738857388496, -0.01967019960284233, -0.016727525740861893, 0.0056675029918551445, -0.01952735148370266, 0.012120670638978481, -0.01432767603546381, -0.006738864351063967, -0.0016382904723286629, -0.02905532717704773, 0.01609899289906025, 0.01622755639255047, 0.010427920147776604, 0.004803271032869816, 0.01987018622457981, -0.015284758992493153, 0.005053255707025528, 0.016427544876933098, -0.00885658897459507, 0.0005834456533193588, 0.017213210463523865, -0.058624908328056335, -0.002464131684973836, 0.015056202188134193, -0.009049434214830399, -0.011120733805000782, 0.010256501846015453, -0.009013722650706768, -0.001245457911863923, -0.03648343309760094, -0.00551751209422946, 0.027141161262989044, -0.005796066485345364, 0.004146169405430555, -0.012506361119449139, -0.011463569477200508, 0.006956708151847124, -0.018555983901023865, -0.00041403662180528045, -0.006949565839022398, 0.05611077696084976, 0.009656539186835289, -0.00535323703661561, 0.0015374039066955447, 0.015313328243792057, -0.010856464505195618, -0.029712429270148277, -0.010906461626291275, 0.01332059595733881, 0.028683921322226524, -0.006881712935864925, 0.0115778474137187, 0.003660485614091158, -0.004171167965978384, 0.03851187974214554, 0.014899068512022495, 0.03294079750776291, 0.008242341689765453, -0.013870561495423317, 0.015927575528621674, -0.013649147003889084, -0.03394073620438576, -0.07102413475513458, -0.01898452825844288, 0.018684547394514084, 0.018213147297501564, -0.03334077447652817, -0.0002676172007340938, -0.006853143218904734, -0.011920683085918427, 0.02195577137172222, 0.044454365968704224, 0.003671199083328247, -0.019498782232403755, -0.0035640629939734936, -0.007720945868641138, 0.009370842948555946, -0.020170167088508606, -0.0065067363902926445, -0.03474068641662598, 0.006199612747877836, 0.024127064272761345, 0.015427607111632824, -0.02664119191467762, 0.016870373860001564, -0.004556857980787754, -0.004071174189448357, -0.005078254267573357, -0.05091110244393349, 0.010249359533190727, 0.021355807781219482, -0.002165936166420579, 0.025184139609336853, -0.029098181053996086, 0.019041666761040688, -0.02207004837691784, 0.017356058582663536, -0.016827519983053207, -0.003135518403723836, -0.018156008794903755, 0.025012722238898277, -0.039426106959581375, 0.01622755639255047, 0.019013097509741783, 0.019441641867160797, -0.010670761577785015, -0.020384440198540688, -0.018013160675764084, -0.020370155572891235, 0.03214084729552269, 0.006256751716136932, -0.03951181471347809, -0.029883846640586853, -0.03874043747782707, -0.0016597176436334848, -0.03268367052078247, 0.01077075581997633, -0.008349478244781494, -0.014334818348288536, -0.002267715521156788, -0.02845536358654499, -0.010485058650374413, -0.03731195256114006, -0.007770942989736795, -0.025269849225878716, 0.027069736272096634, 0.01705607771873474, 0.013606292195618153, -0.029312454164028168, 0.0057924953289330006, 0.014713366515934467, 0.00909228902310133, -0.012870623730123043, 0.00835662055760622, -0.030769504606723785, -0.010385065339505672, -0.04605426266789436, -0.02716973051428795, 0.002723044017329812, -0.00613890215754509, 0.03928326070308685, -0.007024561055004597, -0.015656163915991783, -0.008506610989570618, -0.0025801958981901407, -0.0012624211376532912, 0.00808520894497633, 0.032312266528606415, -0.0043211583979427814, 0.007292401511222124, 0.026255501434206963, -0.014213397167623043, 0.023255689069628716, 0.018084583804011345, 0.001365093281492591, -0.007470961660146713, -0.016013285145163536, -0.0022141472436487675, -0.023669948801398277, -0.004917549900710583, -0.018970243632793427, 0.006535305641591549, -0.054396599531173706, 0.00096243986627087, -0.08262340724468231, 0.027683984488248825, 0.01271349098533392, -0.024412760511040688, -0.003619416616857052, -0.022727150470018387, 0.027498280629515648, -0.013163463212549686, 0.01522761955857277, 0.01718463934957981, -0.016070423647761345, 0.002862321212887764, 0.007878079079091549, 0.0030819501262158155, -0.014441954903304577, -0.010749327950179577, 0.0251698549836874, -0.015927575528621674, 0.013856276869773865, 0.02187006175518036, -0.0046639940701425076, 0.023912791162729263, 0.01554188597947359, 0.01959877461194992, -0.021055826917290688, 0.004306873772293329, -0.00580320879817009, -0.01637040451169014, -0.008142348378896713, -0.007231690920889378, -0.008170917630195618, -0.01732748933136463, 0.0012267089914530516, 0.010670761577785015, -0.017013221979141235, -0.014913354068994522, 0.017956020310521126, 0.027812547981739044, -0.013020615093410015, 0.03725481405854225, -0.012892051599919796, -0.022655727341771126, 0.026812609285116196, 0.0048246984370052814, -0.024527039378881454, -0.0016757880803197622, 0.006781719159334898, 0.025669824331998825, -0.004431865643709898, 0.0005660360329784453, 0.013456301763653755, -0.007092413958162069, -0.030169542878866196, -0.02402707003057003, -0.0035247798077762127, -0.017156070098280907, 0.00019083629013039172, 0.007663806900382042, -0.007070986554026604, 0.005049684550613165, 0.0516824834048748, 0.008406617678701878, 0.019070236012339592, -0.011235011741518974, 0.001939164474606514, -0.007035274524241686, -0.0449400469660759, 0.015870437026023865, -0.006895997561514378, 0.001844527549110353, -0.018570268526673317, 0.01237779762595892, 0.020955832675099373, 0.02455560863018036, 0.0029765996150672436, -0.011692126281559467, -0.014384815469384193, 0.024598462507128716, -0.012349228374660015, 0.010213647037744522, 0.024984152987599373, -0.012263519689440727, -0.02985527738928795, -0.023269973695278168, 0.012263519689440727, 0.015556170605123043, -0.009227994829416275, 0.011349290609359741, -0.0023427107371389866, 0.005085396580398083, -0.021998625248670578, 0.009477979503571987, 0.01704179123044014, 0.016398975625634193, -0.03434070944786072, 0.007406679913401604, -0.007592382840812206, 0.011949253268539906, 0.03542635589838028, 0.022784290835261345, 0.017827456817030907, -0.018070299178361893, 0.010092226788401604, -0.04274018481373787, -0.035740625113248825, -0.0016115064499899745, -0.028869623318314552, -0.00552108371630311, 0.006685296539217234, 0.003521208418533206, -0.010892176069319248, 0.019913041964173317, 0.02112725004553795, 0.015484746545553207, 0.00629246374592185, 0.019513066858053207, 0.007556670345366001, 0.001773996278643608, -0.0375976487994194, 0.03142660856246948, 0.020355870947241783, 0.0025069862604141235, 0.015570455230772495, -0.030969493091106415, 0.030512379482388496, 0.01704179123044014, 0.029969556257128716, -0.030826644971966743, 0.012749203480780125, -0.02422705665230751, -0.0026659048162400723, -0.002662333659827709, -0.001602578442543745, 0.012556358240544796, -0.02314141020178795, 0.01197782251983881, 0.004774701781570911, -0.015241904184222221, -0.0036444151774048805, 0.0986795499920845, 0.037740498781204224, -0.009806529618799686, 0.007542385719716549, -0.02684118039906025, -0.015813296660780907, 0.022841429337859154, 0.02361281029880047, -0.0014391957083716989, -0.05088253319263458, -0.017484622076153755, 0.005567509215325117, 0.014256251975893974, -0.022027194499969482, -0.00919228233397007, -0.01671324111521244, 0.01338487770408392, 0.04088315740227699, -0.04148312285542488, -0.00546751543879509, 0.026526913046836853, 0.007556670345366001, -0.014670511707663536, 0.017013221979141235, -0.013920558616518974, -0.003799762576818466, 0.02489844337105751, 0.004699706099927425, 0.013977698050439358, -0.04871124029159546, 0.027483996003866196, 0.011099305935204029, -0.04856839403510094, -0.009713678620755672, -0.0018106010975316167, -0.018370280042290688, 0.02072727680206299, -0.014813359826803207, 0.02678404003381729, -0.0013802709290757775, 0.0125849274918437, 0.011499281041324139, 0.01288490928709507, -0.027969680726528168, -0.001616863184608519, -0.002635549521073699, -0.02604123018682003, -0.01738462783396244, -0.030426669865846634] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_a_queuestabilizing_framework_for_networked_multirobot_exploration.json b/database/embeddings/publications_txt/2022_a_queuestabilizing_framework_for_networked_multirobot_exploration.json new file mode 100644 index 0000000000000000000000000000000000000000..e90b611f80867435722efdc1b6f49bc3411067e9 --- /dev/null +++ b/database/embeddings/publications_txt/2022_a_queuestabilizing_framework_for_networked_multirobot_exploration.json @@ -0,0 +1 @@ +[-0.007489281706511974, 0.008511515334248543, -0.0015936907147988677, -0.005047278944402933, 0.015816226601600647, -0.005640032235532999, -0.0004086272674612701, 0.0016460446640849113, -0.014907574281096458, -0.023539770394563675, 1.3372727153182495e-05, 0.021594686433672905, -0.007219525519758463, 0.02919045090675354, -0.008454724214971066, -0.0015883665764704347, 0.024718178436160088, -0.011564018204808235, -0.015844622626900673, -0.006119204685091972, 0.003946957644075155, 0.009271091781556606, -0.007822927087545395, -0.015475482679903507, -0.003723344299942255, 0.015759436413645744, 0.00738989794626832, -0.03617571294307709, 0.016057588160037994, 0.019592812284827232, 0.014155097305774689, 0.011918961070477962, -0.002326646586880088, -0.015574865974485874, -0.005895590875297785, -0.031092941761016846, 0.028693532571196556, -0.019947754219174385, 0.025541644543409348, -0.0217792559415102, 0.03166084736585617, 0.021807651966810226, -0.0025680072139948606, -0.013608486391603947, -0.0029247242491692305, 0.026010168716311455, 0.006254082545638084, -0.01720760017633438, -0.00950535386800766, 0.017193403095006943, 0.013409717939794064, 0.024675585329532623, -0.035976946353912354, 0.0016708907205611467, -0.009817702695727348, -0.014935970306396484, -0.008021694608032703, 0.004064088687300682, -0.004663941450417042, -0.032285548746585846, 0.019436638802289963, 0.0061263032257556915, -0.038049809634685516, -0.01530511025339365, -0.0017205826006829739, 0.006175995338708162, -0.005817503668367863, 0.029758358374238014, -0.003288540057837963, -0.0041954172775149345, 0.009746714495122433, 0.025953378528356552, 0.0060588642954826355, -0.009874493815004826, 0.026975611224770546, -0.024121874943375587, -0.02522929571568966, 0.013047677464783192, -0.006711957976222038, 0.0273305531591177, 0.004905302077531815, 0.002355041913688183, -0.014581027440726757, 0.020373685285449028, 0.006839737296104431, 0.03052503429353237, 0.00909362081438303, 0.0002154055837308988, -0.015390296466648579, -0.018840335309505463, 0.014211887493729591, 0.008923248387873173, 0.007751938886940479, -0.012004147283732891, -0.004458074923604727, 5.030197280575521e-05, -0.02342618815600872, 0.021154558286070824, 0.02163727954030037, -0.035210270434617996, 0.02424965426325798, 0.0024757222272455692, -0.020118126645684242, -0.02498793415725231, -0.021268140524625778, -0.025399668142199516, -0.007354403380304575, 0.009909987449645996, 0.012053838931024075, 0.013203851878643036, -0.029843544587492943, 0.01832921802997589, 0.0037978822365403175, -0.00991708692163229, -0.007901014760136604, -0.03467075899243355, -0.00819206703454256, 0.007318909280002117, -0.0029424712993204594, -0.020473068580031395, 0.03668683022260666, 0.007311810273677111, 0.014793992973864079, -0.014978563413023949, 0.014197690412402153, 0.009817702695727348, -0.014623620547354221, -0.01699463464319706, -0.011997047811746597, -0.009633133187890053, -0.007368601392954588, 0.007631258573383093, -0.002136752475053072, 0.026066958904266357, -0.002110131783410907, 0.026237331330776215, -0.02379532903432846, -0.021750861778855324, -0.02805463597178459, -0.021523699164390564, -0.005931084975600243, 0.03898685798048973, -0.026549680158495903, -0.0026869128923863173, -0.014950167387723923, 0.010428203269839287, 0.012685636058449745, 0.01601499505341053, 0.012252606451511383, 0.02192123420536518, 0.0005931972409598529, -0.0029850644059479237, -0.019805777817964554, 0.0399806946516037, 0.008199166506528854, -0.0014730104012414813, -0.010087458416819572, 0.02424965426325798, 0.006314422935247421, -0.041883185505867004, -0.0048130168579518795, 0.01841440424323082, -0.018002670258283615, -0.023099642246961594, 0.011237471364438534, 0.027586111798882484, 0.03418803960084915, 0.03075219690799713, -0.01096771564334631, -0.0075105782598257065, -0.029005881398916245, 0.0167674720287323, -0.018769346177577972, -0.002175796078518033, 0.0021403017453849316, 0.05136724188923836, 0.032001592218875885, -0.004656842444092035, -0.006335719022899866, 0.007673851680010557, 0.011209076270461082, 0.01622796058654785, 0.013303236104547977, 0.03614731878042221, -0.0057429657317698, 0.008767073974013329, 0.017988473176956177, -0.020714430138468742, 0.014169294387102127, 0.019252067431807518, 0.026322517544031143, 0.00928528979420662, -0.0104424012824893, 0.016213761642575264, -0.5960758328437805, -0.010357215069234371, 0.008880655281245708, -0.013083171099424362, -0.042621467262506485, 0.0150069585070014, 0.014921772293746471, 0.008348241448402405, -0.0031980297062546015, 0.03407445549964905, -0.012827613390982151, 0.008433427661657333, 0.008476020768284798, -0.01336002629250288, -0.01811625249683857, -0.009136213921010494, 0.02013232558965683, -0.024562004953622818, 0.01855638064444065, 0.005199904087930918, -0.011989949271082878, 0.037680670619010925, -0.010286226868629456, -0.009831900708377361, -0.007844223640859127, 0.029900334775447845, 0.035579413175582886, -0.02679104171693325, 0.0079649044200778, -0.01757674105465412, -0.027742287144064903, 0.027004007250070572, 0.021978024393320084, -0.01530511025339365, 0.052815407514572144, -0.00357426842674613, -0.02717437967658043, 0.026024365797638893, 0.02058665081858635, 0.029957126826047897, -0.025342876091599464, -0.047562263906002045, 0.01305477600544691, -0.0023568165488541126, -0.008625096641480923, -0.0104424012824893, 0.019436638802289963, -0.0013328081695362926, -0.03844734653830528, -0.05270182713866234, -0.0035440984647721052, -0.006065963301807642, 0.00038134108763188124, 0.004749127198010683, 0.023525573313236237, -0.016597099602222443, 0.019663801416754723, -0.02805463597178459, 0.009746714495122433, 0.007652555126696825, 0.008561206981539726, 0.0039114635437726974, -0.020629243925213814, -0.02207740768790245, -0.008291451260447502, 0.014623620547354221, 0.003634608583524823, -0.00568617507815361, 0.0023088993038982153, -0.019195277243852615, 0.020671837031841278, 0.016952041536569595, 0.010747651569545269, -0.01685265824198723, 0.015958203002810478, 0.0318596176803112, 0.03251270949840546, 0.018826136365532875, -0.01871255598962307, 0.009924185462296009, 0.012451373971998692, -0.0132464449852705, -0.006452850066125393, -0.010449499823153019, 0.04103132337331772, 0.010016470216214657, -0.03157566115260124, -0.0031856067944318056, 0.004933697171509266, -0.0005838799988850951, 0.0097254179418087, 0.03614731878042221, -0.010754750110208988, -0.001725906739011407, -0.006165347062051296, 0.027713891118764877, 0.0023337453603744507, 0.006229236721992493, 0.005448363721370697, -0.01305477600544691, -0.026620669290423393, -0.000498250185046345, 0.011961554177105427, -0.02216259390115738, 0.04324616491794586, 0.0208848025649786, -0.00838373601436615, 0.008554108440876007, 0.020260103046894073, -0.02388051524758339, 0.003712696023285389, 0.015148935839533806, -0.011244570836424828, 0.007730642333626747, 0.011734390631318092, -0.03225715085864067, 0.04125848785042763, 0.00805009063333273, -0.01541869156062603, -0.0012272128369659185, 0.003773036180064082, -0.008369538001716137, 0.002255657920613885, -0.007901014760136604, 0.0008247970836237073, 0.007688049226999283, 0.031689245253801346, -0.024604596197605133, -0.03336457163095474, 0.015021156519651413, 0.007901014760136604, -0.01580202952027321, 0.04086095094680786, -0.004646194167435169, 0.006545135285705328, -0.010981913655996323, 0.02755771577358246, -0.03404606133699417, -0.00046674907207489014, -0.04841412231326103, -0.022517535835504532, -0.004671039991080761, 0.008184968493878841, -0.014446149580180645, -0.02887810207903385, -0.0173637755215168, -0.03853253275156021, 0.009065224789083004, 0.010499191470444202, 0.01654030941426754, 0.0037268935702741146, 0.02274470031261444, -0.011592414230108261, 0.02050146460533142, -0.0006468822830356658, -0.01406991109251976, -0.023894712328910828, -0.024718178436160088, -0.010804442688822746, -0.017037227749824524, 0.005025982391089201, 0.014566830359399319, -0.019507626071572304, -0.016895251348614693, -0.020487267524003983, 0.02620893530547619, -0.00901553314179182, -0.008823864161968231, -0.015986599028110504, -0.027131786569952965, -0.01915268413722515, -0.01803106628358364, -0.017250193282961845, 0.022332966327667236, -0.00140823342371732, 0.021140361204743385, -0.0068255397491157055, -0.0012724680127575994, -0.004443876910954714, -0.005664878524839878, -0.015148935839533806, 0.01301928237080574, -0.02305704914033413, -0.01388534065335989, 0.03106454573571682, 0.02057245373725891, 0.02065763995051384, 0.012579153291881084, -0.011436239816248417, 0.003027657512575388, 0.007453787140548229, 0.03046824224293232, -0.012714031152427197, 0.0064705973491072655, -0.04222393035888672, -0.0021704719401896, -0.006939121056348085, -0.005739416461437941, -0.004319647327065468, 0.03555101528763771, 0.026592273265123367, 0.023468781262636185, -0.007375699933618307, -0.009966778568923473, -0.01260754931718111, -0.026180541142821312, 0.018286624923348427, -0.0079649044200778, 0.03540904074907303, 0.009256893768906593, 0.03961155563592911, 0.005583241581916809, -0.019961953163146973, -0.0161711685359478, 0.0032583698630332947, 0.04071897640824318, -0.017718717455863953, 0.00898003950715065, -0.025655226781964302, 0.020686034113168716, -0.022886676713824272, -0.018797742202878, 0.020998382940888405, 0.009775109589099884, -0.007602863013744354, -0.0010923347435891628, 0.02866513654589653, 0.03594855219125748, 0.014864981174468994, 0.003073799889534712, -0.0353238545358181, 0.027373146265745163, 0.006385411135852337, 0.009370475076138973, 0.01436806283891201, 0.011116791516542435, 0.0039789024740457535, -0.0009272866300307214, 0.05397961661219597, -0.0238095261156559, 0.017094019800424576, 0.02493114396929741, 0.03325099125504494, -0.0015936907147988677, 0.009931284002959728, -0.007283415179699659, 0.018386008217930794, 0.011514326557517052, -0.010350116528570652, -0.004262856673449278, -0.020302696153521538, 0.02328421175479889, -0.0029903885442763567, 0.006488344632089138, 0.025357075035572052, 0.005313485395163298, 0.0010985463159158826, -0.010059063322842121, 0.03183121979236603, 0.010300423949956894, 0.01047789491713047, 0.008830963633954525, -0.015518075786530972, -0.006917824503034353, -0.009058126248419285, -0.02192123420536518, -0.013856945559382439, -0.014666213653981686, 0.0026531934272497892, -0.028650939464569092, 0.0038156292866915464, -0.01137944869697094, 0.005118267145007849, -0.011720193549990654, 0.014538434334099293, 0.005753614008426666, 0.0036079881247133017, 0.001998324878513813, 0.014439051039516926, 0.0020586650352925062, -0.002003649016842246, -0.01632734388113022, 0.00995258055627346, 0.025342876091599464, 0.019039101898670197, -0.013459410518407822, 0.01406991109251976, 0.0435585118830204, -0.03450038656592369, -0.014793992973864079, 0.021452710032463074, -0.004021495580673218, -0.02221938595175743, -0.024377433583140373, -0.024448422715067863, -0.0014969689073041081, 0.027571914717555046, -0.01757674105465412, -0.017193403095006943, -0.030780592933297157, -0.000879369443282485, 0.023468781262636185, -0.005625834688544273, -0.006449300795793533, 0.03526706248521805, -0.017704520374536514, 0.006719056982547045, -0.007929409854114056, 0.021083569154143333, -0.004958543460816145, 0.004167022183537483, -0.01137944869697094, -0.007638357114046812, -0.00744668859988451, -0.001012472785077989, -0.008021694608032703, 0.027145983651280403, 0.002433129120618105, 0.02581140026450157, -0.002793395658954978, -0.018315020948648453, -0.01909589394927025, -0.0194508358836174, 0.0080855842679739, 0.05806855112314224, 0.020600847899913788, 0.009569243527948856, 0.011003210209310055, 0.002010747790336609, -0.00950535386800766, -0.042990606278181076, -0.01997615024447441, 0.015447086654603481, -0.008547009900212288, -0.014921772293746471, 0.007333106826990843, -0.00025888599338941276, -0.00991708692163229, 0.01377885788679123, -0.005806855391710997, -0.006357015576213598, -0.024349039420485497, 0.020629243925213814, -0.008227561600506306, 0.014680411666631699, -0.0002371457958361134, 0.0025910784024745226, 0.019663801416754723, 0.01043530274182558, -0.01706562377512455, 0.023596560582518578, 0.02686202898621559, 0.0012769047170877457, -0.028026239946484566, 0.026393506675958633, 0.015361900441348553, 0.01750575192272663, 0.0010257831308990717, -0.008674788288772106, 0.035068295896053314, 0.015163132920861244, 0.02838118188083172, 0.01841440424323082, 0.03248431533575058, 0.0035653950180858374, 0.011663402430713177, -0.0020568904001265764, -0.0010177969234064221, 0.028551554307341576, -0.06462788581848145, -0.004500667564570904, 0.023766933009028435, -0.009704121388494968, -0.015972401946783066, 0.04375728219747543, -0.013182555325329304, -0.037084367126226425, -0.02610955201089382, 0.022503338754177094, -0.0010532911401242018, 0.008234660141170025, -0.006885879673063755, -0.012224211357533932, -0.05608087778091431, -0.011287163943052292, -0.022105803713202477, 0.010470796376466751, 0.003961155656725168, -0.004781072027981281, -0.01242297887802124, -0.022332966327667236, 0.0021403017453849316, -0.004986938554793596, -0.0004110675072297454, -0.009775109589099884, -0.023979898542165756, -0.038504134863615036, -0.009995173662900925, 0.012898601591587067, 0.0063889604061841965, 0.026492889970541, -0.0016016769222915173, -0.0182582288980484, 0.011336855590343475, -0.01766192726790905, -0.014233184047043324, 0.00199122610501945, -0.05159440636634827, 0.0020338192116469145, -0.016440926119685173, -0.00983899924904108, -0.0016904125222936273, -0.0036701029166579247, 0.011940257623791695, 0.011578216217458248, -0.013594288378953934, -0.007130790036171675, -0.004234461113810539, 0.02260272204875946, 0.026251528412103653, 0.01530511025339365, 0.02282988652586937, 0.0294176135212183, 0.008227561600506306, 0.004348042421042919, -0.021154558286070824, -0.026592273265123367, -0.012174519710242748, 0.003261919366195798, 0.002587529132142663, -0.004408382810652256, 0.01448874268680811, -0.031916406005620956, -0.004972741007804871, 0.01036431360989809, -0.016568703576922417, -0.0002360366052016616, 0.011727292090654373, 0.01564585417509079, 0.029843544587492943, 0.008007497526705265, -0.00686813285574317, 0.012522363103926182, -0.012139025144279003, -0.00292827351950109, -0.0033808250445872545, 0.01291279960423708, 0.014793992973864079, 0.004475821740925312, 0.020146522670984268, -0.005490956827998161, -0.03867450729012489, -0.03149047866463661, 0.004049891140311956, 0.019252067431807518, 0.035068295896053314, -0.009058126248419285, -0.04432518780231476, -0.023781131953001022, -0.01553227286785841, -0.022318769246339798, -0.0004066307155881077, 0.0005896477960050106, -0.04818696156144142, -0.0025467106606811285, 0.005973678082227707, 0.006704858969897032, -0.002326646586880088, 0.020032940432429314, -0.028494764119386673, -0.0029371471609920263, 0.0068255397491157055, 0.004245109390467405, 0.021580489352345467, -0.009079422801733017, 0.010399808175861835, -0.010903825983405113, 0.005114717874675989, -0.025129912421107292, -0.032683081924915314, -0.033648524433374405, -0.010499191470444202, 0.026847831904888153, 0.015163132920861244, 0.037993017584085464, 0.013431014493107796, 0.01377175934612751, 0.012884403578937054, 0.01683846116065979, -0.004844961687922478, -0.0022840534802526236, 0.004032143857330084, 0.0009219624917022884, 0.0070988452062010765, 0.013927933759987354, 0.004245109390467405, 0.019110091030597687, 0.0025573589373379946, 0.024235457181930542, 0.021225547417998314, 0.0019220123067498207, -0.020600847899913788, -0.02304285205900669, -0.0353238545358181, 0.016781669110059738, 0.011698896996676922, -0.0013478932669386268, -0.0029264988843351603, -0.04304739832878113, -0.008972940035164356, 0.0020409179851412773, 0.0038546728901565075, -0.01470880676060915, 0.00037468591472133994, 0.011918961070477962, -0.03362013027071953, 0.012053838931024075, 0.010051964782178402, 0.019124288111925125, 0.006289576645940542, 0.007130790036171675, -0.03330777958035469, -0.00184747448656708, 0.012359089218080044, -0.002576880855485797, 0.017079820856451988, 0.004671039991080761, 0.014765597879886627, -0.0022450098767876625, 0.0062647308222949505, 0.014666213653981686, -0.019663801416754723, 0.01601499505341053, -0.02468978241086006, -0.020529860630631447, -0.029218846932053566, -0.013494904153048992, -0.0091291144490242, -0.014652016572654247, 0.0014259804738685489, 0.00868898630142212, 0.012373287230730057, -0.021466907113790512, -0.016568703576922417, 0.022702107205986977, 0.01803106628358364, 0.01336002629250288, -0.0072372728027403355, 0.00026354461442679167, 0.026464493945240974, -0.001914913416840136, 0.010839936323463917, 0.00522120064124465, 0.00609790813177824, 0.005845898762345314, 0.026691658422350883, 0.014964365400373936, -0.017789706587791443, -0.021736662834882736, 0.002642545150592923, 0.01332453265786171, -0.024647189304232597, -0.03841894865036011, -0.0012334242928773165, 0.03875969350337982, 0.0013044128427281976, -0.019351452589035034, -0.021197151392698288, -0.0016549183055758476, 0.007141438312828541, -0.01470880676060915, 0.005288639571517706, -0.004628446884453297, 0.022801490500569344, -0.004365789704024792, 0.017406368628144264, 0.011940257623791695, 0.021296534687280655, 0.013125764206051826, -0.014609423466026783, -0.003975353203713894, 0.004713633097708225, -0.027884263545274734, 0.018613172695040703, -0.017306983470916748, 0.028026239946484566, -0.004844961687922478, 0.021381720900535583, 0.02724536694586277, -0.00857540499418974, -0.010541784577071667, -0.008830963633954525, 0.009959680028259754, 0.04111650958657265, -0.023411991074681282, -0.0008629533695057034, 0.014247382059693336, -0.02200642041862011, 0.017534147948026657, -0.03898685798048973, 0.00943436473608017, -0.011826676316559315, -0.020757023245096207, -0.008816765621304512, 0.00310574471950531, -0.005700372625142336, 0.0033825996797531843, 0.023000258952379227, 0.014935970306396484, -0.02785586751997471, -0.0032015792094171047, -0.00380853028036654, -0.012905700132250786, -0.016710681840777397, -0.006069512572139502, -0.0091291144490242, -0.0015120540047064424, 0.0214811060577631, 0.01283471193164587, 0.003567169653251767, 0.006034018471837044, 0.03546582907438278, -0.011436239816248417, 0.015461284667253494, 0.006907176226377487, -0.028494764119386673, -0.02274470031261444, -0.02109776809811592, -0.009817702695727348, 0.0003784571890719235, 0.022034814581274986, -0.01622796058654785, -0.02141011692583561, -0.00656643183901906, -0.027004007250070572, 0.00819206703454256, -0.000823466049041599, -0.008518613874912262, 0.008532811887562275, -0.007638357114046812, -0.008916149847209454, -0.008667689748108387, -0.00902263168245554, 0.05454752594232559, -0.0023124488070607185, 0.010499191470444202, 0.018897125497460365, -0.0022130650468170643, 0.046738795936107635, -0.010783146135509014, -0.004216713830828667, -0.008227561600506306, -0.03728313371539116, -0.012131926603615284, -0.002594627905637026, 0.029531195759773254, -0.0279836468398571, -0.03512508422136307, 0.017079820856451988, -0.02972996234893799, -0.026677459478378296, 0.00439773453399539, -0.0059097884222865105, -0.013388421386480331, 0.010811541229486465, -0.009278190322220325, 0.02006133645772934, -0.014133800752460957, -0.0015218149637803435, -0.02072862721979618, -0.004497118294239044, 0.015560668893158436, -0.004891104064881802, -0.015177330933511257, 0.004901752341538668, 0.0335349440574646, 0.013800154440104961, -0.03847574070096016, -0.03359173610806465, -0.01608598232269287, -0.01573104038834572, 0.007652555126696825, 0.0036221856717020273, -0.012664339505136013, -0.007396996486932039, 0.0022183891851454973, -0.0025005682837218046, 0.01922367326915264, -0.008738677948713303, 0.0072905137203633785, 0.005735866725444794, -0.006871682126075029, -0.007780334446579218, -0.009597638621926308, -0.0159298088401556, -0.008291451260447502, -0.052048731595277786, -0.010612773708999157, 0.008547009900212288, 0.025257691740989685, -0.0007147649885155261, 0.017477355897426605, 0.0021403017453849316, -0.004873357247561216, -0.0035760432947427034, -0.00650964118540287, -0.003457137616351247, -0.027259565889835358, 0.004014397040009499, -0.046369656920433044, -0.01610018126666546, 0.007340205833315849, -0.013047677464783192, 0.015816226601600647, 0.004717182368040085, 0.0014517138479277492, -0.020416278392076492, 0.00981060415506363, -0.023241618648171425, -0.0208848025649786, 0.01459522545337677, -0.00019799121946562082, 0.030042313039302826, -0.005931084975600243, 0.008632195182144642, 0.03623250499367714, 0.010690860450267792, -0.0016859757015481591, -0.01377885788679123, 0.004156373906880617, -0.014133800752460957, -0.007404095493257046, 0.018911322578787804, 6.816000677645206e-05, 0.008859358727931976, -0.0035991144832223654, 0.028338588774204254, -0.00334000657312572, -0.00042748358100652695, 0.004365789704024792, -0.009256893768906593, -0.02282988652586937, 0.021055174991488457, 0.004656842444092035, -0.017832299694418907, -0.011911862529814243, -0.01047789491713047, -0.003801431506872177, -0.02596757560968399, -0.001396697829477489, 0.004972741007804871, -0.02507312037050724, -0.010307523421943188, -0.010825738310813904, -0.01530511025339365, 0.02537127211689949, -0.007808729540556669, -0.012004147283732891, -0.005199904087930918, -0.014218986965715885, 0.17593777179718018, -0.016597099602222443, 0.015915609896183014, 0.021594686433672905, 0.00047340424498543143, -0.012664339505136013, 0.01066956389695406, 0.006484794896095991, -0.008632195182144642, 0.0016957366606220603, 0.011173582635819912, 0.012224211357533932, 0.00890905037522316, -0.0026460944209247828, 0.004493569023907185, 0.010527587495744228, -0.017420565709471703, -0.05261664092540741, -0.02111196517944336, 0.01818724162876606, 0.005210552364587784, -0.019195277243852615, -0.009604737162590027, -0.019436638802289963, 0.021694069728255272, -0.0018581226468086243, 0.01085413433611393, -0.016412530094385147, -0.00027441472047939897, 0.019138487055897713, -0.02087060548365116, 0.005118267145007849, 0.02530028484761715, 0.01639833301305771, -0.016071785241365433, -0.0024189315736293793, 0.01429707370698452, -0.0020728628151118755, 0.023908909410238266, 0.012351990677416325, 0.008554108440876007, -0.030269475653767586, -0.007688049226999283, -0.028111426159739494, -0.017846496775746346, 0.002743703546002507, -0.008014596067368984, -0.0041989670135080814, -0.02785586751997471, 0.00871738139539957, -0.0417696051299572, 0.017463158816099167, 0.01909589394927025, 0.019266266375780106, -0.015276714228093624, -0.0038724199403077364, -0.00039243302308022976, 0.030354661867022514, 0.011734390631318092, 0.025868192315101624, 0.0034251927863806486, 0.02111196517944336, -0.011691797524690628, 0.010293325409293175, -0.0023479429073631763, 0.02155209332704544, -0.025555841624736786, 0.0010781370801851153, 0.02388051524758339, -0.013587189838290215, -0.01418349239975214, -0.020103929564356804, -0.018158845603466034, 0.003127041272819042, -0.01167760044336319, -0.02755771577358246, 0.011010308749973774, 0.008149473927915096, 0.036402877420186996, 0.025839796289801598, 0.005338331684470177, 0.022432349622249603, -0.020558254793286324, -0.01797427609562874, -0.010918023996055126, -0.03782264515757561, 0.023852119222283363, -0.0071556358598172665, -0.017406368628144264, -0.00450776657089591, -0.021907035261392593, 0.01668228581547737, -0.00815657339990139, -0.015745239332318306, 0.009484057314693928, -0.0027756483759731054, 0.02610955201089382, 0.005189255811274052, -0.022290373221039772, 0.023738538846373558, -0.01976318471133709, 0.08211944252252579, 0.02582559920847416, 0.005302837118506432, -0.009299486875534058, 0.006559332832694054, -0.0011775209568440914, 0.024959539994597435, 0.004649743437767029, -0.021566292271018028, -0.016952041536569595, -0.018840335309505463, 0.011847972869873047, -0.010371413081884384, 0.006875231396406889, 0.010818639770150185, -0.01047789491713047, 0.0005577030242420733, 0.03157566115260124, -0.010655366815626621, -0.01991936005651951, -0.02859414741396904, -0.018755149096250534, 0.01750575192272663, 0.0038475741166621447, -0.019507626071572304, -0.031234918162226677, -0.017463158816099167, -0.027500925585627556, -0.019294660538434982, 0.015404493547976017, -0.007049153093248606, 0.011855071410536766, 0.0008358890190720558, 0.0150069585070014, -0.007638357114046812, -0.0009725418058224022, -0.02432064339518547, -0.005569044034928083, 0.00868898630142212, -0.010754750110208988, -0.013423915952444077, 0.02139591984450817, 0.01260754931718111, -0.007375699933618307, -0.03549422696232796, 0.0008984475862234831, -0.0017951204208657146, -0.014254480600357056, -0.031916406005620956, 0.0029974873177707195, -0.021566292271018028, -0.002603501547127962, -0.0061014574021101, 0.025541644543409348, -0.023894712328910828, -0.026691658422350883, -0.04886845126748085, 0.009398871101439, 0.00304895406588912, -0.04693756252527237, -0.004319647327065468, 0.023028653115034103, -0.002832439262419939, -0.004692336544394493, -0.022787293419241905, -0.18207117915153503, 0.030667010694742203, 0.0258965864777565, -0.011989949271082878, 0.005590340588241816, 0.006051765289157629, 0.03807820379734039, 0.023184828460216522, -0.029673172160983086, 0.015248319134116173, 0.023837922140955925, 0.017321182414889336, -0.01698043756186962, -0.014510039240121841, 0.005874294321984053, 0.009633133187890053, 0.004582304507493973, -0.010981913655996323, 0.01066956389695406, 0.021892838180065155, 0.029218846932053566, -0.05574013292789459, 0.01563165709376335, -0.0079649044200778, 0.0005577030242420733, 0.03688560053706169, -0.00744668859988451, 0.035437434911727905, -0.01937984675168991, -0.029389219358563423, -0.021821849048137665, -0.0046887872740626335, 0.024562004953622818, 0.006105006672441959, 0.018669962882995605, 0.038589321076869965, -0.012153223156929016, -6.610799755435437e-05, -0.0027028853073716164, 0.04946475103497505, 0.007003010716289282, 0.05866485461592674, -0.0015156033914536238, -0.00662322249263525, 0.004312548320740461, 0.02498793415725231, -0.01234489120543003, -0.005530000198632479, -0.0072230747900903225, -0.0270891934633255, 0.007045603822916746, -0.0020355938468128443, 0.01811625249683857, 0.001842150348238647, 0.006161797326058149, 0.028012042865157127, -0.001971704186871648, -0.010712157003581524, 0.014964365400373936, 0.014360963366925716, -0.02813982218503952, -0.008440527133643627, 0.01729278638958931, -0.0104424012824893, -0.026975611224770546, -0.02724536694586277, -0.04634125903248787, 0.011216174811124802, -0.040747370570898056, 0.008298549801111221, -0.00310574471950531, -0.004142175894230604, 0.0086818877607584, 0.009462760761380196, 0.01602919213473797, 0.01840020716190338, 0.026776842772960663, 0.003352429484948516, 0.006818440742790699, -0.019436638802289963, 0.02141011692583561, 0.020174916833639145, -0.014950167387723923, -0.010882529430091381, 0.04316097870469093, -0.02672005258500576, -0.0004836088337469846, 0.02610955201089382, -0.00011613266542553902, -0.015546470880508423, 0.01662549562752247, -0.01661129668354988, 0.024562004953622818, -0.023710142821073532, 0.0008620659937150776, 0.002142076613381505, 0.002855510450899601, 0.013409717939794064, -0.00480591831728816, -0.02244654856622219, -0.011734390631318092, -0.02155209332704544, -0.009746714495122433, -0.0066764638759195805, 0.009988075122237206, 0.019280463457107544, -0.022332966327667236, 0.014055713079869747, 0.029673172160983086, -0.0229718629270792, -0.026549680158495903, -0.006477696355432272, 0.011109692975878716, 0.0394979752600193, -0.003072025254368782, 0.029843544587492943, -0.009654429741203785, -0.010861232876777649, 0.04409802705049515, -0.011776983737945557, 0.05065735802054405, 0.026251528412103653, -0.019039101898670197, 0.018598973751068115, -0.0070988452062010765, -0.03884487971663475, -0.08615158498287201, -0.01230939757078886, 0.02193543128669262, 0.01727858930826187, -0.039412789046764374, 0.006963966879993677, -0.012110630050301552, 0.004660391714423895, -0.00871738139539957, 0.02409348078072071, 0.012714031152427197, -0.00856830645352602, 0.011436239816248417, -0.016824262216687202, -0.0018403755966573954, -0.01159951277077198, 0.006534487009048462, -0.0294176135212183, 0.001007148646749556, 0.023525573313236237, 0.0027561266906559467, -0.02566942386329174, 0.022347165271639824, 0.0023958601523190737, -0.009377574548125267, -0.008958742953836918, -0.03515348210930824, -0.001068376237526536, 0.010421104729175568, 0.02020331285893917, 0.019280463457107544, -0.010215237736701965, 0.012898601591587067, -0.0279836468398571, 0.008248858153820038, -0.016668088734149933, -0.010122952982783318, -0.016895251348614693, 0.022560128942131996, -0.04154244065284729, 0.005554846487939358, 0.018684159964323044, 0.0411733016371727, -0.007517676800489426, -0.020927395671606064, 0.007411194499582052, -0.024945341050624847, 0.03518187627196312, -0.015219924040138721, -0.024576202034950256, -0.011201977729797363, -0.022588524967432022, -0.010989012196660042, -0.01119487825781107, 0.032597895711660385, -0.02372433990240097, -0.0017409917199984193, 0.01803106628358364, -0.017349576577544212, -0.014211887493729591, -0.006697760429233313, -0.005618735682219267, -0.03697078675031662, 0.0073047117330133915, 0.006307323928922415, 0.004053440410643816, -0.015106342732906342, -0.012160321697592735, 0.0012538335286080837, -0.019592812284827232, -0.014211887493729591, 0.01675327494740486, -0.019067497923970222, 0.0029903885442763567, -0.04077576473355293, -0.013033479452133179, -0.021310733631253242, -0.02118295431137085, 0.006658716592937708, 0.006701309699565172, -0.015589063987135887, -0.015390296466648579, 0.019592812284827232, -0.022091606631875038, 0.02822500839829445, 0.015248319134116173, -0.006917824503034353, 0.00849021878093481, 0.008667689748108387, -0.01149303000420332, 0.0005168846691958606, 0.009782208129763603, 0.008838062174618244, 0.018002670258283615, -0.02470398135483265, 0.01470880676060915, -0.0004933697055093944, -0.007123691029846668, -0.0004463398945517838, 0.025584237650036812, -0.06383281201124191, 0.008099782280623913, -0.076383575797081, 0.032228756695985794, 0.010634070262312889, -0.024661388248205185, -0.015674250200390816, -0.010875430889427662, 0.014446149580180645, -0.011947356164455414, 0.004362240433692932, 0.009547946974635124, -0.042536281049251556, 0.014935970306396484, 0.01690944842994213, 0.005459011998027563, -0.009760911576449871, -0.022844083607196808, 0.02328421175479889, -0.027586111798882484, 0.011464634910225868, 0.02365335263311863, -0.00428770249709487, 0.018428601324558258, 0.029304033145308495, 0.02216259390115738, -0.019280463457107544, -0.00010332147212466225, -0.003011685097590089, -0.016057588160037994, -0.0072905137203633785, 0.0024065084289759398, 0.0005199903971515596, -0.0238095261156559, 0.00026332278503105044, 0.01459522545337677, -0.026095354929566383, -0.00464264489710331, 0.035210270434617996, 0.028991682454943657, 0.0070881969295442104, 0.03623250499367714, -0.019819974899291992, -0.035976946353912354, 0.010832837782800198, -0.0031589861027896404, -0.015077946707606316, 0.020160719752311707, 0.008752875961363316, 0.024590399116277695, 0.002603501547127962, 0.0013904862571507692, 0.030553428456187248, 0.0015857045073062181, -0.012139025144279003, -0.03137689456343651, 0.01250106655061245, 0.0004478927585296333, 0.017917485907673836, 0.011805379763245583, -0.03205838426947594, -0.031632453203201294, 0.03609052672982216, -0.0036772016901522875, 0.005455462262034416, -0.0034198686480522156, 0.014566830359399319, -0.015432889573276043, -0.0244058296084404, -0.008880655281245708, -0.013310334645211697, -0.0179600790143013, -0.020686034113168716, -0.0024402278941124678, 0.008830963633954525, 0.019280463457107544, 0.009356277994811535, -0.005817503668367863, -0.016199564561247826, 4.8860019887797534e-05, -0.007276316173374653, 0.01638413406908512, 0.03129170835018158, -0.008561206981539726, -0.01923787035048008, -0.010151348076760769, 0.004017946310341358, 0.010094557888805866, -0.0025413865223526955, 0.024263853207230568, -0.0036984982434660196, 0.02065763995051384, -0.017917485907673836, 0.022318769246339798, -0.008610899560153484, -0.0016487067332491279, -0.009689923375844955, 0.011336855590343475, -0.028324391692876816, 0.004990488290786743, 0.026535483077168465, 0.039696741849184036, 0.010989012196660042, 0.0025520347990095615, 0.009398871101439, -0.039043646305799484, -0.02970156818628311, -0.014737202785909176, -0.01841440424323082, -0.003702047746628523, -0.007467985153198242, 0.005459011998027563, -0.004734929651021957, 0.028721926733851433, 0.017023030668497086, 0.008561206981539726, -0.015092144720256329, 0.02775648422539234, -0.013331631198525429, -0.004649743437767029, -0.028949091210961342, 0.0347275510430336, 0.009476957842707634, -0.02006133645772934, 0.008532811887562275, -0.011400745250284672, 0.018130449578166008, 0.03276826813817024, 0.02880711294710636, -0.037226345390081406, 0.006534487009048462, -0.0193940456956625, 0.019876766949892044, 0.0006411144277080894, -0.01115228608250618, 5.4350533901015297e-05, -0.012635944411158562, -0.01316835731267929, -0.00439418526366353, -5.654119377140887e-05, -0.0142899751663208, 0.09506773203611374, 0.029133660718798637, 0.0004044123343192041, 0.0167674720287323, -0.02806883305311203, -0.026137948036193848, 0.01436806283891201, 0.010946419090032578, 0.005682625342160463, -0.03637448325753212, 0.00375173962675035, 0.006935571786016226, -0.00692492350935936, -0.02992873080074787, -0.000984964775852859, -0.008348241448402405, -0.002032044343650341, 0.027500925585627556, -0.007929409854114056, 0.0003675870830193162, 0.018811939284205437, 0.006864583119750023, 0.010151348076760769, 0.0023745635990053415, -0.02065763995051384, -0.014318370260298252, 0.01002356968820095, 0.004206065554171801, 0.03475594520568848, -0.06070932373404503, 0.022545931860804558, 0.009995173662900925, -0.04310418665409088, -0.026677459478378296, 0.01610018126666546, 0.008284351788461208, -0.0010089233983308077, -0.014531335793435574, 0.011201977729797363, -0.004458074923604727, 0.010605674237012863, 0.010456598363816738, 0.002408283296972513, -0.04455235227942467, -0.02214839681982994, 0.0018128675874322653, -0.022588524967432022, -0.0036328339483588934, -0.04526223614811897] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_a_survey_of_blockchainbased_strategies_for_healthcare.json b/database/embeddings/publications_txt/2022_a_survey_of_blockchainbased_strategies_for_healthcare.json new file mode 100644 index 0000000000000000000000000000000000000000..d96111783d155fcfafae6bd904e825e4caa2f8ba --- /dev/null +++ b/database/embeddings/publications_txt/2022_a_survey_of_blockchainbased_strategies_for_healthcare.json @@ -0,0 +1 @@ +[0.008659051731228828, 0.0211650263518095, 0.013255917467176914, -0.033302973955869675, -0.0048815663903951645, 0.0035761117469519377, -0.031858641654253006, -0.0034962568897753954, -0.026595162227749825, -0.03299744427204132, 0.01691535674035549, 0.007325821556150913, 0.00538847129791975, 0.017054233700037003, -0.0037392936646938324, 0.011672706343233585, 0.038774773478507996, -0.024761971086263657, -0.028067270293831825, -0.015359921380877495, -0.013061488047242165, -0.0008562704897485673, -0.02580355666577816, 0.025567464530467987, -0.003808732610195875, 0.03152533620595932, 0.020665066316723824, -0.03549724817276001, -0.014415550045669079, -0.005631508305668831, 0.003317451337352395, -0.012637909501791, -0.025859108194708824, -0.005801633931696415, -0.01649872213602066, -0.002399119781330228, 0.012179612182080746, -0.019748469814658165, 0.011721313931047916, -0.006916130892932415, -0.003251484129577875, 0.016929244622588158, 0.015540462918579578, 0.00564192421734333, 0.005207929760217667, -0.00701334560289979, 0.04596865922212601, -0.027886727824807167, -0.0234148520976305, 0.018692996352910995, -0.014401662163436413, 0.03871922194957733, -0.030914271250367165, 0.011047755368053913, 0.006846691947430372, -0.009881178848445415, 0.014609979465603828, 0.013033712282776833, 0.002256769686937332, -0.018206922337412834, 0.03660827502608299, -0.02035953290760517, -0.034775082021951675, -0.017679186537861824, -0.007916053757071495, -0.011589379981160164, -0.013019824400544167, 0.02991434931755066, -0.008381295017898083, 0.026386843994259834, 0.014415550045669079, 0.00984645914286375, -0.004648945294320583, -0.007200831081718206, 0.014116961508989334, -0.02060951478779316, 0.004010105971246958, -0.014415550045669079, -0.0038712278474122286, 0.02465086802840233, -0.01253375131636858, 0.002600492909550667, 0.00844379048794508, 0.004878094419836998, 0.01966514252126217, 0.03135868161916733, 0.0008818760979920626, 0.024137018248438835, -0.01309620775282383, -0.008784041740000248, -0.005527349654585123, 0.0043746610172092915, 0.01892908848822117, 0.006707813590764999, -0.023178759962320328, 0.027761738747358322, 0.004603810142725706, 0.012068509124219418, 0.01123524084687233, -0.017818063497543335, -0.004142040386795998, 0.011894911527633667, -0.02394258975982666, -0.02833113819360733, -0.016304291784763336, -0.009332610294222832, -0.0002675573923625052, 0.019581817090511322, 0.010520018637180328, -0.0021526110358536243, -0.03591388463973999, 0.04119125381112099, -0.028303362429142, -0.012325434014201164, -0.01097137201577425, -0.021331680938601494, 0.007582745980471373, 0.00390594732016325, 0.0018314553890377283, -0.002202954376116395, 0.035052839666604996, 0.0030848304741084576, 0.009207620285451412, -0.0068640513345599174, 0.014193344861268997, 0.007499419152736664, -0.03991357609629631, -0.020595626905560493, 0.004964893218129873, -0.023067656904459, 0.00010529783321544528, -0.0019356139237061143, -0.00761746522039175, 0.019373498857021332, 0.022831564769148827, 0.015596013516187668, -0.006478664930909872, -0.009645085781812668, -0.03605276346206665, -0.04096904769539833, 0.006700869649648666, 0.040496863424777985, -0.02615075185894966, -0.008853481151163578, -0.03110870160162449, 0.004298278130590916, 0.02060951478779316, 0.012283770367503166, 0.03216417506337166, 0.030219880864024162, -0.005843297112733126, -0.024442551657557487, -0.025470249354839325, 0.019151294603943825, -0.01133939903229475, 0.013304525054991245, -0.011818529106676579, 0.03846924006938934, 0.01049918681383133, -0.025053614750504494, -0.0048815663903951645, 0.008020211942493916, -0.015915432944893837, -0.0018991584656760097, 0.005162794608622789, 0.02871999703347683, 0.036774929612874985, 0.015512687154114246, 0.0016691414639353752, 0.0022515617311000824, -0.0226787980645895, 0.019845684990286827, -0.017748624086380005, -0.017609747126698494, -0.006759893149137497, 0.04199674725532532, 0.008714602328836918, 0.015734892338514328, -0.015679340809583664, -0.024095354601740837, -0.006669622380286455, -0.01476274523884058, 0.02888665162026882, 0.04133013263344765, -0.011506052687764168, 0.029581042006611824, 0.03977469727396965, -0.0021803865674883127, 0.00998533796519041, 0.006860579364001751, 0.04855179414153099, 0.01730421558022499, 0.0059960633516311646, 0.004482291638851166, -0.6035087704658508, -0.01184630487114191, 0.009908954612910748, -0.00514196278527379, -0.0038469242863357067, -0.007666072808206081, 0.03763597458600998, 0.012492087669670582, -0.025609126314520836, 0.02240104228258133, 0.0015658509219065309, 0.018415240570902824, 0.01476274523884058, -0.015957096591591835, -0.02123446576297283, -0.006464777048677206, 0.01437388639897108, -0.030081002041697502, 0.04671860113739967, -0.011506052687764168, 0.007742455694824457, 0.03177531436085701, 0.010367251932621002, -0.0016830293461680412, 0.0040656570345163345, 0.01608208753168583, 0.02222049981355667, -0.012061565183103085, 0.017526419833302498, 0.006773780565708876, -0.047524094581604004, 0.02366483397781849, 0.008145201951265335, 0.007311933673918247, 0.04457987844944, -0.007270270027220249, -0.012825394980609417, 0.015123828314244747, 0.032247502356767654, 0.015859883278608322, -0.003985802177339792, -0.034969512373209, 0.019776245579123497, -0.008971527218818665, -0.019304059445858, 6.596711318707094e-05, 0.02338707633316517, 0.002692499663680792, -0.015637677162885666, -0.010401971638202667, -0.013123983517289162, -0.014596091583371162, -0.001081513473764062, -0.0038330364041030407, 0.017095897346735, 0.01142967026680708, 0.025900771841406822, -0.02559523843228817, 0.029219958931207657, 0.0045447866432368755, 0.025761893019080162, 0.00607244623824954, -0.01842912845313549, -0.04530204460024834, 0.0011882759863510728, 0.028247810900211334, -0.001907838275656104, 0.007235550321638584, 0.0021908024791628122, -0.01966514252126217, 0.010172823444008827, 0.01444332581013441, -0.009561759419739246, -0.011881023645401001, 0.013255917467176914, 0.028386689722537994, 0.007895221933722496, 0.007173055317252874, 0.0038469242863357067, 0.0070688966661691666, 0.012624021619558334, 0.001386177376843989, -0.013617000542581081, -0.005246121436357498, 0.010138103738427162, 0.015596013516187668, -0.016720926389098167, -0.010769998654723167, 0.00863821990787983, 0.0026734040584415197, 0.014512764289975166, 0.014582203701138496, 0.0027879783883690834, -0.008561836555600166, 0.006784196477383375, 0.0241509061306715, -0.006055086385458708, 0.013880869373679161, 0.0010962692322209477, -0.023123208433389664, -0.007353596854954958, 0.019776245579123497, -0.014040579088032246, -0.006794612389057875, 0.014096129685640335, 0.014776633121073246, -0.01395725179463625, 0.0049961404874920845, 0.03499728813767433, -0.039163634181022644, 0.0022081623319536448, -0.0007503759115934372, -0.005128074903041124, -0.0019130462314933538, 0.028233923017978668, -0.039163634181022644, 0.02710901014506817, 0.006707813590764999, -0.00011251298565184698, 0.013665608130395412, 0.019595704972743988, 0.0075202505104243755, 0.00042987120104953647, -0.00681891618296504, -0.006964738015085459, 0.019998449832201004, 0.0012863586889579892, -0.03399736434221268, -0.0021161555778235197, 0.001324550132267177, -0.011658819392323494, -0.02545636147260666, 0.023970365524291992, 0.0012238635681569576, 0.023192647844552994, -0.01983179710805416, 0.023373188450932503, -0.017929166555404663, -0.006305066868662834, -0.026303518563508987, 0.005655811633914709, -0.0048954542726278305, 0.021220577880740166, 0.0012342793634161353, -0.05694003403186798, -0.031330905854701996, -0.015401584096252918, 0.022317714989185333, 0.0055099898017942905, 0.0019755414687097073, -0.01797083020210266, 0.0044232686050236225, -0.015651565045118332, 0.03141423314809799, 0.002942480379715562, 0.00033352451282553375, 0.007645240984857082, -0.021776091307401657, -0.005138490814715624, -0.019526265561580658, -0.004030937794595957, 0.03552502393722534, 0.0005090751219540834, -0.029303286224603653, 0.014346110634505749, -0.00545791070908308, -0.012908722274005413, 0.0100408885627985, 0.021040037274360657, -0.025442473590373993, -0.004076072946190834, -0.006360618397593498, -0.016054311767220497, 0.027581196278333664, -0.017859727144241333, 0.04880177602171898, 0.005433606915175915, 0.0033903622534126043, 0.0038781717885285616, -0.004596866201609373, -0.02952549047768116, 0.01854022964835167, 0.0039233071729540825, -0.003985802177339792, 0.016762590035796165, 0.0064751929603517056, 0.012644853442907333, 0.00402746582403779, 0.027511756867170334, -0.013582280836999416, 0.0075341383926570415, -0.0019425578648224473, 0.0044163246639072895, 0.031719766557216644, -0.01353367418050766, 0.005169738549739122, -0.020970597863197327, 0.006982097867876291, 0.015443247742950916, 0.015179379843175411, 0.04099682345986366, 0.02299821749329567, 0.00837435107678175, -0.008534060791134834, 0.005957871675491333, -0.03219195082783699, 0.025400809943675995, 0.0003747539594769478, 0.010388083755970001, -0.011818529106676579, 0.024525877088308334, -0.013054544106125832, -0.018970752134919167, -0.006384922191500664, -0.0010728335473686457, 0.007693848572671413, -0.0219427440315485, 0.007235550321638584, 0.004971837159246206, 0.032914116978645325, 0.001317606307566166, -0.007784119341522455, 0.023831486701965332, -0.017498644068837166, -0.01617930270731449, 0.030136553570628166, 0.03771929815411568, 0.014137793332338333, 0.006759893149137497, -0.011929631233215332, -0.010381139814853668, 0.016734814271330833, 0.02412313036620617, -0.0044302125461399555, -0.007763287518173456, 0.024275897070765495, 0.03885810077190399, -0.0036212471313774586, 0.011172745376825333, -0.013415627181529999, -0.005770386196672916, 0.05677337944507599, 0.028233923017978668, -0.024775858968496323, 0.010061720386147499, -0.002117891563102603, 0.005329448264092207, 0.017720850184559822, 0.011256072670221329, 0.013630888424813747, -0.029719918966293335, 0.02141500823199749, -0.010520018637180328, 0.0227204617112875, 0.024137018248438835, -0.01240876130759716, -0.011096362955868244, -0.005221817642450333, 0.024164794012904167, 0.012068509124219418, 0.025817444548010826, 0.02412313036620617, -0.015887657180428505, 0.02095670998096466, 0.001320210169069469, -0.023067656904459, -0.010999147780239582, -0.014193344861268997, -0.005648867692798376, -0.00824936106801033, -0.009700637310743332, -0.018623556941747665, 0.005891904700547457, -0.003947610966861248, -0.010013112798333168, 0.03899697959423065, 0.022026071324944496, -0.01502661406993866, 0.011936575174331665, 0.007666072808206081, -0.033302973955869675, -0.009165956638753414, 0.01604042388498783, 0.028525568544864655, 0.029053304344415665, -0.03619164228439331, 0.015318257734179497, -0.0054891579784452915, -0.040746841579675674, -0.0026977076195180416, 0.00477393576875329, -0.011499108746647835, -0.009117349050939083, -0.031719766557216644, -0.043274424970149994, -0.0018470791401341558, 0.04244115576148033, -0.011103306896984577, -0.024553652852773666, -0.009665917605161667, 0.009756188839673996, 0.004051769617944956, -0.019401274621486664, -0.01962347887456417, 0.04455210268497467, -0.0011414046166464686, -0.0006314615020528436, -0.007679960690438747, 0.014089186675846577, -0.018109707161784172, 0.018512453883886337, -0.01160326786339283, -0.022692685946822166, -0.018762435764074326, 0.02412313036620617, 0.03483063355088234, 0.007568858098238707, 0.017012570053339005, 0.007721623871475458, -0.011304679326713085, -0.013818373903632164, -0.029858797788619995, -0.029886573553085327, 0.004836430773139, 0.066828154027462, 0.019595704972743988, 0.002923384541645646, 0.01804026961326599, 0.013471178710460663, -0.007464699447154999, -0.013061488047242165, -0.019442938268184662, 0.00849239807575941, -0.014137793332338333, -0.006916130892932415, 6.846257747383788e-05, -0.025428585708141327, 0.018165258690714836, 0.011540772393345833, -0.005096827168017626, -0.012068509124219418, -0.011026923544704914, 0.0006522932089865208, 0.011325511150062084, 0.015359921380877495, -0.012151836417615414, 0.02359539456665516, 0.03788595274090767, 0.03258080780506134, -0.02688680589199066, 0.033719610422849655, -0.00011348947009537369, 0.00328620383515954, -0.006704341620206833, -0.0054822140373289585, 0.01699868217110634, 0.01272818073630333, 0.02152610942721367, -0.00942288152873516, 0.03746931999921799, 0.003310507396236062, 0.008291024714708328, 0.02794227935373783, 0.013825317844748497, 0.03619164228439331, 0.02913663163781166, 0.007798006758093834, -0.004214951302856207, -0.012186556123197079, -0.05216262489557266, -0.013735046610236168, 0.030525412410497665, -0.016137639060616493, 0.0034250819589942694, 0.016262628138065338, 0.0013965931721031666, -0.03285856544971466, -0.040108002722263336, 0.03005322813987732, 0.007818838581442833, 0.008534060791134834, 0.008929863572120667, -0.0059405118227005005, -0.027497868984937668, -0.018345801159739494, -0.02555357664823532, 0.0026317406445741653, -0.01797083020210266, -0.021290017291903496, -0.014318334870040417, -0.03602498769760132, -0.012908722274005413, 0.0034979928750544786, 0.030803168192505836, -0.001360137714073062, 0.0019234621431678534, -0.04957949370145798, 0.012519863434135914, -0.011263016611337662, -0.007367484737187624, 0.021387232467532158, 0.012936498038470745, 0.009853403083980083, 0.010811662301421165, -0.01537380926311016, -0.0045725624077022076, -0.002399119781330228, -0.035302821546792984, 0.002772354753687978, -0.0144988764077425, -0.022456593811511993, -0.04174676537513733, -0.018193034455180168, 0.04574645683169365, -0.018512453883886337, -0.014971062541007996, -0.004346885252743959, 0.018901312723755836, -0.012221275828778744, 0.029692143201828003, 0.012325434014201164, 0.017359767109155655, 0.00663490267470479, 0.004287862218916416, 0.010707504115998745, -0.005721779074519873, 0.00827019289135933, -0.023262087255716324, 0.012082397006452084, -0.0045656184665858746, -0.00991589855402708, 0.009624253958463669, -0.007037649396806955, -0.017179224640130997, -0.004280918277800083, -0.01344340294599533, 0.016734814271330833, 0.0022966971155256033, -0.0018765907734632492, 0.008707658387720585, 0.006169660948216915, -0.004728800151497126, 0.0025813973043113947, -0.01370727177709341, -0.0015649829292669892, 0.013040656223893166, 0.00731887761503458, 0.016665374860167503, -0.012762900441884995, 0.01667926274240017, 0.004905869718641043, -0.008082707412540913, -0.04416324570775032, -0.006839748006314039, 0.001067625591531396, 0.02219272591173649, -0.0122698824852705, -0.03099759854376316, -0.035747230052948, 0.01604042388498783, -0.017040345817804337, -0.009679805487394333, -0.017831951379776, -0.036636050790548325, -0.000404916558181867, 0.004930173512548208, 0.004485763609409332, -0.007221662905067205, 0.02422034554183483, -0.030219880864024162, 0.0009408993064425886, 0.008381295017898083, 0.0016726134344935417, 0.014707193709909916, 0.006259931717067957, 0.010311701335012913, 0.0034736893139779568, -0.009832571260631084, -0.020873382687568665, -0.02260935865342617, -0.013985027559101582, -0.020859494805336, 0.042357828468084335, 0.027303440496325493, 0.026747927069664, 0.03327519819140434, 0.006193964742124081, 0.019540153443813324, 0.008777097798883915, 0.005846769083291292, -0.011665763333439827, 0.0017533364007249475, -0.011624099686741829, -0.0021265712566673756, 0.0055099898017942905, -0.02123446576297283, 0.021901080384850502, -0.014248896390199661, 0.021748315542936325, 0.005135018844157457, 0.0044232686050236225, -0.006610598880797625, -0.01804026961326599, -0.029358835890889168, -0.0182208102196455, 0.001324550132267177, 0.0008554024971090257, -0.00024173474230337888, -0.056995585560798645, -0.012026846408843994, 0.028914427384734154, -0.001907838275656104, 0.007124448195099831, -0.021789979189634323, 0.01013115979731083, -0.0010901932837441564, 0.013415627181529999, -0.0014243688201531768, 0.01309620775282383, -0.01677647791802883, 0.008193809539079666, -0.03685825690627098, -0.0070480648428201675, 0.017498644068837166, 0.0009721469250507653, 0.02222049981355667, 0.017540307715535164, -0.0160126481205225, 0.01502661406993866, 0.017568083480000496, 2.2988127966527827e-05, -0.010950540192425251, 0.009540927596390247, -0.02278990112245083, -0.014929398894309998, -0.0011301208287477493, -0.00937427394092083, -0.019776245579123497, 0.005836353171616793, 0.0022723933216184378, 0.006141885183751583, 0.018915200605988503, -0.013554505072534084, -0.032664135098457336, 0.0011535565136000514, 0.016137639060616493, 0.014359998516738415, -0.004218423273414373, 0.019429050385951996, 0.02099837362766266, -0.012242106720805168, -0.011783809401094913, 0.010978315956890583, 0.005329448264092207, -0.008888199925422668, 0.027289552614092827, 0.026247967034578323, -0.01730421558022499, -0.02653961069881916, 0.022581584751605988, 0.019595704972743988, -0.014887735247612, -0.03769152611494064, 0.012561527080833912, 0.03177531436085701, -0.010047832503914833, -0.03244193270802498, -0.02980324625968933, -0.019720694050192833, 0.015651565045118332, -0.027289552614092827, 0.00035913015017285943, 0.006402281578630209, -0.013735046610236168, 0.008874312043190002, -0.0078118946403265, -0.010242261923849583, 0.03658049926161766, -0.003860811935737729, -0.03235860541462898, -0.0036108314525336027, 0.0015806066803634167, -0.03666382655501366, -0.0040934327989816666, -0.002425159327685833, 0.014172513037919998, -0.02359539456665516, 0.013248973526060581, 0.03127535432577133, 0.012742068618535995, 0.03096982277929783, -0.007860502228140831, -0.01699868217110634, 0.023109320551156998, -0.0022324658930301666, 0.00025323560112155974, 0.010665840469300747, -0.024623092263936996, -0.0059752315282821655, 0.002944216364994645, 0.013610056601464748, 0.004909341689199209, -0.005266953259706497, -0.010783886536955833, 0.015818219631910324, 0.01854022964835167, 0.0035292403772473335, -0.00260222889482975, 0.021040037274360657, -0.024345336481928825, 0.02240104228258133, -0.0017194848041981459, 0.0010112064192071557, -0.005124602932482958, -0.02815059758722782, 0.002831377787515521, -0.004326053895056248, 0.012318490073084831, 0.0031039260793477297, 0.0264423955231905, -0.008395182900130749, 0.005058635957539082, -0.014457213692367077, -0.008520172908902168, 0.006173132918775082, -0.015318257734179497, -0.007450811564922333, -0.0016118542989715934, -0.0075202505104243755, -0.011950463056564331, 0.006332842633128166, 0.008207697421312332, -0.03149756044149399, -0.030081002041697502, -0.02587299607694149, -0.0011075531365349889, -0.01358922477811575, -0.0010007905075326562, 0.004162871744483709, -0.0011822000378742814, -0.00724943820387125, -0.012394873425364494, -0.030275432392954826, 0.038358140736818314, -0.01941516250371933, 0.01114496961236, 0.020901158452033997, -0.021151138469576836, 0.024942511692643166, -0.02555357664823532, 0.02320653572678566, -0.005836353171616793, -0.02499806322157383, -0.018581893295049667, 0.0030188632663339376, 0.021178914234042168, -0.015818219631910324, -0.006659206468611956, -0.008589612320065498, -0.0011761242058128119, -0.03360850736498833, 0.012450424022972584, 0.003697630250826478, -0.014623867347836494, 0.011867135763168335, -0.011929631233215332, 0.014665530063211918, -0.005082939751446247, -0.015776555985212326, -0.03235860541462898, -0.010290869511663914, 0.009728413075208664, -0.00998533796519041, -0.0020883798133581877, 0.0018436071695759892, 0.03074761852622032, 0.018415240570902824, -0.019651254639029503, -0.054468002170324326, 0.002593548968434334, -0.004117736592888832, -0.014790521003305912, 0.0045517305843532085, 0.018262473866343498, 0.00849934108555317, -0.0026664601173251867, 0.018526341766119003, 0.04427434876561165, -0.0044163246639072895, 0.009825627319514751, -0.014901623129844666, -0.011207465082406998, 0.012610133737325668, -0.01320036593824625, 0.021928856149315834, -0.0038260924629867077, -0.05013500526547432, -0.0044024367816746235, 0.002555357525125146, 0.023914813995361328, -0.015512687154114246, 0.03708045929670334, -0.018387464806437492, -0.02102614939212799, -0.003721933811903, -0.007107088342308998, -0.009040966629981995, 0.007124448195099831, -0.015457135625183582, -0.04191341996192932, 0.01253375131636858, 0.011054699309170246, 0.005305144470185041, 0.011332455091178417, 0.011186633259057999, 0.004471875727176666, -0.0011882759863510728, 0.013089263811707497, -0.02401202917098999, 0.0014894679188728333, 0.009040966629981995, -0.016345955431461334, 0.017873615026474, 0.014262784272432327, 0.0011795960599556565, 0.02278990112245083, -0.007235550321638584, -0.0009478432475589216, 0.000526434916537255, 0.013228141702711582, -0.017456980422139168, -0.015554350800812244, 0.0093048345297575, -0.013804486021399498, -0.013179534114897251, 0.0008632143726572394, -0.014471100643277168, 0.008582668378949165, 0.008770153857767582, -0.00477393576875329, -0.019081855192780495, -0.021456671878695488, 0.001098005217500031, 0.008700714446604252, -0.0067494772374629974, -0.0308587197214365, -0.030108777806162834, 0.006825860124081373, 0.001619666232727468, -0.028497792780399323, 0.0010493978625163436, -0.008332687430083752, 0.014484988525509834, 0.002661252161487937, -0.01695702038705349, 0.02226216346025467, 0.018387464806437492, -0.002577925333753228, -0.020942822098731995, -0.007027233485132456, 0.18898536264896393, -0.008749322034418583, 0.0016118542989715934, 0.009888122789561749, 0.017748624086380005, -0.017790287733078003, 0.0264007318764925, 0.007214718963950872, -0.023331526666879654, 0.012387929484248161, 0.004433684051036835, 0.008665995672345161, -0.016457058489322662, -0.0004116434429306537, 0.011374118737876415, 0.004315637983381748, -0.04438545182347298, -0.005728723015636206, -0.0070619527250528336, -0.0025119581259787083, -0.018443016335368156, -0.004152456298470497, -0.011804641224443913, -0.011790753342211246, 0.0007586217834614217, -0.012519863434135914, -0.011158857494592667, -0.00998533796519041, 0.009575647301971912, 0.02559523843228817, -0.0070619527250528336, 0.004128152504563332, 0.006641846615821123, 0.00625645974650979, -0.023956477642059326, -0.02433144859969616, -0.004020521882921457, -0.0013167383149266243, 0.027567308396100998, 0.005256537348031998, -0.001525055500678718, -0.007791063282638788, -0.017706962302327156, -0.025636902078986168, 0.028247810900211334, 0.016665374860167503, -0.01136023085564375, -0.010200598277151585, -0.01615152694284916, -0.012672629207372665, -0.04894065111875534, 0.0029598402325063944, 0.01590154506266117, 0.020192880183458328, -0.024970287457108498, 0.00827019289135933, 0.02478974685072899, 0.018248585984110832, 0.004763519857078791, 0.010825550183653831, 0.024039804935455322, -0.0037184618413448334, 0.007784119341522455, 0.00842295866459608, -0.01437388639897108, 0.009839515201747417, -0.03680270537734032, 0.018554117530584335, 0.0068779392167925835, -0.008367407135665417, -0.012978160753846169, -0.008471566252410412, -0.03135868161916733, 0.002640420338138938, -0.02327597513794899, -0.04177454113960266, 0.041691213846206665, 0.025706341490149498, 0.030025452375411987, 0.02320653572678566, -0.020581739023327827, 0.014540540054440498, -0.012262938544154167, -0.00402746582403779, -0.019109630957245827, -0.04738521948456764, 0.021859416738152504, -0.0029459523502737284, 0.0005498706013895571, -0.004523955285549164, -0.025428585708141327, 0.01854022964835167, -0.011644931510090828, -0.005322504322975874, 0.0025119581259787083, -0.019637366756796837, 0.020803943276405334, 0.0043816049583256245, -0.008256305009126663, 0.0070688966661691666, -0.02141500823199749, 0.08610443770885468, -0.019373498857021332, -0.022706573829054832, 0.006141885183751583, -0.013741990551352501, -0.029358835890889168, 0.007166111376136541, 0.004735744092613459, -0.029831022024154663, 0.0022828092332929373, -0.03399736434221268, -0.013623944483697414, -0.021651100367307663, 0.013860037550330162, 0.043191097676754, 0.024942511692643166, -0.017470868304371834, 0.006839748006314039, -0.02079005539417267, -0.020373420789837837, -0.02249825745820999, 0.020526187494397163, 0.004635057412087917, -0.014596091583371162, 0.0016040423652157187, 0.004339941777288914, -0.025053614750504494, -0.016123751178383827, -0.002135251183062792, 0.027956167235970497, 0.0006592370918951929, 0.0015337353106588125, -0.0012099756859242916, -0.005266953259706497, 0.009242339059710503, 0.006728645414113998, -0.012505975551903248, -0.00502044428139925, 0.026845142245292664, -0.025817444548010826, -0.012346265837550163, -0.0008167769992724061, 0.01576266810297966, -0.002143931109458208, -0.054717984050512314, -0.005895376671105623, 6.368863978423178e-05, -0.0067633651196956635, -0.012887890450656414, -0.010721391998231411, 0.0004752236127387732, -0.007256382144987583, -0.029469938948750496, 0.031442008912563324, -0.002647364279255271, 0.024345336481928825, -0.01840135268867016, 0.004964893218129873, -0.0032757879234850407, -0.01569322869181633, 0.015207155607640743, 0.021442783996462822, -0.011762977577745914, -0.010943596251308918, -0.002609172835946083, -0.1767640858888626, 0.016929244622588158, 0.00011294698197161779, -0.01353367418050766, 0.01610986329615116, -0.020303983241319656, 0.0027949223294854164, 0.004440627992153168, 0.0015424152370542288, -0.006603654939681292, 0.023748159408569336, 0.004576034378260374, -0.0012203915975987911, -0.020109552890062332, -0.005558596923947334, -0.007311933673918247, -0.013492010533809662, 0.012915666215121746, 0.028247810900211334, 0.023289863020181656, 0.012019902467727661, -0.035441700369119644, 0.003388626268133521, -0.02281767688691616, -0.001133592682890594, 0.005065579898655415, -0.014457213692367077, 0.022067734971642494, -0.012957329861819744, -0.011311623267829418, -0.01197129487991333, 0.004239255096763372, 0.011762977577745914, 0.00533639220520854, -0.006579351611435413, 0.017359767109155655, -0.01920684613287449, -0.0063189547508955, -0.009638141840696335, 0.039969123899936676, 0.008936807513237, 0.04877400025725365, -0.023998141288757324, -0.0211650263518095, -0.001740316511131823, 0.004864206537604332, 0.021081700921058655, -0.006773780565708876, 0.007964660413563251, -0.024567540735006332, -0.005447494797408581, 0.0036143034230917692, 0.02647017128765583, 0.003499728860333562, -0.004499651491641998, 0.023234311491250992, -0.002569245407357812, -0.010276981629431248, -0.008159089833498001, -0.007179999258369207, -0.02313709631562233, -0.026136863976716995, -0.012790675275027752, 0.015804331749677658, -0.004478819668292999, -0.027678411453962326, -0.02099837362766266, 0.014582203701138496, -0.027775626629590988, 0.014262784272432327, -0.052801463752985, 0.011422726325690746, 0.0034650093875825405, -0.0019286699825897813, 0.02871999703347683, 0.005173210520297289, -0.012811507098376751, 0.015165491960942745, 0.016970908269286156, -0.013603112660348415, 0.014596091583371162, 0.015290481969714165, -0.03694158419966698, -0.010138103738427162, 0.017262551933526993, -0.0027480509597808123, -0.014901623129844666, 0.0025206380523741245, -0.011936575174331665, 0.004732272122055292, 0.007971604354679585, -0.029053304344415665, -0.011346342973411083, -0.003468481358140707, -0.0011292528361082077, 0.018734659999608994, -0.0010563418036326766, -0.0048746224492788315, -0.004596866201609373, -0.01604042388498783, 0.019248507916927338, 0.008291024714708328, -0.015637677162885666, 0.009471488185226917, 0.013505898416042328, -0.005683587398380041, 0.0015267914859578013, 0.007200831081718206, 0.04158011078834534, -0.004249670542776585, -0.04627419263124466, 0.016401506960392, 0.005777330137789249, 0.0234565157443285, 0.014248896390199661, 0.03660827502608299, -0.022276051342487335, -0.010908877477049828, 0.019387386739253998, -0.013123983517289162, 0.05788440257310867, 0.003461537417024374, 0.013783654198050499, 0.032636359333992004, -0.020665066316723824, -0.005773858167231083, -0.07677183300256729, -0.021859416738152504, 0.01966514252126217, 0.017193112522363663, 0.00496836518868804, 0.005600260570645332, -0.011547716334462166, 0.007902165874838829, 0.011096362955868244, 0.031219802796840668, -0.012749012559652328, -0.03360850736498833, -0.012575414963066578, -0.015179379843175411, 0.016373731195926666, -0.002713331487029791, -0.02672015130519867, -0.029581042006611824, 0.024581428617239, 0.0204289723187685, -0.004919757600873709, -0.028414465487003326, 0.01833191327750683, -0.01097137201577425, 0.007107088342308998, 0.003600415540859103, -0.03044208511710167, 0.023150984197854996, 0.006159245036542416, 0.012186556123197079, 0.024845296517014503, -0.01067278441041708, 0.03360850736498833, -0.008214641362428665, 0.030247656628489494, -0.02724788896739483, 0.015193267725408077, -0.006371034309267998, 0.030636515468358994, -0.04283001646399498, 0.012665685266256332, 0.005822465755045414, 0.025817444548010826, -0.007079312577843666, 0.015082164667546749, -0.004548258613795042, -0.04296889156103134, 0.019956788048148155, -0.0012368833413347602, -0.025914659723639488, -0.028108933940529823, -0.024067580699920654, -0.007673016749322414, -0.014290559105575085, 0.0241925697773695, -0.012255994603037834, -0.002128307241946459, 0.011089419014751911, -0.03858034312725067, -0.025636902078986168, -0.013380907475948334, -0.021290017291903496, -0.03980247303843498, 0.03819148615002632, 0.017998605966567993, 0.007971604354679585, -0.019317947328090668, 0.014887735247612, 0.008582668378949165, -0.027150673791766167, -0.020873382687568665, 0.009783964604139328, -0.02840057760477066, 0.004562146496027708, -0.004225367214530706, -0.011158857494592667, -0.011110249906778336, -0.026206303387880325, 0.014554427936673164, -0.009929786436259747, 9.81233642960433e-06, -0.004332997836172581, -0.0014044051058590412, -0.026136863976716995, 0.017915278673171997, 0.008207697421312332, -0.003996218089014292, 0.01727643981575966, 0.02348429150879383, -0.03216417506337166, 0.029969900846481323, 0.01140883844345808, -0.007367484737187624, -0.007027233485132456, -0.005409303121268749, 0.009471488185226917, -0.005280840676277876, -0.0008245888748206198, -0.022512145340442657, 0.0014087450690567493, -0.04938506335020065, 0.021553885191679, -0.0705500915646553, 0.022137174382805824, 0.0006969945970922709, -0.020192880183458328, 0.012450424022972584, 0.00384345231577754, 0.02088727056980133, 0.005082939751446247, -0.0002632174582686275, -0.005131546873599291, -0.032108623534440994, 0.025373034179210663, 0.003978858236223459, -0.011033867485821247, -0.013547561131417751, -0.005419719032943249, 0.029775470495224, 0.001157028367742896, 0.013318412937223911, 0.023123208433389664, -0.011943519115447998, 0.016804253682494164, 0.017040345817804337, -0.0025136941112577915, -0.007554970216006041, 0.026109088212251663, 0.018720772117376328, -0.006437001284211874, -0.023303750902414322, -0.014262784272432327, -0.006350202485918999, -0.018484678119421005, -0.0059821754693984985, 0.023900926113128662, 0.007166111376136541, -0.00038864175439812243, -0.006138413213193417, 0.009665917605161667, 0.0189568642526865, 0.04244115576148033, -0.01762363500893116, -0.04494096338748932, -0.025886883959174156, -0.024942511692643166, -0.0048676785081624985, 5.2791319831158035e-06, -0.01086721383035183, 0.027678411453962326, -0.008096595294773579, -0.024067580699920654, 0.0234148520976305, 0.0063988096080720425, -0.029331060126423836, -0.060050904750823975, -0.0015823426656425, 0.009652029722929, -0.003277523908764124, 0.023956477642059326, -0.004006634000688791, -0.006100222002714872, 0.029497714713215828, -0.013776710256934166, 0.002018940867856145, -0.016193190589547157, 0.02187330462038517, -0.036497171968221664, -0.024039804935455322, -0.003013655310496688, 0.006954322103410959, -0.008902087807655334, -0.01390170119702816, -0.0189568642526865, -0.006121053360402584, 0.015929320827126503, 0.00248418259434402, -0.00235572038218379, -0.015984872356057167, 0.02545636147260666, 0.009888122789561749, 0.029303286224603653, 0.028261698782444, 0.0005937039968557656, -0.01741531677544117, 0.004041353706270456, 0.028636669740080833, 0.024164794012904167, -0.023748159408569336, 0.023817598819732666, -0.004815598949790001, 0.01870688423514366, -0.007152223493903875, 0.011783809401094913, -0.012867058627307415, 0.012485143728554249, -0.026178527623414993, 0.016970908269286156, 0.003258428070694208, 0.005256537348031998, 0.041691213846206665, 0.005857184994965792, 0.02773396298289299, 0.0008575724205002189, 0.017151448875665665, -0.0070480648428201675, -0.04721856489777565, -0.0009382953867316246, -0.014790521003305912, -0.046496398746967316, 0.013797542080283165, 0.007971604354679585, -0.01556823868304491, 0.02871999703347683, -0.007072368636727333, -0.004579506348818541, -0.026275742799043655, 0.01021448615938425, -0.0012698669452220201, 0.013415627181529999, -0.03110870160162449, 0.029969900846481323, 0.006954322103410959, -0.010749166831374168, 0.016651486977934837, -0.014116961508989334, 0.021109474822878838, -0.00478435168042779, 0.01698479615151882, -0.043441079556941986, -0.003721933811903, -0.0085687804967165, -0.0058259377256035805, 0.015512687154114246, -0.004006634000688791, -0.017831951379776, -0.004048297647386789, -0.028831100091338158, -0.004069129005074501, -0.014346110634505749, -0.026178527623414993, 0.0781606137752533, 0.027775626629590988, -0.023150984197854996, -0.007700792048126459, -0.021428896114230156, -0.00942288152873516, 0.022109398618340492, 0.006346730515360832, -0.011276904493570328, -0.011061643250286579, 0.02966436930000782, 0.004437156021595001, -0.014971062541007996, -0.02222049981355667, 0.012485143728554249, 0.011568548157811165, 0.006648790556937456, 0.03416401892900467, -0.008763209916651249, 0.01583210751414299, -0.0016830293461680412, 0.012908722274005413, -0.003192461095750332, -9.314599446952343e-05, -0.012485143728554249, 0.006485608872026205, 0.013880869373679161, -0.003107398049905896, 0.019651254639029503, -0.03471953421831131, 0.0017264287453144789, -0.004336469806730747, -0.038358140736818314, -0.019442938268184662, 0.01983179710805416, -0.010853325948119164, 0.004124680534005165, -0.004204535391181707, 0.019817909225821495, 0.014818296767771244, -0.006055086385458708, 0.045274268835783005, -0.010249205864965916, -0.009811739437282085, -0.023706497624516487, -0.025261931121349335, -0.02222049981355667, 0.006030782591551542, -0.029636593535542488] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_a_survey_on_gpt3.json b/database/embeddings/publications_txt/2022_a_survey_on_gpt3.json new file mode 100644 index 0000000000000000000000000000000000000000..7ae1f91e4426bf1f8c3168c1c93222eea6577f22 --- /dev/null +++ b/database/embeddings/publications_txt/2022_a_survey_on_gpt3.json @@ -0,0 +1 @@ +[0.0016700044507160783, 0.01271468959748745, 0.016174841672182083, -0.000700269069056958, 0.005821845028549433, 0.018824880942702293, -0.00899365171790123, 0.016216034069657326, -0.026280686259269714, -0.042812529951334, 0.02544310875236988, 0.02448195591568947, -0.029246531426906586, -0.005811546929180622, -0.003899537492543459, 0.013696439564228058, 0.02960353158414364, -0.0212277639657259, -0.006673152092844248, 0.01625722646713257, 0.018563995137810707, -0.006377940997481346, -0.0394347608089447, 0.004874421749264002, 0.007970709353685379, 0.03718291595578194, 0.02220264822244644, -0.032020147889852524, -0.003142629051581025, 0.02482522465288639, -0.0029521146789193153, -0.014691920019686222, -0.007026719395071268, -0.013291381299495697, 0.00207506213337183, -0.0066388254053890705, 0.01171234343200922, -0.011410266160964966, 0.017959842458367348, -0.0028989079874008894, 0.0038446146063506603, 0.046739526093006134, 0.011890843510627747, -0.014293727464973927, 0.005787517875432968, -0.013353169895708561, 0.036386530846357346, -0.0431695282459259, -0.024715378880500793, 0.024001378566026688, -0.013861208222806454, 0.03386006876826286, -0.011526978574693203, -0.01139653567224741, -0.011224901303648949, -0.01063447818160057, 0.001817610114812851, 0.02541564777493477, -0.01923680305480957, -0.0021214033477008343, 0.03424452990293503, -0.025072379037737846, -0.02899937704205513, 0.006831055972725153, -0.0038068548310548067, -0.005361864343285561, -0.03641398996114731, 0.012913785874843597, 0.007847133092582226, -0.007565652020275593, 0.0002992877853102982, 0.012151728384196758, 0.002171177417039871, -0.028477609157562256, 0.022751878947019577, -0.01784999668598175, -0.013531669974327087, -0.01178786251693964, -0.01536472700536251, 0.013270785100758076, -0.008162940852344036, -0.00608616229146719, -0.005653643049299717, 0.01798730343580246, 0.0013378915609791875, 0.03490360826253891, 0.009796901606023312, -0.013456150889396667, -0.01563934236764908, -0.013188401237130165, 0.014911611564457417, 0.0035356723237782717, 0.024715378880500793, 0.022751878947019577, -0.006202873773872852, 0.020596148446202278, -0.012783342972397804, 0.027365416288375854, -0.0009088050574064255, -0.04701414331793785, -0.004723383579403162, 0.0009405574528500438, -0.008176671341061592, -0.023040225729346275, -0.020060649141669273, -0.008986786007881165, 0.025333262979984283, 0.007208652328699827, 0.007030152250081301, 0.021639687940478325, -0.00882888212800026, 0.017602842301130295, -0.024784032255411148, 0.004699354525655508, -0.010627612471580505, -0.01628468930721283, 0.013854342512786388, 0.009570344351232052, 0.003257624339312315, -0.013820015825331211, 0.03251445293426514, 0.005282912403345108, 0.006570171564817429, -0.021200302988290787, 0.019799765199422836, 0.022916648536920547, -0.019937071949243546, -0.01580411195755005, -0.006525546777993441, -0.015309804119169712, 0.011691747233271599, 0.030647069215774536, -0.0025745185557752848, 0.01178786251693964, -0.010771785862743855, 0.03353052958846092, -0.03767722100019455, -0.0017747015226632357, -0.043032221496105194, -0.0499250665307045, -0.004462499171495438, 0.035727452486753464, -0.01739688031375408, -0.02095314860343933, 0.0008693291456438601, 0.005286344792693853, 0.008073690347373486, -0.0025504897348582745, 0.024399571120738983, 0.02157103270292282, 0.0029349513351917267, -0.0039784894324839115, -0.021502379328012466, 0.026733800768852234, 0.007503863424062729, -0.006233767606317997, 0.00046040976303629577, 0.016669150441884995, 0.027049608528614044, -0.0107031324878335, 0.01783626526594162, 0.02946622483432293, 0.0005333544686436653, -0.03103153221309185, -0.011231767013669014, 0.03023514710366726, 0.0437462218105793, 0.010826708748936653, -0.008053094148635864, -0.015556957572698593, -0.025031186640262604, 0.013003035448491573, -0.02371303364634514, -0.025401916354894638, 0.001748956274241209, 0.0530831404030323, 0.05129814147949219, -0.010449113324284554, -0.00954974815249443, -0.00830711331218481, -0.005169633310288191, 0.011918304488062859, 0.0095360167324543, 0.020692264661192894, -0.0072292485274374485, 0.008197267539799213, 0.013675843365490437, -0.025635339319705963, 0.017094803974032402, -0.03166314586997032, 0.040560681372880936, 0.015556957572698593, 0.02093941904604435, 0.0023067686706781387, -0.6129413843154907, -0.014101496897637844, -0.0031975521706044674, -0.01495280396193266, 0.010188228450715542, 0.00555066205561161, 0.014733112417161465, -0.00977630540728569, -0.01459580473601818, 0.04388352856040001, -0.01614738069474697, 0.013517939485609531, 0.014211342670023441, -0.025374455377459526, -0.001577321789227426, -0.015447111800312996, -0.0024423599243164062, -0.00729790236800909, 0.026019802317023277, 0.020664803683757782, -0.020115572959184647, 0.022861724719405174, -0.00828651711344719, -0.000256379134953022, -0.008492479100823402, 0.029823223128914833, 0.0006371933850459754, -0.011183708906173706, 0.025209685787558556, -0.0016270957421511412, -0.035754915326833725, 0.020719725638628006, 0.025539224967360497, -0.02527834102511406, 0.037896912544965744, -0.018124612048268318, -0.027722416445612907, 0.027063339948654175, 0.01988214999437332, 0.029054300859570503, -0.034821223467588425, -0.02137880213558674, -0.008732766844332218, 0.01541964989155531, 0.009137825109064579, -0.0032473262399435043, 0.018042227253317833, 0.016202304512262344, -0.007785344496369362, -0.022230111062526703, -0.01496653538197279, 0.02387780137360096, 0.01061388198286295, -0.013751362450420856, 0.02468791790306568, -0.00737342145293951, 0.02698095515370369, 5.0471291615394875e-05, 0.008574862964451313, -0.01109445933252573, 0.00504605658352375, 0.01566680334508419, -0.005231421906501055, -0.03336575999855995, -0.012975573539733887, 0.0347663015127182, 0.012467535212635994, 0.01249499712139368, 0.012240977957844734, -0.03517822176218033, 0.0045311530120670795, 0.001550718443468213, -0.012584246695041656, -0.0183168426156044, -0.017808804288506508, 0.01830311119556427, 0.009433036670088768, 0.017451804131269455, -0.005859604571014643, 0.019030841067433357, -0.0002795498294290155, 0.01687511056661606, 0.02014303393661976, -0.00961153581738472, 0.004977402742952108, -0.017177188768982887, -0.007833401672542095, 0.0032713550608605146, 0.011012074537575245, 0.016161112114787102, -0.008719036355614662, 0.01765776425600052, -0.02932891622185707, 0.005890498869121075, -0.0014751991257071495, 0.016339611262083054, -0.006789864040911198, -0.009989132173359394, -0.01521368883550167, -0.012948112562298775, 0.00011295700824121013, -0.01031180564314127, 0.01672407239675522, 0.0045998068526387215, 0.040258605033159256, 0.02836776338517666, -0.016037534922361374, -0.00624749856069684, 0.0005929974722675979, -0.018701303750276566, -0.006511815823614597, 0.007620575372129679, -0.027035878971219063, -0.0005256308941170573, 0.012337093241512775, -0.026788724586367607, 0.016518112272024155, -0.008032497949898243, -0.018275650218129158, 0.014087766408920288, -0.002648321446031332, 0.012577381916344166, 0.006745238788425922, 0.011135651730000973, 0.002243263879790902, 0.021200302988290787, 0.03633160516619682, -0.034683916717767715, -0.0063367486000061035, 0.017012419179081917, -0.0016734370728954673, -0.017341958358883858, 0.02577264793217182, -0.023465879261493683, 0.03567253053188324, 0.0001699182321317494, 0.03245953097939491, -0.013401228003203869, 0.021900571882724762, -0.010380459018051624, -0.01844041794538498, 0.008217863738536835, 0.004084902815520763, 0.0061170561239123344, -0.03984668478369713, -0.01613364927470684, -0.014733112417161465, -6.489932275144383e-05, 0.005811546929180622, -0.018110880628228188, -0.023946456611156464, 0.007394017651677132, 0.01178786251693964, 0.024440763518214226, -0.025511763989925385, -0.019319187849760056, 0.012954977340996265, -0.02654157020151615, -0.0169163029640913, -0.0010135021293535829, 0.0007478976622223854, 0.01613364927470684, -0.00538932578638196, -0.02188684046268463, 0.003249042434617877, -0.01496653538197279, -0.02902683988213539, 0.013998515903949738, -0.014568342827260494, -0.02592368610203266, 0.0015189660480245948, -0.005653643049299717, -0.006491219624876976, 0.004895017948001623, -0.014678188599646091, 0.035260606557130814, -0.010812978260219097, 0.011568170040845871, -0.006566738709807396, -0.012350823730230331, -0.030949147418141365, 0.040093835443258286, -0.012199785560369492, -0.0027427205350250006, 0.02932891622185707, 0.015254881232976913, 0.02109045721590519, 0.013861208222806454, 0.006563306320458651, -0.01301676593720913, -0.004850393161177635, 0.014829227700829506, -0.014348650351166725, 0.016806457191705704, -0.03410722315311432, 0.017959842458367348, -0.007654902059584856, -0.003140912624076009, 0.003142629051581025, 0.03556268289685249, 0.012007554993033409, 0.044460222125053406, -0.0022707253228873014, -0.007160594686865807, 0.0013885237276554108, -0.018975919112563133, 0.03386006876826286, -0.012357689440250397, 0.0008637509890832007, -0.004459066316485405, 0.04311460629105568, -0.012632304802536964, -0.017630303278565407, -0.01024315133690834, 0.008327709510922432, 0.023067686706781387, -0.022779341787099838, -0.0020767783280462027, -0.04050575941801071, 0.0040162489749491215, -0.010744324885308743, 0.0015532929683104157, 0.005440816283226013, -0.0019240236142650247, -0.01984095759689808, 0.02050003409385681, 0.011732939630746841, 0.002296470571309328, 0.01418388169258833, -0.028285378590226173, -0.023356033489108086, 0.02312261052429676, 0.02328738011419773, 0.011808458715677261, 0.0006281825480982661, -0.013380631804466248, 0.032486993819475174, -0.005286344792693853, 0.018399227410554886, -0.012165458872914314, -0.0021574466954916716, 0.01063447818160057, 0.03086676262319088, -0.05412667989730835, 0.00952915195375681, -0.03169060871005058, 0.0190720334649086, 0.009762574918568134, -0.010991478338837624, 0.014540880918502808, -0.023204995319247246, 0.021900571882724762, -0.01303049735724926, 0.0024440763518214226, 0.035919684916734695, -0.008313979022204876, -0.011135651730000973, -0.008794555440545082, -0.008835747838020325, 0.02634933963418007, -0.000647062377538532, 0.006491219624876976, 0.006494652479887009, 0.01754791848361492, 0.02034899592399597, -0.005554094910621643, -0.01426626555621624, -0.016202304512262344, -0.00492247985675931, -0.033420685678720474, 0.009007382206618786, -0.008664113469421864, -0.0051353066228330135, -0.028285378590226173, 0.01233022753149271, 0.005193662364035845, 0.012165458872914314, -0.00041621385025791824, -0.0015472857048735023, 0.020733457058668137, -0.023314841091632843, -0.015337266027927399, 0.011403401382267475, 0.02417987957596779, 0.013305112719535828, -0.012137996964156628, 0.006144518032670021, -0.007503863424062729, -0.03298129886388779, 0.013545400463044643, -0.003755364567041397, -0.009961671195924282, -0.021433725953102112, -0.010435381904244423, -0.021831918507814407, -0.006855085026472807, 0.010737459175288677, 0.015721727162599564, -0.01526861172169447, -0.006474056281149387, 0.0023222158197313547, 0.020074380561709404, -0.023191263899207115, 0.007675498258322477, 0.04100006818771362, -0.014911611564457417, -0.01239888183772564, -0.010133305564522743, -0.009645863436162472, -0.003693575970828533, 0.018234457820653915, 0.00869157537817955, -0.022614572197198868, -0.007208652328699827, 0.010298074223101139, 0.012611708603799343, 0.017891189083456993, -0.002498999470844865, 0.01584530435502529, -0.002274158177897334, -0.00970078632235527, -0.027365416288375854, -0.02530580200254917, 0.03204760700464249, 0.050007451325654984, 0.03438183665275574, -0.004857258405536413, 0.012948112562298775, -0.008554267697036266, 0.0013679275289177895, -0.02777734026312828, -0.01596888154745102, -0.006522113922983408, 0.010490305721759796, -0.0141152273863554, 0.002346244640648365, 0.017287034541368484, -0.016861381009221077, 0.04995252564549446, -0.0033279943745583296, 0.0005693977000191808, -0.022092802450060844, 0.003717605024576187, -0.020980611443519592, 0.01721838116645813, -0.018948456272482872, 0.013607189059257507, 0.01675153523683548, -0.002626009052619338, -0.034409299492836, 0.009336921386420727, 0.009254536591470242, -0.0069649312645196915, -0.014527150429785252, -0.00922020897269249, 3.7410973163787276e-05, 0.02374049462378025, -0.005756623577326536, -0.02761257067322731, 0.030619608238339424, 0.026596494019031525, 0.018577726557850838, 0.015021458268165588, 0.013160939328372478, 0.012948112562298775, 0.010126439854502678, 0.009975401684641838, -0.01563934236764908, -0.010531497187912464, -0.04871675744652748, 0.0011851367307826877, 0.021159110590815544, 0.0006891128141433001, -0.01859145797789097, 0.007936382666230202, 0.006803594529628754, -0.024001378566026688, -0.01403970830142498, 0.03215745463967323, -0.006178844720125198, 0.006292123347520828, 0.003906402736902237, -0.016971226781606674, -0.039791759103536606, -0.012797074392437935, -0.01703988015651703, 0.006192575674504042, 0.00349104730412364, -0.02125522494316101, 0.0011696895817294717, -0.02681618556380272, -0.0141152273863554, -0.012577381916344166, 0.046602219343185425, -0.004181018099188805, 0.004194749053567648, -0.05959152430295944, -0.005945421755313873, -0.011822189204394817, -0.0040025184862315655, 0.020898226648569107, -0.007496998179703951, 0.006542710121721029, 0.015337266027927399, -0.008567998185753822, -0.03828137740492821, 0.01077865157276392, -0.026623954996466637, 0.023795418441295624, -0.02494880184531212, -0.02249099500477314, -0.007201786618679762, 0.00977630540728569, 0.02375422604382038, -0.02654157020151615, -0.011691747233271599, -0.012529323808848858, -0.009556612931191921, 0.02590995468199253, 0.023081418126821518, 0.03256937861442566, 0.007043883204460144, 0.01675153523683548, 0.014376112259924412, -0.014046574011445045, -0.029850685968995094, -0.025498032569885254, -0.03380514681339264, 0.007421479094773531, 0.03086676262319088, 0.011348478496074677, 0.006408834829926491, -0.002116254298016429, 0.0015292640309780836, 0.020417649298906326, -0.023850340396165848, 0.006769267842173576, -0.005272614303976297, 0.02152984030544758, -0.0015953433467075229, 0.016504380851984024, 0.002016706159338355, -0.002013273537158966, -0.029219070449471474, -0.02405630238354206, -0.016161112114787102, 0.025800108909606934, 0.03317353129386902, -0.002066480228677392, 0.03380514681339264, -0.016655419021844864, -0.0028868934605270624, -0.03657875955104828, -0.00473024882376194, -0.001676869811490178, 0.02184564806520939, 0.005004864186048508, -0.009343786165118217, 0.005097547080367804, -0.007394017651677132, -0.028285378590226173, -0.007188056129962206, -0.0048400950618088245, -0.023383494466543198, -0.01967618800699711, -0.005670806393027306, 0.003441273234784603, 0.01139653567224741, 0.02603353187441826, -0.02060987986624241, -0.001913725514896214, 0.014527150429785252, 0.026802456006407738, 0.021598495543003082, 0.006316152401268482, 0.02651410922408104, -0.005094114225357771, 0.0028336867690086365, -0.01687511056661606, -0.027516454458236694, -0.020843302831053734, -0.006055267993360758, 0.036661144345998764, 0.020541226491332054, 0.04495452716946602, 0.01543338131159544, -0.006075864192098379, 0.04717891290783882, 0.0035391049459576607, 0.014609535224735737, -0.019305456429719925, 0.008513075299561024, -0.014458497054874897, -0.0017283601919189095, 0.002613994525745511, -0.01642199605703354, 0.027585109695792198, -0.005306940991431475, 0.0212277639657259, 0.0002211940591223538, -0.0011053266935050488, 0.008966189809143543, -0.003824018407613039, -0.0446799136698246, -0.020403917878866196, 0.022861724719405174, -0.012968708761036396, 0.013806285336613655, -0.04890898987650871, -0.024632994085550308, 0.028106877580285072, -0.0015481439186260104, -0.025786379352211952, -0.003302249126136303, 0.013311977498233318, -0.021625956520438194, 0.02096688002347946, -0.00028491340344771743, 0.0021059561986476183, 0.004565479699522257, 0.01039418950676918, -0.04778306558728218, -0.003135763807222247, -0.0012529323576018214, -0.006583902519196272, 0.034821223467588425, 0.0038102876860648394, 0.004678758326917887, 0.016943765804171562, 0.04528406634926796, 0.009687055833637714, -0.018797418102622032, -0.004678758326917887, -0.011437728069722652, -0.011403401382267475, -0.01706734299659729, -0.011801593005657196, -0.007091940846294165, -0.007366556208580732, -0.009893016889691353, 0.012076208367943764, 0.024413302540779114, -0.02651410922408104, -0.022381149232387543, 0.01765776425600052, 0.021433725953102112, 0.03803422302007675, 0.024632994085550308, 0.006570171564817429, 0.0385010689496994, -0.005945421755313873, -0.008760228753089905, 0.027049608528614044, 0.011973228305578232, -0.002044167835265398, 0.0022690091282129288, -0.001826191903091967, -0.00992047879844904, -0.024427032098174095, 0.020870763808488846, 0.033118609338998795, -0.028614915907382965, -0.028752224519848824, -0.0017935812938958406, 0.01022255513817072, 0.0057840850204229355, -0.015227419324219227, -0.02698095515370369, -0.015309804119169712, 0.0162709578871727, -0.012632304802536964, 0.004778306465595961, 0.00013001318438909948, -0.007270440459251404, 0.011032670736312866, 0.008334575220942497, 0.009906747378408909, 0.011925170198082924, 0.017589110881090164, -0.004754277877509594, 0.027420340105891228, 0.006288690958172083, -0.02544310875236988, 0.012666631489992142, -0.01077865157276392, 0.027955839410424232, -0.007490132935345173, 0.01673780381679535, 0.008485613390803337, 0.006422565784305334, 0.006779565941542387, 0.00992734357714653, -0.003988787531852722, 0.03553522378206253, -0.011018939316272736, -0.02033526450395584, 0.002464672550559044, -0.028477609157562256, 0.01690257340669632, -0.00875336304306984, 0.008478747680783272, 0.0030722590163350105, -0.010545228607952595, 0.0024595235008746386, 0.01673780381679535, -0.0006891128141433001, -0.008664113469421864, -0.006038104183971882, 0.009000517427921295, -0.041631683707237244, 0.004448768217116594, 0.0035150761250406504, -0.024289725348353386, -0.02747526206076145, -0.012762746773660183, 0.005523200612515211, -0.006772700231522322, 0.012350823730230331, 0.002196922665461898, -0.000991189619526267, 0.019332919269800186, 0.026596494019031525, -0.005392758175730705, -0.016682879999279976, -0.014884150587022305, -0.021323880180716515, -0.02621203288435936, 0.002396018709987402, -0.001683735172264278, -0.015474573709070683, 0.014733112417161465, -0.010565824806690216, -0.034409299492836, -0.028587454929947853, -0.013250188902020454, 0.01294124685227871, -0.0032061338424682617, -0.005138739012181759, -0.005904229357838631, -0.002974427305161953, -0.0006517823203466833, -0.013298247009515762, -0.014197612181305885, 0.043334297835826874, -0.010572689585387707, -0.009007382206618786, 0.0060106427408754826, -0.017959842458367348, 0.027694955468177795, -0.025209685787558556, 0.015570688992738724, 0.009858690202236176, -0.0629967525601387, -0.005272614303976297, 0.02279307134449482, 0.03847360610961914, -0.022120263427495956, -0.00828651711344719, 0.006927171256393194, -0.014348650351166725, -0.03256937861442566, 0.02883460931479931, 0.007627440616488457, -0.013442420400679111, -0.0015361295081675053, -0.004308027680963278, 0.011533843353390694, -0.014019112102687359, -0.027667494490742683, -0.008705305866897106, -0.013634650968015194, -0.0011465189745649695, -0.01480176579207182, -0.006226902361959219, 0.007139998488128185, 0.04143945127725601, 0.013950458727777004, -0.028312839567661285, -0.03836376219987869, -0.017891189083456993, -0.04267521947622299, 0.00215058121830225, 0.008389498107135296, 0.015543227083981037, 0.008650382980704308, 0.018110880628228188, -0.016806457191705704, 0.0029675618279725313, -0.011746670119464397, 0.011883977800607681, -0.003721037646755576, -0.0023410955909639597, 0.005080383270978928, 0.007682363502681255, 0.0011430862359702587, -0.008190401829779148, -0.054840680211782455, -0.009879286400973797, 0.009556612931191921, -0.0021763264667242765, 0.0040471432730555534, 0.028779685497283936, -0.014025977812707424, -0.0069031426683068275, -0.02405630238354206, -0.012680362910032272, -0.0035150761250406504, -0.015021458268165588, 0.028807146474719048, -0.053906988352537155, -0.015282342210412025, 0.018550265580415726, -0.0007139998488128185, 0.005416787229478359, -0.003824018407613039, 0.006875681225210428, -0.022999033331871033, 0.023177532479166985, -0.02622576244175434, -0.0291641466319561, -0.012426343746483326, 0.011554439552128315, 0.052808526903390884, 0.01613364927470684, 0.011705477721989155, 0.012762746773660183, 0.004874421749264002, -0.008018767461180687, -0.012158593162894249, 0.026939762756228447, -0.019305456429719925, 0.017644034698605537, 0.021790726110339165, -0.008533671498298645, -0.0028079417534172535, -0.023809147998690605, 0.004431604873389006, -0.009638997726142406, -0.01063447818160057, -0.01563934236764908, -0.020431380718946457, -0.03509583696722984, 0.012625439092516899, 0.024262264370918274, -0.007744152098894119, -0.004132960457354784, -0.006075864192098379, -9.230722207576036e-05, -0.006051835138350725, -0.008423824794590473, -0.021996688097715378, -0.01923680305480957, -0.002768465783447027, 0.0037073069252073765, -0.012508727610111237, 0.0024251965805888176, 0.008176671341061592, 0.008162940852344036, -0.04989760369062424, 0.00033940738649107516, 0.1735568791627884, -0.02932891622185707, -0.0017901486717164516, 0.01739688031375408, 0.01999199576675892, 0.0017764178337529302, 0.03042737767100334, 0.01076492015272379, -0.005365296732634306, -0.0031443454790860415, 0.006230335216969252, 0.0006702330429106951, -0.001435723272152245, -0.0032027012202888727, 0.013291381299495697, -0.009433036670088768, -0.03262430056929588, -0.04146691411733627, -0.028024492785334587, 0.0012924083275720477, -0.013147208839654922, -0.01952514983713627, -0.014012246392667294, -0.0200057253241539, 0.0100921131670475, -0.018715033307671547, -0.00970078632235527, -0.011218035593628883, 0.003913268446922302, 0.024935070425271988, -0.0019377543358132243, 0.004774874076247215, 0.016174841672182083, 0.010195094160735607, -0.01984095759689808, -0.02077464945614338, 0.0027204081416130066, 0.018962187692523003, 0.034189607948064804, 0.006899709813296795, 0.007270440459251404, -0.015296073630452156, 0.012913785874843597, -0.046464912593364716, 0.015241150744259357, 0.011087593622505665, -0.006158248521387577, 0.018179534003138542, -0.0202940721064806, 0.016792727634310722, -0.020541226491332054, 0.0023204993922263384, 0.031058993190526962, 0.017602842301130295, -0.008945594541728497, 0.0013438987080007792, 0.005100979469716549, 0.013806285336613655, 0.006295556202530861, 0.01217918936163187, 0.00813547894358635, 0.020527495071291924, -0.012199785560369492, 0.019744841381907463, 0.007126267533749342, 0.03292637690901756, -0.015900226309895515, 0.003913268446922302, 0.009790035896003246, -0.02247726358473301, -0.003865210572257638, 0.009055440314114094, -0.0211179181933403, 0.009110363200306892, -0.03424452990293503, -0.03688083589076996, 0.026802456006407738, 0.025195956230163574, 0.034024838358163834, 0.02375422604382038, -0.011108189821243286, 0.00884947832673788, 0.0054511139169335365, -0.0035459704231470823, -0.021488649770617485, -0.04608045145869255, 0.01955261081457138, 0.003796556731685996, -0.0037073069252073765, -0.013565996661782265, -0.020225418731570244, 0.007558786775916815, 0.004328623879700899, -0.003648951184004545, -0.011314150877296925, -0.003345157951116562, 0.016792727634310722, 0.00830711331218481, -0.004167287610471249, 0.014636996202170849, -0.02294410951435566, 0.07985813915729523, 0.008787690661847591, 0.008650382980704308, -0.0035425375681370497, -0.0019017111044377089, -0.021749533712863922, 0.019937071949243546, 0.0011774131562560797, -0.031086454167962074, -0.008341439999639988, -0.0192505344748497, 0.005454546771943569, 0.0028302541468292475, 0.002430345630273223, 0.02264203317463398, 0.023699302226305008, -0.022449802607297897, 0.0017867159331217408, -0.008664113469421864, -0.011369074694812298, -0.019113225862383842, 0.0029915906488895416, 0.014842958189547062, 0.0028302541468292475, -0.029273992404341698, -0.005385892931371927, -0.00790892168879509, -0.03037245385348797, 0.01046284381300211, 0.030042916536331177, -0.021131649613380432, -0.001117341103963554, 0.009391844272613525, -0.008973055519163609, 0.016518112272024155, -0.002485268749296665, 0.01968991942703724, 0.007091940846294165, 0.004108931869268417, -0.0291641466319561, -0.004905316047370434, -0.01031867042183876, 0.0019617832731455564, -0.008547401987016201, -0.03786945343017578, -0.0040093837305903435, 0.0023891532327979803, 0.0027924946043640375, -0.003755364567041397, -0.007689229212701321, -0.0075450558215379715, -0.004050576128065586, 0.007026719395071268, 0.04023114591836929, -0.015927689149975777, -0.010346132330596447, -0.03223983943462372, -0.007428344339132309, 0.011698612943291664, -0.020980611443519592, 0.013916131108999252, 0.00627496000379324, -0.007950113154947758, -0.013847477734088898, -0.0032885184045881033, -0.17465534806251526, 0.016833920031785965, 0.02963099256157875, -0.03039991669356823, 0.004218777641654015, -0.010455978102982044, 0.027640031650662422, 0.0052039604634046555, -0.003108302131295204, 0.013298247009515762, 0.03981922194361687, 0.018673842772841454, -0.0011413699248805642, -0.016202304512262344, -0.020211687311530113, 0.023795418441295624, -0.02170834131538868, 0.014609535224735737, 0.005729162134230137, 0.005224556662142277, 0.012199785560369492, -0.02743407152593136, 0.004709652625024319, -0.009803767316043377, -0.01061388198286295, 0.02231249399483204, -0.008533671498298645, 0.023616917431354523, -0.030894223600625992, -0.014252535067498684, 0.0024046003818511963, 0.02201041765511036, 0.008506209589540958, 0.0005659650196321309, 0.03314606845378876, 0.011149382218718529, 0.012776478193700314, -0.012934382073581219, -0.021639687940478325, 0.04393845051527023, 0.007696094457060099, 0.030125301331281662, 0.018715033307671547, -0.02637680247426033, -0.010771785862743855, 0.010380459018051624, 0.010174497961997986, 0.010943420231342316, 0.018399227410554886, -0.025855032727122307, 0.012371419928967953, -0.0039407298900187016, 0.02110418677330017, 0.0033091146033257246, -0.002032153308391571, 0.027832262217998505, 0.008931863121688366, -0.012536189518868923, 0.0028182396199554205, 0.006800161674618721, -0.01001659408211708, -0.02494880184531212, 0.01721838116645813, 0.009563478641211987, -0.022257572039961815, -0.029411301016807556, -0.03424452990293503, 0.010627612471580505, -0.0316082239151001, 0.01611991971731186, -0.0011147665791213512, 0.0026277252472937107, -0.019140688702464104, -0.0300978384912014, 0.026266954839229584, 0.004781739320605993, -0.019950803369283676, 0.009858690202236176, 0.030317531898617744, -0.005269181448966265, 0.009357516653835773, 0.007751017343252897, -0.016078727319836617, -0.005859604571014643, 0.014197612181305885, -0.010600151494145393, 0.010359862819314003, 0.005248585250228643, -0.008986786007881165, 0.0010915958555415273, 0.018385495990514755, -0.01433491986244917, -0.01816580258309841, 0.011039535515010357, -0.001462326617911458, 0.002519595669582486, -0.008320843800902367, 1.6372328900615685e-05, -0.01147205475717783, -0.018838610500097275, 0.01846788078546524, -0.005028893239796162, -0.00508381612598896, 0.009103497490286827, 0.023507071658968925, 0.0223399568349123, -0.028807146474719048, 0.014417304657399654, 0.038720760494470596, -0.012577381916344166, -0.027228109538555145, 0.012316497042775154, 0.0091584213078022, 0.019937071949243546, -0.002538475440815091, 0.03905029967427254, -0.017740149050951004, -0.021982956677675247, 0.03300876170396805, -0.009796901606023312, 0.014307457953691483, 0.021941764280200005, 0.009371248073875904, 0.038720760494470596, -0.014389842748641968, -0.046739526093006134, -0.061184294521808624, -0.02220264822244644, 0.015378458425402641, 0.03883060812950134, -0.018522802740335464, 0.008005036972463131, 0.010943420231342316, 0.0221614558249712, 0.005114710424095392, 0.03243206813931465, -0.011499516665935516, -0.010208824649453163, -0.00178328319452703, -0.01325705461204052, 0.011794728226959705, -0.03644145280122757, -0.004026547074317932, -0.03707306832075119, 0.010730593465268612, 0.01031180564314127, 0.0028920425102114677, -0.020829571411013603, 0.017767611891031265, -0.012131132185459137, -0.005200527608394623, 0.022779341787099838, -0.04726129770278931, 0.012652901001274586, 0.014101496897637844, -0.003019052091985941, 0.004610104486346245, -0.030290069058537483, 0.006563306320458651, -0.01923680305480957, 0.0057840850204229355, -0.012632304802536964, -0.01139653567224741, -0.01433491986244917, 0.03784199059009552, -0.01543338131159544, 0.01878368854522705, 0.004163854755461216, 0.035892222076654434, -0.015982611104846, -0.0232736486941576, -0.002613994525745511, -0.039187606424093246, 0.042098529636859894, 0.007394017651677132, -0.02637680247426033, -0.02481149509549141, -0.007414613850414753, 0.0027598838787525892, 0.0025316099636256695, 0.019332919269800186, 0.007263575214892626, 0.004029979929327965, 0.002461239928379655, -0.021365072578191757, 0.001577321789227426, -0.03438183665275574, -0.029576070606708527, -0.00392013369128108, 0.023204995319247246, 0.004743979778140783, 0.030290069058537483, -0.01342868898063898, -0.014623265713453293, 0.015488304197788239, -0.014705650508403778, -0.00025123011437244713, 0.015062650665640831, -0.025250878185033798, 0.007943248376250267, -0.023918993771076202, -0.011568170040845871, -0.008238459937274456, -0.032322224229574203, 0.01690257340669632, -0.003532239468768239, -0.008478747680783272, -0.002874879166483879, -0.009433036670088768, -0.009659593924880028, 0.008478747680783272, -0.001588477985933423, -0.020225418731570244, 0.0015867616748437285, 0.023960186168551445, -0.039626989513635635, 0.03245953097939491, 0.016833920031785965, 0.005169633310288191, 0.004750845022499561, -0.008224728517234325, 0.006975229363888502, -0.03053722344338894, -0.0043183257803320885, -0.017630303278565407, 0.004795470274984837, -0.03767722100019455, 0.0063058543018996716, -0.08688829094171524, 0.015721727162599564, 0.012213516049087048, -0.032184917479753494, -0.005457979626953602, 0.005564393009990454, 0.017094803974032402, -0.015199958346784115, -0.002468105172738433, -0.003122032852843404, -0.007998171262443066, -0.006401969585567713, -0.014678188599646091, 0.003127181902527809, -0.01078551635146141, -0.023836608976125717, 0.02172207273542881, -0.001025516539812088, 0.01905830390751362, 0.01643572747707367, -0.012282170355319977, 0.011382805183529854, 0.017122264951467514, 0.009323189966380596, -0.02869730070233345, 0.008904402144253254, -0.00029671326046809554, 0.0061101908795535564, -0.02746153250336647, -0.02452314831316471, -0.009227074682712555, -0.017561649903655052, -0.004174152854830027, 0.00938497856259346, -0.002529893536120653, 0.0026157109532505274, 0.02280680276453495, 0.017904918640851974, 0.008986786007881165, 0.021159110590815544, -0.023699302226305008, -0.02250472642481327, 0.015529496595263481, -0.017012419179081917, -0.01427999697625637, -0.00018633078434504569, -0.002097374526783824, 0.009089767001569271, 0.005300075747072697, 0.003734768368303776, 0.022902917116880417, 0.009082901291549206, -0.03136106953024864, -0.029878146946430206, -0.004448768217116594, -0.0045689125545322895, 0.011904573999345303, 0.010160766541957855, -0.007304767612367868, -0.004397277720272541, 0.04575091227889061, 0.0015627328539267182, 0.020060649141669273, -0.009755709208548069, -0.0030139030423015356, 0.0034841818269342184, -0.03130614757537842, -0.027077071368694305, -0.0251410324126482, -0.010352998040616512, -0.0038858067709952593, -0.008259056136012077, 0.02015676535665989, 0.04544883593916893, 0.022092802450060844, 0.001148235285654664, -0.005609017796814442, 0.022230111062526703, 0.004647864494472742, 0.02637680247426033, 0.040258605033159256, 0.003279936732724309, -0.01646318845450878, -0.013922996819019318, 0.026321878656744957, 0.025827571749687195, -0.00015715291374363005, 0.004836662206798792, -0.005094114225357771, 0.0030362156685441732, -0.00519709475338459, 0.012481266632676125, -0.00994107499718666, 0.00632301764562726, 0.0024200475309044123, 0.02001945674419403, 0.006995825096964836, 0.004562046844512224, 0.0362766832113266, 0.010874766856431961, 0.021749533712863922, -0.0042737009935081005, 0.02231249399483204, -0.01658676564693451, -0.0555272176861763, -0.004050576128065586, -0.04454260692000389, -0.024715378880500793, 0.00017656906857155263, -0.002186624566093087, -0.01610618829727173, 0.021969225257635117, 0.004850393161177635, 0.010737459175288677, -0.030756916850805283, 0.015460842289030552, -0.024440763518214226, -0.010366728529334068, -0.031882837414741516, 0.027118263766169548, -0.0006183135556057096, 0.011355343274772167, 0.008368901908397675, -0.018577726557850838, 0.01892099529504776, -0.0016064996598288417, 0.027667494490742683, -0.025992339476943016, 0.010517766699194908, -0.0042496719397604465, -0.014074034988880157, 0.0029795761220157146, -0.015460842289030552, -0.007407748140394688, -0.006196008063852787, -0.012632304802536964, -0.0362766832113266, 0.015900226309895515, 0.0003544253995642066, 0.06590767949819565, 0.03007037751376629, -0.002361691789701581, 0.0005037474911659956, -0.024303456768393517, -0.010414785705506802, 0.016243496909737587, 0.010174497961997986, -0.014788035303354263, -0.01526861172169447, -0.0017918649828061461, -0.001894845743663609, -0.015296073630452156, -0.012659766711294651, -0.0017661197343841195, -0.005138739012181759, 0.00026667723432183266, 0.012357689440250397, -0.004205047152936459, 0.022779341787099838, 0.03292637690901756, -0.0032473262399435043, 0.009563478641211987, -0.005238287150859833, -0.015241150744259357, -0.013202131725847721, 0.014321189373731613, -0.011588766239583492, 0.02652784064412117, -0.039791759103536606, 0.013538535684347153, 0.02050003409385681, -0.04929345101118088, -0.005663941148668528, -0.012783342972397804, -0.0008401512750424445, 0.011204305104911327, -0.022889187559485435, 0.014980265870690346, -0.004603239241987467, 0.023507071658968925, 0.007490132935345173, 0.004404143430292606, -0.010476574301719666, -0.007812805473804474, -0.0063436138443648815, -0.034519147127866745, -0.01309228502213955, -0.04141199216246605] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_blizzard_a_distributed_consensus_protocol_for_mobile_devices.json b/database/embeddings/publications_txt/2022_blizzard_a_distributed_consensus_protocol_for_mobile_devices.json new file mode 100644 index 0000000000000000000000000000000000000000..2f440d2075cdf702ada82923de370415ef0ab95a --- /dev/null +++ b/database/embeddings/publications_txt/2022_blizzard_a_distributed_consensus_protocol_for_mobile_devices.json @@ -0,0 +1 @@ +[-0.010968178510665894, -0.0034293225035071373, -0.0017976999515667558, -0.006752638146281242, 0.00481977965682745, 0.010303868912160397, -0.016494670882821083, 0.0006598928011953831, -0.016593610867857933, -0.049696024507284164, 0.020706677809357643, 0.02366073615849018, -0.01635332778096199, 0.017879826948046684, -0.014614814892411232, 0.021201375871896744, 0.02257239818572998, 0.001796816592104733, -0.001227029599249363, 0.011250863783061504, -0.01100351382046938, 0.007484085857868195, -0.02792927995324135, -0.016339194029569626, -0.01055828481912613, 0.012643087655305862, 0.03296107426285744, -0.015349796041846275, 0.008798571303486824, -0.002766779623925686, 0.03669251501560211, -0.010105988942086697, -0.0066678328439593315, 0.005197870545089245, -0.022742008790373802, -0.016918698325753212, 0.008961115032434464, -0.017611276358366013, 0.02200702764093876, -0.01349114254117012, 0.024268507957458496, 0.0037314421497285366, -0.005371015053242445, -0.008021187037229538, 0.005897515919059515, 0.004219073802232742, 0.027250835672020912, -0.020014099776744843, 0.0036060006823390722, -0.001969961216673255, 0.00899645034223795, 0.010318002663552761, -0.018812688067555428, 0.011208460666239262, -0.018176646903157234, -0.013434605672955513, 0.0055441600270569324, 0.008607758209109306, -0.012989376671612263, -0.022529995068907738, 0.013618350960314274, -0.021399255841970444, -0.023335648700594902, -0.009102457202970982, -0.01588689722120762, -0.004116600379347801, -0.02405649423599243, 0.016367461532354355, -0.0215547326952219, -0.018105974420905113, 0.016791488975286484, 0.021314449608325958, 0.013724357821047306, -0.007392213214188814, 0.019491132348775864, -0.023151902481913567, -0.009533552452921867, -0.00602825777605176, -0.018812688067555428, 0.0071448637172579765, -0.005109531804919243, 0.006632497068494558, 0.01717311516404152, 0.021710209548473358, 0.017215516418218613, 0.021229645237326622, -0.000913425930775702, -0.010770298540592194, -0.046869173645973206, -0.003876318223774433, -0.005727904848754406, 0.012805631384253502, 0.015392199158668518, 0.009795035235583782, -0.025653664022684097, 0.028508784249424934, -0.0038021134678274393, 0.03553350642323494, 0.0041554695926606655, 0.0002782680676318705, 0.00847348291426897, -0.00883390661329031, -0.0017217283602803946, -0.03126496076583862, -0.016395730897784233, -0.018544137477874756, -0.0004973489558324218, 0.006084795109927654, 0.013681954704225063, 0.01345580630004406, -0.02636037766933441, 0.02510242909193039, -0.006017656996846199, -0.04440981522202492, -0.020678408443927765, -0.016734952107071877, 0.003696106607094407, -0.015533541329205036, -0.0150529770180583, -0.024890415370464325, 0.03457237780094147, -0.01110245380550623, 0.003026496386155486, -0.007901046425104141, 0.024423984810709953, -0.012671356089413166, -0.005791509058326483, -0.02033918723464012, 0.03197167441248894, -0.012084783986210823, 0.01875615119934082, 0.023349782451987267, -0.02866426110267639, -0.012395737692713737, -0.0003454057441558689, 0.005738505627959967, -0.019123641774058342, -0.01987275667488575, -0.017484068870544434, -0.012890436686575413, 0.0001580165117047727, 0.043476954102516174, -0.03171725943684578, -0.01667841523885727, -0.02366073615849018, 0.024127166718244553, -0.019590070471167564, 0.016720818355679512, -0.0061589996330440044, -0.01120139379054308, -0.001516781747341156, -0.00026413382147438824, -0.002789747668430209, 0.021667806431651115, 0.01310951728373766, 0.014643083326518536, -0.009236732497811317, 0.02609182707965374, 0.0031113019213080406, -0.009257934056222439, -0.0014461105456575751, 0.015505272895097733, -0.0077385022304952145, -0.023180171847343445, -0.011724361218512058, 0.0365794412791729, 0.02546991966664791, -0.006363946478813887, 0.0011810932774096727, -0.028014084324240685, -0.02691161260008812, 0.015491139143705368, -0.02507415972650051, -0.003379852743819356, 0.005356880836188793, 0.03134976699948311, 0.03892572596669197, 0.007611293811351061, -0.010819768533110619, 0.0025812676176428795, -0.00013030011905357242, 0.0022155437618494034, 0.021893953904509544, 0.034035276621580124, -0.016692550852894783, 0.017710216343402863, 0.017003502696752548, -0.022388653829693794, 0.012826832011342049, 0.006607762072235346, 0.030982278287410736, 0.03454411029815674, 0.0029116556979715824, -0.0015229654964059591, -0.6024582982063293, -0.014530009590089321, 0.007908113300800323, -0.021795013919472694, -0.05020485818386078, 0.0031060015317052603, 0.019307386130094528, -0.0040176608599722385, -0.028579454869031906, 0.03208474814891815, -0.0005905466387048364, 0.0034416900016367435, 0.006671366281807423, -0.01655120775103569, -0.010607754811644554, -0.003607767401263118, 0.02507415972650051, 0.0011024716077372432, -0.002157239941880107, -0.00023741123732179403, -0.004784443881362677, 0.010127190500497818, -0.011837434954941273, -0.009752633050084114, -0.016395730897784233, 0.021201375871896744, 0.012579482980072498, -0.03830381855368614, 0.00310070114210248, 0.014127183705568314, -0.029568852856755257, 0.022289713844656944, 0.04130028188228607, 0.017300322651863098, 0.05153347924351692, -0.012466409243643284, -0.012819765135645866, 0.01495403703302145, 0.019123641774058342, 0.03734268993139267, -0.022219041362404823, -0.02497522160410881, 0.026869211345911026, 0.021625403314828873, -0.006017656996846199, -0.015166050754487514, 0.02522963657975197, -0.0052756089717149734, -0.008975248783826828, -0.01632506027817726, -0.006236738059669733, -0.029992880299687386, 0.0050706625916063786, -0.011321534402668476, 0.01806357316672802, 0.013166054151952267, 0.042459290474653244, 0.012028247117996216, 0.03912360593676567, -0.016706684604287148, -0.02862185798585415, 0.023137768730521202, 0.01059362106025219, -0.0373709574341774, -0.005893982481211424, -0.0027314438484609127, -0.015208453871309757, 0.02108830213546753, 0.01622612029314041, -0.007441682741045952, 0.006151932757347822, 0.008204932324588299, -0.0049010515213012695, -0.009462880901992321, 0.019618339836597443, 0.013929303735494614, 0.02398582361638546, 0.011314467526972294, -0.030077684670686722, 0.017879826948046684, -0.00638161413371563, 0.008607758209109306, -0.008120127022266388, -0.05266421660780907, 0.01322965882718563, 0.0026254369877278805, -0.003946989309042692, 0.0005759707419201732, 0.00733567588031292, 0.01632506027817726, 0.020975228399038315, 0.016042374074459076, -0.004597165156155825, -0.01250174455344677, 0.0046112993732094765, 0.042657166719436646, 0.014105982147157192, 0.0011183725437149405, 0.004625433590263128, -0.03590099513530731, 0.011060050688683987, 0.008148395456373692, 0.00585511326789856, -0.014657218009233475, 0.023307379335165024, 0.010727896355092525, -0.02267133817076683, -0.004360416438430548, 0.027618326246738434, -0.017554739490151405, -0.009752633050084114, -0.008275603875517845, -0.024197837337851524, 0.0006908114883117378, 0.016310924664139748, -0.0383603572845459, 0.020282650366425514, -0.004766776226460934, 0.010791500099003315, 0.008084791712462902, 0.018544137477874756, -0.0016607744619250298, -0.0019752616062760353, -0.006583027075976133, -0.008183730766177177, 0.0037809121422469616, 0.028777334839105606, -0.032621849328279495, -0.0009461113950237632, -0.003090100595727563, 0.006452285218983889, -0.010042385198175907, 0.02019784413278103, -0.009328605607151985, 0.025116562843322754, -0.008381610736250877, 0.03691866248846054, -0.013060047291219234, 0.012975241988897324, -0.02336391620337963, 0.0032650118228048086, 0.009314470924437046, 0.0036643045023083687, -0.010254398919641972, -0.05085503309965134, -0.00499292416498065, -0.015095380134880543, 0.01495403703302145, 0.0073144747875630856, 0.01495403703302145, 0.002037098864093423, 0.013166054151952267, -0.012310932390391827, -0.005014125257730484, -0.011392205953598022, -0.007830374874174595, -0.0011236729333177209, -0.019590070471167564, -0.012381603941321373, 0.0010247331811115146, 0.008438147604465485, 0.013971706852316856, 0.01310951728373766, -0.022812681272625923, 0.014657218009233475, 0.0035229618661105633, -0.0029770266264677048, 0.010035318322479725, 0.017879826948046684, -0.03386566415429115, 0.0015759689267724752, -0.02207770012319088, -0.027166029438376427, 0.03197167441248894, -0.009413410909473896, 0.008989383466541767, -0.0031978741753846407, 0.006632497068494558, -0.006749104708433151, 0.0035476968623697758, 0.005650166887789965, 0.04554055631160736, -0.018869224935770035, -0.015971703454852104, 0.04135681688785553, 0.008332140743732452, 0.023180171847343445, 0.011378072202205658, -0.0013789727818220854, -0.008501751348376274, 0.009088323451578617, 0.04223313927650452, 0.013413404114544392, 0.004477024078369141, -0.014317995868623257, 0.015745555981993675, -0.014558278024196625, -0.006416949909180403, 0.02200702764093876, 0.03787979111075401, 0.044833842664957047, 0.01409891527146101, 0.00332684931345284, -0.01148407906293869, -0.02158300019800663, -0.029229629784822464, 0.008537087589502335, -0.0025088295806199312, 0.0071625313721597195, -0.007219068706035614, 0.03516601398587227, -0.003128969809040427, -0.024565327912569046, 0.004964655730873346, -0.004607765935361385, 0.022035297006368637, -0.006014123558998108, 0.010035318322479725, -4.99391790071968e-05, 0.01320845726877451, -0.007233202923089266, -0.028508784249424934, 0.04016954079270363, 0.009816236793994904, -0.010572419501841068, -0.0003352467610966414, 0.017851559445261955, 0.032847996801137924, 0.016296790912747383, -0.00032420436036773026, -0.017102442681789398, 0.03646636754274368, 0.018303854390978813, -0.0056148311123251915, -0.008961115032434464, -0.028876274824142456, 0.022982291877269745, 0.005477021913975477, 0.01628265716135502, -0.02599288709461689, -0.008409879170358181, 0.03477025777101517, 0.03375259041786194, -0.02636037766933441, 0.033837396651506424, 0.00934273935854435, -0.0030724327079951763, 0.015123648568987846, -0.003390453290194273, 0.0103321373462677, -0.035646580159664154, 0.028084756806492805, -0.01319432258605957, 0.0016793257091194391, 0.03355471044778824, -0.025738470256328583, -0.011314467526972294, -0.01059362106025219, 0.017809156328439713, 0.010727896355092525, 0.00594698591157794, 0.02951231598854065, -0.00921553187072277, 0.01826145127415657, 0.0032579447142779827, -0.02750525251030922, -0.0007813590345904231, -0.001169609255157411, -0.019462862983345985, -0.016169583424925804, -0.01130033377557993, -0.012996443547308445, 0.006250872276723385, -0.015378064475953579, 0.006434617564082146, 0.01320845726877451, 0.0008378960192203522, 0.005007058382034302, 0.020848019048571587, 0.013646619394421577, -0.034798525273799896, -0.00393285509198904, 0.003922254778444767, 0.012289730831980705, 0.004321547225117683, -0.019505266100168228, 0.003256177995353937, 0.008961115032434464, -0.017328592017292976, -0.0016590076265856624, 0.005590096116065979, 0.0010574186453595757, -0.023773809894919395, -0.008791503496468067, -0.012084783986210823, 0.0017349792178720236, 0.0192791186273098, -0.017257919535040855, -0.03929321840405464, -0.004982323385775089, 0.011166057549417019, 0.027858607470989227, -0.017879826948046684, -0.015674883499741554, 0.03790805861353874, -0.023632466793060303, 0.016565341502428055, -0.013158987276256084, 4.6184766688384116e-05, -0.008480550721287727, 0.01592930033802986, 0.0021484061144292355, -0.020014099776744843, -0.01687629520893097, 0.01365368627011776, 0.022388653829693794, 0.03575965389609337, 0.009455814026296139, 0.025045892223715782, -0.011173125356435776, -0.01118725910782814, -0.020607737824320793, -0.020848019048571587, -0.002849818207323551, 0.06637444347143173, 0.027095358818769455, 9.132050763582811e-05, 0.0096395593136549, -0.022855082526803017, 0.004999991040676832, -0.02602115459740162, -0.024946952238678932, -0.0027226100210100412, -0.011455809697508812, 0.005477021913975477, -0.00438515143468976, -0.003639569506049156, 0.0016855093417689204, -0.0049681891687214375, -0.010176660493016243, 0.0015989370876923203, -0.0015556509606540203, 0.029992880299687386, -0.017724350094795227, 0.014007042162120342, -0.022685471922159195, 0.012819765135645866, 0.037031736224889755, 0.002609536051750183, -0.009243800304830074, 0.018219048157334328, -0.009568887762725353, -0.019533533602952957, 0.008961115032434464, 0.0036749052815139294, 0.007321541663259268, 0.01301057729870081, -0.0021890420466661453, -0.002116604009643197, 0.04881970211863518, 0.011625421233475208, 0.02148406021296978, 0.0051378002390265465, 0.01602824032306671, 0.02009890414774418, -0.0018780885729938745, -0.005289743188768625, 0.006978786084800959, -0.003250877605751157, -0.05238153412938118, 0.0066183628514409065, 0.012310932390391827, -0.02359006367623806, 0.0031890403479337692, 0.05034619942307472, -0.0301059540361166, -0.047660693526268005, -0.03406354412436485, -0.002514129737392068, -0.02668546512722969, -0.0014054744970053434, -0.0014673118712380528, 0.009590089321136475, -0.040028199553489685, -0.017031772062182426, -0.020155441015958786, -0.004597165156155825, 0.005310944747179747, -0.012466409243643284, 0.0009408110636286438, -0.0391518734395504, 0.015703152865171432, -0.022643068805336952, 0.011060050688683987, -0.01848760060966015, -0.0013939904747530818, -0.05314478278160095, -0.027561789378523827, 0.007448750082403421, 0.005222605541348457, 0.017696082592010498, -0.005840979050844908, -0.005462887696921825, 0.02842397801578045, -0.0027544121257960796, 0.0064310841262340546, 0.012791496701538563, -0.050063516944646835, -0.008183730766177177, -0.007646629586815834, -0.01843106374144554, -0.027448715642094612, 0.0027120092418044806, 0.02480560913681984, 0.0023286177311092615, -0.011378072202205658, -0.01349114254117012, 0.013929303735494614, -0.0028957545291632414, 0.025681933388113976, 0.01023319736123085, 0.020706677809357643, 0.01717311516404152, -0.014840963296592236, 0.007190799806267023, 0.005042393691837788, -0.001092754304409027, -0.014169585891067982, -0.009816236793994904, -0.0020512330811470747, -0.007681965362280607, -0.0014213755493983626, -0.010600687935948372, -0.01724378578364849, -0.00828973762691021, -0.026939881965517998, 0.005204937886446714, 0.004180204588919878, 0.015378064475953579, 0.031604185700416565, 0.009462880901992321, 0.013257927261292934, 0.0012040614383295178, -0.013081248849630356, 0.019533533602952957, -0.009003517217934132, 0.029173092916607857, 0.016169583424925804, -0.003602467244490981, 0.026332108303904533, -0.005303877405822277, -0.02881973795592785, -0.035420432686805725, 0.015123648568987846, 0.0016669582109898329, 0.010204928927123547, 0.007455817423760891, -0.012445207685232162, -0.03349817544221878, -0.006777373142540455, 0.0183886606246233, -0.016890428960323334, -0.01375262625515461, -0.01622612029314041, 0.0056643011048436165, -0.00025044125504791737, 0.015166050754487514, 0.00306006520986557, 0.008636027574539185, -0.03754056990146637, -0.014572412706911564, 0.00041740210144780576, 0.016423998400568962, 0.011554749682545662, -0.02277027815580368, 0.012890436686575413, 2.3064778361003846e-05, -0.004939920734614134, -0.007604226935654879, -0.015095380134880543, -0.01055828481912613, -0.01648053713142872, 0.020310917869210243, 0.01546286977827549, 0.02532857656478882, 0.021144839003682137, 0.011971710249781609, 0.01039574109017849, 0.005063595250248909, -0.008593624457716942, -0.0029840937349945307, -0.006897514220327139, -0.01215545553714037, 0.004455822519958019, 0.017130712047219276, -0.00044279955909587443, 0.01717311516404152, -0.003602467244490981, 0.004416953306645155, 0.028028219938278198, 0.005791509058326483, 0.0049010515213012695, -0.02210596762597561, -0.022756144404411316, 0.0034293225035071373, -0.015703152865171432, 0.007696099579334259, 0.007469951640814543, -0.039434559643268585, -0.03609887510538101, 0.021130705252289772, -0.010713761672377586, 0.00016077709733508527, 0.005187269765883684, 0.022360384464263916, -0.010699627920985222, 0.0008537970716133714, 0.022134236991405487, 0.02145579271018505, -0.011639554984867573, -0.004717306233942509, -0.023745540529489517, -0.013137785717844963, 0.02279854565858841, 0.005434619262814522, 0.02522963657975197, -0.009243800304830074, 0.00015912074013613164, -0.00576677406206727, 0.03092573955655098, 0.01092577539384365, -0.022219041362404823, 0.014141317456960678, -0.011462877504527569, -0.010734963230788708, -0.01515191700309515, -0.02799995057284832, -0.008318006061017513, 0.01110245380550623, -0.006897514220327139, 0.0014178419951349497, 0.0193780567497015, -0.006007056683301926, -0.006176667753607035, 0.03112361952662468, 0.02455119416117668, 0.01816251128911972, -0.010904574766755104, 0.011356870643794537, -0.0009858639677986503, -0.020282650366425514, -0.013095383532345295, 0.000763249525334686, -0.0094416793435812, -0.0038657174445688725, 0.02257239818572998, 0.008798571303486824, -0.03587272763252258, -0.0048021115362644196, 0.01999996416270733, -0.0029257899150252342, -0.012643087655305862, -0.031406305730342865, 0.011045916937291622, 0.044042326509952545, -0.0033215489238500595, -0.008749101310968399, -0.0359858013689518, -0.0016607744619250298, 0.0025653664488345385, -0.021795013919472694, -0.003563598031178117, 0.020423991605639458, -0.0019452262204140425, 0.019222581759095192, 0.008134261704981327, 0.0088975103572011, 0.019194312393665314, -0.006438151001930237, -0.019957561045885086, 0.013201390393078327, 0.009802103042602539, -0.018275586888194084, -0.007151931058615446, -0.01826145127415657, 0.03491159901022911, -0.024946952238678932, -0.003196107456460595, 0.02421197108924389, 0.021045899018645287, -0.008636027574539185, -0.008840973488986492, -0.005056528374552727, 0.034007005393505096, 0.002849818207323551, 0.02842397801578045, -0.01260068453848362, -0.02158300019800663, 0.0038021134678274393, -0.00508479680866003, 0.0188833586871624, -0.0078091733157634735, -0.022954022511839867, -0.009554753080010414, 0.007328609004616737, -0.005187269765883684, 0.009158994071185589, 0.012572416104376316, 0.011590085923671722, -0.030049417167901993, 0.0006510589155368507, -0.00029571502818726003, -0.0028180163353681564, -0.029031751677393913, -0.012671356089413166, -0.013469940982758999, -0.0190812386572361, 0.00403179507702589, 0.014176653698086739, 0.01944872923195362, 0.006671366281807423, 0.02470667101442814, -0.022954022511839867, -0.010586554184556007, 0.01796463318169117, -0.03595753386616707, -0.016423998400568962, -0.009901043027639389, 0.006494688335806131, 0.005409884266555309, 0.011067118495702744, 0.00025353312958031893, -0.029964610934257507, -0.036409828811883926, -0.025823276489973068, 0.008749101310968399, 0.007802106440067291, -0.020749079063534737, -0.0053074113093316555, 0.01310951728373766, -0.0025512322317808867, -0.03208474814891815, -0.010883373208343983, 0.023999957367777824, -0.009710229933261871, -0.005042393691837788, 0.042261410504579544, -0.003477025544270873, 0.024141300469636917, 0.0020848019048571587, 0.011512347497045994, -0.02799995057284832, -0.027491116896271706, -0.02951231598854065, 0.001443460350856185, 0.02527203969657421, -0.015095380134880543, -0.030162490904331207, 0.007816240191459656, -0.023476989939808846, -0.015279124490916729, -0.013823296874761581, 0.010339204221963882, -0.014303862117230892, 0.03332856297492981, 0.017399262636899948, -0.0011413407046347857, 0.0001501764199929312, -0.0013189022429287434, -0.03437449783086777, -0.02641691453754902, 0.01648053713142872, -0.005187269765883684, -0.023929286748170853, 0.01615544781088829, 0.03245224058628082, -0.008805638179183006, -0.023547662422060966, -0.029964610934257507, -0.015575944446027279, -0.01816251128911972, 0.004692571237683296, -0.009272068738937378, 0.01134980283677578, 0.003303881036117673, 0.013851565308868885, 0.006339211482554674, 0.03132149949669838, -0.012466409243643284, 0.020975228399038315, 0.0055158911272883415, -0.014452271163463593, 0.018643077462911606, -0.016621878370642662, 0.01566074974834919, -0.010296802036464214, -0.05156174674630165, -0.016833892092108727, 0.03050171211361885, 0.028650125488638878, -0.008056523278355598, 0.021823283284902573, -0.004798578098416328, -0.00903178658336401, -0.013766760006546974, -0.011031782254576683, -0.02418370358645916, -0.005197870545089245, 0.003277379320934415, -0.06196455657482147, -0.01039574109017849, -0.006314476486295462, -0.015166050754487514, 0.0008096275269053876, 0.0029911608435213566, 0.03208474814891815, -0.012692556716501713, 0.0026819740887731314, -0.01628265716135502, -0.025413382798433304, -0.009102457202970982, -0.020409857854247093, 0.027717266231775284, 0.011844501830637455, 0.0190812386572361, 0.04898931458592415, -0.016989368945360184, -0.01608477719128132, 0.019434595480561256, 0.018628941848874092, -0.02602115459740162, -0.0038480497896671295, 0.03807767108082771, -0.00838867761194706, 0.014784426428377628, -0.0008202282479032874, -0.0023109500762075186, -0.0025123630184680223, -0.012650154531002045, -0.016169583424925804, -0.02750525251030922, -0.028155427426099777, 0.042063530534505844, 0.01925084926187992, -0.019886890426278114, -0.053851496428251266, -0.009349807165563107, -0.005678435321897268, -0.000573320547118783, -0.012678422965109348, -0.0012941673630848527, -0.004296812228858471, 0.002706709085032344, -0.01225439552217722, -0.015406332910060883, -0.02626143768429756, 0.004756175447255373, -0.014798560179769993, 0.0039010532200336456, -0.02279854565858841, 0.1849890798330307, -0.03126496076583862, 0.006056526210159063, 0.037201348692178726, -0.014925768598914146, 0.002217310480773449, 0.01393637154251337, -0.0067173028364777565, -0.02111656963825226, 0.003316248534247279, -0.0024222570937126875, 0.006540624424815178, 0.008699631318449974, 0.0028586522676050663, 0.015590078197419643, 0.028240233659744263, -0.03276319429278374, -0.031999941915273666, 0.014742023311555386, 0.002037098864093423, -0.024593595415353775, -0.02790101058781147, -0.0055441600270569324, -0.009102457202970982, 0.018049437552690506, -0.014756157994270325, 4.381065446068533e-05, 0.00962542463093996, 0.012607751414179802, 0.019632473587989807, -0.023533526808023453, -0.0029416908510029316, 0.010127190500497818, -0.0032809129916131496, -0.011901038698852062, -0.017512336373329163, 0.028438111767172813, -0.01556180976331234, 0.015194319188594818, 0.02691161260008812, 0.018968164920806885, -0.03146284073591232, -0.009307404048740864, -0.0224451906979084, 0.0036219016183167696, 0.010084787383675575, -0.018346257507801056, 0.010325070470571518, -0.018402794376015663, -0.014826828613877296, -0.04658649116754532, 0.0037279087118804455, 0.015363930724561214, 0.009462880901992321, -0.007031789515167475, -0.0033551177475601435, -0.006865712348371744, 0.02532857656478882, 0.0006581260240636766, 0.004727907013148069, 0.008840973488986492, 0.002217310480773449, -0.010282667353749275, 0.023943420499563217, -0.004371017217636108, 0.023618333041667938, -0.02014130726456642, 0.010826836340129375, 0.022487591952085495, -0.018445197492837906, 0.010190795175731182, -0.008070657029747963, -0.024325044825673103, -0.005272075533866882, -0.004710238892585039, -0.026544122025370598, 0.013116584159433842, 0.011660756543278694, 0.014840963296592236, 0.021611269563436508, -0.023632466793060303, 0.05060061812400818, -0.012869235128164291, -0.009024718776345253, -0.004310946445912123, -0.03397873789072037, 0.040056467056274414, -0.016621878370642662, -0.028833871707320213, 0.02619076706469059, -0.019519399851560593, 0.01947699673473835, -0.002784447278827429, -0.0104805463925004, 0.012756161391735077, -0.03332856297492981, 0.005318011622875929, 0.005484089255332947, -0.0068374439142644405, 6.664078682661057e-05, -0.015999970957636833, 0.07666417211294174, 0.03149111196398735, -0.028042353689670563, -0.012565349228680134, -0.00997171364724636, -0.0005136916879564524, 0.023448722437024117, 0.021144839003682137, -0.028409844264388084, -0.017611276358366013, -0.0375688374042511, 0.0038445161189883947, -0.008084791712462902, 0.011272065341472626, 0.032819729298353195, 0.0005962887080386281, 0.0034293225035071373, 0.007667831145226955, -0.03327202424407005, -0.012876302003860474, -0.017978766933083534, 0.026897478848695755, 0.0040353285148739815, -0.025809140875935555, -0.008438147604465485, -0.02286921814084053, 0.015491139143705368, -0.033809129148721695, -0.0055441600270569324, 0.03245224058628082, -0.013081248849630356, 0.0034275557845830917, 0.008077723905444145, 0.012317999266088009, 0.02388688363134861, 0.024650132283568382, -0.024946952238678932, -0.026643062010407448, 0.0023162502329796553, -0.023802077397704124, -0.013498209416866302, 0.010021183639764786, 0.0058021098375320435, 0.00028577688499353826, -0.045031722635030746, 0.007759703788906336, -0.01319432258605957, -0.007632495369762182, -0.017780886963009834, -0.009420477785170078, -0.019406326115131378, -0.027660729363560677, -0.01632506027817726, 0.024650132283568382, -0.015816226601600647, -0.0023021160159260035, -0.03592926636338234, 0.011999978683888912, 0.013081248849630356, -0.045879777520895004, 0.033017609268426895, 0.011696092784404755, -0.022727875038981438, -0.014353331178426743, 0.0009178429027087986, -0.18114455044269562, 0.02562539651989937, 0.03307414799928665, 0.009187262505292892, 0.028720797970891, 0.0008290621335618198, 0.0005326845566742122, 0.004925786517560482, -0.01301057729870081, 0.014628949575126171, 0.03768191114068031, 0.002683740807697177, -0.006770306266844273, -0.016989368945360184, -0.0018763217376545072, -0.008904578164219856, -0.0008003519615158439, 0.026600658893585205, 0.01635332778096199, 0.016565341502428055, 0.02556885965168476, -0.03154764696955681, 0.004028261639177799, 0.00551235768944025, 0.0008476133225485682, 0.010339204221963882, 0.0054452200420200825, 0.030756128951907158, -0.009434612467885017, -0.04602111876010895, -0.0049505215138196945, -0.0013886900851503015, 0.01744166575372219, 0.020014099776744843, 0.02911655604839325, 0.009067121893167496, -0.0030848002061247826, 0.014056512154638767, 0.009392209351062775, 0.0568479560315609, 0.014614814892411232, 0.0379645973443985, -0.005021192599087954, -0.0281271580606699, -0.011413407512009144, 0.02681267261505127, -0.00968902837485075, -0.004756175447255373, 0.0018869225168600678, -0.0036784387193620205, 0.02098936215043068, -0.011915173381567001, 0.00812719389796257, 0.0099858483299613, 0.013971706852316856, 0.035052940249443054, 0.015123648568987846, -0.009286202490329742, 0.0038480497896671295, 0.003560064360499382, -0.00927913561463356, -0.012367469258606434, 0.018402794376015663, -0.012431073002517223, -0.015816226601600647, -0.027561789378523827, -0.016763221472501755, 0.014883365482091904, -0.034855060279369354, 0.002676673699170351, -0.011229662224650383, -0.0011722594499588013, 0.016339194029569626, 0.010530016385018826, 0.01828972063958645, 0.006088328547775745, -0.016833892092108727, 0.015264990739524364, 0.013512343168258667, -0.015448736026883125, 0.007992918603122234, 0.019236715510487556, -0.028763199225068092, 0.0031183690298348665, 0.030643055215477943, -0.008664296008646488, -0.0038515832275152206, 0.014424002729356289, -0.020310917869210243, -0.006699634715914726, 0.0023710206151008606, -0.016423998400568962, 0.008551221340894699, -0.0060211909003555775, 0.0023162502329796553, 0.01796463318169117, 0.006222603842616081, 0.007014121860265732, 0.0030724327079951763, -0.007328609004616737, 0.0066360305063426495, -0.0029628921765834093, -0.0026978750247508287, -0.0022014095447957516, 0.009590089321136475, 0.023533526808023453, -0.001280033029615879, 0.0028957545291632414, 0.012282663956284523, -0.009024718776345253, -0.034204885363578796, 0.0044911582954227924, 0.029964610934257507, 0.030558248981833458, 0.008247335441410542, 0.01467135176062584, -0.008607758209109306, -0.023250842466950417, 0.017554739490151405, -0.007406347431242466, 0.07163238525390625, 0.010120123624801636, -0.015208453871309757, 0.04842394217848778, -0.0032738458830863237, -0.01727205514907837, -0.08949807286262512, -0.013978773728013039, -0.0018745550187304616, 0.021272046491503716, -0.01120139379054308, 0.020508797839283943, -0.003379852743819356, 0.03406354412436485, -0.0007292390218935907, 0.022317981347441673, -0.019618339836597443, -0.019067104905843735, -0.008975248783826828, -0.013844498433172703, -0.006402815692126751, 0.002830383600667119, -0.012855101376771927, -0.027448715642094612, 0.0014708454255014658, 0.037399228662252426, -0.009745566174387932, -0.021738477051258087, -0.0013330364599823952, -0.0195759367197752, 0.006968185771256685, -0.01399997528642416, -0.024127166718244553, 0.013321531005203724, -0.006102462764829397, 0.032423969358205795, 0.03315895050764084, -0.0055158911272883415, 0.004848048090934753, 0.0009717297507449985, 0.01618371717631817, -0.02609182707965374, -0.009413410909473896, -0.027787936851382256, 0.029766730964183807, -0.0391518734395504, 0.0003080824972130358, 0.019293252378702164, 0.013540612533688545, -0.011929307132959366, -0.013865699991583824, 0.000841429631691426, -0.04220487177371979, 0.025144832208752632, -0.001826851861551404, -0.028946945443749428, 0.002733210800215602, -0.026699598878622055, -0.0029293233528733253, -0.0020777347963303328, 0.01793636381626129, -0.018530001863837242, 0.005272075533866882, 0.003643103176727891, -0.03951936587691307, -0.01171022653579712, 0.01964660920202732, -0.010473479516804218, -0.004137801937758923, 0.03171725943684578, 0.014113049022853374, 0.01418372057378292, -0.010261465795338154, -0.010296802036464214, 0.003033563494682312, -0.045625362545251846, -0.006512355990707874, 0.012791496701538563, -0.03276319429278374, -0.010310935787856579, -0.02500348910689354, -0.018275586888194084, -0.017484068870544434, -0.020268514752388, 0.025780873373150826, -0.014452271163463593, -0.013844498433172703, -0.015547676011919975, 0.024932818487286568, -0.01704590581357479, 0.02973846346139908, 0.011936374939978123, 0.005148401018232107, 0.0015397499082610011, 0.019886890426278114, -0.016310924664139748, 0.03629675507545471, 0.003250877605751157, 0.014303862117230892, -0.020650140941143036, -0.025017622858285904, 0.004798578098416328, 0.009123658761382103, -0.01130033377557993, -0.0033692519646137953, -0.0018056505359709263, -0.03330029547214508, 0.020706677809357643, -0.07903873175382614, 0.037003468722105026, -0.006307409144937992, -0.02359006367623806, 0.01687629520893097, -0.008614826016128063, 0.006134264636784792, -0.013321531005203724, -0.009024718776345253, 0.017710216343402863, -0.03233916684985161, 0.0023427519481629133, -0.011088320054113865, -0.001860420685261488, -0.019561802968382835, -0.013632484711706638, 0.025908080860972404, -0.04175257682800293, 0.028749065473675728, 0.021342718973755836, 0.011264997534453869, 0.012508811429142952, 0.017455799505114555, 0.02641691453754902, -0.015618346631526947, -0.0040176608599722385, 0.004657235462218523, 0.011378072202205658, -0.014530009590089321, -0.018643077462911606, -0.004431087523698807, -0.029766730964183807, 0.00918019562959671, 0.02079148218035698, -0.03267838805913925, 0.0006638680933974683, 0.010530016385018826, 0.02128618210554123, 0.013166054151952267, 0.026275571435689926, 0.006586560979485512, -0.013745558448135853, 0.015109513886272907, -0.009999982081353664, -0.005392216611653566, 0.0018445197492837906, -0.022529995068907738, 0.029144825413823128, 0.014798560179769993, -0.011872770264744759, 0.02336391620337963, -0.005310944747179747, -0.02004236727952957, -0.0582331120967865, -0.0009575954754836857, -0.009759699925780296, 0.018911628052592278, 0.009505284018814564, -0.02375967614352703, -0.015363930724561214, 0.035250820219516754, 0.006289741490036249, 0.01467135176062584, -0.021639537066221237, 0.005201404448598623, 0.008176663890480995, -0.02928616665303707, 0.0016254388028755784, -0.009561820887029171, -0.022134236991405487, -0.0035441634245216846, 0.0014752624556422234, -0.0017588308546692133, 0.02210596762597561, -0.008275603875517845, -0.0048692491836845875, -0.003443456720560789, 0.009604223072528839, -0.013512343168258667, 0.02539924904704094, 0.014233190566301346, -0.02366073615849018, -0.014275592751801014, -0.007342743221670389, 0.019222581759095192, 0.020607737824320793, -0.027392176911234856, 0.030643055215477943, -0.01674908772110939, 0.009123658761382103, -0.009865706786513329, 0.014572412706911564, 0.011809166520833969, 0.014925768598914146, -0.010105988942086697, 0.02987980656325817, -0.011264997534453869, -0.0005181086016818881, -0.0049681891687214375, 0.012904570437967777, -0.01816251128911972, 0.019618339836597443, 0.010756164789199829, -0.017653679475188255, -0.040028199553489685, 0.0013745558680966496, 0.0013992908643558621, -0.01974554732441902, -0.0013913402799516916, -0.008021187037229538, -0.0016263221623376012, 0.0365794412791729, 0.010466412641108036, 0.015081245452165604, -0.01823318377137184, 0.025314442813396454, 0.0026378044858574867, 0.0027014086954295635, -0.019363922998309135, 0.025158965960144997, 0.006897514220327139, -0.008035321719944477, 0.019604206085205078, 0.00602825777605176, 0.027137761935591698, 0.012530012987554073, 0.006353345699608326, -0.02128618210554123, -0.010438144207000732, -0.0034275557845830917, 0.019604206085205078, 0.0007009704713709652, -0.006074194330722094, -0.00576677406206727, -0.01375262625515461, -0.02024024724960327, -0.0011810932774096727, 0.007512354291975498, 0.008742034435272217, 0.0822613388299942, 0.025286175310611725, -0.015618346631526947, -0.009024718776345253, 0.0006143982172943652, -8.911203622119501e-05, 0.02385861426591873, 0.00995051208883524, 0.019703146070241928, -0.06122957542538643, 0.010424009524285793, 0.020127173513174057, -0.016989368945360184, -0.03491159901022911, -0.0024045894388109446, -0.0010362172033637762, 0.01994342729449272, -0.002980560064315796, -0.027123626321554184, -0.01049468107521534, 0.024918684735894203, 0.012183723971247673, 0.012961108237504959, -0.007420481648296118, -0.01138513907790184, -0.017978766933083534, 0.00393992243334651, -0.005879848264157772, 0.00666429940611124, -0.026501720771193504, 0.009893975220620632, -0.011095386929810047, -0.0421200655400753, -0.019010568037629128, 0.016593610867857933, 0.030445175245404243, 0.0019575937185436487, -0.009413410909473896, 0.01313071884214878, -0.0060211909003555775, -0.017031772062182426, 0.028113024309277534, 0.0008555638487450778, -0.012890436686575413, 0.001556534320116043, -0.014812694862484932, -0.017653679475188255, -0.013809163123369217, -0.0566500760614872] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_characterizing_ml_training_performance_at_the_tactical_edge.json b/database/embeddings/publications_txt/2022_characterizing_ml_training_performance_at_the_tactical_edge.json new file mode 100644 index 0000000000000000000000000000000000000000..6b4c7b47444de4c821af3247946d14709941067d --- /dev/null +++ b/database/embeddings/publications_txt/2022_characterizing_ml_training_performance_at_the_tactical_edge.json @@ -0,0 +1 @@ +[-0.014503251761198044, 0.00731554813683033, 0.01663399301469326, -0.017514700070023537, 0.013672261498868465, 0.014915194362401962, 0.005049858707934618, 0.0046272617764770985, -0.020185230299830437, -0.048751380294561386, 0.02917696163058281, 0.05690502002835274, -0.024716608226299286, 0.006044205278158188, -0.013089858926832676, 0.015611236914992332, 0.02383590117096901, -0.005195459350943565, -0.0029599559493362904, -0.0025657685473561287, -0.001676183775998652, -0.0012802209239453077, -0.043410319834947586, -0.0029759365133941174, -0.021733568981289864, 0.005795618519186974, 0.0192192941904068, -0.03284183889627457, -0.017983462661504745, 0.0010920052882283926, 0.010504558682441711, -0.008807067759335041, 0.00402710260823369, -0.017102757468819618, -0.00965226162225008, -0.008764452300965786, 0.025853004306554794, -0.02197505347430706, 0.036648765206336975, -0.007535724435001612, 0.009730389341711998, 0.03554077818989754, 0.01465950533747673, -0.028608763590455055, -0.002652773866429925, 0.005806272383779287, 0.03684763237833977, -0.009517314843833447, -0.007720388937741518, 0.01852325163781643, 0.002054390497505665, 0.040484100580215454, -0.012855477631092072, 0.0017232376849278808, -0.007351060397922993, -0.0010369612136855721, -0.004442597273737192, 0.03196113184094429, 0.002097005257382989, -0.03559760004281998, 0.033978234976530075, -0.008501661010086536, -0.024318870157003403, 0.00863660778850317, -0.014247561804950237, -0.025299010798335075, -0.02711724489927292, 0.032444100826978683, 0.008189151994884014, -0.01204579509794712, 0.008863886818289757, 0.016094205901026726, -0.004272137768566608, -0.022429611533880234, 0.036506716161966324, -0.04207505285739899, -0.011697773821651936, -0.01808289811015129, -0.012145229615271091, 0.015923745930194855, -0.0024752120953053236, -0.002359796781092882, 0.009368162602186203, 0.0065591344609856606, 0.007010141387581825, 0.003689735196530819, -0.005142190959304571, -0.02397795207798481, -0.01852325163781643, 0.005678427871316671, 0.005149293225258589, -0.006427738815546036, 0.04261484369635582, -0.0004501192597672343, -0.007393674924969673, 0.006402879953384399, -0.004172703251242638, 0.030029259622097015, 0.006669222842901945, -0.02926219254732132, -0.002633242169395089, 0.0037394524551928043, -0.039120424538850784, -0.01794084906578064, -0.011655159294605255, -0.02078183740377426, -0.010497456416487694, 0.00789795070886612, 0.006868091877549887, 0.0080115906894207, -0.02005738578736782, 0.0015616563614457846, -0.016974912956357002, -0.019574416801333427, -0.00823176745325327, -0.014304381795227528, -0.021818799898028374, -0.01866530068218708, -0.009382368065416813, -0.0031801327131688595, 0.031534984707832336, 0.005855989642441273, 0.005277137737721205, -0.020767632871866226, 0.017486291006207466, 0.0076422616839408875, -0.001084015006199479, -0.02798374556005001, 0.021293215453624725, -0.017173781991004944, -0.005880848038941622, -0.001318396651186049, -0.011846926063299179, -0.005028551444411278, 0.01100173220038414, 0.019375547766685486, -0.00827438198029995, 0.002812579507008195, -0.020796043798327446, -0.03585328906774521, -0.00010670357005437836, 0.04270007088780403, -0.02244381606578827, -0.01355862244963646, -0.028750814497470856, 0.017060142010450363, -0.006722491234540939, 0.012336996383965015, 0.010980424471199512, 0.009844028390944004, -0.024745019152760506, -0.018097102642059326, -0.011520212516188622, 0.03707491233944893, -0.0022763428278267384, 0.015057244338095188, -0.013956360518932343, 0.011697773821651936, 0.015952156856656075, -0.02612289786338806, 0.02400636114180088, 0.020256254822015762, -0.019815901294350624, -0.017372651025652885, 0.010476148687303066, 0.023793287575244904, 0.04551265016198158, -0.0023100795224308968, -0.001554553979076445, -0.005550583358854055, -0.012734735384583473, 0.02781328745186329, -0.024943888187408447, -0.02667689137160778, -0.0013876458397135139, 0.022869965061545372, 0.05298445373773575, -0.014702120795845985, -0.01930452324450016, -0.00043791189091280103, 0.0047799646854400635, -0.00645969994366169, 0.018395407125353813, 0.004772862419486046, 0.0007302230806089938, 0.029915619641542435, 0.029631519690155983, -0.02920537255704403, -0.005483109503984451, -0.02662007138133049, 0.03045540675520897, 0.014815759845077991, -0.0175004955381155, -0.00938947033137083, -0.6059262156486511, -0.016818657517433167, -0.0011887765722349286, 0.004559787921607494, -0.02673371136188507, 0.00791215617209673, 0.010163639672100544, -0.007272933144122362, -0.03193272277712822, 0.031421344727277756, -0.004222420509904623, 0.0041762543842196465, -0.00680061848834157, -0.016705017536878586, -0.007393674924969673, -0.013572826981544495, 0.008047102950513363, -0.0253700353205204, 0.011086961254477501, 0.008459046483039856, -0.010078410618007183, 0.018736325204372406, 0.013089858926832676, -0.002001121873036027, -0.022983605042099953, 0.02948947064578533, 0.017628340050578117, -0.01733003556728363, 0.021790388971567154, 0.015540212392807007, -0.03747265040874481, 0.009155089035630226, 0.03764311224222183, -0.009382368065416813, 0.043495550751686096, -0.007741696201264858, -0.015838516876101494, 0.03551236912608147, 0.022912580519914627, 0.0403420515358448, -0.03809766843914986, -0.006449046079069376, -0.017145371064543724, 0.011477597057819366, -0.003524602623656392, 0.010021590627729893, 0.020824452862143517, 0.012947809882462025, -0.017173781991004944, -0.029887208715081215, -0.01536975335329771, 0.00735816266387701, 0.0025604418478906155, -0.01222335733473301, 0.008665017783641815, -0.003357694484293461, 0.007684876676648855, -0.015810105949640274, 0.0018466431647539139, 0.0038743994664400816, 0.005738798528909683, -0.0006813935469835997, -0.009503109380602837, -0.027358729392290115, -0.011754593811929226, 0.005170600954443216, -0.01904883421957493, 0.02272791601717472, 0.00208280049264431, -0.01840961165726185, 0.023594418540596962, 0.011427880264818668, 0.012244665063917637, -0.01110116671770811, 0.01715957559645176, 0.03318275883793831, 0.03619420528411865, 0.015582826919853687, 0.0011727960081771016, 0.008906502276659012, 0.017869824543595314, 0.008870990015566349, 0.010469046421349049, -0.018537456169724464, 0.003236952470615506, 0.00614008866250515, -0.00016779593715909868, 0.01782720908522606, 0.0005238074227236211, 0.008785760030150414, 0.017173781991004944, 0.03704650327563286, -0.013572826981544495, -0.04241597279906273, -0.0043396116234362125, 0.014702120795845985, -0.001558993011713028, 0.012010282836854458, -0.023381343111395836, -0.015327137894928455, -0.010398021899163723, 0.00019376435375306755, 0.019403958693146706, 0.013579930178821087, 0.0384385883808136, 0.028111590072512627, -0.010057102888822556, -0.00034358215634711087, 0.02150629088282585, -0.023466574028134346, -0.0010866784723475575, 0.011236113496124744, -0.01616523042321205, 0.015639647841453552, 0.02745816297829151, -0.031080424785614014, 0.02417682111263275, 0.002505397656932473, 0.004218869376927614, 0.012706325389444828, 0.01226597186177969, 0.006896501872688532, 0.009829823859035969, -0.0022177475038915873, -0.024432510137557983, 0.014986219815909863, 0.01771356910467148, -0.03429074212908745, 0.006644363980740309, 0.005309099331498146, 0.02211710251867771, -0.008849682286381721, 0.02119378186762333, -0.0073226504027843475, 0.042103465646505356, 0.007042102515697479, 0.014261767268180847, -0.009140883572399616, -0.002189337508752942, -0.025654135271906853, -0.019205089658498764, -0.013849823735654354, -0.001500397571362555, 0.00869342777878046, -0.05449017882347107, -0.0008531846688129008, -0.011477597057819366, 0.004680530168116093, 0.003831784473732114, -0.008942014537751675, -0.015568622387945652, 0.026179717853665352, -0.00703855138272047, 0.02305462956428528, -0.00869342777878046, -0.018239151686429977, -0.02417682111263275, -0.02453194372355938, -0.011839823797345161, -0.01819653809070587, -0.02333872951567173, 0.00891360454261303, -0.023722263053059578, 0.012571378611028194, 0.012351201847195625, -0.005046307574957609, -0.022855760529637337, 0.02850933000445366, -0.013167986646294594, -0.031052015721797943, 0.011896643787622452, -0.02778487652540207, -0.00937526486814022, 0.01579590141773224, -0.023068834096193314, 0.018338587135076523, 0.0012642403598874807, 0.025526290759444237, -0.023352934047579765, -0.010341201908886433, -0.016406714916229248, 0.021989258006215096, -0.00012873233936261386, -0.003583197947591543, 0.029659930616617203, 0.03417710214853287, 0.023764876648783684, 0.008132332004606724, -0.0028711750637739897, 0.003931219223886728, -0.0006827252800576389, 0.017514700070023537, -0.0008389797294512391, 0.010213357396423817, -0.02377908118069172, 0.025213781744241714, -0.008025795221328735, -0.01930452324450016, -0.013587032444775105, 0.011988976038992405, 0.035000991076231, 0.015454982407391071, -0.008288586512207985, 0.007535724435001612, -0.005401431117206812, -0.006509417202323675, 0.02475922368466854, -0.0323304608464241, 0.01715957559645176, -0.0028392139356583357, 0.03502940014004707, -0.0046911840327084064, -0.021676748991012573, -0.013231908902525902, -0.011278728023171425, 0.021151166409254074, -0.006601749453693628, 0.0037145938258618116, -0.03971703350543976, 0.008288586512207985, 0.0033381625544279814, 0.009162191301584244, 0.020895477384328842, -0.008146537467837334, 0.0052309720776975155, -0.005387226119637489, 0.019716467708349228, 0.003368348116055131, 0.010241767391562462, -0.016705017536878586, -0.018011873587965965, 0.021378446370363235, 0.026861555874347687, -0.0052558304741978645, 0.004041307605803013, -0.0036062810104340315, 0.03690445423126221, -0.01174038928002119, 0.040484100580215454, -0.033978234976530075, -0.0025338074192404747, 0.012663710862398148, 0.032728198915719986, -0.029546290636062622, -0.006736696232110262, -0.0024876415263861418, 0.01126452349126339, 0.009140883572399616, -0.009744593873620033, -0.0067260428331792355, -0.035228271037340164, 0.009041449055075645, 0.009240318089723587, 0.013452085666358471, 0.012102615088224411, -0.004630812909454107, 0.005554134491831064, -0.006189805921167135, -0.0021342933177948, 0.02133583091199398, 0.022159717977046967, 0.01747208461165428, 0.021520495414733887, 0.010383816435933113, 0.0122801773250103, -0.006658568978309631, -0.006473904941231012, 0.0010911175049841404, -0.004737350158393383, -0.016008974984288216, -0.00614008866250515, -0.012400918640196323, 0.004719593562185764, -0.016989117488265038, 0.0005420075030997396, 0.031392935663461685, 0.019560212269425392, 0.014247561804950237, 0.01130713801831007, 0.02545526623725891, -0.03301229700446129, -0.03039858676493168, 0.007905052974820137, 0.020980706438422203, -0.001003224402666092, -0.006743798963725567, -0.018011873587965965, 0.016335690394043922, -0.02264268696308136, 0.005877296905964613, 0.013913745991885662, 0.007173498626798391, -0.020568763837218285, -0.01677604205906391, -0.04684791713953018, 0.010639505460858345, 0.045967210084199905, -0.007365265395492315, -0.02255745604634285, -0.0006871643126942217, 0.03838176652789116, 0.013721979223191738, -0.023665443062782288, -0.00016479958139825612, 0.06096763536334038, -0.01164095476269722, 0.0005610954249277711, 0.005934116896241903, 0.004179805982857943, -0.010852579958736897, 0.007628056686371565, -0.012734735384583473, -0.016236254945397377, 0.01030568964779377, 0.03466007113456726, 0.008118127472698689, 0.03747265040874481, 0.02255745604634285, 0.015014629811048508, 0.009176395833492279, -0.002537358785048127, -0.02748657390475273, -0.014972014352679253, 0.02578197978436947, 0.05588226392865181, 0.04136480763554573, -0.009900848381221294, 0.019759081304073334, -0.012805759906768799, -0.018537456169724464, -0.024915477260947227, 6.98040021234192e-05, 0.01875052973628044, -0.004293445497751236, -0.014361201785504818, 0.007507314905524254, -0.009794311597943306, -0.005025000311434269, 0.030370177701115608, -0.007443392649292946, -0.005905706901103258, -0.014929399825632572, 0.026463817805051804, -0.003189010778442025, 0.007748798932880163, -0.011165088973939419, 0.009815618395805359, 0.0001053163650794886, 0.015838516876101494, -0.01916247420012951, 0.020895477384328842, 0.020313074812293053, -0.005412084981799126, -0.004584646783769131, 0.00468763243407011, 0.013778799213469028, 0.003963180352002382, 0.0030895760282874107, 0.0073865726590156555, 0.03477371111512184, 0.040484100580215454, 0.006417084950953722, 0.012344099581241608, 0.002457455964758992, 0.008814170025289059, 0.006278586573898792, -0.004098127130419016, -0.002198215574026108, 0.002409514272585511, -0.04684791713953018, -0.001147937262430787, 0.02639279142022133, -0.003389655612409115, -0.03446120396256447, 0.02345236763358116, 0.016591379418969154, -0.04676268622279167, -0.02548367530107498, 0.023608623072504997, 0.0244183037430048, -0.00733685540035367, -0.014517456293106079, -0.0005380123620852828, -0.034035053104162216, -0.002798374742269516, -0.011513110250234604, 0.011988976038992405, 0.003963180352002382, -0.018182333558797836, 0.019063038751482964, -0.025384241715073586, 0.006864540744572878, -0.007493109907954931, 0.0376715213060379, -0.024233641102910042, -0.0014924072893336415, -0.06068353354930878, 0.00017955941439140588, -0.007233869284391403, 0.0012083083856850863, 0.013331343419849873, -0.020682403817772865, -0.008643710054457188, -0.01297621987760067, -0.014687915332615376, 0.0028392139356583357, -0.009460494853556156, -0.04255802184343338, 0.0040235514752566814, -0.011378162540495396, -0.031364522874355316, -0.0153555478900671, -0.031165653839707375, 0.016307279467582703, -0.01196056604385376, -0.006200459320098162, -0.003528153756633401, 0.004552685655653477, 0.020966501906514168, 0.015412367880344391, 0.02711724489927292, 0.011058551259338856, 0.00927583035081625, -0.0014196069678291678, 0.007663568947464228, -0.008814170025289059, -0.014268869534134865, -0.029858799651265144, 0.004676979035139084, 0.008615300990641117, 0.009048551321029663, -0.007571237161755562, 0.0006028224597685039, 0.01322480570524931, 0.007777208928018808, -0.015781696885824203, 0.00272202305495739, -0.006385123822838068, -0.005380123853683472, -0.004375123884528875, 0.015781696885824203, -0.004414187278598547, 0.01200318057090044, -0.010199151933193207, -0.00074753537774086, -0.02914855256676674, 0.030000848695635796, 0.03054063767194748, -0.003941873088479042, 0.04917752742767334, -0.007905052974820137, -0.023381343111395836, -0.03073950670659542, 0.006889399606734514, 0.009467597119510174, 0.01944657228887081, -0.010483250953257084, -0.02108014188706875, -0.02659166231751442, -0.01158413477241993, -0.024134205654263496, -0.01605159044265747, -0.026193922385573387, -0.024659788236021996, -0.01392084825783968, 0.023509187623858452, 0.000731110863853246, 0.0028072528075426817, 0.028608763590455055, -0.02620812878012657, -0.0044994172640144825, 0.02392113208770752, 0.028054771944880486, 0.02375067211687565, -0.011896643787622452, 0.02252904698252678, -0.02600925788283348, -0.02348077856004238, -0.04488763213157654, -0.007670671679079533, -0.03196113184094429, 0.008977526798844337, 0.035483960062265396, 0.009829823859035969, 0.04787067323923111, 0.010106819681823254, 0.003448250936344266, 0.020426714792847633, -0.007251625880599022, 0.01677604205906391, 0.0007306669722311199, 0.0019176679197698832, -0.010916502214968204, -0.01872212067246437, 0.022216537967324257, -0.03056904673576355, 0.011129576712846756, -0.0051350886933505535, 0.01393505372107029, 0.006637261714786291, -0.007649364415556192, -0.009304240345954895, -0.009147985838353634, -0.03173385187983513, -0.00028543066582642496, 0.014432226307690144, -0.008160741999745369, 0.010618198662996292, -0.03826812654733658, -0.02038409933447838, 0.03744424134492874, -0.0004090580914635211, -0.011974770575761795, 0.0020632685627788305, -0.014915194362401962, -0.00799738522619009, 0.02679053135216236, 0.026932580396533012, 0.010021590627729893, -0.01573908142745495, -0.007351060397922993, -0.0440637469291687, -0.0038530919700860977, 0.0029546290170401335, 0.006740247365087271, 0.02375067211687565, 0.025213781744241714, 0.009190601296722889, -0.008920706808567047, 0.03048381768167019, 0.02194664441049099, -0.013104064390063286, -0.010007385164499283, -0.02801215648651123, -0.03755788132548332, -0.033949825912714005, -0.019787492230534554, 0.008558481000363827, -0.009936360642313957, 0.0022195230703800917, -0.006523622199892998, 0.012734735384583473, -0.018736325204372406, -0.035228271037340164, 0.02787010744214058, 0.02731611393392086, 0.023935336619615555, 0.00413008825853467, 0.021520495414733887, 0.029801979660987854, -0.00019398631411604583, 0.007194805890321732, 0.020682403817772865, 0.02244381606578827, 0.01660558395087719, 0.020895477384328842, -0.006889399606734514, -0.018864169716835022, -0.019759081304073334, 0.00799738522619009, 0.019034629687666893, -0.011953462846577168, -0.03968862444162369, 0.032728198915719986, 0.005209664348512888, -0.010469046421349049, -0.01259978860616684, -0.026364382356405258, -0.025568906217813492, 0.011534417048096657, -0.019659647718071938, 0.011427880264818668, 0.013608339242637157, -0.004517173394560814, 0.0007213450153358281, 0.03085314668715, -0.002530256286263466, 0.032671380788087845, -0.00019931317365262657, -0.0250859372317791, 0.010177845135331154, 0.007848233915865421, -0.025327421724796295, -0.010057102888822556, 0.0005042756092734635, 0.025767775252461433, -0.01140657253563404, 0.002936872886493802, 0.016889682039618492, 0.004044858738780022, 0.013459187932312489, -0.011655159294605255, -0.0031055565923452377, 0.030881555750966072, -0.007720388937741518, -0.001969160744920373, 0.0033186308573931456, -0.02815420553088188, 0.01671922393143177, -0.01100173220038414, -0.0013272748328745365, -0.006353162694722414, -0.0045562367886304855, -0.001558993011713028, 0.007734593935310841, 0.0014240460004657507, -0.003988039214164019, 0.005969629157334566, 0.01062530092895031, -0.02784169651567936, 0.015668056905269623, 0.009496007114648819, 0.004609505645930767, -0.02615130878984928, -0.015568622387945652, 0.0019762632437050343, -0.015540212392807007, 0.015838516876101494, 0.034091874957084656, 0.00031739179394207895, 0.018963605165481567, 0.025696750730276108, -0.04085342958569527, 0.009680671617388725, 0.009311342611908913, -0.027131449431180954, -0.03474530205130577, -0.020511943846940994, -0.007734593935310841, -0.008949116803705692, 0.01799766905605793, -0.005461802240461111, -0.033836185932159424, -0.01590954139828682, -0.02377908118069172, 0.006221767049282789, -0.01875052973628044, -0.01152731478214264, -0.004009346477687359, -0.008118127472698689, -0.008920706808567047, -0.01519929338246584, -0.011520212516188622, 0.033921413123607635, -0.026051873341202736, 0.00038797262823209167, 0.021492086350917816, -0.024347279220819473, 0.025497879832983017, -0.03346685692667961, -0.013054346665740013, 0.0060903714038431644, -0.04369441792368889, 0.001228727982379496, 0.00028365504113025963, 0.007755901198834181, -0.003300874726846814, 0.01643512398004532, 0.0006081493338569999, -0.001190552138723433, -0.03727378323674202, 0.0224154070019722, -0.012159435078501701, -0.012706325389444828, 0.01652035303413868, -0.013267421163618565, 0.012251767329871655, -0.0036346910055726767, -0.020213639363646507, -0.021605724468827248, -0.0034944170620292425, 0.022273357957601547, -0.02836727909743786, -0.016406714916229248, -0.00763515941798687, 0.02781328745186329, 0.011356855742633343, -0.03079632669687271, -0.04929116740822792, -0.01927611418068409, -0.01616523042321205, -0.012550070881843567, -0.002785945311188698, 0.007457597181200981, -0.006228869315236807, 0.020043181255459785, -0.0015181537019088864, 0.017017526552081108, -0.008487456478178501, 0.00998607836663723, 0.0027397791855037212, -0.0019922438077628613, -0.01994374580681324, 0.00285164313390851, -0.0008407553541474044, 0.0012411572970449924, -0.03554077818989754, -0.01525611337274313, 0.013537314720451832, -0.0027681891806423664, 0.0015012853546068072, 0.024262050166726112, -0.002045512432232499, -0.0272308848798275, -0.004815476946532726, -0.007528622169047594, -0.009588339366018772, 0.01194636058062315, 0.019403958693146706, -0.04287053272128105, -0.022358587011694908, -0.004257932770997286, 0.008629505522549152, 0.01409130822867155, -0.0003320406540296972, 0.022869965061545372, 0.0010342977475374937, 0.0037891697138547897, -0.01994374580681324, 0.00011907741281902418, -0.014538764022290707, 0.0019727121107280254, 0.031534984707832336, 0.01338106021285057, 0.005408533848822117, 0.023665443062782288, 0.007013692986220121, 0.002729125553742051, -0.021435266360640526, 0.017585724592208862, -0.008459046483039856, 0.0005877296789549291, 0.023352934047579765, -0.025668339803814888, -0.00346955843269825, -0.02086706832051277, 0.017543110996484756, -0.00955282710492611, -0.019716467708349228, -0.026989400386810303, 0.0065910955891013145, -0.015156678855419159, 0.02926219254732132, 0.0007066961261443794, -0.037898801267147064, -0.01056848093867302, -0.013998975977301598, 0.01136395800858736, -0.016378303989768028, -0.005578992888331413, 0.0014613339444622397, -0.01997215673327446, 0.002445026533678174, -0.009446290321648121, -0.037756748497486115, 0.007684876676648855, -0.0028232333716005087, -0.007798516191542149, -0.02717406488955021, -0.011278728023171425, 0.17250488698482513, -0.02519957721233368, 0.012308587320148945, 0.009417880326509476, -0.0025959541089832783, -0.010355406440794468, 0.024915477260947227, 0.003764311084523797, -0.004190459381788969, 0.0012473718961700797, 0.01927611418068409, 0.019688056781888008, -0.014943604357540607, -0.014474841766059399, 0.015440777875483036, 0.009907950647175312, -0.05008664354681969, -0.04031364247202873, -0.005951873026788235, 0.005642915144562721, 0.007613851688802242, -0.011534417048096657, -0.02066819928586483, -0.03693286329507828, 0.014084205031394958, -0.00927583035081625, 0.0030735954642295837, -0.007628056686371565, 0.00885678455233574, 0.01536975335329771, -0.003860194468870759, 0.023906925693154335, 0.012095512822270393, -0.019403958693146706, -0.0027752916794270277, -0.018594276160001755, -0.00733685540035367, 0.0031055565923452377, 0.025057528167963028, 0.01930452324450016, 0.011221908032894135, 0.008998834528028965, 0.031052015721797943, -0.037984028458595276, 0.000720901065506041, 0.029574699699878693, -0.040398869663476944, -0.0003367016324773431, 0.004417738877236843, 0.0008602871093899012, -0.019957950338721275, 0.009836926124989986, 0.02133583091199398, 0.02066819928586483, -0.003849540837109089, -0.012500354088842869, -0.010589788667857647, 0.007549929432570934, 0.01071052998304367, 0.024048976600170135, -0.008892296813428402, 0.0005349050625227392, -0.004332508891820908, 0.012805759906768799, 0.011157985776662827, 0.0072267670184373856, -0.031222473829984665, 0.0006334518548101187, 0.011861131526529789, -0.005184805952012539, 0.0017907111905515194, -0.00530554773285985, -0.01361544243991375, -0.023068834096193314, -0.02412000112235546, -0.03227363899350166, 0.014900989830493927, 0.010845477692782879, 0.036535125225782394, 0.04255802184343338, -0.014801555313169956, 0.019489187747240067, 0.0034713339991867542, 0.0033949825447052717, -0.0250859372317791, -0.039205655455589294, 0.03235886991024017, -0.014062898233532906, -0.007883746176958084, -0.006164947059005499, -0.03480212017893791, 0.004201113246381283, -0.011917950585484505, 0.009062756784260273, 0.00013749944628216326, -0.03039858676493168, 0.017813004553318024, -0.004740901291370392, 0.016889682039618492, 0.0027362280525267124, -0.03352367505431175, 0.06727463006973267, 0.03545554727315903, -0.00827438198029995, -0.011548622511327267, 0.003863745601847768, -0.010362508706748486, 0.015000424347817898, 0.017401060089468956, -0.016293074935674667, -0.006214664317667484, -0.029546290636062622, 0.0011878886725753546, 0.017926644533872604, -0.0143540995195508, 0.021563110873103142, 0.0100855128839612, -0.01023466419428587, 0.02740134298801422, -0.007102473638951778, -0.014055795036256313, -0.011967668309807777, 0.012777349911630154, -0.010774452239274979, -0.0008620627340860665, -0.025242190808057785, -0.03744424134492874, -0.008622403256595135, -0.01164095476269722, 0.010277279652655125, 0.02581038884818554, -0.02130742184817791, 0.02144947089254856, 0.00025591099984012544, -0.007521519437432289, -0.011243215762078762, 0.010845477692782879, -0.005174152087420225, 0.017003322020173073, -0.0026350177358835936, -0.021122757345438004, 0.004375123884528875, -0.003560114884749055, -0.007081166375428438, -0.011037244461476803, -0.031336113810539246, -0.009978975169360638, 0.013196395710110664, 0.001249147579073906, -0.03480212017893791, -0.0036755301989614964, -0.005476007238030434, -0.0013175088679417968, -0.026577455922961235, 0.02914855256676674, -0.03196113184094429, 0.007663568947464228, -0.0186937116086483, -0.013757491484284401, 0.006953321862965822, -0.03287024796009064, 0.013814311474561691, 0.011811413802206516, 0.013814311474561691, -0.008672120049595833, -0.022628480568528175, -0.1822778880596161, 0.035057809203863144, 0.0008460821700282395, -0.01880734972655773, 0.01913406327366829, 0.0281826164573431, 0.016918092966079712, 0.0017729549435898662, -0.032387278974056244, 0.008160741999745369, 0.024077385663986206, 0.022983605042099953, 0.002112985821440816, -0.025853004306554794, -0.020213639363646507, 0.015554417856037617, -0.017528904601931572, 0.018068693578243256, 0.01674763299524784, 0.0011603666935116053, 0.022287562489509583, -0.04554106295108795, 0.0046521201729774475, -0.008998834528028965, -0.01605159044265747, 0.00021873399964533746, -0.0025551149155944586, 0.03585328906774521, -0.005067614838480949, -0.013033038936555386, 0.00715574249625206, -0.012557173147797585, 0.03639307618141174, 0.015071448870003223, 0.019560212269425392, 0.024048976600170135, -0.018395407125353813, -0.009801413863897324, -0.029631519690155983, 0.049859367311000824, 0.011236113496124744, 0.028111590072512627, -0.004744452424347401, -0.029858799651265144, -0.00906985905021429, 0.03045540675520897, 0.019901132211089134, -0.0021076591219753027, 0.023935336619615555, -0.02444671466946602, 0.01808289811015129, -0.018097102642059326, 0.018849965184926987, -0.004605954047292471, 0.008721837773919106, 0.017457880079746246, 0.0009685998666100204, 0.020043181255459785, 0.013104064390063286, -0.006264382041990757, -0.027827491983771324, -0.010582685470581055, 0.01019204966723919, 0.0009543949272483587, -0.007372367661446333, -0.012258869595825672, -0.023154065012931824, 0.016847068443894386, -0.03406346216797829, 0.0005535490345209837, 0.004950424190610647, 0.00035667733754962683, -0.0025284807197749615, 0.00464501790702343, 0.018395407125353813, 0.0051350886933505535, -0.003988039214164019, 0.0014702120097354054, 0.02839569002389908, -0.012010282836854458, -0.0016326811164617538, 0.0323304608464241, -0.015000424347817898, -0.0014835292240604758, 0.02929060161113739, -0.011676467023789883, 0.00038353356649167836, 0.02914855256676674, -0.01860848069190979, -0.010618198662996292, 0.013260317966341972, -0.013054346665740013, -0.006580441724509001, -0.022855760529637337, 0.0012100839521735907, 0.00514574209228158, -0.00576365739107132, -0.009325548075139523, 0.0016584276454523206, 0.00602289754897356, -0.005653569009155035, 0.004858091939240694, -0.017003322020173073, 0.013352650217711926, 0.02882183901965618, 0.02670530043542385, -0.01418363954871893, 0.006743798963725567, 0.019148269668221474, -0.014687915332615376, -0.0003480212180875242, 0.0026882863603532314, 0.012812862172722816, 0.013459187932312489, 0.0011514885118231177, 0.020398303866386414, -0.011733287014067173, -0.015099858865141869, 0.03454643115401268, -0.013501802459359169, 0.03832494840025902, -0.0023793287109583616, -0.0007857111631892622, 0.04207505285739899, -0.029745159670710564, -0.04102388769388199, -0.0857410654425621, -0.026307562366127968, -0.0004325850459281355, 0.01456007082015276, -0.017315831035375595, 0.017614135518670082, -0.0025835249107331038, 0.021847208961844444, -0.0022017669398337603, 0.027699647471308708, -0.009325548075139523, -0.02214551344513893, 0.013516007922589779, -0.024915477260947227, 0.0026669788639992476, -0.03750105947256088, -0.012315689586102962, -0.024404099211096764, -0.019872721284627914, 0.042103465646505356, 0.00028432090766727924, -0.030966784805059433, 0.015724876895546913, -0.016705017536878586, 0.0028054770082235336, -0.007308445405215025, -0.040398869663476944, 0.02542685531079769, 0.015014629811048508, 0.01429727952927351, 0.011157985776662827, -0.021009117364883423, 0.021179577335715294, -0.009879540652036667, 0.01936134323477745, -0.015753285959362984, 0.004442597273737192, -0.018182333558797836, 0.020739223808050156, -0.021577315405011177, 0.015611236914992332, 0.02447512373328209, 0.039546575397253036, -0.008245971985161304, -0.02325349859893322, 0.010795759968459606, -0.0250859372317791, 0.043296679854393005, 0.007180600892752409, -0.038012437522411346, -0.030938375741243362, -0.018338587135076523, -0.006544929463416338, 0.004343162756413221, 0.021534699946641922, -0.00759964669123292, 0.006995936390012503, 6.264603871386498e-05, -0.023736467584967613, -0.018366996198892593, -0.023551803082227707, 0.002825008938089013, -0.005529275629669428, 0.02142105996608734, 0.0224154070019722, -0.015000424347817898, -0.020369894802570343, -0.018295971676707268, -0.0029759365133941174, 0.0010209806496277452, -0.008672120049595833, 0.00026945010176859796, -0.013643852435052395, -0.0132816256955266, -0.012500354088842869, -0.010660813190042973, -0.025583110749721527, -0.018281767144799232, 0.008111025206744671, -0.003236952470615506, 0.005152844823896885, -0.0050427564419806, -0.020071590319275856, -0.004911360796540976, 0.006395777687430382, 0.0044354950077831745, -0.024659788236021996, -0.0005451148608699441, 0.00528424046933651, -0.035171449184417725, 0.008501661010086536, 0.029858799651265144, 0.020980706438422203, -0.020597172901034355, -0.029887208715081215, 0.014105512760579586, -0.008771555498242378, -0.014474841766059399, -0.00317125441506505, 0.025526290759444237, -0.0317622609436512, 0.01527031883597374, -0.07699081301689148, 0.04287053272128105, 0.00017034838674589992, -0.0014018507208675146, 0.0006205786485224962, -0.008551378734409809, 0.006189805921167135, -0.005976731423288584, 0.0028960336931049824, 0.010341201908886433, -0.015142474323511124, -0.002365123713389039, -0.005266484338790178, 0.00560385175049305, -0.014112615026533604, -0.016989117488265038, 0.011150883510708809, -0.00955282710492611, -0.005738798528909683, 0.02467399276793003, -0.010540070943534374, 0.02531321719288826, 0.021619930863380432, 0.022173922508955002, -0.01944657228887081, 0.004829681944102049, -0.012052898295223713, 0.009254523552954197, -0.018168127164244652, -0.009865336120128632, 0.004478109534829855, -0.026776326820254326, -0.015185088850557804, 0.009034346789121628, -0.02008579485118389, 0.012145229615271091, 0.007691978942602873, 0.013579930178821087, 0.021989258006215096, 0.03429074212908745, -0.022983605042099953, -0.02606607787311077, 0.0009570583351887763, 0.0036027298774570227, -0.02644961141049862, -0.001622915267944336, 0.009147985838353634, -0.008991731330752373, 0.0023740017786622047, 0.019673852249979973, 0.00843063648790121, 0.006967526860535145, -0.0075144171714782715, -0.05184805765748024, 0.0304269976913929, 0.010717633180320263, 0.01863689161837101, -0.003373675048351288, -0.01599477045238018, -0.0005539929261431098, 0.0323304608464241, -0.011591237038373947, 0.03167703375220299, -0.017145371064543724, -0.005291342735290527, 0.012358304113149643, -0.021705159917473793, 0.00826017651706934, -0.039347704499959946, -0.012869682163000107, -0.0007577451760880649, -0.004385777749121189, 0.015014629811048508, 0.0287081990391016, 0.011996078304946423, -0.004932668060064316, 0.00036777497734874487, 0.006069063674658537, -0.007784311193972826, 0.006136537063866854, 0.02353759855031967, 0.005149293225258589, -0.017031731083989143, -0.008892296813428402, 0.020014770328998566, 0.009005936793982983, -0.003892155596986413, 0.005934116896241903, -0.016293074935674667, 0.0016566519625484943, -0.00014404705143533647, 0.01860848069190979, 0.024517739191651344, 0.012329894118010998, 0.004126537125557661, 0.010362508706748486, -0.006157844793051481, -0.018352791666984558, 0.04136480763554573, 0.007159293629229069, 0.02653484232723713, 0.0018963604234158993, 0.017088551074266434, -0.011825618334114552, -0.03755788132548332, 0.003824682207778096, -0.01819653809070587, 0.00833120197057724, -0.00452782679349184, -0.0018590724794194102, -0.0010556051274761558, 0.009496007114648819, -0.009922156110405922, 0.008679223246872425, -0.028310460969805717, 0.035228271037340164, -0.0012935380218550563, 0.004573992919176817, -0.017642544582486153, 0.02333872951567173, 0.00997187290340662, -0.006466802209615707, 0.021009117364883423, 0.014105512760579586, 0.036052156239748, 0.027685442939400673, 0.027770671993494034, -0.03207477182149887, 0.02934742160141468, -0.007159293629229069, 0.004705389030277729, -0.0045562367886304855, -0.012947809882462025, -0.0061045759357512, -0.022230742499232292, -0.0031534982845187187, -0.016790248453617096, 0.020966501906514168, -0.0023029770236462355, 0.08079773932695389, 0.03315434604883194, -0.010241767391562462, -0.008451943285763264, -0.01370067149400711, -0.010057102888822556, 0.01788402907550335, 0.006157844793051481, -0.023182474076747894, -0.020313074812293053, -0.016676608473062515, 0.005259381607174873, -0.015540212392807007, -0.011399470269680023, -0.016364099457859993, -0.01190374605357647, 0.006740247365087271, 0.03974544256925583, 0.005767208524048328, -0.0213642418384552, 0.03201794996857643, 0.0016575397457927465, -0.00013328235945664346, 0.009013039059937, -0.023040425032377243, -0.02244381606578827, 0.021548904478549957, -0.003352367551997304, 0.0037074913270771503, -0.040540918707847595, 0.04142162576317787, 0.0023473675828427076, -0.04625130817294121, -0.022159717977046967, 0.0025426854845136404, 0.008863886818289757, 0.021463675424456596, -0.015241908840835094, 0.00966646708548069, 0.005905706901103258, 0.01849484071135521, 0.014489046297967434, -0.0005255830474197865, -0.031364522874355316, -0.013523110188543797, 0.008388021029531956, -0.04008636251091957, -0.005745901260524988, -0.025739364326000214] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_context_information_sharing_for_the_internet_of_things_a_survey.json b/database/embeddings/publications_txt/2022_context_information_sharing_for_the_internet_of_things_a_survey.json new file mode 100644 index 0000000000000000000000000000000000000000..27dd6c4337fadeaf5c8029b689c24ef45714fefb --- /dev/null +++ b/database/embeddings/publications_txt/2022_context_information_sharing_for_the_internet_of_things_a_survey.json @@ -0,0 +1 @@ +[0.0010337290586903691, 0.02340230904519558, 0.019381770864129066, -0.0191044919192791, -0.017413092777132988, 0.01859152689576149, -0.023679587990045547, 0.0033516045659780502, -0.02675737999379635, -0.03856944665312767, 0.011326828971505165, 0.019991783425211906, -0.006678947247564793, 0.015929652377963066, -0.003294415771961212, 0.025065980851650238, 0.0321088545024395, -0.014584851451218128, -0.0021783695556223392, 0.00044537868234328926, 0.025897815823554993, -0.009760204702615738, -0.017246725037693977, 0.020643388852477074, -0.0026913348119705915, 0.01312220748513937, 0.011493195779621601, -0.02783876657485962, 0.0006589698023162782, -0.013475737534463406, 0.006949293427169323, -0.012872656807303429, -0.02333299070596695, -0.029724260792136192, -0.007271629758179188, -0.00018976250430569053, 0.007798459380865097, -0.005756996106356382, 0.027547623962163925, -0.018910396844148636, -0.00021348282461985946, 0.03568574786186218, 0.010072143748402596, -0.011215917766094208, 0.00032233630190603435, 0.006221437361091375, 0.038486260920763016, -0.016401026397943497, -0.023790499195456505, 0.011472400277853012, -0.009982028044760227, 0.03274659812450409, -0.021655455231666565, -0.005805519409477711, -0.01903517171740532, -0.012609242461621761, 0.002478176960721612, 0.02286161668598652, -0.000864762463606894, -0.026909884065389633, 0.03965083137154579, -0.020948395133018494, -0.04103722423315048, -0.0137668801471591, 0.014335300773382187, -0.010834659449756145, -0.033107057213783264, 0.0374603308737278, -0.005711938254535198, 0.016816943883895874, 0.019617456942796707, 0.020227469503879547, 0.001442714943550527, -0.019936326891183853, 0.015541463159024715, -0.013496533036231995, -0.01791219413280487, 0.00482464674860239, -0.0082282405346632, 0.011555583216249943, -0.013253915123641491, -0.0032580229453742504, -0.023222077637910843, 0.01934017799794674, 0.018868805840611458, 0.01950654573738575, 0.0033914633095264435, 0.014279845170676708, -0.0039685494266450405, -0.007153786718845367, 0.031193837523460388, 0.011971501633524895, 0.005289088468998671, -0.0010770538356155157, -0.012262644246220589, 0.02671578899025917, -0.005999614484608173, 0.031249292194843292, 0.008651090785861015, -0.03990038484334946, 0.02204364538192749, 0.006568035576492548, -0.022681385278701782, -0.016608985140919685, -0.001209627720527351, -0.017926057800650597, -0.005649550352245569, 0.010189986787736416, 0.01477894652634859, 0.014501668512821198, -0.027187161147594452, 0.023596404120326042, -0.014238253235816956, 0.007909370586276054, -0.005122721195220947, -0.023554813116788864, -0.003446918912231922, -0.0020293323323130608, -0.0008344351081177592, -0.018009241670370102, 0.026216687634587288, -0.010169191285967827, 0.0006788991740904748, -0.04250680282711983, 0.007250834256410599, 0.02699306607246399, -0.009254171513020992, -0.02387368306517601, -0.012422079220414162, -0.024150962010025978, 0.010841591283679008, 0.016096020117402077, 0.005486649461090565, 0.02478870190680027, 0.011118870228528976, 0.03335661068558693, -0.018702438101172447, 0.015097817406058311, -0.02424800954759121, -0.04300590232014656, -0.008664954453706741, 0.051351986825466156, -0.019021308049559593, -0.01156251598149538, -0.010945570655167103, -0.0019444158533588052, 0.008671886287629604, -0.0018646982498466969, 0.012186392210423946, 0.01642875373363495, 0.004887034650892019, 0.00780539121478796, -0.005379203706979752, 0.008713478222489357, -0.011624903418123722, 0.004904364235699177, -0.013163799419999123, 0.019451091066002846, 0.028836969286203384, -0.016706032678484917, 0.007299358025193214, 0.023901410400867462, -0.021766366437077522, -0.03732169419527054, -0.013323234394192696, 0.02258433774113655, 0.058838509023189545, 0.0017676507122814655, 0.000841367116663605, -0.0012954106787219644, -0.03807034343481064, 0.006755198817700148, -0.016193067654967308, -0.026591012254357338, 0.0022130294237285852, 0.054097045212984085, 0.030084723606705666, 0.005379203706979752, -0.01468189898878336, -0.005389601923525333, -0.0002170571096939966, 0.0018387034069746733, 0.011805133894085884, 0.02343003824353218, -0.00424236198887229, 0.02347162924706936, 0.018023105338215828, -0.0187578946352005, 0.004609755706042051, -0.009628497995436192, 0.05528934299945831, 0.014889857731759548, -0.013281642459332943, 0.017579460516572, -0.6091254949569702, -0.006817586254328489, 0.0022095635067671537, -0.018771758303046227, -0.01173581462353468, 0.022806160151958466, 0.012331963516771793, 0.012151732109487057, -0.029169702902436256, 0.011520924046635628, -0.02272297628223896, 0.006200641393661499, 0.016179203987121582, -0.01852220669388771, -0.026743516325950623, -0.013759948313236237, -0.0011056482326239347, -0.012921180576086044, 0.005982284899801016, 0.002020667539909482, 0.006432862486690283, 0.03030654601752758, 0.004873170517385006, -0.014668035320937634, -0.0013829267118126154, 0.009968163445591927, 0.02305571176111698, -0.018882669508457184, 0.025523491203784943, -0.020851347595453262, -0.03280205279588699, 0.023818226531147957, 0.038791269063949585, 0.001174101373180747, 0.0421186126768589, -0.013704492710530758, -0.01673376001417637, 0.03368934243917465, 0.030528368428349495, 0.04425365477800369, -0.03884672373533249, -0.034188445657491684, -0.00024695121101103723, 0.014584851451218128, -0.009080872870981693, -0.005015275906771421, 0.013246982358396053, -0.0027502565644681454, -0.006436328403651714, -0.026438510045409203, -0.004024005029350519, -0.011215917766094208, -0.01545827928930521, -0.0026168162003159523, 0.030084723606705666, -0.003065661061555147, 0.020574068650603294, -0.014141205698251724, 0.020199742168188095, 0.0139540433883667, -0.005091527476906776, 0.0054346597753465176, -0.017704235389828682, -0.024941205978393555, 0.01545827928930521, 0.012941976077854633, 0.013399485498666763, 0.011708086356520653, 0.010696019977331161, -0.0298628993332386, 0.0007157252402976155, 0.021447496488690376, -0.007826186716556549, -0.02225160412490368, 0.02136431261897087, 0.023000255227088928, 0.02214069291949272, 0.009205647744238377, -0.0018248395062983036, 0.005566366948187351, -0.0030015402007848024, -0.00633234903216362, 0.020241335034370422, -0.019326314330101013, 0.02448369562625885, -0.007264697924256325, -0.021308856084942818, 0.004245827905833721, 0.010127599351108074, 0.02462233603000641, 0.005760462023317814, 0.02068497985601425, -0.022334787994623184, 0.02363799698650837, -0.009268035180866718, 0.022667521610856056, -0.01244287472218275, 0.016068292781710625, -0.007018613163381815, -0.000999069306999445, -0.016179203987121582, 0.003439987078309059, 0.007999486289918423, -0.015416687354445457, 0.026868291199207306, 0.022778432816267014, -0.012831064872443676, 0.0029062258545309305, 0.0030760588124394417, -0.010592040605843067, -0.009677021764218807, 0.0041349162347614765, -0.029446981847286224, 0.00512965302914381, 0.017288317903876305, -0.036489855498075485, 0.027783310040831566, 0.005413863807916641, 0.003183504333719611, 0.02469165436923504, -0.014723490923643112, 0.01263003796339035, -0.00414878036826849, 0.01706649549305439, -0.0013456674059852958, 0.023929139599204063, 0.01410654652863741, -0.02603645622730255, -0.02349935658276081, 0.008928369730710983, 0.018328111618757248, -0.009136328473687172, 0.02739511989057064, -0.014155070297420025, 0.031443387269973755, -0.010522721335291862, 0.023956866934895515, -0.016373299062252045, 0.02295866422355175, -0.017704235389828682, -0.011742746457457542, -0.027519896626472473, -0.0023568677715957165, -0.01723286136984825, -0.03338433802127838, -0.04070449247956276, -0.011617971584200859, 0.002051861258223653, -0.007119126617908478, -0.001921886927448213, -0.007798459380865097, 0.013551989570260048, -0.006235301494598389, 0.008235173299908638, -0.0057327342219650745, -0.02232092246413231, -0.0014947046292945743, -0.017260590568184853, -0.040344029664993286, 0.003646212862804532, -0.006072400137782097, 0.039539922028779984, -0.009330423548817635, -0.029308343306183815, -0.014543259516358376, 0.006093196105211973, -0.022390242666006088, 0.003419191110879183, 0.011631835252046585, -0.039567649364471436, -0.014584851451218128, -0.01751014031469822, -0.012470602989196777, 0.005382669623941183, -0.029751988127827644, 0.028947880491614342, -0.014175865799188614, 0.006214505527168512, -0.013898586854338646, -0.00023850287834648043, -0.019631320610642433, 0.013434145599603653, -0.008796662092208862, -0.017329908907413483, 0.02166931889951229, 0.01082079578191042, 0.024830294772982597, 0.0004113687318749726, 0.0005887836450710893, -0.004075994715094566, -0.007528112735599279, -0.00998895987868309, -0.013746083714067936, 0.02499666064977646, -0.011909113265573978, 0.012858793139457703, -0.004779588896781206, -0.0037709882017225027, -0.012394350953400135, 0.029114248231053352, 0.017496276646852493, 0.03948446735739708, 0.012338895350694656, -0.006574967410415411, -0.006516045890748501, -0.02892015315592289, 0.013877791352570057, -0.007209242321550846, 0.0260087288916111, 0.02058793231844902, 0.03582438826560974, -0.03721078112721443, -0.013233118690550327, 0.0014505133731290698, 0.007382541429251432, 0.016137611120939255, -0.02133658528327942, 0.012047752737998962, -0.03890218213200569, 0.001139441505074501, -0.010605904273688793, 0.0005445923889055848, 0.017565596848726273, -0.010702951811254025, -0.023041848093271255, -0.0023932605981826782, 0.04164723679423332, 0.022930936887860298, 0.01173581462353468, -0.018300384283065796, -0.027311937883496284, 0.019173812121152878, 0.02966880425810814, -0.011818998493254185, -0.009073940105736256, -0.02126726508140564, 0.049965593963861465, -0.0010415276046842337, 0.025287803262472153, -0.008699614554643631, 0.0032996146474033594, 0.033439792692661285, 0.042479075491428375, -0.03277432546019554, 0.00031323812436312437, -0.02349935658276081, 0.007257766090333462, 0.011756610125303268, 0.007812323048710823, 0.0011888317530974746, -0.008311424404382706, 0.026604877784848213, -0.020407700911164284, -0.0012304235715419054, 0.03230294957756996, -0.01845288835465908, -0.03429935500025749, 0.0010181321995332837, 0.015111681073904037, 0.004017073195427656, 0.025953272357583046, -0.0018785621505230665, 0.008817457593977451, 0.023651860654354095, 0.021724773570895195, -0.01744082011282444, -0.03432708606123924, -0.02129499241709709, -0.007888575084507465, -0.03915173187851906, 0.009150192141532898, -0.022847753018140793, -0.004880102351307869, -0.0070844669826328754, 0.024636199697852135, 0.01706649549305439, 0.025828497484326363, 0.006034274585545063, 0.00234993570484221, 0.01249833032488823, -0.01906290091574192, -0.007590500172227621, 0.006841848138719797, 0.015333503484725952, 0.005268292501568794, -0.005198972765356302, 0.0033966621849685907, -0.003715532599017024, -0.0428118072450161, -0.0020483953412622213, 0.02272297628223896, 0.0033914633095264435, -0.01154865138232708, -0.03000153973698616, -0.02671578899025917, -0.015361231751739979, 0.024705518037080765, 0.008477791212499142, -0.02603645622730255, 0.017524003982543945, 0.0036774068139493465, 0.0016671372577548027, 0.006879974156618118, 0.0058852373622357845, 0.06992965191602707, -0.0003593789879232645, 0.026729652658104897, -0.011825930327177048, 0.00888677779585123, -0.009004620835185051, 0.008138125762343407, -0.004374069161713123, -0.022528883069753647, -0.0001110197335947305, 0.009891912341117859, -0.00105192547198385, 0.02096225880086422, -0.018411295488476753, 0.005628754384815693, -0.0191044919192791, -0.012789472937583923, -0.0390130914747715, -0.024830294772982597, 0.01437689270824194, 0.012151732109487057, 0.03352297842502594, -0.01002361997961998, 0.02587008848786354, 0.00476572522893548, -0.01812015287578106, -0.03870808705687523, 0.024303464218974113, 0.004682541359215975, -0.0139540433883667, -0.014460076577961445, 0.015860332176089287, 0.021766366437077522, -0.016414890065789223, 0.02516302838921547, -0.000578818959183991, -0.0002553995291236788, -0.0044191270135343075, 0.013205391354858875, -0.022612065076828003, 0.015652373433113098, -0.038042616099119186, 0.0005363607197068632, 0.0252600759267807, 0.028559690341353416, -0.02340230904519558, 0.0034105260856449604, 0.025689857080578804, 0.0024504491593688726, -0.015596918761730194, 0.011403080075979233, 0.006294223014265299, 0.03624030575156212, -0.005278690252453089, -0.024067778140306473, 0.03937355428934097, 0.04364364221692085, 0.02347162924706936, 0.025412579998373985, 0.02495506964623928, 0.018785621970891953, 0.005760462023317814, 0.01622079499065876, 0.0044953785836696625, -0.00023178753326646984, -0.056232091039419174, -0.0030015402007848024, 0.03075019083917141, 0.015541463159024715, -0.029890628531575203, 0.00951758585870266, 0.014889857731759548, -0.0314156599342823, -0.023748908191919327, 0.02997381053864956, 0.011285237036645412, -0.0018196405144408345, -0.011105005629360676, -0.019478818401694298, -0.01437689270824194, -0.01591578871011734, -0.008748138323426247, -0.0017719832248985767, 0.0005155648104846478, -0.012227984145283699, 0.0016212130431085825, -0.035103462636470795, -0.010273170657455921, -0.025648266077041626, 0.01781514659523964, -0.0030344671104103327, -0.0015232990263029933, -0.053154297173023224, 0.011749678291380405, 0.01903517171740532, -0.01124364510178566, 0.010377150028944016, -0.012013093568384647, 0.0016896661836653948, 0.00985725224018097, -0.03490937128663063, -0.01278254110366106, 0.003148844465613365, -0.041536327451467514, 0.0237350445240736, -0.008408471941947937, -0.019589729607105255, -0.01896585337817669, -0.015097817406058311, 0.0321643128991127, -0.024525288492441177, -0.01002361997961998, 0.010300897993147373, -0.009767136536538601, 0.02668805979192257, 0.040177661925554276, 0.017718099057674408, 0.012241847813129425, 0.006124389823526144, 0.013219255022704601, -0.009510654024779797, -0.016567394137382507, -0.018951989710330963, -0.025745313614606857, 0.01659512147307396, 0.021378176286816597, -0.0019322849111631513, 0.0051053911447525024, -0.020976122468709946, 0.004512708634138107, 0.002885429887101054, -0.015416687354445457, 3.2141564588528126e-05, -0.02462233603000641, -0.0004934691824018955, 0.025079844519495964, -0.004481514450162649, -0.006339280866086483, 0.009295763447880745, -0.019284723326563835, -0.019229266792535782, -0.02004723995923996, 0.014654171653091908, 0.01601283624768257, 0.023388445377349854, 0.03255250304937363, -0.007964826188981533, -0.025717586278915405, -0.022293195128440857, 0.006058536469936371, -0.0051053911447525024, 0.012366623617708683, -0.0010354621335864067, -0.02438664808869362, -0.0187301654368639, 0.010924775153398514, -0.016484210267663002, 0.003176572499796748, -0.019187675788998604, -0.025662129744887352, -0.01469576358795166, -0.011410011909902096, -0.013843131251633167, 0.009136328473687172, 0.015666238963603973, -0.02553735487163067, -0.013406418263912201, 0.0218079574406147, 0.02129499241709709, 0.03363388776779175, -0.006997817195951939, 0.02105930633842945, -0.001478241290897131, -0.008117329329252243, -0.0218079574406147, -0.03538074344396591, -0.038042616099119186, -0.016816943883895874, 0.04012220725417137, 0.028809241950511932, 0.042146340012550354, 0.01515327300876379, -0.007639023941010237, 0.028060588985681534, 0.020074967294931412, 0.014570987783372402, -0.0014756417367607355, 0.009593837894499302, -0.01523645594716072, 0.014127342030405998, 0.012117072939872742, 0.009635429829359055, 0.015555326826870441, -0.014155070297420025, -0.009462130255997181, -0.006231835577636957, -0.004772657062858343, -0.005167779047042131, -0.0023620666470378637, -0.019825415685772896, 0.010217714123427868, 0.00021900673164054751, -0.005178176797926426, 0.02178023010492325, -0.039234913885593414, -0.007611296139657497, 0.029474709182977676, 0.0017485878197476268, -0.011181257665157318, -0.0019652117043733597, 0.01598510891199112, -0.026064183562994003, 0.031138380989432335, -0.007846983149647713, -0.001982541522011161, -0.011001026257872581, -0.005729267839342356, -0.031277019530534744, -0.010848523117601871, 0.029779715463519096, -0.009330423548817635, 0.01737150177359581, 0.021114761009812355, 0.010640564374625683, 0.016248522326350212, 0.018744029104709625, 0.02404005080461502, 0.0011706353398039937, 0.0017884466797113419, 0.004602823872119188, -0.009302695281803608, -0.025814633816480637, -0.020269062370061874, -0.0206572525203228, 0.006224903278052807, -0.00967008899897337, -0.006308087147772312, 0.02343003824353218, -0.02732580155134201, -0.027519896626472473, 0.0057535297237336636, 0.010086007416248322, 0.029169702902436256, -0.0017147945472970605, 0.023346854373812675, 0.032996147871017456, -0.023083439096808434, -0.016706032678484917, 0.01995019242167473, 0.0066338893957436085, -0.007146854419261217, 0.016775352880358696, 0.0014565788442268968, -0.007791527081280947, -0.017482412979006767, 0.01109114196151495, 0.007521180901676416, -0.034659817814826965, -0.016941718757152557, 0.021863413974642754, 0.036517586559057236, -0.01158331148326397, -0.02549576200544834, -0.031609755009412766, -0.0014279845636337996, 0.006990885362029076, -0.024164825677871704, -0.012671629898250103, 0.00921257957816124, 0.006363542750477791, 0.00038364087231457233, -0.0008508985629305243, -0.003816046053543687, 0.0451686754822731, -2.53314537985716e-05, -0.010016687214374542, 0.0049390243366360664, -0.01483440212905407, -0.01244287472218275, 0.010689088143408298, 0.013170731253921986, 0.005427727475762367, -0.02312503196299076, 0.016165340319275856, 0.022681385278701782, 0.018868805840611458, -0.0010060012573376298, -0.00578125799074769, 0.011812066659331322, 0.029807444661855698, 0.01217252854257822, -0.01120898500084877, 0.02302798442542553, -0.018244927749037743, 0.02340230904519558, -0.012567650526762009, 0.01727445423603058, 0.00278145051561296, -0.005906033329665661, -0.01638716273009777, 0.008921436965465546, 0.005937227047979832, 0.00922644417732954, -0.0027034657541662455, 0.003448651870712638, -0.031609755009412766, 0.0073201535269618034, 0.011202053166925907, -0.025994863361120224, -0.008956097066402435, -0.02093452960252762, -0.00019907733076252043, 0.011520924046635628, 0.0290587916970253, 0.0225566104054451, 0.029502438381314278, 0.02706238627433777, 0.024636199697852135, -0.011437740176916122, 0.0029200897552073, -0.014792810194194317, -0.015596918761730194, -0.026064183562994003, -0.0009444800671190023, 0.006294223014265299, -0.009843388572335243, 0.03382798284292221, 0.009150192141532898, -0.03380025550723076, -0.020172014832496643, 0.0206572525203228, 0.010169191285967827, 0.0010735879186540842, -0.010876251384615898, 0.0018681642832234502, 0.003481578780338168, -0.014570987783372402, -0.009157123975455761, -0.024220282211899757, 0.04791373386979103, -0.02197432518005371, -1.4067012671148404e-05, 0.01029396615922451, -0.0039061615243554115, 0.0321643128991127, -0.006505648139864206, 0.011929909698665142, 0.011444672010838985, -0.045251861214637756, -0.005250962451100349, 0.016747623682022095, 0.05922669917345047, -0.018161745741963387, -0.011936841532588005, 0.0014557123649865389, -0.023291397839784622, -0.021322719752788544, 0.012248779647052288, -0.00445378664880991, -0.010155326686799526, 0.0010207316372543573, -0.007645956240594387, 0.01107034645974636, -0.003407060168683529, -0.01234582718461752, -0.026771243661642075, -0.019589729607105255, 0.00731322169303894, -0.014473940245807171, -0.007216174155473709, 0.006089730188250542, 0.027187161147594452, 0.011139665730297565, -0.031110653653740883, -0.0374603308737278, -0.03529755771160126, -0.016636712476611137, -0.018841076642274857, -0.014148138463497162, -0.0005541238351725042, -0.005348009988665581, -0.009330423548817635, -0.005937227047979832, 0.015430551022291183, -0.01498690526932478, 0.008699614554643631, -0.00955224595963955, -0.00414878036826849, -0.00043151475256308913, 0.021419767290353775, 0.017177406698465347, 0.005888703279197216, -0.05598253756761551, -0.022903207689523697, 0.01508395280689001, -0.020102694630622864, 0.003084723837673664, 0.014335300773382187, -0.02319435030221939, 0.002722528763115406, -0.013454942032694817, -0.013253915123641491, -0.007264697924256325, -0.022126827389001846, 0.002991142449900508, -0.028393322601914406, -0.014654171653091908, -0.002769319573417306, 0.0031523106154054403, 0.024941205978393555, -0.01629011519253254, 0.014390756376087666, -0.004412194713950157, 0.016775352880358696, -0.009323490783572197, -0.007708343677222729, 0.0001995105849346146, 0.0037883182521909475, 0.025038253515958786, 0.0017745826626196504, 0.009545314125716686, 0.021392039954662323, 0.008318356238305569, 0.013094479218125343, -0.021891141310334206, 0.028421051800251007, -0.015888061374425888, -0.0007282894221134484, 0.011694222688674927, -0.021530678495764732, -0.006592297460883856, -0.03263568505644798, 0.014064954593777657, -0.014584851451218128, -0.0016064825467765331, -0.02340230904519558, -0.023540949448943138, -0.020601795986294746, -0.0038229781202971935, 0.027187161147594452, -0.024747110903263092, -0.01577715016901493, -0.00921257957816124, 0.007049807347357273, -0.01498690526932478, -0.017288317903876305, -0.005032605491578579, -0.017121950164437294, -0.024331193417310715, 0.008574838750064373, -0.012907316908240318, 0.01920153945684433, -0.01974223367869854, -0.0005030006286688149, -0.03163748234510422, -0.00673093693330884, 0.16292887926101685, -0.023485492914915085, 0.007673684041947126, 0.03233068063855171, 0.0005818516947329044, -0.011673427186906338, 0.014959177933633327, 0.0031523106154054403, 0.0004804717318620533, 0.006762130651623011, -0.005476251244544983, -0.010702951811254025, 0.0021333119366317987, -0.007521180901676416, 0.017385365441441536, 0.004141848534345627, -0.04325545206665993, -0.012720153667032719, -0.032968420535326004, -0.008852117694914341, -0.014973041601479053, -0.008644158951938152, -0.012054684571921825, -0.02722875401377678, 0.013191526755690575, -0.008117329329252243, 0.00467214360833168, -0.01669216901063919, 0.02831014059484005, 0.02519075572490692, -0.005313350353389978, 0.011326828971505165, 0.007909370586276054, 0.0008634627447463572, -0.02925288677215576, -0.015430551022291183, 0.016442617401480675, 0.011257508769631386, 0.03413299098610878, 0.004145314451307058, 0.010592040605843067, -0.03000153973698616, 0.006873041857033968, -0.053930677473545074, 0.009261103346943855, 0.014155070297420025, -0.00195134780369699, -0.0012581513728946447, 0.0007404203643091023, -0.006983953528106213, -0.025551218539476395, 0.002864633919671178, 0.015596918761730194, 0.01746854931116104, 0.003850705921649933, -0.006533375941216946, 0.008096533827483654, 0.022029781714081764, -0.0035560973919928074, -0.0014513798523694277, 0.007514248602092266, 0.030223362147808075, -0.010349421761929989, 0.0011827662819996476, -0.0061971754767000675, 0.01927085965871811, -0.04253453016281128, -0.014862130396068096, 0.020227469503879547, -0.017995378002524376, -0.003715532599017024, -0.0032216301187872887, -0.019769961014389992, -0.0004726732731796801, -0.02844877913594246, -0.02014428749680519, 0.011590243317186832, 0.01437689270824194, 0.03016790561378002, 0.040177661925554276, -0.011812066659331322, 0.016206931322813034, -0.01538895908743143, 0.015125544741749763, -0.014875994063913822, -0.04103722423315048, 0.04026084393262863, -0.008443132042884827, -0.011604106985032558, -0.003185237292200327, -0.02648010104894638, 0.006581899709999561, -0.006509114056825638, 0.005403465591371059, 6.73700196784921e-05, -0.008609498851001263, 0.004086392465978861, 0.00955224595963955, -0.0030223361682146788, 0.021225672215223312, -0.02997381053864956, 0.07286880165338516, 0.022404106333851814, -0.0011151796206831932, 0.015208728611469269, -0.015929652377963066, -0.004048266913741827, 0.0018716302001848817, 0.013323234394192696, -0.011333760805428028, -0.009455198422074318, -0.022168420255184174, -0.008990757167339325, -0.011943773366510868, -0.01706649549305439, 0.0103147616609931, -0.004408728796988726, -0.004980615805834532, 0.008651090785861015, -0.01538895908743143, -0.009926572442054749, -0.024331193417310715, 0.001693998696282506, 0.01605442725121975, 0.0005796854966320097, 0.002973812399432063, -0.00998895987868309, 0.0016402759356424212, -0.029779715463519096, -0.023083439096808434, 0.04686007648706436, 0.013753016479313374, -0.004561231937259436, 0.011763542890548706, 0.0028611680027097464, 0.002084788167849183, 0.012373555451631546, -0.0047865211963653564, 0.020435428246855736, 0.010675224475562572, -0.02105930633842945, -0.029474709182977676, -0.005642618518322706, 0.0020657251589000225, -0.016941718757152557, -0.04514094814658165, 0.004394865129143, -0.013163799419999123, -0.027048522606492043, -0.01784287393093109, 0.0034989085979759693, -0.024220282211899757, 0.012851860374212265, -0.014654171653091908, 0.04633324593305588, -0.02858741767704487, 0.0037189985159784555, -0.03321797028183937, -0.018633117899298668, -0.010675224475562572, -0.046582795679569244, -0.004394865129143, 0.010897046886384487, 0.008983825333416462, -0.018924260511994362, -0.0021974325645715, -0.17712554335594177, 0.024289600551128387, 0.014903722330927849, -0.01818947307765484, -0.01744082011282444, 0.01078613568097353, 0.01615147478878498, 0.006509114056825638, -0.02126726508140564, 0.0026306803338229656, 0.033883437514305115, 0.015028497204184532, -0.010307829827070236, -0.006221437361091375, -0.02035224623978138, 0.0011931642657145858, -0.0056564826518297195, 0.003296148730441928, 0.008103465661406517, 0.017052629962563515, 0.028421051800251007, -0.026591012254357338, 0.012373555451631546, -0.008158921264111996, 0.007126058917492628, 0.01818947307765484, -0.008068805560469627, 0.025204619392752647, -0.01561078242957592, -0.013129139319062233, -0.004398331046104431, -0.003050063969567418, 0.03246931731700897, 0.000986938364803791, 0.02221001125872135, 0.012546854093670845, -0.03795943409204483, -0.009281899780035019, -0.018868805840611458, 0.06133401393890381, 0.003505840664729476, 0.02936379797756672, -0.0005705872899852693, -0.0067794607020914555, 0.0038541718386113644, 0.0010891847778111696, -0.005566366948187351, 0.009656225331127644, 0.014875994063913822, -0.03685031831264496, -0.009337355382740498, -0.010120667517185211, 0.031277019530534744, -0.0032684209290891886, -0.008921436965465546, 0.037709884345531464, -0.002623748267069459, -0.009295763447880745, 0.024830294772982597, 0.007202310487627983, -0.015264184214174747, -0.020435428246855736, 0.0056703463196754456, -0.0008621629676781595, -0.0002933087234850973, -0.021281128749251366, -0.021392039954662323, 0.01373222004622221, -0.03338433802127838, 0.010959434323012829, -0.005833247676491737, 0.004665211774408817, -0.005756996106356382, -0.008519383147358894, 0.012013093568384647, 0.01906290091574192, -0.00951758585870266, 0.023596404120326042, 0.02770012803375721, -0.0018421693239361048, 0.007018613163381815, 0.03091655857861042, -0.026050319895148277, 0.0037709882017225027, 0.0034989085979759693, -0.026466237381100655, 0.011188189499080181, -0.001005134778097272, 0.015430551022291183, 0.0005610558437183499, 0.005313350353389978, -0.022806160151958466, -0.004997945856302977, -0.025662129744887352, 0.008117329329252243, 0.006141719873994589, -0.010349421761929989, 0.014640307053923607, 0.0027953144162893295, 0.0032025673426687717, -0.0010207316372543573, 0.0010822528274729848, -0.011292168870568275, 0.008048010058701038, 0.011215917766094208, 0.0025682926643639803, -0.012553785927593708, -0.0029183567967265844, 0.016109883785247803, -0.016747623682022095, -0.02011655829846859, 0.017482412979006767, -0.004339409526437521, 0.020338382571935654, -0.010793067514896393, 0.025135301053524017, -0.03133247792720795, -0.021794093772768974, 0.03507573530077934, -0.023554813116788864, 0.03718305379152298, 0.012775609269738197, 0.010356353595852852, 0.020005647093057632, -0.028504235669970512, -0.03812580183148384, -0.062332216650247574, -0.01788446679711342, 0.007784595247358084, 0.03942900896072388, -0.021794093772768974, -0.010529653169214725, -0.0004653080541174859, 0.015472142957150936, -0.0011472400510683656, 0.010612836107611656, -0.022390242666006088, -0.013773811981081963, -0.002648010151460767, -0.01781514659523964, 0.009767136536538601, -0.027048522606492043, -0.018411295488476753, -0.033578433096408844, 0.00040703624836169183, 0.024192553013563156, 0.0029287547804415226, -0.02997381053864956, 0.013822335749864578, -0.0058159176260232925, -0.030888831242918968, 0.007264697924256325, -0.04150860011577606, 0.016706032678484917, 0.01107034645974636, 0.0021437096875160933, 0.007334017660468817, -0.018924260511994362, 0.0018387034069746733, -0.013815403915941715, 0.004748395178467035, 0.00390269560739398, 0.0044260588474571705, -0.01170115452259779, 0.036628495901823044, -0.0031037868466228247, 0.014612579718232155, 0.018910396844148636, 0.035103462636470795, -0.019617456942796707, 0.003476379904896021, -0.019215403124690056, -0.020435428246855736, 0.04067676514387131, 0.013531193137168884, -0.024830294772982597, -0.00531681627035141, -0.019312450662255287, 0.01075147558003664, -0.024455968290567398, 0.013323234394192696, -0.005756996106356382, -0.009032349102199078, -0.0003658776986412704, -0.03917945921421051, 0.002325673820450902, -0.02340230904519558, -0.026216687634587288, -0.01097329892218113, 0.03998356685042381, 0.02603645622730255, 0.002003337489441037, -0.011153529398143291, -0.011063413694500923, 0.02305571176111698, -0.02607804723083973, -0.016137611120939255, 0.0037848521023988724, -0.00934428721666336, -0.01581874117255211, -0.005462387576699257, -0.023443901911377907, 0.0002844271366484463, -0.024331193417310715, 0.013295506127178669, -0.015042361803352833, 0.007597432471811771, 0.007666751742362976, -0.015804877504706383, -0.02086521126329899, 0.015194864943623543, 0.012893452309072018, -0.011486263945698738, 0.016303978860378265, 0.014321437105536461, -0.02861514687538147, 0.019617456942796707, 0.017829010263085365, 0.031027469784021378, 0.002857702085748315, -0.014293708838522434, -0.008554043248295784, -0.014543259516358376, -0.007153786718845367, -0.0009800064144656062, 0.010619768872857094, -0.044780485332012177, 0.013246982358396053, -0.07708343863487244, 0.016234658658504486, 0.009489858523011208, -0.02800513431429863, -0.019049037247896194, -0.006093196105211973, 0.00964929349720478, 0.0033568034414201975, -0.0005034338682889938, 0.013780743815004826, -0.01477894652634859, 0.010619768872857094, 0.003673940896987915, 0.021752502769231796, -0.01075147558003664, 0.0029946083668619394, 0.037903979420661926, -0.0015848202165216208, 0.008685750886797905, 0.025856224820017815, -0.016414890065789223, 0.021211808547377586, 0.015888061374425888, 0.012387419119477272, -0.014584851451218128, 0.015666238963603973, 0.011354556307196617, 0.01296970434486866, -0.028698330745100975, -0.004238895606249571, 0.001921886927448213, -0.013926315121352673, -0.008713478222489357, 0.02936379797756672, 0.012179460376501083, -0.0011550384806469083, 0.006658151280134916, 0.00807573739439249, 0.020948395133018494, 0.03263568505644798, -0.03502028062939644, -0.029474709182977676, 0.01767650805413723, 0.004980615805834532, -0.01629011519253254, 0.0015579588944092393, -0.008165853098034859, 0.015375095419585705, 0.018563799560070038, -0.009101668372750282, 0.02448369562625885, -0.0014591783983632922, -0.00863722711801529, -0.01818947307765484, 0.036794863641262054, -0.00750038493424654, 0.023998457938432693, 0.022071372717618942, -0.00645019207149744, -0.011042618192732334, 0.031277019530534744, 0.011513992212712765, 0.02208523638546467, -0.01788446679711342, 0.004429524764418602, 0.002259820234030485, -0.024982796981930733, -0.00903928093612194, -0.010210782289505005, -0.011188189499080181, -0.013191526755690575, -0.013066751882433891, 0.014058022759854794, 0.040011294186115265, 0.01868857443332672, -0.0032788189128041267, -0.011874454095959663, 0.016498073935508728, -0.002576957456767559, 0.018272656947374344, 0.03812580183148384, 0.0041903723031282425, -0.012609242461621761, 0.0020709242671728134, 0.035574838519096375, 0.01845288835465908, -0.005230166483670473, 0.013829267583787441, 0.00017568195471540093, 0.003154043573886156, -0.02861514687538147, 0.007541976403445005, 0.011146597564220428, -0.011638767085969448, -0.01561078242957592, 0.006110526155680418, -0.014765082858502865, 0.012539922259747982, 0.02042156457901001, 0.015971245244145393, 0.005618356633931398, 0.002481643110513687, 0.01605442725121975, -0.019395634531974792, -0.049826957285404205, 0.007174582686275244, -0.02739511989057064, -0.017731962725520134, 0.003131514647975564, 0.018674710765480995, -0.027284208685159683, 0.02211296372115612, -0.007763799279928207, 0.004283953458070755, -0.03380025550723076, 0.010252374224364758, -0.012151732109487057, 0.0202829260379076, -0.030334273353219032, 0.03230294957756996, -0.0014817072078585625, -0.028892425820231438, 0.028504235669970512, -0.016775352880358696, -0.004963286221027374, -0.003439987078309059, 0.022307058796286583, -0.04433684051036835, 0.004353273194283247, -0.013330166228115559, 0.009337355382740498, 0.01812015287578106, 0.001478241290897131, -0.010848523117601871, -0.017454685643315315, -0.0010545250261202455, -0.01391938328742981, -0.004439922980964184, 0.001875096233561635, 0.08584544062614441, 0.02032451704144478, -0.010002823546528816, 0.007285493891686201, -0.01760718785226345, -0.001022464595735073, 0.016941718757152557, 0.013877791352570057, -0.007715275511145592, -0.010384081862866879, 0.0016922656213864684, -0.004176508169621229, -0.0019305519526824355, -0.0206572525203228, -0.007937098853290081, 0.000677599455229938, -0.010418741963803768, 0.030362000688910484, -0.010848523117601871, 0.006263029295951128, 0.0256344024091959, 0.01727445423603058, -0.006072400137782097, -0.006599229294806719, -0.012456739321351051, 0.0015761553077027202, 0.02258433774113655, -0.01391938328742981, -0.0020310652907937765, -0.057452116161584854, 0.010224646888673306, 0.017939921468496323, -0.03837535157799721, -0.013787675648927689, 0.017288317903876305, 0.0103147616609931, 0.02190500497817993, 0.00037410942604765296, 0.02288934402167797, -0.015721693634986877, 0.009794864803552628, 0.02654942125082016, -0.01612374745309353, -0.027797173708677292, -0.020851347595453262, -0.005219768732786179, -0.01828652061522007, 0.02258433774113655, -0.049826957285404205] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json b/database/embeddings/publications_txt/2022_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json new file mode 100644 index 0000000000000000000000000000000000000000..5b9b8f02794e5ca948aae00fe0698a05379f1469 --- /dev/null +++ b/database/embeddings/publications_txt/2022_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json @@ -0,0 +1 @@ +[-0.018394287675619125, -0.0005795507458969951, 0.018518108874559402, -0.013118140399456024, 0.02129719965159893, 0.004691437818109989, 0.006173849105834961, 0.016729583963751793, -0.015794048085808754, -0.023622281849384308, -0.014363228343427181, 0.021544842049479485, -0.0113020995631814, 0.033431652933359146, -0.0031127207912504673, 0.004650163929909468, 0.045125849545001984, -0.017610087990760803, -0.017926519736647606, -0.005750794429332018, -0.020994527265429497, 0.029441867023706436, -0.02257668413221836, -0.02308572456240654, -0.022975662723183632, 0.03112032823264599, 0.018353013321757317, -0.03755901753902435, 0.014734691008925438, -0.005293345078825951, -0.002682786900550127, -0.0014462972758337855, 0.01372348703444004, -0.010930636897683144, -0.009004533290863037, -0.018449319526553154, 0.0054137264378368855, -0.016193026676774025, 0.02792849950492382, -0.01864193007349968, 0.02444775588810444, 0.012884256429970264, -0.010483506135642529, -0.016977226361632347, 0.003296732436865568, 0.012836103327572346, 0.027158057317137718, -0.025617174804210663, -0.02710302732884884, 0.029166709631681442, 0.00665881484746933, 0.041411224752664566, -0.04837271198630333, 0.010813694447278976, -0.025410806760191917, -0.006989003624767065, 0.017610087990760803, 0.0007820495520718396, 0.0005176402628421783, -0.0244890283793211, 0.02488800697028637, -0.024035019800066948, -0.060094427317380905, -0.01419813372194767, -0.0026036789640784264, 0.003910677973181009, -0.02128344215452671, 0.024681638926267624, -0.015807805582880974, 0.015615195035934448, 0.015890352427959442, 0.013695971108973026, 0.0248054601252079, -0.008296002633869648, 0.013173171319067478, -0.021544842049479485, -0.02702047862112522, 0.018064098432660103, 0.018751991912722588, 0.029524413868784904, -0.00185215484816581, -0.004715513903647661, 0.005272707901895046, -0.0003570600238163024, 0.022535409778356552, 0.011412162333726883, -0.005252071190625429, 0.008020845241844654, -0.013379539363086224, -0.027405699715018272, 0.005255510564893484, 0.0026501119136810303, 0.01946740224957466, 0.010930636897683144, -0.028616392984986305, 0.026800353080034256, -0.03191828355193138, 0.023415913805365562, 0.020182812586426735, -0.022425346076488495, 0.03153306618332863, 0.004048256669193506, -0.024998070672154427, -0.01506488025188446, -0.0013611704343929887, -0.016220541670918465, 0.010951274074614048, 0.00430965656414628, 0.017513783648610115, -0.0039725881069898605, -0.02314075641334057, 0.018710719421505928, -0.023801134899258614, -0.032633695751428604, 0.011233310215175152, 0.001669003046117723, -0.012567824684083462, -0.007243524771183729, -0.007360466755926609, -0.007477408740669489, 0.027818435803055763, 0.013689092360436916, -0.005069779232144356, 0.005083537194877863, 0.017032258212566376, 0.0037421437446027994, -0.02170993760228157, -0.01678461581468582, -0.002204700605943799, -0.019893895834684372, 0.003288133768364787, 0.01868320256471634, 0.0026724685449153185, 0.04617144912481308, -0.00021260225912556052, 0.02842378243803978, -0.02091198042035103, -0.01692219451069832, -0.03758653253316879, -0.03544030338525772, 0.007518682163208723, 0.044080253690481186, -0.017954034730792046, -0.002048204652965069, 0.004804939962923527, 0.017541298642754555, 0.018036583438515663, 0.0235122200101614, 0.025479596108198166, 0.02087070606648922, -0.0010198029922321439, -0.007731929421424866, -0.00121757248416543, 0.017954034730792046, 0.00740861939266324, 0.012272030115127563, 0.021641148254275322, 0.03285381942987442, 0.019632497802376747, -0.03238605335354805, 0.010786179453134537, 0.025507112964987755, 0.002178904367610812, -0.01130897831171751, -0.009603001177310944, 0.0177476666867733, 0.027722131460905075, 0.011329615488648415, 0.013544633984565735, -0.008523007854819298, -0.04553858935832977, 0.033431652933359146, -0.00974745862185955, -0.00824784953147173, -0.0191096980124712, 0.03233102336525917, 0.018531866371631622, 0.0034515084698796272, -0.0018624732038006186, -0.005262389779090881, -0.0028014485724270344, 0.010304653085768223, 0.029414350166916847, 0.032578662037849426, 0.024048777297139168, 0.006823909003287554, 0.04218166321516037, -0.017555056139826775, 0.008261607959866524, -0.019852623343467712, 0.01693595200777054, 0.01902714930474758, 0.0031763508450239897, 0.000518500164616853, -0.6066675186157227, -0.039320025593042374, 0.005695763044059277, -0.009637395851314068, -0.013166292570531368, 0.0063733384013175964, 0.029111677780747414, -0.010345926508307457, 0.002027567708864808, 0.0497484989464283, -0.009644274599850178, -0.004117046017199755, 0.003804054344072938, -0.015216217376291752, -0.0063148676417768, -0.02309948392212391, 0.0030164155177772045, -0.020045233890414238, 0.03755901753902435, 0.02620876394212246, -0.010112042538821697, 0.038797225803136826, -0.017871487885713577, 0.00321590481325984, 0.006490280386060476, 0.005523789208382368, 0.0026311948895454407, -0.03012976050376892, 0.02572723850607872, 0.017004741355776787, -0.019756317138671875, 0.024502787739038467, 0.04028307646512985, -0.015505132265388966, 0.049088120460510254, -0.011921204626560211, -0.01811913028359413, 0.0164544265717268, 0.02747448906302452, 0.0347248911857605, -0.04174141213297844, -0.03714628145098686, -0.005819583777338266, -0.011130126193165779, -0.006648496259003878, -0.0008951221825554967, -0.001080853515304625, -0.015243732370436192, -0.009754338301718235, -0.005902131088078022, -0.0191096980124712, 0.017183594405651093, -0.021916305646300316, -0.008062118664383888, 0.031670644879341125, -0.0071884929202497005, 0.0029441865626722574, -0.02708926796913147, 0.033459167927503586, -0.007140340283513069, 0.012100056745111942, 0.0016758819110691547, -0.010806815698742867, -0.022741777822375298, -0.005620094481855631, 0.024709155783057213, -0.00016627689183223993, 0.014005523175001144, 0.0066106622107326984, -0.004168638028204441, 0.00541716581210494, 0.021077074110507965, -0.0005589139182120562, -0.022067641839385033, 0.008344154804944992, 0.016344362869858742, 0.014954817481338978, -0.006311428267508745, -0.02045796997845173, -0.0027137422002851963, -0.011370888911187649, -0.003193548182025552, -0.015601437538862228, -0.010098285041749477, 0.003934754058718681, 0.0015434622764587402, -0.026456406340003014, 0.011563499458134174, -0.0015391629422083497, 0.003845327766612172, 0.00509729515761137, 0.022906873375177383, -0.0004445515514817089, 0.021393505856394768, 0.005430923774838448, 0.018875813111662865, 0.010180831886827946, -0.013001197949051857, 0.012595340609550476, 0.00021690159337595105, 0.011508467607200146, -0.014624628238379955, 0.026084942743182182, -0.018311740830540657, 0.00971994362771511, 0.010868726298213005, 0.012416488490998745, 0.0015658189076930285, 0.045043304562568665, -0.010050132870674133, 0.003358642803505063, -0.007277919445186853, -0.004553858656436205, -0.0004419719334691763, 0.029854603111743927, -0.03274375945329666, 0.021104590967297554, -0.00020282126206438988, 0.004553858656436205, 0.0012253113090991974, 0.01692219451069832, 0.008811922743916512, 0.011852415278553963, -0.013654697686433792, 0.010971910320222378, 0.016151752322912216, 0.005915889050811529, -0.03015727549791336, -0.03502756729722023, -0.0017936838557943702, 0.020980769768357277, 0.0013611704343929887, 0.014748448505997658, -0.009437906555831432, 0.012932408601045609, 0.006459325551986694, 0.017623845487833023, -0.008825681172311306, 0.011728594079613686, -0.01992141269147396, -0.020526759326457977, -0.013379539363086224, 0.01174923125654459, 0.0011006304994225502, -0.020939495414495468, -0.01310438197106123, -0.021132105961441994, 0.015780290588736534, 0.007209130097180605, 0.011432799510657787, -0.014101828448474407, -0.006166970357298851, -0.005162645131349564, 0.01688092015683651, -0.00554098654538393, -0.011625410057604313, -0.030267339199781418, -0.027708373963832855, -0.010779299773275852, -0.002548647578805685, -0.0028186459094285965, 0.041934024542570114, -0.01736244559288025, -0.03725634142756462, -0.007078430149704218, 0.0009922871831804514, 0.0010421595070511103, 0.010050132870674133, 0.006517796311527491, -0.039760276675224304, 0.008282244205474854, -0.018366772681474686, -0.024296417832374573, 0.023182030767202377, -0.010469747707247734, 0.01641315221786499, -0.022934388369321823, 0.0019966126419603825, -0.01858689822256565, -0.00998134259134531, -0.010345926508307457, -0.00861931312829256, -0.020169055089354515, -0.007793840020895004, 0.03062504343688488, 0.021833758801221848, 0.02259044162929058, -0.015573921613395214, 0.01484475377947092, -0.002694824943318963, 0.007663140073418617, 0.02754327841103077, 0.003143675858154893, 0.025397049263119698, -0.008605554699897766, -0.003353483509272337, 0.005657928995788097, -0.0016423470806330442, -0.006727604195475578, 0.020513001829385757, 0.03582552447915077, 0.025190681219100952, -0.0036492780782282352, -0.014005523175001144, 0.011508467607200146, -0.017087288200855255, 0.013881701976060867, -0.012519672513008118, 0.012058783322572708, 0.011109489016234875, 0.023319609463214874, -0.007876386865973473, -0.022535409778356552, -0.007663140073418617, -0.016234301030635834, 0.011632288806140423, -0.0243514496833086, 0.016220541670918465, -0.030790138989686966, 0.010648599825799465, 0.005685444455593824, -0.021214652806520462, -0.004292459227144718, -0.014762206934392452, -0.0266902893781662, -0.003006097162142396, 0.015106153674423695, 0.022549167275428772, 0.01733493059873581, -0.007979570887982845, -0.02886403538286686, 0.021173380315303802, 0.01908218115568161, -0.00124680798035115, -0.014803480356931686, 0.0014695137506350875, 0.011192036792635918, -0.000461748888483271, 0.036568447947502136, -0.0013508519623428583, -0.007807597517967224, 0.025589659810066223, 0.011006304994225502, -0.008371670730412006, 0.011790504679083824, -0.024709155783057213, 0.022920630872249603, 0.022439105436205864, 0.00037834173417650163, 0.0071678562089800835, -0.006734482944011688, 0.011033820919692516, -0.01824295148253441, -0.004330293275415897, 0.03593558818101883, -0.028203656896948814, -0.009706185199320316, -0.013668455183506012, 0.030872685834765434, 0.03414706140756607, 0.018765751272439957, -0.00643180962651968, -0.013833549804985523, -0.01263661403208971, 0.0063698990270495415, -0.017843972891569138, -0.027845952659845352, -0.012808587402105331, -0.008309760130941868, -0.002364635933190584, -0.01421189121901989, 0.001240788958966732, 0.015505132265388966, -0.002170305699110031, 0.03370681032538414, 0.0213109590113163, 0.008316639810800552, -0.006651935633271933, 0.02043045312166214, 0.005420605186372995, -0.030542496591806412, -0.018889570608735085, 0.010614205151796341, 0.019247276708483696, 0.010387200862169266, -0.0011582416482269764, 0.012045024894177914, -0.020265359431505203, -0.03252363204956055, -0.014308196492493153, 0.010572931729257107, 0.015849079936742783, -0.008990775793790817, -0.012265151366591454, -0.01770639419555664, -0.0029957788065075874, 0.017458751797676086, -0.005757673177868128, -0.023787377402186394, -0.0029665431939065456, 0.021187137812376022, 0.006177288945764303, 0.001200375147163868, -0.01990765519440174, 0.014005523175001144, 0.001817760057747364, 0.012925529852509499, -0.0034532281570136547, 0.0031729114707559347, -0.01595914177596569, 0.018009066581726074, -0.005468757823109627, -0.022934388369321823, -0.012719161808490753, 0.018435562029480934, 0.013434571214020252, 0.014528322964906693, -0.009664911776781082, 0.00019304027955513448, -0.024571577087044716, -0.010325290262699127, -0.04482317715883255, -0.04165886342525482, 0.006043149624019861, 0.08089634031057358, 0.01373724453151226, 0.01857314072549343, 0.037091247737407684, 0.03139548376202583, -0.012361456640064716, -0.04917066916823387, -0.010930636897683144, 0.001010344480164349, -0.010180831886827946, 0.00025731537607498467, 0.019701287150382996, -0.0038522067479789257, 0.005998436361551285, 0.009912553243339062, -0.012911771424114704, -0.00932096503674984, -0.014308196492493153, 0.022067641839385033, 0.0025331699289381504, 0.019371097907423973, -0.007243524771183729, -0.004037938080728054, 0.025011828169226646, 0.011659804731607437, -0.01858689822256565, 0.006215122994035482, 0.0288915503770113, -0.007828234694898129, -0.008811922743916512, 0.0169084370136261, 0.012278908863663673, 0.006600343622267246, 0.01597290113568306, -4.783013355336152e-05, 0.018848298117518425, 0.030267339199781418, 0.03164312615990639, 0.014404501765966415, 0.03852206841111183, 0.024213870987296104, 0.026442648842930794, -0.001872791675850749, -0.0167708583176136, -0.0015073479153215885, -0.04784991219639778, 0.005802386440336704, 0.004017301369458437, -0.01421189121901989, -0.02971702441573143, 0.020691853016614914, 0.0026260355953127146, -0.03414706140756607, -0.03513763099908829, 0.022342799231410027, -0.004385324660688639, -0.002288967603817582, 0.005688883829861879, -0.020127780735492706, -0.025974880903959274, -0.01780269853770733, -0.024310177192091942, 0.010703631676733494, -0.004959716461598873, -0.004546979907900095, -0.007394861429929733, 0.00632174639031291, -0.0021685860119760036, -0.005984678398817778, -0.004729271866381168, 0.01821543462574482, -0.02697920612990856, -0.03403699770569801, 0.013537755236029625, 0.004705195315182209, -0.0025280106347054243, 0.023897439241409302, -0.01153598353266716, 0.001383526949211955, -0.0006547891534864902, -0.03282630443572998, -0.024929281324148178, -0.0023611963260918856, -0.04966595396399498, 0.019412370398640633, -0.029496897011995316, -0.0015082077588886023, -0.019206002354621887, -0.017954034730792046, 0.02084319107234478, -0.015711501240730286, 0.01021522656083107, 0.011260826140642166, 0.0030714471358805895, -0.012609098106622696, 0.01770639419555664, -0.004471311345696449, 0.035275209695100784, 0.015188701450824738, 0.003790296381339431, 0.004739589989185333, -0.0027395382057875395, -0.025190681219100952, -0.024117566645145416, -0.0032399811316281557, -0.013606544584035873, -0.004684558603912592, 0.00233024125918746, -0.02088446356356144, -0.007147219497710466, 0.017472509294748306, -0.037999268621206284, 0.007112824823707342, 0.030047213658690453, 0.015862837433815002, 0.027708373963832855, 0.010593568906188011, 0.010029495693743229, 0.004368127323687077, -0.03651341795921326, -0.013537755236029625, 0.006142894271761179, -0.002997498493641615, 0.01814664527773857, -0.003542654449120164, 0.017967794090509415, -0.014775964431464672, -0.03538526967167854, -0.03651341795921326, -0.004306216724216938, 0.0025469278916716576, 0.028286203742027283, -0.013221324421465397, -0.032110895961523056, -0.04207160323858261, -0.009616759605705738, -0.024158839136362076, -0.009713063947856426, -0.022411588579416275, -0.03634832426905632, -0.011515346355736256, -0.017596330493688583, 0.015739016234874725, -0.003107561497017741, 0.013008076697587967, -0.037476468831300735, 0.017458751797676086, 0.03323904052376747, 0.019687527790665627, 0.020141538232564926, -9.383304859511554e-05, -0.010263379663228989, 0.0001094718900276348, 0.011804262176156044, -0.02391119860112667, -0.030570013448596, -0.02177872695028782, 0.006562509573996067, 0.02757079526782036, 0.016193026676774025, 0.04966595396399498, -0.01421189121901989, 0.005389649886637926, 0.030817653983831406, 0.015890352427959442, 0.0014144822489470243, 0.006679451558738947, 0.01066235825419426, -0.005317421164363623, 0.010820574127137661, 0.009238417260348797, -0.008447338826954365, 0.022494135424494743, 0.006799832917749882, 0.009492938406765461, -0.011267704889178276, -0.013035592623054981, -0.027845952659845352, -0.014473291113972664, -0.01948115974664688, 0.0167708583176136, 0.005313981790095568, -0.00971994362771511, 0.006349262315779924, -0.049831047654151917, -0.011611651629209518, 0.00885319709777832, 0.024227628484368324, -0.014555838890373707, 0.020678095519542694, -0.004264943301677704, -0.02213643118739128, -0.0012605659430846572, 0.0013869664398953319, 0.01441826019436121, -0.006387096364051104, 0.0013766479678452015, -0.02886403538286686, -0.010387200862169266, 0.03546781837940216, 0.0028822761960327625, 0.02091198042035103, -0.011315857991576195, 0.005850539077073336, -0.01551889069378376, 0.027350667864084244, 0.009148990735411644, -0.015285006724298, 0.005482515785843134, -0.011446557007730007, -0.012574703432619572, -0.020320391282439232, -0.011171399615705013, -0.007264161482453346, -0.018958359956741333, 0.014693417586386204, 0.011467194184660912, 0.013881701976060867, -0.003869404084980488, -0.01644066907465458, 0.022521652281284332, 0.00950669590383768, 0.018297981470823288, -0.004282140638679266, 0.029524413868784904, 0.03252363204956055, -0.020980769768357277, 0.0016389075899496675, 0.0052761477418243885, -0.0025452079717069864, -0.0009200583444908261, 0.02210891619324684, 0.010703631676733494, -0.02166866324841976, -0.026387616991996765, 0.010036374442279339, 0.027708373963832855, -0.02133847400546074, -0.03293636813759804, 0.035247690975666046, 0.025493353605270386, -0.02126968465745449, -0.023897439241409302, -0.021641148254275322, -0.012650372460484505, 0.014129344373941422, -0.024048777297139168, -0.02176496759057045, 0.011824899353086948, -0.005420605186372995, 0.007381103467196226, 0.006583146285265684, 0.006201365031301975, 0.03643086925148964, 0.0067688776180148125, -0.029524413868784904, 0.00300093786790967, 0.011329615488648415, 0.0023783936630934477, -0.0015726977726444602, -0.0023147636093199253, 0.01153598353266716, -0.016674552112817764, 0.021421020850539207, 0.04077836126089096, -0.01106133684515953, 0.014487049542367458, 0.005258950404822826, -0.010607326403260231, 0.03678857535123825, -0.0032038665376603603, -0.016523215919733047, 0.006964927539229393, -0.010167074389755726, 0.01129522081464529, -0.012533430010080338, 0.008729375898838043, -0.029056645929813385, -0.018504351377487183, -0.019838865846395493, 0.021544842049479485, 0.03411954641342163, 0.000967351021245122, 0.018779508769512177, 0.01778894104063511, -0.012512792833149433, -0.0018022825242951512, -0.009871279820799828, -0.01088936347514391, -0.008770649321377277, -0.004055135417729616, -0.009527333080768585, 0.0012588461395353079, 0.021379748359322548, 0.021503569558262825, -0.006686330307275057, 0.015340037643909454, 0.022342799231410027, -0.034394703805446625, 0.004512585233896971, -0.0075668347999453545, -0.011673562228679657, -0.009933190420269966, -0.00576799176633358, -0.013854186981916428, 0.0013714887900277972, 0.025053102523088455, -0.005234873853623867, -0.013276355341076851, -0.036073166877031326, -0.015326280146837234, 0.037916719913482666, 0.009389754384756088, -0.0021771846804767847, 0.0296619925647974, -0.011157642118632793, 0.002490176586434245, -0.028176141902804375, -0.026924174278974533, 0.03546781837940216, 0.013599665835499763, -0.009534211829304695, 0.026428889483213425, -0.0002452772168908268, 0.03406451642513275, -0.01593162678182125, -0.0017412318848073483, 0.001914065214805305, -0.03786168992519379, -0.027667099609971046, 0.0016698628896847367, 0.032110895961523056, 0.0013276356039568782, -0.01864193007349968, 0.006356141064316034, -0.011494710110127926, -0.01868320256471634, 0.0011032101465389132, -0.004220230039209127, -0.010125800967216492, 0.008646828122437, -0.01107509434223175, -0.007443014066666365, -0.009272811934351921, -0.01176986750215292, -0.010559174232184887, 0.0012898014392703772, 0.026704048737883568, -0.010882483795285225, -0.00974745862185955, -0.0016174109186977148, 0.034009482711553574, 0.014982333406805992, -0.01692219451069832, -0.04341987520456314, -0.002325081964954734, -0.04490572586655617, -0.002804888179525733, -0.004646724555641413, 0.011790504679083824, -0.009231538511812687, -0.028258688747882843, 0.0063148676417768, -0.004148001316934824, -0.007133461534976959, 0.003344884840771556, -0.0031058418098837137, -0.0011857574572786689, -0.0006195345777086914, -0.011955599300563335, -0.015353796072304249, 0.002048204652965069, -0.039760276675224304, 0.0007321772282011807, 0.015147427096962929, 0.008357913233339787, 0.0015589399263262749, 0.022494135424494743, -0.005210797768086195, -0.007621866185218096, 0.0006517796427942812, -0.019274791702628136, -0.006039709784090519, -0.019371097907423973, 0.005802386440336704, -0.03775162622332573, 0.0022408149670809507, 0.027845952659845352, -0.009651154279708862, 0.0004034928570035845, -0.006514356937259436, 0.0025056542363017797, -0.009410390630364418, 0.017403719946742058, -0.020994527265429497, -0.021489810198545456, 0.0023852726444602013, 0.00643180962651968, 0.015243732370436192, 0.011047578416764736, 0.03384438902139664, 0.03015727549791336, 0.014707175083458424, 0.01814664527773857, -0.02082943171262741, 0.020210327580571175, 0.018738234415650368, -0.010786179453134537, 0.03409203141927719, 0.01466590166091919, 0.006356141064316034, -0.023305851966142654, 0.01507863774895668, -0.0006208244012668729, 0.009045806713402271, -0.0148309962823987, -0.02352597750723362, -0.029524413868784904, 0.002799728885293007, 0.031340453773736954, -0.01904090866446495, -0.012836103327572346, -0.006927093490958214, -0.006992443464696407, -0.02663525938987732, -0.016702068969607353, 0.010091406293213367, -0.02839626744389534, 0.008261607959866524, 0.007621866185218096, -0.004584813956171274, 0.024516545236110687, 0.020705612376332283, 0.0059434049762785435, -0.015725258737802505, -0.006913335528224707, 0.18875813484191895, -0.01912345550954342, 0.012189483270049095, 0.01822919212281704, 0.004158319905400276, 0.005606336519122124, 0.024599092081189156, 0.02528698556125164, -0.011233310215175152, -0.012285788543522358, -0.005152326542884111, -0.007862629368901253, -0.007594350725412369, -0.0004965735133737326, 0.002548647578805685, 0.010999426245689392, -0.03062504343688488, -0.03224847465753555, -0.012574703432619572, 0.00509729515761137, -0.010469747707247734, -0.0032434205058962107, 0.0008164442842826247, -0.011962478049099445, 0.02166866324841976, -0.016234301030635834, -0.00996070634573698, 0.016234301030635834, 0.004340611398220062, 0.011281462386250496, -0.023209545761346817, 0.015463858842849731, 0.013888581655919552, -0.0018487153574824333, -0.020210327580571175, -0.011962478049099445, 0.02399374544620514, 0.004151440691202879, 0.021228410303592682, -0.008811922743916512, 0.024268902838230133, -0.010022616945207119, -0.008192818611860275, -0.017293656244874, 0.0017403720412403345, 0.011666683480143547, 0.0006027671624906361, -0.005052581895142794, -0.001110089011490345, -0.0014007242862135172, -0.04209911823272705, 0.011811140924692154, 0.014473291113972664, 0.034449733793735504, -0.015257490798830986, 0.007381103467196226, 0.01817416213452816, 0.029909634962677956, 0.022095156833529472, 0.006304549053311348, 0.012210119515657425, 0.015147427096962929, 0.00776632409542799, 0.011632288806140423, -0.02261795662343502, 0.022948145866394043, -0.005255510564893484, 0.0006126556545495987, 0.009472301229834557, -0.00048109592171385884, -0.0030542497988790274, -0.02133847400546074, -0.018724476918578148, -0.01689467765390873, -0.012973682023584843, -0.016757098957896233, 0.0400354340672493, 0.01813288778066635, 0.04006294906139374, 0.04476814717054367, -0.013867944478988647, 0.033926934003829956, -0.013799155130982399, -0.014514564536511898, -0.012306424789130688, -0.03761404752731323, 0.04311719909310341, -0.01373036578297615, -0.0279147420078516, -0.00677575683221221, -0.005609776359051466, 0.015711501240730286, -0.0019862940534949303, -0.019274791702628136, 0.01285674050450325, -0.004430037923157215, -0.0035288967192173004, -0.014239407144486904, -0.013613423332571983, 0.02081567421555519, -0.01287049800157547, 0.07638375461101532, 0.01772015169262886, 0.005795507691800594, 0.023594766855239868, -0.004055135417729616, -0.005430923774838448, 0.013145655393600464, 0.023360881954431534, -0.027584552764892578, -0.015890352427959442, -0.01688092015683651, -0.012753556482493877, -0.006252957042306662, 0.0026896658819168806, 0.01868320256471634, 0.015106153674423695, -0.017046015709638596, 0.01531252171844244, -0.016647037118673325, -0.00654187286272645, -0.040585748851299286, -0.02620876394212246, 0.02436520904302597, 0.005950283724814653, 0.0023268016520887613, -0.006273593753576279, -0.009754338301718235, -0.028726456686854362, -0.006614101585000753, 0.03158809617161751, -0.0023629162460565567, -0.004595132544636726, -0.00665881484746933, 0.00956172775477171, -0.000798387045506388, 0.03816436231136322, -0.0167708583176136, 0.025961121544241905, 0.0020843190141022205, -0.010779299773275852, -0.02210891619324684, 0.003690551733598113, -0.0007846291991882026, -0.033101461827754974, -0.032606180757284164, 0.00479118200019002, -0.00029901895322836936, 0.0016174109186977148, -0.019770076498389244, 0.006397414952516556, -0.02402126044034958, 0.0004348780494183302, -0.01688092015683651, 0.0066553750075399876, -0.019783833995461464, -0.0003602845245040953, -0.018077855929732323, 0.02223273739218712, -0.00043573789298534393, -0.0391274131834507, 0.008419823832809925, 0.0067895143292844296, -0.02081567421555519, -0.01505112275481224, -0.018751991912722588, -0.17500025033950806, 0.027185574173927307, 0.015876594930887222, -0.00205680332146585, 0.0108480891212821, 0.019261034205555916, 0.004973473958671093, -0.0009733701008372009, -0.007050914224237204, 0.00846109725534916, 0.024227628484368324, 0.022452862933278084, -0.011790504679083824, -0.027777163311839104, 0.004994111135601997, -0.016069205477833748, -0.008323518559336662, 0.015683984383940697, 0.01692219451069832, 0.02703423798084259, 0.021531084552407265, -0.05313294008374214, -0.01065547950565815, -0.01465214416384697, -0.015216217376291752, 0.024268902838230133, 0.005313981790095568, 0.0310928113758564, -0.01649569906294346, -0.016096720471978188, 0.00654875161126256, 0.007099066860973835, 0.021448537707328796, 0.02088446356356144, 0.0010361404856666923, 0.032165925949811935, 0.0049046846106648445, -0.010008858516812325, -0.01688092015683651, 0.0283687524497509, 0.028753971680998802, 0.03673354536294937, -0.018449319526553154, -0.007332950830459595, -0.024172598496079445, 0.01223075669258833, -0.0070371562615036964, 0.0024110686499625444, -0.003986346069723368, -0.021008284762501717, 0.005551305133849382, 0.013916097581386566, 0.03153306618332863, 0.003236541524529457, 0.019302308559417725, 0.027171816676855087, 0.015656469389796257, 0.0032227837946265936, -0.011646046303212643, -0.007092188112437725, -0.02886403538286686, -0.021641148254275322, 0.00689269881695509, 0.00221329927444458, -0.008825681172311306, -0.022425346076488495, -0.029579445719718933, 0.015876594930887222, -0.032578662037849426, 0.00934848003089428, -0.01310438197106123, 0.022948145866394043, 0.0025469278916716576, -0.007326072081923485, 0.010868726298213005, 0.0063148676417768, -0.00237667397595942, 0.012361456640064716, 0.008158423937857151, -0.0007915081223472953, 0.004416279960423708, 0.03783417493104935, -0.010978789068758488, -0.013248839415609837, 0.036128196865320206, -0.0028410025406628847, 0.020127780735492706, -0.0027515762485563755, 0.010586690157651901, -0.011047578416764736, 0.007229766808450222, 0.005396529100835323, 0.008323518559336662, -0.018476834520697594, -0.013056229799985886, -0.012333940714597702, 0.024103809148073196, -0.0016010734252631664, -0.0033655217848718166, -0.020994527265429497, 0.0027068632189184427, -0.015849079936742783, -0.010153316892683506, 0.002724060555920005, 0.011013183742761612, 0.0011659804731607437, -0.04020053148269653, 0.00388660142198205, 0.03637583926320076, -0.002736098598688841, -0.02790098451077938, 0.01018771156668663, 0.025369534268975258, 0.041053518652915955, -0.007498045451939106, 0.03824691101908684, -0.03780665993690491, 0.0016182707622647285, 0.008433581329882145, -0.011205794289708138, 0.029386835172772408, 0.027667099609971046, 0.004540100693702698, 0.011033820919692516, -0.026318827643990517, -0.04487821087241173, -0.09206774085760117, -0.010380321182310581, 0.003766220062971115, 0.033981967717409134, -0.0244890283793211, 0.022315284237265587, -0.004488508682698011, 0.015725258737802505, -0.02181999944150448, 0.022920630872249603, -0.0026002395898103714, -0.0010275418171659112, -0.009946947917342186, -0.013819792307913303, 0.0028564801905304193, -0.013668455183506012, -0.004457553382962942, -0.030872685834765434, 0.02883652038872242, 0.022989420220255852, -0.007690655533224344, -0.04537349194288254, -0.02395247109234333, -0.026016153395175934, 0.007931418716907501, 0.008130908012390137, -0.026951689273118973, 0.02697920612990856, -0.013262597844004631, 0.006662254221737385, -0.0009630516869947314, -0.002992339199408889, 0.030349886044859886, -0.017500026151537895, -0.004945958498865366, -0.023237062618136406, -0.00039532413939014077, -0.02268674597144127, 0.02883652038872242, -0.03670602664351463, 0.01824295148253441, 0.006813590880483389, 0.020086506381630898, 0.009259054437279701, -0.012354577891528606, -0.018903329968452454, -0.02796977385878563, 0.025025585666298866, -0.009836885146796703, -0.016275573521852493, -0.011384647339582443, -0.03337661921977997, 0.004096409305930138, -0.019412370398640633, 0.03447725251317024, -0.023360881954431534, 0.010050132870674133, 0.0054378025233745575, -0.028203656896948814, 0.00021141994511708617, -0.019783833995461464, -0.0064765228889882565, -0.02748824656009674, 0.02569972351193428, 0.022783052176237106, -0.005919328425079584, -0.01594538427889347, -0.02658022753894329, 0.01767887733876705, -0.02477794513106346, -0.008949502371251583, 0.012774192728102207, -0.02575475350022316, -0.008055239915847778, -0.023883681744337082, -0.003458387451246381, -0.012051904574036598, -0.04212663322687149, 0.016316847875714302, 0.005905570462346077, -0.008722497150301933, -0.019178487360477448, 0.0038728436920791864, -0.023759860545396805, 0.010476626455783844, -0.0044850693084299564, -0.029386835172772408, 0.017500026151537895, 0.012065662071108818, -0.01901339180767536, 0.01644066907465458, 0.014569596387445927, 0.006562509573996067, -0.002099796663969755, -0.020664338022470474, 0.0023732346016913652, -0.013283235020935535, -0.016206784173846245, -0.005227995105087757, 0.03588055446743965, -0.04864786937832832, -0.011714835651218891, -0.06537745147943497, 0.022315284237265587, 0.004302777349948883, -0.023787377402186394, -0.008426702581346035, -0.0025555265601724386, 0.024929281324148178, -0.01639939472079277, -0.01090999972075224, 0.0071609774604439735, -0.04446547478437424, 0.01686716265976429, 0.003539215074852109, 0.012258272618055344, -0.024090049788355827, -0.017486266791820526, 0.028753971680998802, -0.033514197915792465, 0.023787377402186394, 0.03246860206127167, 0.0008671764517202973, 0.022562924772500992, 0.023264577612280846, 0.0037180674262344837, -0.017458751797676086, 0.018875813111662865, 0.0008340715430676937, 0.0008048360468819737, -0.02656647004187107, -0.012842982076108456, 1.288457860937342e-05, -0.02523195557296276, -0.007594350725412369, 0.013482724316418171, -0.0024282659869641066, -0.013517118990421295, 0.03604564815759659, 0.01858689822256565, 0.0021393506322056055, 0.03725634142756462, -0.022934388369321823, -0.02567220665514469, -0.007828234694898129, -0.009850643575191498, 0.018999634310603142, -0.00387972267344594, -0.01824295148253441, 0.0006805852171964943, 0.014376985840499401, -0.0070371562615036964, 0.01862817071378231, 0.002409348962828517, -0.03453228250145912, -0.025919849053025246, 0.027653342112898827, -0.00642493087798357, 0.011659804731607437, 0.004663921892642975, -0.0005726718227379024, -0.0035151387564837933, 0.020169055089354515, -0.009905674494802952, 0.016633279621601105, -0.00817906018346548, -0.0017696075374260545, -0.0008658866863697767, -0.029882118105888367, -0.00752556137740612, -0.01778894104063511, -0.009052686393260956, -0.014487049542367458, -0.009073322638869286, -0.008536765351891518, 0.015395069494843483, 0.00022055604495108128, -0.00765626085922122, 0.0027343789115548134, 0.034394703805446625, -0.001261425786651671, 0.01419813372194767, 0.017293656244874, -0.01198999397456646, -0.03588055446743965, -0.0007979571237228811, 0.011584136635065079, 0.025617174804210663, -0.016234301030635834, 0.004718953277915716, -0.0007975272019393742, 0.004357808735221624, -0.008433581329882145, 0.018394287675619125, -0.0005468758172355592, 0.004983792547136545, 0.0036802333779633045, 0.013063108548521996, -0.02088446356356144, 0.010490384884178638, 0.03901735320687294, 0.033926934003829956, 0.02170993760228157, -7.099282083800063e-05, -0.0025950802955776453, -0.03136796876788139, -0.029827086254954338, 0.0004901245119981468, -0.019233519211411476, -0.022535409778356552, 0.010971910320222378, -0.004491948522627354, -0.0008306321105919778, 0.011955599300563335, -0.005503152497112751, 0.001872791675850749, -0.006445567589253187, 0.022095156833529472, -0.01108197309076786, 0.000498293258715421, -0.03769659623503685, 0.03596310317516327, 0.0043234140612185, -0.007518682163208723, 0.016578247770667076, -0.023649798706173897, 0.024681638926267624, 0.01263661403208971, 0.009142111986875534, -0.0373113751411438, 0.009458543732762337, -0.00956172775477171, -0.0022236176300793886, -0.0015709780855104327, -0.02128344215452671, -0.018944602459669113, -0.014872269704937935, -0.027378184720873833, -0.005712960381060839, -0.014053676277399063, -0.0017541298875585198, 0.07594350725412369, 0.02345718815922737, 0.002889155177399516, -0.0024024699814617634, -0.02664901688694954, 0.00839230790734291, 0.003509979462251067, 0.02212267369031906, -0.005503152497112751, -0.021214652806520462, 0.011157642118632793, -0.010180831886827946, -0.0016010734252631664, -0.026250038295984268, -0.03299139812588692, 0.0008525587036274374, -0.001211553462781012, 0.03590806946158409, -0.003618322778493166, 0.018463077023625374, 0.005781749729067087, 0.021365990862250328, 0.004990671295672655, -0.01044911053031683, -0.036100681871175766, -0.004705195315182209, 0.018476834520697594, -0.012746676802635193, -0.0009011412621475756, -0.05016123503446579, -0.0027309395372867584, 0.005059461109340191, -0.030514981597661972, -0.024035019800066948, 0.014404501765966415, -0.0006573688006028533, -0.0013422532938420773, -0.010531658306717873, 0.012973682023584843, -0.011171399615705013, 0.017885245382785797, 0.02481921762228012, -0.023319609463214874, -0.03282630443572998, -0.0062357597053050995, -0.010854968801140785, -0.022287767380475998, 0.008805043995380402, -0.045483555644750595] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_defer_distributed_edge_inference_for_deep_neural_networks.json b/database/embeddings/publications_txt/2022_defer_distributed_edge_inference_for_deep_neural_networks.json new file mode 100644 index 0000000000000000000000000000000000000000..1b550d431dc7cf84b9d933fe74648a87b0dba9d5 --- /dev/null +++ b/database/embeddings/publications_txt/2022_defer_distributed_edge_inference_for_deep_neural_networks.json @@ -0,0 +1 @@ +[-0.011039488948881626, 0.0026632584631443024, -0.014831122942268848, 0.011083238758146763, 0.011644692160189152, 0.019964411854743958, -0.019585248082876205, 0.009989498183131218, -0.014240503311157227, -0.040220487862825394, 0.014656124636530876, 0.04829958826303482, 0.005556202493607998, 0.014503001235425472, -0.019191501662135124, 0.02168523147702217, 0.01760193333029747, -0.004240067675709724, -0.006821295712143183, 0.0036895517259836197, 0.008684300817549229, 0.012118645943701267, -0.021320650354027748, -0.014962371438741684, -0.016974855214357376, 0.026249775663018227, 0.04398295655846596, -0.01868109032511711, -0.010025955736637115, 0.010324911214411259, 0.0305955708026886, -0.011418651789426804, 0.009187421761453152, -0.032403890043497086, -0.010426994413137436, -0.006660880520939827, -0.005494223907589912, -0.02553519792854786, 0.030653905123472214, -0.021043570712208748, 0.03817883878946304, 0.0021145653445273638, -0.01345300953835249, -0.03152889758348465, 0.006533277221024036, 0.01583736389875412, 0.029851827770471573, -0.010558242909610271, -0.0025739362463355064, 0.0111780297011137, 0.02212272770702839, 0.04024965688586235, -0.025039369240403175, 0.011105113662779331, -0.04541211202740669, -0.004407774657011032, -0.004856208339333534, 0.01152073498815298, -0.014174878597259521, -0.013628008775413036, 0.02604561112821102, -0.01036136969923973, -0.041299644857645035, 0.0010973864700645208, -0.012869681231677532, 0.006555152125656605, -0.015531117096543312, 0.03056640550494194, -0.004564544185996056, -0.012512393295764923, 0.0297643281519413, 0.04354546219110489, 0.001410013996064663, -0.028451839461922646, 0.011272819712758064, -0.02852475643157959, 0.007539518643170595, 0.01254885084927082, -0.019176919013261795, 0.008633259683847427, -0.014656124636530876, -0.005687451455742121, -0.0015084506012499332, 0.009267629124224186, 0.019322751089930534, -0.005508807022124529, 0.004622877109795809, 0.009355127811431885, -0.0009009688510559499, -0.00922387931495905, 0.009267629124224186, 0.017033187672495842, 0.021451899781823158, 0.006628068163990974, -0.007554102223366499, 0.01569153182208538, -0.018754005432128906, 0.021481066942214966, 0.0073499372228980064, -0.0057530757039785385, -0.009114505723118782, 0.014933205209672451, -0.010601992718875408, -0.023012302815914154, 0.00015152865671552718, -0.029837245121598244, -0.0014756383607164025, 0.02442687377333641, 0.009683250449597836, -0.006201509386301041, -0.01732485182583332, 0.024251876398921013, -0.0015084506012499332, -0.0152977854013443, -0.009296795353293419, -0.028991417959332466, 0.008837424218654633, -0.02304146997630596, 0.011003030464053154, -0.004083298146724701, 0.031208066269755363, -0.0007692642393521965, 0.015793614089488983, -0.03797467425465584, 0.019162336364388466, 0.016960270702838898, 0.010259287431836128, -0.017835263162851334, 0.002433572895824909, -0.0137227987870574, 0.0162311103194952, -0.016201945021748543, -0.004291109275072813, -0.016085278242826462, -0.002417166717350483, 0.0017354018054902554, -0.0016670430777594447, -0.010966572910547256, -0.012461351230740547, -0.017981095239520073, 0.005355683155357838, 0.028903918340802193, -0.04535377770662308, -0.020810239017009735, -0.019206086173653603, 0.04724959656596184, -0.007510352414101362, -0.0005145138129591942, 0.023770630359649658, 0.004889020696282387, -0.015647782012820244, -0.026453940197825432, -0.006555152125656605, 0.013358218595385551, -0.0028364339377731085, 0.02441229112446308, -0.010893656872212887, 0.024193542078137398, 0.009953039698302746, -9.422119910595939e-05, 0.021087318658828735, 0.0128915561363101, -0.03082890249788761, -0.007809308357536793, -0.012432185001671314, 0.03211222589015961, 0.03263721987605095, 0.003317679977044463, 0.004991102963685989, -0.012176979333162308, -0.014670707285404205, 0.028422674164175987, -0.020226910710334778, -0.00833430327475071, 0.00651869410648942, 0.013824881985783577, 0.03272471949458122, 0.015166536904871464, -0.029647663235664368, -0.0112655283883214, 0.017776930704712868, -0.0006662703235633671, 0.010478035546839237, 0.01964358240365982, 0.0012669162824749947, 0.012074897065758705, 0.025214366614818573, -0.007627018261700869, -0.00873534195125103, 0.0023661255836486816, 0.025316450744867325, -0.0021090966183692217, -0.000660801655612886, -0.006872336845844984, -0.5856616497039795, -0.0006535100401379168, 0.00893221516162157, -0.014408210292458534, -0.03342471271753311, 0.012053022161126137, -0.002548415679484606, 0.0005833283648826182, -0.01924983598291874, 0.037478845566511154, -0.027781011536717415, -0.00799159798771143, 0.006515048444271088, -0.013897798024117947, -0.02031441032886505, -0.017004020512104034, -0.0066462974064052105, -0.014007171615958214, 0.010186371393501759, -0.005643701646476984, -0.0028510172851383686, 0.015108204446732998, -0.020168578252196312, 0.0005646435893140733, -0.03602052479982376, -0.006985357031226158, 0.024587290361523628, -0.019818579778075218, 0.00893221516162157, -0.0013425666838884354, -0.0128405150026083, 0.008071806281805038, 0.04051215201616287, 0.005300996359437704, 0.05217871814966202, -0.00824680458754301, -0.02454354055225849, 0.029983077198266983, 0.008363470435142517, 0.047570426017045975, -0.048941247165203094, -0.006329112686216831, 0.0054869321174919605, 0.007262437604367733, -0.017674848437309265, 0.0028291423805058002, 0.007273375056684017, -0.022603973746299744, 0.0017007667338475585, -0.025695612654089928, -0.009515543468296528, -0.0019486811943352222, 0.00016428895469289273, -0.015122787095606327, 0.02225397527217865, 0.011243653483688831, 0.02018316090106964, -0.009880123659968376, 0.013817589730024338, -0.001588658313266933, 0.019001919776201248, 0.018724840134382248, -0.03126639872789383, -0.01733943447470665, -0.02662893943488598, -0.007164000999182463, 0.009216587990522385, 0.009318670257925987, 0.00942075252532959, -0.018126927316188812, 0.023099802434444427, 0.01706235483288765, 0.007393686566501856, -0.03298721835017204, 0.025724779814481735, 0.017266519367694855, 0.043866291642189026, 0.027343515306711197, -0.026293525472283363, 0.03368721157312393, -0.0009871008805930614, -0.006493173539638519, 0.01763109862804413, -0.03771217539906502, 0.029837245121598244, -0.006832233164459467, -0.010215537622570992, -0.002112742280587554, -0.013132179155945778, -0.0010025955270975828, -0.0032921594101935625, 0.031878892332315445, -0.008516593836247921, -0.026453940197825432, 0.008611384779214859, 0.0257831122726202, 0.01801026239991188, 0.008596801199018955, -0.022049810737371445, -0.010798865929245949, 0.0015986842336133122, -0.003091640304774046, 0.014131128787994385, -0.01884150505065918, 0.03044973872601986, 0.030070576816797256, -0.009843666106462479, 0.013285302557051182, 0.02973516285419464, -0.023406049236655235, -0.023653963580727577, -0.0046483976766467094, -0.01626027747988701, 0.004127047955989838, 0.009398877620697021, -0.023639380931854248, -0.0029403395019471645, -0.007962431758642197, -0.001187619986012578, 0.008786383084952831, -0.017514433711767197, -0.011148862540721893, 0.0029312248807400465, -0.010397827252745628, -0.006405674386769533, 0.010842615738511086, 0.004896312020719051, -0.03832467272877693, -0.02222480997443199, 0.0018238124903291464, 0.00474683428183198, 0.019993579015135765, 0.03205389156937599, -0.009595750831067562, 0.03683718293905258, 0.006569735240191221, 0.016187360510230064, -0.009180129505693913, -0.014065505005419254, -0.03674968704581261, -0.008152013644576073, 0.004699438810348511, 0.015910280868411064, -0.005716617684811354, -0.0313538983464241, -0.007823891006410122, -0.000969783344771713, 0.018360259011387825, -0.0025010202080011368, 0.004108819179236889, -0.01965816505253315, 0.025856029242277145, -0.018754005432128906, 0.006146822590380907, -0.017499851062893867, -0.02604561112821102, 0.004830687772482634, -0.01624569483101368, -0.0281018428504467, -0.021641481667757034, -0.001714438432827592, 0.030741402879357338, -0.032695554196834564, 0.0016971208387985826, -0.00698900269344449, 0.012016563676297665, 0.005443182773888111, 0.03123723343014717, -0.0019650873728096485, -0.013635300099849701, -0.002340605016797781, -0.015035288408398628, 0.0010691314237192273, 0.01345300953835249, -0.005012977868318558, 0.012760307639837265, 0.015108204446732998, 0.007955140434205532, -0.02431020885705948, -0.008035347796976566, -0.00846555270254612, 0.008706175722181797, -0.01745610125362873, -0.014743623323738575, 0.041124649345874786, 0.031587228178977966, 0.0271685179322958, -0.006150468252599239, -0.0076561844907701015, -0.0011347559047862887, 0.006843170616775751, 0.029545580968260765, 0.0008389902068302035, 0.01570611633360386, -0.014896747656166553, 0.015049871057271957, 0.01186344027519226, -0.02073732204735279, -0.01023741252720356, 0.023828962817788124, 0.022691471502184868, 0.019585248082876205, 0.0037187181878834963, -0.003871841821819544, -0.019891496747732162, -0.006660880520939827, 0.02786851115524769, -0.009442627429962158, 0.017397766932845116, 0.01220614556223154, 0.025753946974873543, -0.006252550520002842, -0.02101440355181694, -0.017908180132508278, -0.017091520130634308, 0.04121214896440506, -0.02553519792854786, -0.0007036398164927959, -0.040045492351055145, -0.0022695118095725775, -0.008254095911979675, -0.0067228591069579124, 0.04684126749634743, 0.005778596270829439, -0.004156214185059071, -0.011980106122791767, 0.02075190655887127, 0.005231725983321667, 0.03327888250350952, -0.015254036523401737, -0.02797059342265129, 0.026424773037433624, -0.0027179454918950796, 0.004597356542944908, -0.01801026239991188, -0.011287403292953968, 0.0104342857375741, -0.00920200441032648, 0.038587167859077454, -0.028058093041181564, 0.02839350700378418, 0.023318549618124962, 0.01787901297211647, -0.01830192655324936, -2.5976340111810714e-05, -0.013285302557051182, 0.00590255344286561, 0.017149852588772774, -0.002825496718287468, -0.00012919811706524342, -0.021320650354027748, 0.03237472102046013, 0.005592660512775183, 0.009231170639395714, 0.021947728469967842, -0.010601992718875408, 0.006383799482136965, 0.00470308493822813, 0.009843666106462479, 0.011783232912421227, 0.03371637687087059, 0.010062414221465588, 0.01802484504878521, -0.01269468292593956, 0.00833430327475071, -0.018754005432128906, 0.0040395488031208515, -0.007772850338369608, -0.010354078374803066, -0.007816599681973457, -0.0007132100290618837, -0.016551941633224487, -0.00048170160152949393, -0.013139470480382442, 0.025301866233348846, 0.01799567975103855, 0.01639152690768242, 0.012650933116674423, 0.030741402879357338, 0.014532167464494705, -0.009034297429025173, -0.006117655895650387, -0.0043348586186766624, 0.005771304946392775, -0.0034106478560715914, -0.0010718657867982984, -0.005410370416939259, 0.01426966954022646, -0.00012407120084390044, 0.0029786203522235155, 0.0053921411745250225, 0.012658225372433662, -0.032141391187906265, -0.007889515720307827, -0.03494136780500412, -0.008100972510874271, 0.03879133611917496, -0.02143731713294983, -0.02554978057742119, -0.002059878082945943, 0.024645622819662094, 0.013117595575749874, -0.012147813104093075, 0.005472349002957344, 0.04993290454149246, -0.014335294254124165, 0.010587409138679504, 0.006471298635005951, 0.024878954514861107, 0.011199903674423695, 0.011148862540721893, -0.0025429469533264637, -0.014911330305039883, -0.0001865055673988536, 0.003948403522372246, -0.0046666269190609455, 0.014714457094669342, 0.00940616987645626, 0.017135269939899445, 0.0030570051167160273, -0.0031809622887521982, -0.023770630359649658, -0.01146240159869194, 0.0013617071090266109, 0.0305955708026886, 0.04205797240138054, -0.02264772355556488, 0.0018611819250509143, -0.011280111968517303, -0.006653588730841875, -0.02754768170416355, -0.0029458082281053066, 0.020635239779949188, -0.005574431270360947, -0.013000930659472942, -0.004291109275072813, -1.9040771803702228e-05, -0.005093185696750879, 0.028437256813049316, 0.00651869410648942, -0.01679985597729683, -0.013489468023180962, 0.012942597270011902, -0.009537418372929096, 0.002123679732903838, -0.006671817973256111, 0.011141571216285229, 0.01731026917695999, 0.02291022054851055, -0.01840400882065296, 0.011360319331288338, 0.02333313412964344, -0.012825931422412395, 0.005979115609079599, 0.0027908615302294493, 0.004528086166828871, 0.022341474890708923, 0.017106102779507637, -0.01507903728634119, 0.04159130901098251, 0.013270719908177853, 0.023143552243709564, 0.010813449509441853, 0.012475934810936451, 0.00893221516162157, 0.015399868600070477, 0.000548237469047308, -0.01160823367536068, 0.009705125354230404, -0.05567869171500206, 0.012322811409831047, 0.01528320275247097, 0.0016205590218305588, -0.02853933908045292, 0.04024965688586235, -0.005242663435637951, -0.067141093313694, -0.01399988029152155, 0.012468643486499786, 0.012578017078340054, -0.0039739240892231464, -0.007400978356599808, -0.015254036523401737, -0.02674560435116291, -0.010915531776845455, -0.014597791247069836, 0.008713467046618462, 0.007736392319202423, 0.008800966665148735, -0.009559293277561665, -0.004076006822288036, -0.002367948414757848, 0.0018903483869507909, 0.0026596125680953264, -0.0039739240892231464, -0.0040869442746043205, -0.06614943593740463, -0.005913490895181894, 0.011761358007788658, 0.010587409138679504, 0.008399927988648415, -0.005115060601383448, -0.0030624738428741693, -0.0059244283474981785, -0.007193167693912983, -0.021364400163292885, -0.005917137023061514, -0.026556022465229034, 0.0013899620389565825, -0.003386950120329857, -2.0991845303797163e-05, -0.011841565370559692, -0.005796825513243675, 0.019220668822526932, -0.0017363132210448384, -0.022720638662576675, 8.62460074131377e-05, -0.0002898412640206516, 0.0050020404160022736, 0.014335294254124165, 0.02700810134410858, 0.011112404987215996, 0.003264815779402852, -0.0036458021495491266, 0.017354018986225128, -0.00011347558756824583, -0.03208305686712265, -0.023668548092246056, -0.011600942350924015, 0.010405119508504868, -0.00012338761007413268, 0.0005728466785512865, -0.010944698005914688, -0.002338781952857971, 0.023172717541456223, 0.001370821613818407, 0.02035815827548504, 0.0018575361464172602, 0.02047482505440712, 0.015881113708019257, 0.011673858389258385, -0.002121856901794672, -0.0020288887899369, 0.001541262841783464, 0.011433235369622707, 0.013292594812810421, 0.035845525562763214, 0.006376507692039013, -0.006150468252599239, 0.028495589271187782, 0.0033213256392627954, -0.021131068468093872, -0.03940382972359657, 0.00423277635127306, -0.015939446166157722, 0.023945627734065056, -0.00566193088889122, -0.034212205559015274, -0.03292888402938843, -0.014131128787994385, -0.007882224395871162, -0.006438486743718386, -0.02754768170416355, -0.008618676103651524, 0.012957180850207806, -0.013030096888542175, -0.01748526655137539, -0.01146240159869194, 0.011987397447228432, -0.023158134892582893, -0.01269468292593956, 0.0027106539346277714, 0.018885254859924316, 0.023406049236655235, -0.014743623323738575, 0.0297643281519413, -0.0058952621184289455, -0.011294694617390633, -0.04421628639101982, -0.027620596811175346, -0.018929004669189453, -0.0025356553960591555, 0.022137310355901718, 0.027941428124904633, 0.039782993495464325, 0.0015048048226162791, 0.009333253838121891, 0.02769351378083229, 0.00344528304412961, -0.0135842589661479, 0.024062294512987137, -0.009231170639395714, -0.018068594858050346, -0.0062561966478824615, 0.025841444730758667, -0.014699874445796013, 0.010689491406083107, 0.0007779230363667011, 0.025841444730758667, -6.032663077348843e-05, 0.008283262141048908, -0.016479024663567543, -0.014976955018937588, -0.04188297316431999, 0.011236362159252167, 0.021481066942214966, 0.00961762573570013, 0.029589330777525902, -0.037478845566511154, 0.0026249776128679514, 0.03861633688211441, -0.00013227426097728312, -0.00247185374610126, 0.017908180132508278, -0.0046483976766467094, -0.015618616715073586, 0.043866291642189026, 0.038849666714668274, 0.012031147256493568, -0.0076634762808680534, -0.011272819712758064, -0.027533097192645073, -0.01084990706294775, 0.026118526235222816, -0.01990607939660549, 0.024514373391866684, 0.007984306663274765, 0.015735281631350517, -0.002821850823238492, 0.048387084156274796, 0.025753946974873543, -0.009595750831067562, -0.025739362463355064, -0.02935599908232689, -0.022881053388118744, -0.026264358311891556, -0.026701854541897774, -0.0031590876169502735, 0.007510352414101362, -0.019031086936593056, -0.005960886366665363, 0.014349876902997494, -0.011651983484625816, -0.01707693748176098, -0.011440526694059372, 0.013751965947449207, 0.023712297901511192, -0.002732528606429696, 0.018914422020316124, 0.03981215879321098, -0.017689431086182594, 0.014459251426160336, 0.011134279891848564, 0.03257888928055763, 0.014174878597259521, 0.023639380931854248, -0.003129921155050397, -0.0016670430777594447, -0.028889335691928864, -0.0022731577046215534, 0.00804993137717247, -0.015443617478013039, -0.018360259011387825, 0.025024786591529846, 0.023639380931854248, 0.011156154796481133, -0.016566524282097816, -0.027241433039307594, -0.003926529083400965, -0.0052681840024888515, -0.02293938770890236, 0.012650933116674423, 0.004739542957395315, -0.020299825817346573, 0.008159304969012737, 0.022166477516293526, 0.005993698723614216, 0.04109548032283783, -0.011579067446291447, -0.008779091760516167, 0.00028573974850587547, 0.00024426874006167054, -0.02210814319550991, -0.0015285025583580136, -0.00010755116090876982, 0.03389137610793114, -0.013489468023180962, -0.001765479682944715, 0.034037210047245026, 0.008625967428088188, -0.020912321284413338, 0.0028473713900893927, -0.02372688055038452, 0.029720578342676163, -0.010696783661842346, -0.003481741063296795, -0.008800966665148735, -0.029166417196393013, 0.025301866233348846, -0.033366382122039795, 0.009187421761453152, 0.0025429469533264637, -0.004003090783953667, 0.008436386473476887, 0.016406109556555748, 0.00021692522568628192, -0.005180684849619865, 0.005414016079157591, 0.012526975944638252, -0.043457962572574615, 0.005840574856847525, 0.0019067545654252172, 0.008815549314022064, -0.017835263162851334, -0.025841444730758667, -0.001189442933537066, -0.013956130482256413, 0.006423903163522482, 0.010426994413137436, 0.02853933908045292, -0.008035347796976566, 0.026453940197825432, -0.020576907321810722, 0.01397800538688898, 0.019206086173653603, -0.010295744985342026, -0.032141391187906265, 0.006624422501772642, -0.019308168441057205, -0.002960391342639923, 0.014721749350428581, 0.0011074123904109001, -0.022458141669631004, -0.011360319331288338, -0.015531117096543312, -0.002415343886241317, 0.00023811645223759115, -0.01843317598104477, 0.0037734052166342735, -0.011163446120917797, -0.009318670257925987, -0.028831003233790398, -0.02894766815006733, 0.02635185793042183, -0.020547740161418915, -0.0005505161243490875, 0.021131068468093872, -0.011557192541658878, 0.01385404821485281, -0.012184270657598972, -0.013540509156882763, 0.008611384779214859, -0.0257831122726202, -0.009500959888100624, 0.0015977728180587292, 0.027620596811175346, -0.03184972703456879, 0.012687391601502895, 0.016479024663567543, -0.01017907913774252, -0.031003901734948158, -0.0050093322061002254, -0.0060046361759305, 0.004983811639249325, 0.011382194235920906, 0.0018402186688035727, 0.007554102223366499, -0.0012942597968503833, -0.005319225136190653, -0.04745376110076904, 0.01570611633360386, 0.01567694917321205, -0.029662245884537697, -0.022006060928106308, -0.005373912397772074, 0.029720578342676163, 0.026716437190771103, -0.015895696356892586, -0.04217463731765747, -0.04132881388068199, -0.005873387213796377, -0.012271770276129246, -0.02385812997817993, 0.02374146319925785, 0.007896807044744492, 0.01760193333029747, 0.0015749864978715777, 0.02251647412776947, -0.006245259195566177, 0.038412172347307205, 0.011112404987215996, 0.001276942202821374, -0.01003324706107378, 0.006609839387238026, -0.015049871057271957, -0.01758734881877899, -0.04751209169626236, -0.02387271262705326, 0.03085806965827942, 0.006186926271766424, 0.005311933811753988, 0.01694568805396557, 0.0006311794859357178, -0.028481006622314453, -0.005745783913880587, -0.012738432735204697, -0.00698900269344449, -0.017981095239520073, 0.008983256295323372, -0.034999702125787735, -0.004819750320166349, -0.0006740176468156278, -0.008968673646450043, 0.015181120485067368, 0.0036859058309346437, 0.02511228434741497, -0.011513442732393742, -0.0008658780134283006, -0.01378113217651844, 0.002196595771238208, -0.0012140520848333836, -0.0162311103194952, 0.021072736009955406, -0.0020835758186876774, 0.01869567297399044, 0.024368541315197945, 0.02400396205484867, 0.006536923348903656, -0.027503931894898415, 0.002154669025912881, -0.03917049616575241, -0.004498919937759638, 0.005669222213327885, -0.009785332717001438, -0.007262437604367733, -0.025768529623746872, 0.010682200081646442, -0.02116023562848568, -0.00949366856366396, -0.03809133917093277, -0.010324911214411259, -0.01397800538688898, 0.030070576816797256, -0.0004279260174371302, -0.035816360265016556, -0.012490518391132355, 0.002422635443508625, 0.003611166961491108, -0.02620602585375309, -0.012935305945575237, 0.00996762327849865, -0.011929064989089966, -0.015720698982477188, 0.0018602705094963312, -0.02072273939847946, -0.0061905719339847565, -0.011455110274255276, -0.018622757866978645, -0.004028611350804567, -0.013139470480382442, 0.1947149932384491, -0.01679985597729683, 0.01913316920399666, 0.023012302815914154, -0.001369910198263824, 0.007488477509468794, 0.024908119812607765, 0.006978065241128206, -0.010879073292016983, 0.01951233297586441, -0.006737442221492529, -0.006908794865012169, -0.021641481667757034, -0.011819690465927124, 0.021772731095552444, 0.01202385500073433, -0.04243713617324829, -0.02608935907483101, -0.01677069067955017, 0.0014710811665281653, 0.015385285019874573, -0.00610307278111577, -0.011892606504261494, -0.02237064205110073, 0.009304086677730083, -0.0047431886196136475, 0.008144722320139408, 0.0032939822413027287, 0.0231873020529747, 0.03809133917093277, -0.016056112945079803, 0.018112344667315483, 0.00470308493822813, 0.00021624163491651416, -0.03628302365541458, -0.006872336845844984, 0.010375953279435635, -0.007809308357536793, 0.026774771511554718, 0.007007231470197439, 0.010076996870338917, -0.02973516285419464, 0.007524935528635979, -0.022458141669631004, -0.0037150722928345203, 0.01830192655324936, -0.009719708003103733, -0.00046278900117613375, -0.0011274643475189805, 0.0008080009138211608, -0.02607477642595768, 1.6705178495612927e-05, 0.007426498923450708, 0.027503931894898415, -0.025418533012270927, 0.0057822419330477715, -0.022706056013703346, 0.016449859365820885, 0.03593302518129349, -0.00996033102273941, -0.006183280609548092, 0.008954090066254139, -0.023114385083317757, 0.01895817182958126, -0.013547800481319427, 0.02099982090294361, -0.016960270702838898, 0.003937466070055962, 0.01748526655137539, -0.009515543468296528, -0.01513737067580223, -0.023960212245583534, -0.021524814888834953, -0.020693572238087654, -0.031733062118291855, -0.0365455187857151, 0.023318549618124962, -0.0007236917153932154, 0.031324733048677444, 0.039374664425849915, -0.0152102867141366, 0.012738432735204697, -0.008042639121413231, 0.009843666106462479, -0.007510352414101362, -0.034066375344991684, 0.05159538984298706, -0.02620602585375309, -0.009158254601061344, -0.02140814997255802, -0.020503990352153778, -0.004418712109327316, -0.016697773709893227, -0.006241613067686558, 0.003707780735567212, -0.027635179460048676, 0.02454354055225849, -0.009253045544028282, 0.0010900947963818908, 0.004549961071461439, -0.03663301840424538, 0.09041589498519897, 0.028874753043055534, 0.00238800048828125, -0.005680159665644169, 0.005793179385364056, 0.008997839875519276, 0.03161639720201492, 0.015122787095606327, -0.015195703133940697, -0.0010937406914308667, -0.012541559524834156, 0.006194217596203089, 0.009099922142922878, -0.011105113662779331, 0.030099742114543915, -0.008873882703483105, -0.001766391098499298, 0.008290554396808147, -0.024222709238529205, -0.0158519484102726, -0.014422792941331863, -0.0026596125680953264, 0.00750306062400341, -0.0026340920012444258, 0.002694247756153345, -0.01666860654950142, -0.007838474586606026, -0.030653905123472214, -0.00283096544444561, 0.02537478320300579, -0.021116485819220543, 0.04351629316806793, -0.0033614295534789562, -0.000773365783970803, -0.0008877528016455472, 0.022618556395173073, -0.009537418372929096, -0.00028482830384746194, 0.0005464145797304809, -0.04240797087550163, -0.01763109862804413, 0.006084843538701534, 0.0070363981649279594, -0.011972813867032528, -0.03887883201241493, 0.008684300817549229, 0.019060254096984863, -0.0008007092983461916, -0.024674788117408752, -0.01758734881877899, -0.017791515216231346, 0.004094235599040985, -0.03330804780125618, 0.017354018986225128, -0.03934549540281296, -0.010157205164432526, -0.026410190388560295, 0.004579127300530672, -0.008706175722181797, -0.04337046295404434, -0.010966572910547256, 0.006303591653704643, -0.0028473713900893927, -0.026978936046361923, -0.01050720177590847, -0.18818172812461853, 0.012818640097975731, 0.018068594858050346, -0.00689056608825922, 0.01815609447658062, 0.027503931894898415, 0.016143612563610077, -0.008137430064380169, -0.018870672211050987, 0.0024463331792503595, 0.014211337082087994, 0.02333313412964344, 0.00940616987645626, 0.00036617525620386004, -0.0013079314958304167, 0.011710316874086857, 0.0014446490677073598, 0.03222889080643654, 0.006416611839085817, 0.017383184283971786, 0.040074657648801804, -0.04888291656970978, -0.013992588967084885, -0.013387385755777359, -0.0077509754337370396, 0.026993518695235252, -0.003984861541539431, 0.02782476134598255, -0.0216998141258955, -0.029370581731200218, -0.006179634481668472, -0.013059263117611408, 0.04806625470519066, 0.007882224395871162, 0.020008161664009094, 0.007364520337432623, -0.0015157422749325633, -0.008480135351419449, -0.014153003692626953, 0.041299644857645035, 0.021743563935160637, 0.028422674164175987, -0.006350987125188112, -0.024091459810733795, -0.012490518391132355, -0.0036439793184399605, -0.004757771734148264, -0.01542903482913971, 0.021072736009955406, -0.02197689563035965, 0.011929064989089966, 0.008035347796976566, 0.0025356553960591555, -0.007375457789748907, 0.013124887831509113, 0.024062294512987137, 0.00470308493822813, -0.012541559524834156, -0.0019049316179007292, -0.010900948196649551, -0.015895696356892586, -0.012490518391132355, 0.010485326871275902, 0.002118211006745696, -0.009792624041438103, -0.022326892241835594, -0.015093620866537094, 0.019031086936593056, -0.011579067446291447, 0.005085893906652927, -0.010718658566474915, 0.00010931710130535066, 0.008480135351419449, 0.0001908349513541907, 0.01802484504878521, 0.017908180132508278, -0.013015513308346272, 0.020008161664009094, 0.019016504287719727, -0.02171439677476883, -0.0059244283474981785, 0.0504579022526741, 0.0009406169410794973, 0.0013617071090266109, 0.011185321025550365, -0.03211222589015961, 0.023158134892582893, 0.02254563942551613, 0.014721749350428581, -0.010769699700176716, 0.013321761041879654, -0.011965522542595863, 0.022283142432570457, -0.0039010082837194204, 0.01345300953835249, 0.009296795353293419, 0.00519162230193615, -0.021247735247015953, 0.0038317381404340267, -0.0027872156351804733, -0.005403078626841307, -0.00853846874088049, -0.017951929941773415, 0.013394677080214024, 0.0026176858227699995, 0.021524814888834953, -0.029516413807868958, 0.013278011232614517, 0.021262317895889282, -0.0011775940656661987, 0.0014820186188444495, 0.009807207621634007, 0.024062294512987137, 0.029866410419344902, 0.0006740176468156278, 0.02127690054476261, -0.009931164793670177, -0.015370701439678669, 0.027649763971567154, -0.006314529106020927, 0.03567052632570267, 0.013985296711325645, -0.013635300099849701, 0.019381083548069, -0.018783172592520714, -0.04220380634069443, -0.08469927310943604, -0.030683070421218872, 0.00327393040060997, 0.04092048481106758, -0.025622697547078133, -0.008472844026982784, -0.0027708096895366907, 0.02414979413151741, -0.015326952561736107, 0.023989377543330193, -0.019585248082876205, 0.008684300817549229, 0.003561948658898473, 0.000137287235702388, -0.009304086677730083, -0.03590385988354683, -0.0137227987870574, -0.027635179460048676, -0.0046411058865487576, 0.051537059247493744, -0.001720818574540317, -0.021510232239961624, 0.013883214443922043, -0.008086388930678368, -0.004626522772014141, 0.00706191873177886, -0.027678929269313812, 0.004108819179236889, 0.0010426994413137436, 0.008910340256989002, 0.01745610125362873, -0.01569153182208538, 0.0128405150026083, 0.0006776634836569428, -0.007794724777340889, -0.026935186237096786, 0.00529005890712142, -0.01036136969923973, 0.026162276044487953, -0.037741344422101974, 0.008217638358473778, 0.020956071093678474, 0.045499611645936966, 0.01609986275434494, -0.03587469458580017, 0.012599891982972622, -0.051537059247493744, 0.02374146319925785, 0.007889515720307827, -0.03184972703456879, -0.015560283325612545, -0.028772670775651932, 0.004608293995261192, -0.00238800048828125, 0.03109140135347843, -0.0014811070868745446, 0.020956071093678474, -0.000749212340451777, -0.020562324672937393, -0.0069124409928917885, 0.0013963421806693077, 0.002470030914992094, -0.01125094573944807, 0.01774776540696621, 0.02622060850262642, -0.004017673898488283, -0.037858009338378906, -0.008633259683847427, -0.00642025750130415, -0.009727000258862972, -0.007532227318733931, -0.012125938199460506, -0.007021815050393343, -0.005665576551109552, -0.020168578252196312, -0.020824821665883064, 0.007772850338369608, -0.01885608769953251, 0.0015048048226162791, 0.0007624283898621798, -0.005337454378604889, -0.010879073292016983, -0.0026377378962934017, -0.020912321284413338, 0.010536368004977703, 0.010908239521086216, -0.008509302511811256, -0.012089479714632034, 0.007193167693912983, -0.03167472779750824, -0.0005263626808300614, 0.008042639121413231, 0.03085806965827942, 0.01694568805396557, -0.012235311791300774, 0.01773318089544773, -0.0032247118651866913, -0.023508131504058838, -0.011841565370559692, 0.052470382302999496, -0.03604969009757042, 0.0007287046755664051, -0.07244937866926193, 0.015268619172275066, -0.005053081549704075, -0.03129556402564049, -0.005949948914349079, -0.009843666106462479, 0.006464007310569286, -0.005483286455273628, -0.00334502337500453, 0.0026103942655026913, -0.019293583929538727, -0.012454059906303883, -0.0008002535905689001, 0.019628997892141342, -0.025010202080011368, -0.02676018700003624, 0.02429562620818615, -0.046637099236249924, 0.02226855978369713, 0.020168578252196312, 0.01666860654950142, 0.020678989589214325, 0.012578017078340054, 0.018899837508797646, -0.023172717541456223, -0.020095661282539368, -0.006329112686216831, -0.015093620866537094, -0.004714021924883127, 0.006431194953620434, -0.008866590447723866, -0.036487188190221786, 0.009442627429962158, 0.006197863724082708, 0.009435336105525494, 0.008939506486058235, 0.018374843522906303, 0.009114505723118782, 0.009916582144796848, 0.018097762018442154, -0.025622697547078133, -0.06113281100988388, 0.009216587990522385, -0.005023915320634842, -0.0036986663471907377, -0.005866095423698425, 0.006923378445208073, -0.0028820065781474113, -0.011929064989089966, 0.018068594858050346, 0.01173219084739685, 0.00661713071167469, -0.026920603588223457, -0.033103883266448975, 0.028743503615260124, 0.010470743291079998, 0.01758734881877899, 0.004127047955989838, -0.0266143549233675, -0.01732485182583332, 0.010259287431836128, -0.01004053931683302, 0.02552061527967453, 0.005282767117023468, 0.013992588967084885, -0.015924863517284393, -0.048649583011865616, 0.007025460712611675, -0.02921016700565815, 1.1920064025616739e-05, -0.008232221007347107, 0.01269468292593956, -0.0012104063061997294, 0.02743101492524147, 0.028612254187464714, -0.0158519484102726, -0.001941389637067914, -0.010426994413137436, -0.015064454637467861, 0.006781192030757666, 0.02880183607339859, -0.019585248082876205, -0.022997720167040825, 0.0024955514818429947, 0.019031086936593056, 0.0014820186188444495, -0.0033778357319533825, 0.01789359748363495, 0.007699934300035238, 0.012672808021306992, 0.0018775881035253406, 0.029166417196393013, 0.013963421806693077, 0.012169687077403069, -0.008771799504756927, 0.01666860654950142, -0.0038062173407524824, -0.009289504028856754, 0.02868517115712166, 0.021320650354027748, 0.04929124563932419, 0.008275970816612244, 0.0020124828442931175, -0.02250189147889614, -0.053549543023109436, 0.008647842332720757, -0.0016150902956724167, -0.008560343645513058, -0.0014492063783109188, 0.0017827972769737244, -0.004659335128962994, 0.01639152690768242, -0.0022786264307796955, 0.012782182544469833, -0.0234643816947937, 0.0263372752815485, 0.004560898523777723, -0.0034197624772787094, -0.032433055341243744, 0.012417602352797985, 0.006587964482605457, 0.0032793988939374685, 0.012220729142427444, 0.0041817352175712585, 0.030537238344550133, 0.023931045085191727, 0.023931045085191727, -0.038966331630945206, 0.022691471502184868, -0.0022257622331380844, -0.004024965688586235, 0.005005686543881893, -0.012118645943701267, -0.014029046520590782, -0.02279355563223362, -0.02060607448220253, 0.009931164793670177, 0.02293938770890236, 0.004192672669887543, 0.09438252449035645, 0.021320650354027748, -0.018593590706586838, -0.021524814888834953, -0.021087318658828735, -0.027649763971567154, 0.0005486932350322604, 0.0023169072810560465, -0.00467391824349761, -0.018229011446237564, -0.006766608916223049, 0.0016643087146803737, -0.03400804102420807, -0.005457765888422728, -0.014787373133003712, 0.006868691183626652, -0.0006202420918270946, 0.03712884709239006, -0.028028925880789757, -0.02772267907857895, 0.030128909274935722, 0.01486758142709732, -0.009041589684784412, -0.0007250588969327509, -0.022574806585907936, -0.01392696425318718, 0.03164556249976158, 0.013263427652418613, 0.0053447457030415535, -0.0562036857008934, 0.014918622560799122, 0.01869567297399044, -0.03252055495977402, -0.01910400390625, 0.015443617478013039, 0.03791634365916252, 0.038149673491716385, -0.01831650920212269, 0.017922762781381607, -0.004440587013959885, -0.006172343157231808, 0.03494136780500412, -0.024762287735939026, -0.03517469763755798, -0.006587964482605457, 0.010186371393501759, -0.05074956640601158, -0.02168523147702217, -0.05048706755042076] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.json b/database/embeddings/publications_txt/2022_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.json new file mode 100644 index 0000000000000000000000000000000000000000..3f5d76485b4725f9ac684cb9a433b4b6d49c8067 --- /dev/null +++ b/database/embeddings/publications_txt/2022_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.json @@ -0,0 +1 @@ +[0.0018711126176640391, 0.018876899033784866, 0.014700843021273613, 0.007167013827711344, 0.020160753279924393, -0.004673372488468885, -0.008168702945113182, -0.0007988821598701179, -0.006659115198999643, -0.030840732157230377, 0.03566576912999153, 0.018961548805236816, -0.014475109986960888, 0.01595648191869259, -0.005265920888632536, 0.028526971116662025, 0.03400098904967308, -0.01598469726741314, -0.03363417461514473, -0.0024248631671071053, 0.011935616843402386, 0.010616491548717022, -0.024562541395425797, -0.02681986801326275, 0.0029715595301240683, 0.02443556673824787, 0.025028115138411522, -0.040321506559848785, 0.011110281571745872, 0.013000793755054474, 0.0006317870575003326, 0.0007133506587706506, 0.011879184283316135, -0.031151114031672478, 0.003756333375349641, -0.011039740405976772, 0.013247688300907612, -0.021797314286231995, 0.0010784027399495244, -0.018707599490880966, 0.026495376601815224, 0.011942671611905098, 0.012669248506426811, -0.022672029212117195, -0.005029607098549604, 0.021599799394607544, 0.019568204879760742, -0.024026425555348396, -0.009791156277060509, 0.015575557015836239, 0.003132041310891509, 0.03538360446691513, -0.04240953177213669, 0.005033134017139673, -0.009875806048512459, -0.01209080871194601, 0.00032316811848431826, 0.012725681997835636, -0.026058020070195198, -0.040829405188560486, 0.03544003516435623, -0.029147736728191376, -0.040462590754032135, -0.007830103859305382, -0.0030738445930182934, -0.025014005601406097, -0.04367927834391594, 0.010785791091620922, -0.017409635707736015, -0.025761745870113373, 0.04257883131504059, 0.03583506867289543, 0.002345504006370902, -0.02135995775461197, 0.017240336164832115, -0.03634296730160713, -0.021684449166059494, 0.007547937799245119, -0.013177147135138512, 0.019032089039683342, -0.009043416939675808, 0.007385692093521357, -0.0032925233244895935, 0.009875806048512459, -0.0019046197412535548, 0.029063086956739426, -0.0015483853640034795, -0.010073322802782059, -0.025338497012853622, -0.015251066535711288, 0.01635151356458664, 0.007456233724951744, 0.013191255740821362, -0.0003676974156405777, -0.009798211045563221, 0.027680473402142525, -0.024393241852521896, 0.011004469357430935, 0.01891922391951084, -0.024463782086968422, 0.0036752107553184032, 0.0263684019446373, -0.00962891150265932, -0.02409696765244007, 0.0007018876494839787, -0.03493213653564453, 0.008373272605240345, 0.029006654396653175, 0.019356580451130867, 0.0062499744817614555, -0.014545652084052563, 0.02133174054324627, -0.019286038354039192, -0.0015642571961507201, -0.005752657074481249, -0.02246040478348732, 0.025394929572939873, -0.0068037249147892, 0.017268553376197815, -0.024477891623973846, 0.0134663674980402, -0.0011110282503068447, 0.014799601398408413, -0.024915248155593872, 0.005879631731659174, 0.012831494212150574, -0.021599799394607544, -0.012909089215099812, -0.01779055967926979, -0.024477891623973846, 0.0063416785560548306, 0.007096472196280956, -0.008930550888180733, 0.022164130583405495, 0.007505612913519144, -4.860748231294565e-05, 0.002327868714928627, -0.012471732683479786, -0.039333924651145935, -0.050987377762794495, -0.008232190273702145, 0.04706526920199394, -0.023377444595098495, 0.0012291851453483105, -0.014517434872686863, 0.04184520244598389, -0.005600993055850267, 0.00565037177875638, 0.024675406515598297, 0.005350570660084486, 0.00413725757971406, 0.0045428709127008915, -0.012894981540739536, 0.012288324534893036, 0.011477097868919373, 0.012965522706508636, 0.005223596002906561, 0.025902828201651573, 0.02113422565162182, -0.02392766810953617, 0.009050470776855946, 0.011427718214690685, -0.003132041310891509, -0.013981319963932037, -0.009762939997017384, 0.022813111543655396, 0.04937903210520744, 0.007590262684971094, 0.00809110701084137, -0.011392448097467422, -0.01158291008323431, 0.012697464786469936, -0.02701738476753235, -0.0008945540757849813, -0.016083456575870514, 0.026876300573349, 0.03662513196468353, 0.002832240192219615, -0.0006829296471551061, -0.006570938043296337, 0.01722622849047184, 0.008288622833788395, 0.016845304518938065, 0.020245403051376343, -0.0056856428273022175, 0.009875806048512459, 0.03383168950676918, -0.021289415657520294, 0.003431842662394047, -0.026876300573349, 0.01764947734773159, -0.001172752003185451, 0.005096621345728636, 0.0022573270834982395, -0.5963858366012573, 0.0045005460269749165, 0.003590560983866453, -0.02130352519452572, -0.019356580451130867, 0.038374561816453934, 0.004384152591228485, 0.004923794884234667, -0.029288819059729576, 0.03129219636321068, -0.014094186015427113, -0.015505015850067139, 0.005766765214502811, -0.01745196059346199, -0.015660207718610764, -0.03177187964320183, 0.02121887542307377, -0.007625533267855644, 0.015970589593052864, 0.018538299947977066, -0.006376949138939381, 0.010207351297140121, -0.0001793296542018652, 0.005399949848651886, -0.008895279839634895, 0.020979033783078194, 0.018848681822419167, -0.021910181269049644, 0.01685941219329834, 0.014743167906999588, -0.04303029924631119, 0.022841328755021095, 0.029204169288277626, -0.019864479079842567, 0.05395011976361275, 0.002722900826483965, -0.03563755378127098, 0.0284282136708498, 0.006384003441780806, 0.03758449852466583, -0.06613968312740326, -0.025789963081479073, -0.003950322512537241, 0.01700049452483654, -0.015293391421437263, 0.005262393970042467, 0.017889317125082016, -0.013106605969369411, -0.013445205055177212, -0.03625831753015518, 0.0021779679227620363, 0.009184500202536583, 0.007336313370615244, 0.0048991055227816105, 0.004750968422740698, -0.00408787839114666, 0.0046345749869942665, -0.014968900941312313, 0.011540585197508335, 0.014771384187042713, 0.01082106214016676, 0.014270540326833725, -0.010249676182866096, -0.030191751196980476, -0.0034265520516783, 0.0073080966249108315, 0.0007940324721857905, 0.004881469998508692, 0.020640434697270393, -0.02330690249800682, 0.019779829308390617, -2.984234924952034e-05, 0.0048003471456468105, -0.024858815595507622, 0.01742374338209629, 0.025267954915761948, 0.025324389338493347, 0.016929954290390015, -0.02381480112671852, 0.004080824088305235, -0.0037774958182126284, -0.011999104171991348, 0.010715249925851822, -0.02164212428033352, 0.009650073945522308, 0.004863834474235773, -0.012372974306344986, 0.0009117485606111586, -0.001165697816759348, -0.017945751547813416, 0.010531841777265072, 0.03453710675239563, -0.010856332257390022, -0.022333430126309395, 0.007244609296321869, 0.03306984156370163, -0.008817683905363083, -0.0051989066414535046, -0.013346446678042412, -0.026975059881806374, 0.003216691082343459, -0.008860008791089058, -0.010355488397181034, -0.01731087826192379, 0.039164625108242035, 0.006934226956218481, -0.026467161253094673, 0.008479084819555283, 0.024393241852521896, -0.00556572200730443, 0.003288996173068881, 0.004916740581393242, -0.01705692894756794, 0.01082106214016676, 0.014672626741230488, -0.03126398101449013, 0.03546825423836708, 0.019525879994034767, -0.015039442107081413, 0.01623864658176899, -0.017917534336447716, 0.005562195088714361, 0.005050769541412592, -0.015335716307163239, 0.003897416405379772, 0.03631475195288658, 0.039813607931137085, -0.04528762400150299, -0.019582312554121017, 0.013854345306754112, 0.008168702945113182, -0.009311474859714508, 0.020344160497188568, -0.007174067664891481, 0.04590839147567749, 0.000505253323353827, 0.03233621269464493, -0.015490907244384289, -0.005759711377322674, -0.03775379806756973, -0.02240397222340107, 0.002879855688661337, -0.002176204463467002, 0.0006480997544713318, -0.024336807429790497, 0.03473462164402008, -0.03484748676419258, 0.003756333375349641, 0.008627221919596195, 0.013565124943852425, -0.010214405134320259, 0.017071036621928215, -0.010983306914567947, 0.01141361054033041, -0.02226288802921772, -0.02392766810953617, 4.816659929929301e-05, -0.02113422565162182, -0.030840732157230377, -0.029627418145537376, 0.010630600154399872, 0.015970589593052864, -0.027229009196162224, 0.0011762790381908417, -0.025564229115843773, 0.008472030982375145, -0.020428810268640518, 0.030558565631508827, 0.006891902070492506, -0.029429903253912926, -0.01841132529079914, -0.024844706058502197, -0.01824202574789524, 0.027059709653258324, -0.0066873314790427685, -0.010849278420209885, 0.01753661036491394, 0.015490907244384289, -0.014545652084052563, -0.009530153125524521, -0.014983008615672588, 0.01570253260433674, -0.01652081310749054, -0.021712664514780045, 0.022502729669213295, 0.01773412711918354, 0.025662988424301147, -0.021571582183241844, -0.021261200308799744, -0.015476799570024014, 0.006045404355973005, 0.014185890555381775, -0.030107101425528526, 0.014898358844220638, -0.012768006883561611, 0.006436909548938274, -0.004772130865603685, -0.013395825400948524, -0.005026080179959536, 0.03385990858078003, 0.03490392118692398, 0.010080376639962196, -0.012845601886510849, -0.0016603699186816812, -5.869270898983814e-05, -0.01874992437660694, 0.027595823630690575, -0.005272975191473961, 0.013007847592234612, 0.0004902632208541036, 0.03442423790693283, -0.007498558610677719, -0.020146645605564117, -0.0011886238353326917, 0.0019293093355372548, 0.01096214447170496, -0.02426626719534397, 0.006334624253213406, -0.026495376601815224, 0.007205811329185963, -0.0022520364727824926, -0.012556382454931736, 0.039954692125320435, 0.0017776450840756297, -0.019314255565404892, 0.018538299947977066, 0.0275534987449646, 0.03318271040916443, 0.01784699223935604, -0.011759263463318348, -0.03349309042096138, 0.022474512457847595, -0.008182810619473457, -0.008881171233952045, 0.014411622658371925, 0.012196620926260948, 0.015970589593052864, 0.0004318460705690086, 0.020612219348549843, -0.030219966545701027, 0.029627418145537376, 0.0028057871386408806, 0.03374703973531723, -0.021599799394607544, 0.008373272605240345, -0.029712067916989326, 0.002500695176422596, -0.0020933181513100863, -0.006376949138939381, 0.0061582704074680805, -0.0279485322535038, 0.019469447433948517, -0.015490907244384289, -0.011180823668837547, 0.051072027534246445, 0.00945961195975542, -0.00569975096732378, -0.008817683905363083, 0.024901140481233597, 0.03623010218143463, 0.0050225527957081795, -0.003528837114572525, 0.009438449516892433, -0.015363932587206364, -0.021599799394607544, -0.013995428569614887, 0.01866527460515499, -0.004578141495585442, 0.012140187434852123, -0.02133174054324627, 0.025282064452767372, -0.026043912395834923, -0.009671236388385296, -0.027482958510518074, 0.012415299192070961, -0.006867212243378162, 0.000826657866127789, 0.012817385606467724, 0.01635151356458664, 0.018792249262332916, -0.020894384011626244, -0.012697464786469936, -0.014559759758412838, 0.011357177048921585, 0.007604370824992657, -0.010228513740003109, 0.0012635741150006652, 0.02206537313759327, -0.019638746976852417, 0.0017846992705017328, 0.009784102439880371, 0.012415299192070961, -0.029937801882624626, -0.03659691661596298, -0.015138200484216213, -0.004828563891351223, 0.023631393909454346, 0.0018270241562277079, -0.030219966545701027, 0.003581743221729994, 0.007576154079288244, 0.015378041192889214, -0.00019575258193071932, -0.011829804629087448, 0.04802463576197624, -0.006190014071762562, -0.014242323115468025, -7.09272499079816e-05, 0.00544580165296793, -0.00024248631962109357, 0.009918130934238434, 0.0012582835042849183, -0.03281589224934578, -0.01604113169014454, 0.008606059476733208, -0.004331246484071016, -0.005315300077199936, 0.0036787379067391157, 0.006997714284807444, 0.0012732736067846417, -0.007322204764932394, -0.039362143725156784, -0.03369060903787613, -0.0027017383836209774, 0.03786666318774223, 0.028950219973921776, -0.008641330525279045, 0.017099253833293915, 0.01200615894049406, 0.0011295453878119588, -0.0270456001162529, -0.008486139588057995, 0.006895428989082575, -0.005763238295912743, -0.004352408926934004, 0.009692398831248283, -0.019920911639928818, -0.007618478965014219, 0.020442919805645943, -0.004024391062557697, -0.004698062315583229, -0.002123298356309533, 0.01190740056335926, 0.0016550793079659343, 0.022079480811953545, -0.005541032645851374, 0.02124709077179432, 0.02141639031469822, 0.013113659806549549, -0.01810094155371189, 0.022587379440665245, 0.006969497539103031, -0.016563137993216515, -0.026354294270277023, 0.0014231741661205888, 0.030022451654076576, 0.030107101425528526, -0.004571087658405304, -0.011970887891948223, 0.04218380153179169, 0.03659691661596298, 0.03634296730160713, 0.009403178468346596, 0.006877793464809656, 0.014799601398408413, 0.00010471000132383779, 0.00885295495390892, -0.007265771739184856, 0.01733909361064434, -0.05948057025671005, 0.009889914654195309, 0.030304616317152977, -0.014573868364095688, 0.0022167658898979425, 0.03510143607854843, 0.009226825088262558, -0.03216691315174103, -0.013543962500989437, 0.013127768412232399, 0.015067658387124538, -0.012055537663400173, -0.005466964095830917, -0.0048074014484882355, -0.04184520244598389, -0.008704817853868008, -0.01663368009030819, -0.009741777554154396, -6.602241046493873e-05, -0.00818986538797617, -0.004398260731250048, -0.01412945706397295, -0.013092497363686562, -0.014757276512682438, 0.028837354853749275, 0.0002905426954384893, -0.024985790252685547, -0.051636356860399246, 0.004161946941167116, 0.01674654521048069, 0.018227916210889816, 0.0287668127566576, -0.009918130934238434, -0.02279900386929512, -0.000604452274274081, -0.025366714224219322, -0.03335200995206833, -0.019511772319674492, -0.03676621615886688, -0.0020968453027307987, -0.020287727937102318, 0.00833094771951437, 0.004952011629939079, -0.011103227734565735, 0.007322204764932394, -0.005763238295912743, -0.013191255740821362, 0.006920118350535631, -0.009050470776855946, 0.008690709248185158, 0.029994234442710876, 0.029175953939557076, 0.017494285479187965, 0.010672925040125847, -0.01578718237578869, 0.013819074258208275, -0.003668156685307622, -0.01677476242184639, -0.03529895469546318, 0.009925185702741146, 0.00021834790823049843, 0.00919155403971672, 0.007562045939266682, -0.013304121792316437, 0.0025342025328427553, 0.041168004274368286, -0.017550718039274216, 0.0034600591752678156, 0.013416987843811512, 0.004345354624092579, 0.038289912045001984, 0.02257327176630497, 0.004881469998508692, -0.0026435416657477617, -0.001744137960486114, 0.0041055139154195786, 0.005011971574276686, 0.03394455835223198, 0.020837951451539993, 0.006063039414584637, 0.012231891043484211, -0.007858320139348507, -0.009424340911209583, -0.00936085358262062, -0.005057823844254017, -0.005301191471517086, 0.02358906902372837, -0.01773412711918354, -0.04480794444680214, -0.00793591607362032, 0.00274053611792624, -0.014404568821191788, 0.011597017757594585, -0.01623864658176899, -0.030304616317152977, -0.002345504006370902, -0.0023825382813811302, -0.0003326471196487546, 0.014841926284134388, 0.015124091878533363, -0.02073919214308262, -0.020160753279924393, -0.006334624253213406, 0.03510143607854843, 0.038741376250982285, -0.002285543829202652, 0.014277594164013863, -0.0137767493724823, -0.012443515472114086, -0.008323893882334232, -0.0275534987449646, -0.03448067232966423, 0.013078388758003712, 0.02729954943060875, 0.009015200659632683, 0.039503224194049835, 0.001401129993610084, -0.015631990507245064, 0.021853748708963394, 0.00826040655374527, 0.0012018503621220589, -0.0011233729310333729, -0.010150917805731297, -0.02231932245194912, -0.000153978806338273, 0.012810331769287586, -0.020725084468722343, 0.02367371879518032, -0.008796521462500095, 0.014461002312600613, 0.005213014781475067, 0.006493342574685812, -0.03527073562145233, -0.009565424174070358, -0.041083354502916336, -0.0006622080691158772, 0.030840732157230377, 0.002091554692015052, -0.002610034542158246, -0.02169855684041977, -0.01725444383919239, 0.01104679424315691, 0.00800645723938942, -0.0036716836038976908, -0.013903724029660225, 0.009410232305526733, -0.006902483291924, 0.01564609818160534, 0.002421336015686393, 0.023885343223810196, 0.01131485216319561, 0.0013420515460893512, -0.03450888767838478, 0.006676750257611275, 0.010799899697303772, -0.001617163303308189, 0.012069646269083023, -1.7662923710304312e-05, 0.008309785276651382, 0.004355935845524073, 0.017720017582178116, 0.007420963142067194, -0.0072163925506174564, 0.0027934422250837088, -0.009741777554154396, -0.019060306251049042, -0.019850371405482292, -0.012471732683479786, 0.0011277818121016026, 0.012133133597671986, -0.005509288981556892, -0.007717237342149019, 0.004387679509818554, -0.011448880657553673, -0.02800496481359005, 0.019469447433948517, 0.012203674763441086, 0.019032089039683342, -0.017861101776361465, 0.007801887113600969, 0.02246040478348732, -0.0024989317171275616, 0.01079284492880106, 0.00531177269294858, 0.030925381928682327, 0.024548431858420372, 0.011519422754645348, 0.014940683729946613, -0.007872428745031357, -0.030191751196980476, 0.001816442934796214, 0.015095875598490238, -0.03388812392950058, -0.041506603360176086, 0.015476799570024014, 0.03685086593031883, 0.004362990148365498, -0.011575855314731598, -0.040716540068387985, 0.0005330290296114981, 0.00842970609664917, 0.0026911571621894836, -0.0002418249932816252, 0.012210728600621223, -0.009431394748389721, 0.011089119128882885, 0.025310279801487923, -0.007928861305117607, 0.03202582895755768, -0.0034000989980995655, -0.022784896194934845, -0.0030456280801445246, 0.00936085358262062, -0.02271435409784317, 0.013085443526506424, 0.004010282922536135, 0.02432269975543022, -0.020809734240174294, 0.00018241583893541247, 0.029655635356903076, 0.002754644490778446, 0.008041728287935257, -0.00617237901315093, -0.009001092053949833, 0.03239264339208603, -0.0005347925471141934, -0.014841926284134388, -0.010348434560000896, -0.005632736720144749, 0.029740285128355026, -0.018933331593871117, 0.006433382164686918, -0.0032008192501962185, -0.008860008791089058, -0.004772130865603685, 0.0019398905569687486, 0.014341081492602825, -0.004796820227056742, 0.0018605313962325454, 0.02299652062356472, -0.014729059301316738, -0.008450868539512157, 0.009057525545358658, -0.008450868539512157, -0.02124709077179432, -0.016732437536120415, -0.020795626565814018, -0.010235567577183247, 0.011089119128882885, 0.010517733171582222, 0.006232338957488537, 0.006637952756136656, 0.03834634646773338, -0.005946645978838205, 0.006017187610268593, 0.009593640454113483, -0.019779829308390617, -0.029994234442710876, 0.006630898453295231, -0.010038051754236221, -0.020654544234275818, 0.031094681471586227, -0.014319919049739838, -0.03126398101449013, -0.012909089215099812, -0.024675406515598297, -0.003403626149520278, 0.010186188854277134, -0.015519124455749989, 0.005731494631618261, 0.0032396172173321247, -0.007174067664891481, -0.02102135866880417, -0.022502729669213295, 0.025761745870113373, -0.025070440024137497, -0.010200297459959984, 0.020612219348549843, -0.0025324388407170773, 0.03194117918610573, -0.025775853544473648, -0.005068405065685511, 0.00912101287394762, -0.039672523736953735, -0.004355935845524073, 0.008817683905363083, 0.030586782842874527, -0.003643467091023922, -0.009586586616933346, 0.007801887113600969, -0.0269327349960804, -0.040885839611291885, 0.020457027480006218, -0.0048991055227816105, -0.014757276512682438, 0.0017785269301384687, -0.0031496768351644278, 0.005533978343009949, 0.013247688300907612, -0.020273620262742043, -0.022813111543655396, 0.0037774958182126284, 0.015519124455749989, -0.03391633927822113, -0.01680297963321209, 0.008062890730798244, 0.02477416582405567, 0.014461002312600613, -0.023179927840828896, -0.040857620537281036, -0.03527073562145233, -0.01637973077595234, -0.0032378535252064466, 0.011152606457471848, 0.0137062082067132, -0.010193242691457272, 0.01824202574789524, -0.013480475172400475, 0.010948036797344685, -0.018058616667985916, 0.0050648776814341545, -0.0067296563647687435, 0.007061201613396406, -0.0014143565203994513, 0.027454741299152374, 0.00910690426826477, -0.0048003471456468105, -0.052341774106025696, 0.009255041368305683, 0.012119024991989136, 0.02167033962905407, 0.008253352716565132, 0.014461002312600613, 0.010179135017096996, 0.005209487862884998, -0.018622949719429016, -0.011462989263236523, -0.012358865700662136, -0.014827817678451538, 0.007078836672008038, -0.03326736018061638, -0.002331395633518696, -0.005879631731659174, -0.010489516891539097, 0.011646397411823273, -0.002585344947874546, 0.016732437536120415, -0.027454741299152374, 0.022615596652030945, -0.009918130934238434, -0.01846775785088539, 0.002953924238681793, 0.004056134726852179, 0.026975059881806374, 0.017324985936284065, 0.020372377708554268, 0.029317036271095276, 0.011067956686019897, -0.002525384770706296, -0.014178835786879063, 0.00408787839114666, -0.030925381928682327, -0.004472329281270504, 0.03261837735772133, -0.0024019372649490833, -0.006458071991801262, -0.01801629178225994, 0.030615000054240227, -0.02257327176630497, -0.009071633219718933, -0.03216691315174103, -0.023913558572530746, -0.007279879879206419, 0.021853748708963394, 0.005146000534296036, -0.014700843021273613, -0.020753301680088043, -0.007286934182047844, 0.0027581716421991587, -0.0029133628122508526, -0.0021391701884567738, -0.006793143693357706, -0.0133676091209054, -0.002345504006370902, 0.0028093140572309494, -0.01570253260433674, 0.01217545848339796, -0.02381480112671852, -0.001911673927679658, -0.02268613688647747, -0.014122403226792812, 0.17471711337566376, -0.014065969735383987, 0.0008967584581114352, 0.04435647651553154, 0.0004576377978082746, -0.013304121792316437, 0.03301341086626053, 0.023913558572530746, -0.00040715656359679997, 0.01584361493587494, 0.010581220500171185, -0.025409039109945297, -0.0015122328186407685, -0.009748831391334534, 0.03225156292319298, 0.0032378535252064466, -0.030219966545701027, -0.04181698337197304, -0.011625234968960285, -0.002647068817168474, 0.0002872360637411475, -0.003403626149520278, 0.0025588918942958117, -0.006507450714707375, 0.011547639034688473, -0.012111971154808998, -0.018566515296697617, -0.015998806804418564, 0.013050172477960587, 0.0530754029750824, -0.008281568996608257, 0.025818178430199623, 0.00037386981421150267, 0.0025465472135692835, -0.018425432965159416, -0.010263784788548946, 0.02327868528664112, -0.018312565982341766, 0.011082065291702747, 0.011371285654604435, -0.004571087658405304, -0.030727865174412727, -0.0055868844501674175, -0.020217185840010643, 0.015505015850067139, 0.012619869783520699, -0.012993738986551762, 0.005128365010023117, -0.01155469287186861, -0.006920118350535631, -0.029175953939557076, 0.00917744543403387, 0.022446297109127045, 0.025634771212935448, -0.008140485733747482, -0.013233580626547337, -0.005696224048733711, -0.005653899163007736, 0.021910181269049644, 0.003999701701104641, 0.0013543962268158793, 0.024745948612689972, -0.01590004749596119, 0.002855166094377637, 0.025126872584223747, 0.01770590990781784, -0.02299652062356472, 0.0045851957984268665, 0.017748234793543816, -0.0006304644048213959, -0.017720017582178116, -0.012337703257799149, -0.025112764909863472, 0.003939741291105747, -0.018510082736611366, -0.024816490709781647, 0.015857722610235214, 0.012796223163604736, 0.03747162967920303, 0.03363417461514473, -0.014856033958494663, 0.03651226684451103, 0.00920566264539957, -0.01045424584299326, -0.011745154857635498, -0.03591971844434738, 0.04218380153179169, -0.007322204764932394, -0.014256431721150875, -0.018058616667985916, -0.027087925001978874, 0.024195725098252296, -0.005541032645851374, -0.024026425555348396, 0.0018446595640853047, -0.00850024726241827, 0.01147004310041666, 0.004419423174113035, 0.006094783078879118, 0.025902828201651573, -0.030643215402960777, 0.08098161220550537, 0.03439602255821228, -0.002026303904131055, -0.011618180200457573, -0.006747291889041662, 0.003840983146801591, 0.0031073519494384527, 0.021458715200424194, -0.009170391596853733, -0.022954195737838745, -0.02401231788098812, 0.016139889135956764, -0.002398410113528371, -0.0055022346787154675, 0.03261837735772133, 0.0022943613585084677, -0.03679443150758743, 0.015801290050148964, -0.01711336150765419, -0.020019670948386192, -0.02090849168598652, -0.01149826031178236, 0.006359313614666462, 0.001401129993610084, -0.006144162267446518, -0.019568204879760742, -0.01192150916904211, -0.016704220324754715, -0.02339155226945877, 0.02223467268049717, -0.012133133597671986, 0.030558565631508827, -0.005999552085995674, 0.010235567577183247, -0.01612578146159649, 0.019638746976852417, 0.003738698083907366, 0.0016877047019079328, 0.004253651015460491, -0.018735814839601517, -0.004719224758446217, 0.0024424984585493803, 0.024802381172776222, -0.004691008012741804, -0.03704838082194328, -0.001029023784212768, 0.001509587513282895, -0.01629508100450039, -0.04452577605843544, 0.006355786696076393, -0.02198072336614132, -0.016760654747486115, -0.02200893871486187, 0.04633164033293724, -0.02851286344230175, -0.018397215753793716, -0.04822215065360069, 0.018425432965159416, 0.0005528688197955489, -0.021007250994443893, -0.01680297963321209, 0.02102135866880417, -0.010023943148553371, -0.0135369086638093, -0.02412518300116062, -0.18024757504463196, 0.016365621238946915, 0.009812318719923496, -0.02347620204091072, -0.0065145050175487995, 0.0028340036515146494, 0.03504500538110733, 0.006750818807631731, -0.02384301833808422, -0.0009007264161482453, 0.015349824912846088, 0.00816164817661047, -0.010687032714486122, -0.02392766810953617, 0.007195230107754469, 0.005548086948692799, -0.00017899899103213102, 0.021204765886068344, 0.02133174054324627, 0.02164212428033352, 0.01694406196475029, -0.04252240061759949, -0.004066715948283672, -0.014771384187042713, -0.008979929611086845, 0.021232983097434044, -0.01804450899362564, 0.0283999964594841, -0.02152925729751587, -0.019032089039683342, 0.0050648776814341545, 0.006846049800515175, 0.014065969735383987, 0.024830598384141922, 0.01149826031178236, 0.008902333676815033, -0.020174860954284668, -0.00598897086456418, -0.022051263600587845, 0.019935021176934242, 0.0016065820818766952, 0.01595648191869259, -0.015251066535711288, -0.015124091878533363, -0.013727370649576187, 0.0012917907442897558, 0.004479383584111929, -0.005452855955809355, 0.013529854826629162, -0.01756482757627964, 0.02665056847035885, -0.0008641330641694367, 0.026975059881806374, -0.010489516891539097, 0.0143834063783288, 0.03783844783902168, 0.014446893706917763, -0.011935616843402386, 0.009706506505608559, 0.01352280005812645, -0.01629508100450039, -0.030502133071422577, -0.008048782125115395, 0.002717610215768218, -0.02477416582405567, -0.015222850255668163, -0.029796717688441277, 0.01623864658176899, -0.04215558245778084, 0.017409635707736015, 0.005019025877118111, 0.004200744908303022, 0.01080695353448391, -0.00459577701985836, 0.041252654045820236, 0.0009099849849008024, -0.00785126630216837, 0.01770590990781784, 0.012937306426465511, -0.00617237901315093, 0.005625682417303324, 0.040377940982580185, -0.010814007371664047, -0.018340783193707466, 0.027059709653258324, -0.013833182863891125, 0.0279203150421381, 0.006620317231863737, -0.002610034542158246, -0.0015492670936509967, 0.010983306914567947, -0.009967510588467121, 0.015025333501398563, -0.0045358166098594666, 0.02667878568172455, 0.005777346435934305, 0.014080078341066837, -0.00861311424523592, 0.011505314148962498, -0.039221059530973434, -0.014341081492602825, 0.008387381210923195, -0.019977346062660217, 0.0037422252353280783, 0.022192347794771194, 0.017607152462005615, -0.0057702925987541676, 0.013050172477960587, 0.009918130934238434, -0.020287727937102318, -0.014714951626956463, 0.00866954680532217, 0.030727865174412727, 0.03357774019241333, -0.0006921882159076631, 0.028273021802306175, -0.01578718237578869, -0.014122403226792812, 0.023321010172367096, -0.012182512320578098, 0.03267481178045273, 0.02387123368680477, -0.0031584943644702435, 0.019596422091126442, -0.0008782413206063211, -0.03239264339208603, -0.08419830352067947, -0.03555290400981903, 0.00859900563955307, 0.041421953588724136, -0.024111075326800346, 0.017212118953466415, -0.004098459612578154, 0.010835169814527035, -0.004489964805543423, 0.01200615894049406, -0.006091256160289049, -0.007385692093521357, -0.007336313370615244, -0.002091554692015052, -0.01606934703886509, -0.019695179536938667, -0.0068213604390621185, -0.049322597682476044, 0.023179927840828896, 0.025169197469949722, 0.007780724670737982, -0.009600694291293621, 0.0003608637198340148, -0.02271435409784317, -0.016732437536120415, 0.011357177048921585, -0.027482958510518074, 0.017155686393380165, 0.014559759758412838, 0.03137684613466263, 0.02186785638332367, -0.01328295934945345, 0.015378041192889214, -0.020809734240174294, -0.011759263463318348, -0.015406257472932339, -0.013804966583848, -0.026043912395834923, 0.025507796555757523, -0.040208641439676285, 0.015660207718610764, 0.018778139725327492, 0.04937903210520744, -0.011272527277469635, -0.027116142213344574, 0.02392766810953617, -0.04506189376115799, 0.03129219636321068, 0.03154614567756653, -0.02834356389939785, -0.007964132353663445, -0.017691802233457565, 0.013826129026710987, -0.020330052822828293, 0.020104320719838142, -0.004066715948283672, 0.0006101837498135865, 0.019850371405482292, -0.030361050739884377, -0.01640794612467289, 0.002886909758672118, -0.01649259589612484, -0.006588573567569256, 0.005223596002906561, 0.006764927413314581, 0.01618221402168274, -0.02344798482954502, -0.011858021840453148, -0.0030385740101337433, -0.01725444383919239, -0.022220563143491745, 0.007378638256341219, -0.038543861359357834, 0.0010660580592229962, -0.005812617484480143, -0.01685941219329834, -0.003408916760236025, -0.012612815015017986, 0.014065969735383987, 0.007717237342149019, -0.022446297109127045, -0.013981319963932037, 0.004031445365399122, -0.014559759758412838, -0.005216541700065136, -0.00654977560043335, -0.016365621238946915, 0.01224599964916706, 0.015081766992807388, -0.010955090634524822, 0.016676004976034164, 0.003396571846678853, 0.027511173859238625, 0.001244175247848034, -0.013847291469573975, 0.01736731082201004, -0.0025165670085698366, -0.008302731439471245, -0.011455935426056385, 0.02127530798316002, -0.049096863716840744, 0.00583377992734313, -0.08628632873296738, 0.01666189543902874, 0.004394733812659979, -0.01606934703886509, -0.013614504598081112, -0.01860884018242359, 0.012027321383357048, -0.015589665621519089, 0.0008306258241645992, -0.014157673344016075, -0.029542768374085426, -0.019836261868476868, 0.007576154079288244, 0.006055985577404499, -0.01860884018242359, -0.00875419657677412, 0.027398308739066124, -0.014968900941312313, 0.011004469357430935, 0.023462094366550446, -0.014242323115468025, 0.009967510588467121, 0.026467161253094673, 0.027116142213344574, -0.02260148711502552, 0.007815995253622532, 0.017522502690553665, 0.0057702925987541676, -0.023038845509290695, -0.00664853397756815, 0.014545652084052563, -0.011427718214690685, -0.004373571369796991, 0.013155984692275524, -0.011455935426056385, 0.000592107477132231, 0.024745948612689972, 0.007604370824992657, 0.019314255565404892, 0.039559658616781235, -0.02746884897351265, -0.03191296383738518, 0.020203078165650368, 0.012499948963522911, -0.012577544897794724, 0.002513040089979768, 0.012958468869328499, 0.025239739567041397, 0.002200894057750702, -0.003657575463876128, 0.014827817678451538, -0.012027321383357048, -0.011561747640371323, -0.02882324531674385, 0.03493213653564453, -0.009840535931289196, 0.011018577963113785, 0.0067860898561775684, -0.023490309715270996, -0.014856033958494663, 0.027793340384960175, -0.005403476767241955, 0.021063683554530144, -0.005184798035770655, 0.025239739567041397, -0.002497168257832527, -0.03436780720949173, -0.014714951626956463, -0.005551613867282867, -0.0013217708328738809, -0.01829845830798149, 0.012641032226383686, 0.012810331769287586, 0.031179331243038177, -0.002190312836319208, -0.002968032378703356, -0.00215327856130898, -0.0032378535252064466, -0.0067719812504947186, 0.01183685939759016, 0.030530350282788277, -0.011843913234770298, -0.020471135154366493, 0.011455935426056385, 0.026326077058911324, 0.0008654557168483734, -0.011237256228923798, 0.00852846447378397, 0.002770516322925687, 0.01908852346241474, 0.008655439130961895, 0.008013511076569557, 0.02138817496597767, -0.009015200659632683, 0.01629508100450039, 0.039164625108242035, -0.018199700862169266, 0.0030279927887022495, 0.040772970765829086, 0.014616193249821663, 0.03202582895755768, 0.008041728287935257, 0.013543962500989437, -0.019159063696861267, -0.03496035560965538, 0.016365621238946915, -0.014249377883970737, -0.013374662958085537, 0.006863685324788094, -0.011082065291702747, -0.0062005952931940556, 0.01908852346241474, 0.0015836560633033514, 0.015885939821600914, -0.023236360400915146, 0.017494285479187965, 0.008930550888180733, -0.007590262684971094, -0.026918625459074974, 0.026241427287459373, -0.001286500133574009, -0.015307500027120113, 0.02257327176630497, -0.0005660953465849161, 0.025056330487132072, 0.004070242866873741, 0.02387123368680477, -0.041421953588724136, 0.031235763803124428, -0.01362155843526125, -0.0030932435765862465, -0.016817087307572365, -0.003481221618130803, -0.006846049800515175, -0.02381480112671852, 0.0016621334943920374, 0.0027317185886204243, 0.003578216303139925, -0.007152905222028494, 0.08194097876548767, 0.016817087307572365, 0.00025350842042826116, -0.008295677602291107, -0.006334624253213406, -0.017127469182014465, 0.018115051090717316, 0.016055239364504814, -0.010355488397181034, -0.02865394577383995, -0.00015155394794419408, -0.006384003441780806, -0.025282064452767372, -0.030219966545701027, -0.020555784925818443, -0.009403178468346596, 0.009516044519841671, 0.04317137971520424, -0.0012221310753375292, 0.013402880169451237, 0.024943465366959572, 0.020725084468722343, 0.0032061098609119654, -0.0019345999462530017, -0.02243218757212162, -0.04221201688051224, 0.0265377014875412, 0.003805712563917041, 0.0282306969165802, -0.050253745168447495, 0.007597316522151232, -0.01166755985468626, -0.025338497012853622, -0.006098310463130474, -0.010778737254440784, 0.02113422565162182, 0.012281270697712898, -0.019582312554121017, 0.01880635693669319, 0.006824887357652187, -0.006652060896158218, 0.025662988424301147, -0.008027619682252407, -0.03507322072982788, -0.015660207718610764, -0.0052870833314955235, -0.04232488200068474, -0.003133805003017187, -0.04187341779470444] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_graph_convolutional_networkbased_scheduler_for_distributing_computation_in_the_internet_of_robotic_things.json b/database/embeddings/publications_txt/2022_graph_convolutional_networkbased_scheduler_for_distributing_computation_in_the_internet_of_robotic_things.json new file mode 100644 index 0000000000000000000000000000000000000000..d165bccefe33e6bd01ea39356f05e1d49a9c3cb3 --- /dev/null +++ b/database/embeddings/publications_txt/2022_graph_convolutional_networkbased_scheduler_for_distributing_computation_in_the_internet_of_robotic_things.json @@ -0,0 +1 @@ +[-0.0019163660472258925, -0.0031154134776443243, -0.0027690608985722065, 0.01380486786365509, 0.0187065452337265, 0.009852582588791847, -0.01776418462395668, 0.006656295154243708, -0.02381216548383236, -0.02928347885608673, 0.02357305958867073, 0.029592910781502724, -0.017693860456347466, 0.007974895648658276, -0.015907596796751022, 0.024346638470888138, 0.029508519917726517, 0.01132238283753395, -0.021280452609062195, 0.0027215913869440556, 0.014332308433949947, 0.008312457241117954, -0.014233852736651897, -0.014332308433949947, 0.0007748975185677409, 0.010654292069375515, 0.0352470688521862, -0.038903988897800446, 0.0058827162720263, 0.013200069777667522, 0.0035707701463252306, -0.007609203923493624, -0.006519160699099302, -0.03184332326054573, -0.011041081510484219, -0.005583833437412977, 0.01835491880774498, -0.018819065764546394, 0.00870627909898758, -0.023699644953012466, 0.021491428837180138, 0.022447854280471802, 0.014388568699359894, -0.02085850201547146, -0.0097963223233819, 0.030521204695105553, 0.028256729245185852, -0.019170692190527916, -0.013256330043077469, 0.014395601116120815, -0.004068322014063597, 0.03133697807788849, -0.0350501574575901, -0.011526326648890972, -0.00846717320382595, -0.0010838896268978715, 0.005728000309318304, 0.02682209201157093, -0.003106622723862529, -0.040029194205999374, 0.03355925902724266, -0.027792582288384438, -0.03389682248234749, -0.01549970917403698, -0.003546156222000718, -0.023348018527030945, -0.04261716827750206, 0.027919167652726173, -0.010387055575847626, -0.014810520224273205, 0.03856642544269562, 0.04216708615422249, 0.014472958631813526, -0.024079402908682823, 0.0182142686098814, -0.031618282198905945, -0.02593599259853363, 0.00829135999083519, 0.0011032290058210492, 0.01614670269191265, -0.01210299413651228, 0.0057701957412064075, -0.010696486569941044, 0.007405260112136602, 0.00569635396823287, 0.013481371104717255, -0.005566251929849386, -0.0012060798471793532, -0.026104772463440895, -0.010598031803965569, 0.011308318004012108, -0.003896024776622653, 0.01579507626593113, 0.0020271283574402332, -0.011441935785114765, 0.027187783271074295, -0.043826762586832047, 0.0165405236184597, 0.011336447671055794, -0.020295897498726845, 0.008347620256245136, 0.017679795622825623, -0.002178327878937125, -0.025865666568279266, -0.0007573161856271327, -0.02981795184314251, 0.0013634328497573733, 0.026709571480751038, 0.014093201607465744, 0.008572661317884922, -0.01257417444139719, 0.03699113801121712, -0.013868160545825958, -0.002166020916774869, -0.00784831028431654, -0.0185096338391304, 0.006600034888833761, -0.009071971289813519, 0.0006711676251143217, -0.026414204388856888, 0.027033068239688873, 0.004704766441136599, 0.008650018833577633, -0.03139324113726616, 0.007588106207549572, 0.0036991138476878405, -0.019916141405701637, -0.004005029331892729, 0.0026407171972095966, -0.027665995061397552, 0.001664073788560927, -0.008579693734645844, -0.018368983641266823, 0.026850221678614616, 0.013952551409602165, 0.011927180923521519, -0.02406533807516098, -0.012588239274919033, -0.04523327201604843, -0.02810201235115528, -0.014128364622592926, 0.04025423526763916, -0.029986733570694923, -0.004504339303821325, -0.0054818615317344666, 0.028509899973869324, 0.0035356073640286922, 0.01533092837780714, 0.012321002781391144, 0.018776871263980865, -0.0027954329270869493, 0.008003025315701962, -0.01880500093102455, 0.008551563136279583, 0.0065789371728897095, 0.0029202604200690985, -0.009571281261742115, 0.01900191232562065, 0.026582986116409302, -0.01523247268050909, 0.013952551409602165, 0.015246537514030933, -0.004968486726284027, -0.009416565299034119, 0.004114033654332161, 0.02125232294201851, 0.05569768324494362, 0.021688340231776237, 0.012194417417049408, -5.614353540295269e-06, -0.005643609911203384, 0.009261849336326122, -0.023798100650310516, -0.00917745940387249, 0.01316490676254034, 0.0395791120827198, 0.025612495839595795, -0.006923531647771597, -0.0003105304203927517, -0.010893397964537144, 0.009993233717978, 0.005685805343091488, 0.025570299476385117, 0.02528899908065796, -0.0027567539364099503, 0.015288732945919037, 0.04137944057583809, -0.01829865761101246, 0.008185871876776218, -0.012911736033856869, 0.023980947211384773, 0.013467306271195412, -0.016793696209788322, 0.00773578928783536, -0.6031102538108826, -0.015288732945919037, 0.0050247469916939735, -0.01218035165220499, -0.015584099106490612, 0.02770819142460823, 0.00019987786072306335, -0.007616236340254545, -0.02765193022787571, 0.030971286818385124, -0.007113410159945488, -0.003567253705114126, 0.012967996299266815, -0.024431029334664345, -0.01033079531043768, -0.019311344251036644, 0.021828990429639816, -0.003604174591600895, 0.00195504492148757, 0.0025158897042274475, 5.551857248065062e-05, 0.005052877124398947, 0.0025528105907142162, -0.006723104044795036, -0.018833130598068237, 0.009121199138462543, 0.01461360976099968, -0.017581339925527573, 0.026146968826651573, 0.007018470671027899, -0.025106152519583702, 0.015865400433540344, 0.04191391170024872, -0.008931320160627365, 0.05445995554327965, -0.0013353027170524001, -0.03316543996334076, 0.03007112257182598, 0.017792316153645515, 0.02928347885608673, -0.061042409390211105, -0.0387914665043354, 0.004940356593579054, 0.017201581969857216, -0.022068098187446594, 0.00027163169579580426, 0.00971896480768919, -0.006997372955083847, -0.02357305958867073, -0.043376680463552475, -0.0014407908311113715, -0.0014363954542204738, -0.01234913244843483, 0.0008298392058350146, 0.015063691884279251, -0.013980681076645851, 0.016864020377397537, -0.011104374192655087, 0.003129478543996811, 0.002361173974350095, 0.005942492745816708, 0.013586859218776226, -0.018917521461844444, -0.024473223835229874, 0.0016693482175469398, 0.012982061132788658, -0.00012208042608108371, -0.006846173666417599, 0.018101748079061508, -0.028453640639781952, 0.017693860456347466, 0.01353059895336628, -0.0009379644761793315, -0.028256729245185852, 0.015879465267062187, 0.016020117327570915, 0.019705165177583694, 0.02130858413875103, -0.01727190800011158, 0.00996510311961174, -0.008178839460015297, -0.00693759648129344, 0.0053412108682096004, -0.021533625200390816, 0.020802240818738937, -0.005313080735504627, -0.007932700216770172, -0.0008443438564427197, 0.007904570549726486, -0.003941736184060574, 0.00659300247207284, 0.03310917690396309, -0.025950057432055473, -0.023193303495645523, -0.006164017599076033, 0.01424791757017374, -0.0005771074793301523, 0.016231093555688858, -0.006761783268302679, -0.0215617548674345, 0.001183224143460393, -0.014782390557229519, 0.02121012844145298, 0.0012192658614367247, 0.038707077503204346, 0.012166286818683147, -0.006821559742093086, 0.0003316280199214816, 0.009627541527152061, -0.02416379377245903, -0.009093068540096283, 0.006550807040184736, -0.017004672437906265, 0.024079402908682823, 0.0026284102350473404, -0.024487290531396866, 0.02607664279639721, 0.02662518061697483, 0.0002709724067244679, 0.01692028157413006, -0.01318600494414568, 0.001388925826177001, 0.004469176288694143, -0.005798325873911381, 0.0036393373738974333, 0.02032402902841568, 0.024093467742204666, -0.041801393032073975, -0.02194151096045971, 0.004398851189762354, 0.015710685402154922, -0.012602304108440876, 0.024740461260080338, -0.014880845323204994, 0.04092935845255852, -0.0035479143261909485, 0.0334748700261116, -0.034515686333179474, -0.005197043996304274, -0.03566902130842209, -0.013024256564676762, 0.002048226073384285, 0.0019972401205450296, -0.018073616549372673, -0.02903030812740326, -0.004349623341113329, -0.026990871876478195, 0.00730680488049984, 0.0018987846560776234, 0.01185685582458973, -0.014965236186981201, 0.011413805186748505, -0.006371477618813515, 0.005671740043908358, -0.011751367710530758, -0.02312297746539116, -0.010007298551499844, -0.02637200988829136, -0.035753410309553146, -0.015246537514030933, 0.004173810128122568, 0.012503848411142826, -0.017356298863887787, -0.004493790213018656, -0.008692214265465736, 0.02111167274415493, -0.022658830508589745, 0.021674275398254395, -0.0021519558504223824, -0.0315057598054409, -0.01165994442999363, -0.02731436863541603, -0.009240752086043358, 0.008650018833577633, -0.0108793331310153, -0.0005349122802726924, -0.003549672430381179, 0.009100100956857204, -0.009240752086043358, -0.007869407534599304, -0.012046733871102333, 0.031955841928720474, -0.01609044149518013, -0.023699644953012466, 0.012264742515981197, 0.015710685402154922, 0.04315163940191269, -0.012454620562493801, -0.022841677069664, -0.005787776783108711, -0.0038467971608042717, 0.013678282499313354, -0.011751367710530758, 0.012335067614912987, 0.0010654291836544871, 0.01865028403699398, -0.000983675941824913, -0.008185871876776218, -0.0005841400125063956, 0.02775038592517376, 0.04365798085927963, 0.024037206545472145, -0.01786264032125473, -0.016034182161092758, -0.012581206858158112, -0.01687808521091938, 0.018101748079061508, -0.009529085829854012, 0.02981795184314251, 0.002566875657066703, 0.04492383822798729, -0.0060409484431147575, -0.02903030812740326, 0.011990473605692387, 0.004434013739228249, 0.03218088299036026, -0.011849822476506233, 0.01540125347673893, -0.03718804940581322, 0.011793562211096287, -0.005151332356035709, -0.009578313678503036, 0.031421370804309845, -0.007806114852428436, -0.015316862612962723, 0.010126851499080658, 0.029311608523130417, 0.026456398889422417, 0.023404279723763466, -0.02554216980934143, -0.03094315715134144, 0.027103392407298088, 0.01094965822994709, 0.000306574598653242, 0.00846717320382595, -0.008600790984928608, 0.021167932078242302, 0.005133751314133406, 0.04602091386914253, -0.01924101822078228, 0.01599198579788208, 0.0180173572152853, 0.04261716827750206, -0.02770819142460823, 0.004511371720582247, -0.02544371411204338, 0.011062178760766983, -0.005858102347701788, -0.006540258415043354, 0.00515484856441617, -0.025415584444999695, 0.021041346713900566, -0.023798100650310516, -0.010830105282366276, 0.05372857302427292, -0.004300395492464304, 0.0010346617782488465, -0.008755506947636604, 0.027033068239688873, 0.018776871263980865, 0.0073560322634875774, -0.002842902671545744, 0.009817419573664665, -0.007067698519676924, -0.025218673050403595, -0.011744334362447262, 0.019859880208969116, -0.0020781143102794886, 0.0064980629831552505, -0.014029908925294876, 0.018439309671521187, -0.03153388947248459, -0.0065472908318042755, -0.02077411115169525, 0.023924686014652252, -0.006251924205571413, 0.004289846867322922, -0.00042414982453919947, 0.0002991025394294411, 0.022349398583173752, -0.026484530419111252, -0.01203266903758049, 0.0002819607325363904, 0.009128231555223465, 0.0004467857943382114, -0.014979301020503044, -0.005731516517698765, 0.016793696209788322, -0.025063958019018173, -0.006420705001801252, 0.01549970917403698, 0.012342100031673908, -0.013396981172263622, -0.017454754561185837, -0.009071971289813519, -0.006448835134506226, 0.024346638470888138, -0.00508100725710392, -0.03440316393971443, -0.00578074436634779, 0.016371743753552437, 0.029846081510186195, -0.0006610583513975143, -0.0089102229103446, 0.05521947145462036, -0.014240885153412819, 0.0004518404311966151, 0.007229446899145842, -0.0032490314915776253, -0.0018741708481684327, 0.015105887316167355, 0.0060233669355511665, -0.020535005256533623, -0.014754259958863258, 0.013193037360906601, -0.0009854340460151434, 0.013214134611189365, -0.004230070393532515, -0.018565895035862923, -0.0008759902557358146, -0.0032296921126544476, -0.021477364003658295, -0.03533146157860756, 0.014726130291819572, 0.05339101329445839, 0.030718116089701653, -0.0021308583673089743, 0.02347460389137268, 0.005643609911203384, -0.015429383143782616, -0.03361552208662033, -0.011723237112164497, 0.014740195125341415, -0.0015875949757173657, 0.0034002310130745173, 0.011484131217002869, 0.006934080272912979, -0.007130991201847792, 0.015316862612962723, -0.005017714109271765, -0.006315217353403568, -0.0008667600341141224, 0.017496949061751366, -0.009304044768214226, 0.027033068239688873, -0.018326789140701294, 0.0021748116705566645, 0.006881336215883493, 0.028214532881975174, -0.039044637233018875, 0.013959583826363087, 0.032152753323316574, -0.010541771538555622, -0.022011836990714073, 0.016990605741739273, 0.00962050911039114, 0.026512660086154938, -0.014114299789071083, -0.02042248472571373, 0.037328701466321945, 0.04582400247454643, 0.0326872281730175, 0.03192771226167679, 0.004518404137343168, 0.02085850201547146, 0.004117549862712622, 0.007503715809434652, -0.005095072090625763, 0.01431824266910553, -0.06554323434829712, 0.0043601724319159985, 0.02312297746539116, -0.011666976846754551, -0.011603684164583683, 0.023601189255714417, 0.010070591233670712, -0.03679422661662102, -0.024346638470888138, 0.009958070702850819, 0.014430763199925423, -0.00816477369517088, -0.00969786662608385, -0.008108513429760933, -0.026695506647229195, -0.02097102254629135, -0.01638580858707428, 0.006033915560692549, -0.003945252392441034, -0.01013388391584158, -0.007792049553245306, -0.00632224977016449, -0.018959715962409973, -0.00890319049358368, 0.02711745724081993, -0.00863595400005579, -0.015935726463794708, -0.05800435692071915, 0.0004786519566550851, 0.005408020224422216, 0.007468553259968758, 0.03659731522202492, -0.02274322137236595, -0.010766812600195408, 0.007180219050496817, -0.029114698991179466, -0.016568655148148537, -0.022461919113993645, -0.03369991108775139, 0.004852449521422386, -0.013593891635537148, 0.004535985644906759, 0.011603684164583683, -0.007419325411319733, 0.031140068545937538, 0.006378510035574436, -0.022208748385310173, 0.00971896480768919, -0.009915875270962715, 0.015724750235676765, 0.04720237851142883, 0.025415584444999695, 0.012764052487909794, 0.01776418462395668, -0.006290603429079056, 0.0178204458206892, -0.015246537514030933, -0.008776605129241943, -0.026892416179180145, 0.002042951760813594, 0.012806247919797897, 0.011631813831627369, 0.01023937202990055, -0.016174832358956337, 0.003308808198198676, 0.029846081510186195, -0.022349398583173752, 0.0029202604200690985, -0.0034775889944285154, -0.00040371151408180594, 0.034375034272670746, 0.0017985710874199867, -0.014472958631813526, 0.006171050015836954, -0.0011454243212938309, -0.007250544615089893, 0.003231450216844678, 0.02233533374965191, 0.009915875270962715, 0.013101614080369473, 0.01820020191371441, -0.0037729553878307343, -0.030577465891838074, -0.0180173572152853, -6.510589446406811e-05, -0.0012403634609654546, 0.027834776788949966, -0.005717451684176922, -0.04512074962258339, -0.017750119790434837, -0.005713935475796461, -0.01662491448223591, -0.000407887069741264, -0.029395999386906624, -0.032209012657403946, -0.009128231555223465, -0.002194151282310486, 0.015190277248620987, 0.003530333051458001, 0.008762539364397526, -0.026386074721813202, -0.026709571480751038, 0.004697734024375677, 0.04222334548830986, 0.04768059402704239, 0.004251168109476566, 0.02554216980934143, -0.02302452176809311, -0.010612096637487411, -0.007271641865372658, -0.03409373387694359, -0.05077490955591202, 0.004943872801959515, 0.027539409697055817, 0.027342498302459717, 0.04365798085927963, 0.007658431306481361, -0.0010153223993256688, 0.00900867860764265, 0.02150549367070198, 0.006441802717745304, 0.006603551097214222, -0.008509368635714054, -0.029142828658223152, 0.006107757333666086, 0.014402633532881737, -0.01087230071425438, 0.03153388947248459, -0.0033650684636086226, 0.00401206174865365, -0.015963856130838394, 0.00471179885789752, -0.03355925902724266, -0.016990605741739273, -0.031083807349205017, -0.0023154623340815306, 0.020183376967906952, 0.01085120253264904, 0.0010548803256824613, -0.021097607910633087, -0.016864020377397537, 0.022813545539975166, 0.011371610686182976, -0.0031417852733284235, -0.007299771998077631, 0.016695240512490273, -0.01663897931575775, 0.01424791757017374, -0.004479725379496813, 0.0063574123196303844, 0.0027444472070783377, -0.0022363464813679457, -0.04287033900618553, -0.0023383181542158127, 0.021730534732341766, 0.0014135397505015135, 0.013840030878782272, 0.000444588134996593, 0.005668223835527897, 0.011568521149456501, 0.010197176598012447, 0.010485511273145676, -0.007468553259968758, 0.00989477802067995, -0.009219654835760593, -0.006835624575614929, -0.01988801173865795, -0.015091821551322937, -0.001615725108422339, 0.002211732557043433, -0.00031470597605220973, -0.00944469589740038, 0.0092548169195652, -0.010443315841257572, -0.01308754924684763, 0.018031422048807144, 0.007113410159945488, 0.014880845323204994, -0.019761426374316216, 0.026400139555335045, 0.024220053106546402, -0.0002298760082339868, 0.015105887316167355, 0.013910355977714062, 0.015316862612962723, 0.017187517136335373, 0.017553210258483887, 0.023010456934571266, -0.005221657920628786, -0.022897936403751373, 0.009648638777434826, 0.003994480241090059, -0.031421370804309845, -0.03625975549221039, 0.010176079347729683, 0.04306725040078163, -5.807336128782481e-05, 0.00012460774451028556, -0.03856642544269562, -0.0012350891483947635, 0.006346863694489002, -0.008396848104894161, -0.009282947517931461, 0.011434903368353844, -0.002704010112211108, 0.0030820087995380163, 0.0022715090308338404, -0.017356298863887787, 0.02499363198876381, -0.00989477802067995, -0.012074863538146019, -0.0006944629130885005, 0.006171050015836954, -0.012510880827903748, 0.0033316637855023146, 0.0097963223233819, 0.0015849577030166984, -0.015963856130838394, 0.00880473479628563, 0.02471233159303665, 0.007011438254266977, -0.0062941196374595165, -0.012714824639260769, 0.008031155914068222, 0.0318995825946331, -0.003976899199187756, -0.008664083667099476, -0.012637467123568058, -0.019564514979720116, 0.024909241124987602, -0.006891885306686163, 0.005218141712248325, 0.005573284812271595, -0.005214625503867865, -0.00031602458329871297, -0.003103106515482068, 0.010351892560720444, 0.008664083667099476, 0.01097778882831335, 0.022447854280471802, -0.029367869719862938, -0.00989477802067995, 0.01006355881690979, -0.020985087379813194, -0.016456134617328644, -0.012714824639260769, -0.010492543689906597, -0.016456134617328644, 0.0073911952786147594, 0.013565761968493462, 0.005956558044999838, 0.0058194235898554325, 0.023938752710819244, -0.010394087992608547, 0.00508100725710392, 0.008853962644934654, -0.010365957394242287, -0.0195926446467638, -0.0038116343785077333, -0.009374369867146015, -0.003588351421058178, 0.032602835446596146, -0.014086169190704823, -0.03128071874380112, -0.0009379644761793315, -0.02076004631817341, -0.014135397039353848, -0.003073218045756221, -0.00560844736173749, 0.002259202068671584, 0.0018513150280341506, -0.015429383143782616, -0.024037206545472145, -0.013094581663608551, 0.03521893918514252, -0.012138157151639462, 0.002259202068671584, 0.023882491514086723, -0.0032771616242825985, 0.036090973764657974, -0.016906216740608215, -0.0033211149275302887, 0.01229990553110838, -0.03580967336893082, -0.0020622911397367716, 0.004363688640296459, 0.0372161790728569, -0.02008492313325405, -0.009922907687723637, 0.014086169190704823, -0.02008492313325405, -0.0328841358423233, 0.006884852424263954, -0.019648905843496323, 0.00022811787493992597, 0.005471312906593084, 0.0092548169195652, 0.011139536276459694, 0.0026670892257243395, -0.018425242975354195, -0.0332779586315155, 0.005861618556082249, 0.013404013589024544, -0.025710951536893845, -0.00883286539465189, -0.008952418342232704, 0.02800355665385723, 0.008565628901124, -0.032068364322185516, -0.034037474542856216, -0.04976222291588783, -0.012321002781391144, -0.009564248844981194, 0.0015427625039592385, 0.0024068853817880154, -0.021814925596117973, -0.005313080735504627, 0.0035443981178104877, 0.01503556128591299, -0.01796109601855278, 0.002730382140725851, 0.004690701607614756, 0.006290603429079056, -0.001037299050949514, 0.02514834888279438, -0.000254050362855196, 0.008931320160627365, -0.04697733744978905, -0.019170692190527916, 0.02150549367070198, 0.015077756717801094, 0.0005568889318965375, 0.02278541587293148, -0.002565117320045829, 0.0023523832205682993, -0.002600280102342367, -0.020844435319304466, -0.012440555728971958, -0.017440689727663994, 0.0002969048800878227, -0.03316543996334076, -0.01589353010058403, -0.01855183020234108, -0.010823072865605354, 0.0006228189449757338, 0.0015497950371354818, 0.02361525595188141, -0.010049493983387947, 0.021167932078242302, -0.014894911088049412, -0.01737036369740963, -0.005689321551471949, -0.0014117815298959613, 0.03519080951809883, 0.008657051250338554, 0.02154769003391266, 0.027244044467806816, 0.02445915900170803, -0.0030784925911575556, -0.022349398583173752, 0.011526326648890972, -0.02146329917013645, -0.0217586662620306, 0.038453906774520874, -0.017679795622825623, 0.003955801483243704, -0.023333953693509102, 0.04467066749930382, -0.026976807042956352, -0.01139270793646574, -0.037413090467453, -0.009289979934692383, -0.022110292688012123, 0.009219654835760593, 0.00023207368212752044, -0.019859880208969116, -0.02007085643708706, -0.012166286818683147, -0.003885475918650627, -0.018045486882328987, -0.008249164558947086, -0.000308112968923524, -0.025078022852540016, -0.023587124422192574, 0.006199180148541927, -0.009472825564444065, 0.0036182396579533815, -0.02382623217999935, -0.00860782340168953, -0.025218673050403595, -0.013622022233903408, 0.17778250575065613, -0.024037206545472145, 0.01047847792506218, 0.03237779438495636, 0.00010076304897665977, -0.023488668724894524, 0.029002178460359573, 0.008699246682226658, -0.012841410003602505, 0.018819065764546394, -0.0030943157617002726, -0.005249788053333759, -0.003484621411189437, -0.010984821245074272, 0.015288732945919037, 0.014501089230179787, -0.03912902995944023, -0.04334855079650879, -0.027384694665670395, 0.008298392407596111, -0.004395334981381893, 0.002533470978960395, -0.004831352271139622, -0.02008492313325405, 0.007932700216770172, -0.009339207783341408, -0.008178839460015297, -0.021969642490148544, 0.014240885153412819, 0.03361552208662033, -0.008256196975708008, 0.026695506647229195, 0.0004663450235966593, -0.005590865854173899, -0.016202962026000023, -0.005274401977658272, 0.0226447656750679, -0.005010681692510843, 0.021421104669570923, 0.004757510498166084, -0.005773711949586868, -0.03094315715134144, 0.01663897931575775, -0.032462187111377716, 0.010098721832036972, 0.022996392101049423, -0.01727190800011158, -0.0062941196374595165, -0.010267502628266811, -0.012060798704624176, -0.017581339925527573, 0.0016086925752460957, 0.04000106453895569, 0.023643385618925095, 6.856722757220268e-05, -0.008495302870869637, -0.006392574869096279, -0.0014785906532779336, 0.020633460953831673, 0.005495926830917597, -0.0019532868172973394, 0.02426224760711193, -0.009733029641211033, -0.010527705773711205, 0.02327769435942173, 0.020394353196024895, -0.031027548015117645, -0.009507988579571247, 0.010893397964537144, -0.011744334362447262, -0.008312457241117954, -0.020352158695459366, -0.024234117940068245, -0.002042951760813594, -0.019072236493229866, -0.022841677069664, 0.01855183020234108, 0.017975160852074623, 0.03001486323773861, 0.03758187219500542, -0.010154982097446918, 0.025767210870981216, 0.001970868092030287, -0.005977655295282602, -0.009226687252521515, -0.023840297013521194, 0.036541055887937546, -0.011055146344006062, -0.014163526706397533, 0.003387924050912261, -0.015007431618869305, 0.01040815282613039, -0.007433390244841576, -0.0029255349654704332, 0.0001717477134661749, -0.008657051250338554, 0.006684425286948681, -0.00022899694158695638, 0.0070395683869719505, 0.02426224760711193, -0.022799480706453323, 0.08427790552377701, 0.032265275716781616, -0.01094965822994709, -0.0004733775567729026, -0.009831485338509083, 0.0029483905527740717, 0.014472958631813526, 0.023348018527030945, -0.018467439338564873, -0.02243378944694996, -0.020999152213335037, 0.013748607598245144, 0.013003158383071423, -0.007257577031850815, 0.01786264032125473, 0.003465282032266259, -0.020506873726844788, 0.013488403521478176, -0.01776418462395668, -0.01129425223916769, -0.021125737577676773, -0.019662970677018166, 0.00386789464391768, -0.016034182161092758, -0.008488270454108715, -0.008410912938416004, -0.0007476464379578829, -0.02189931645989418, -0.017834510654211044, 0.036878619343042374, -0.006691457703709602, 0.019325409084558487, 0.001675501698628068, 0.008783637546002865, -0.01101998332887888, 0.029846081510186195, -0.011624781414866447, 0.011582586914300919, 0.0042792982421815395, -0.010380023159086704, -0.003874927293509245, 0.005214625503867865, 0.006413672585040331, -0.011540391482412815, -0.028664616867899895, -0.0017581339925527573, -0.011870920658111572, -0.007616236340254545, -0.039297811686992645, 0.012419458478689194, -0.01746881939470768, -0.0019919658079743385, -0.029564781114459038, 0.034571945667266846, -0.0368223562836647, -0.009282947517931461, -0.04720237851142883, -0.003199803875759244, 1.75126624526456e-05, -0.028777137398719788, -0.010661324486136436, 0.0180173572152853, -0.002480726921930909, -0.02558436617255211, -0.010253436863422394, -0.1803704798221588, 0.022025901824235916, 0.025134282186627388, -0.039635371416807175, -0.010830105282366276, 0.014297145418822765, 0.031562019139528275, 0.0022363464813679457, -0.01766573078930378, -0.012489783577620983, 0.02662518061697483, 0.01085120253264904, -0.002405127277597785, -0.01924101822078228, 0.006251924205571413, 0.014852715656161308, 0.007482618093490601, 0.034318774938583374, 0.016413938254117966, 0.011744334362447262, 0.030689986422657967, -0.046274084597826004, 0.010914495214819908, -0.030380554497241974, -0.015879465267062187, 0.018959715962409973, -0.015781009569764137, 0.028945917263627052, -0.01707499660551548, -0.02036622352898121, -0.010520673356950283, -0.0037202113308012486, 0.026245424523949623, 0.01628735288977623, 0.022869806736707687, 0.005028263200074434, -0.0169343464076519, 0.011083276011049747, -0.025162413716316223, 0.027567541226744652, 0.003969866316765547, 0.028425509110093117, -0.010351892560720444, -0.0017607711488381028, -0.018383048474788666, 0.011793562211096287, 0.001171796233393252, 0.00799599289894104, -0.0018038453999906778, -0.022855741903185844, 0.023446474224328995, -0.009915875270962715, 0.021083543077111244, 0.0002927292953245342, 0.018636219203472137, 0.044811319559812546, 0.0022943648509681225, -0.01938166841864586, -0.000640400277916342, 0.011624781414866447, -0.03237779438495636, -0.028608355671167374, -0.002918502315878868, 0.0006667723064310849, -0.022011836990714073, -0.03144950047135353, -0.025021761655807495, 0.012145189568400383, -0.03324982896447182, 0.02164614573121071, -0.008938352577388287, -0.005190011579543352, -0.004687184933573008, -0.005858102347701788, 0.03414999321103096, 0.01030969712883234, -0.019030041992664337, 0.013467306271195412, 0.010963723063468933, -0.004933323711156845, 0.021632080897688866, 0.04152009263634682, -0.02544371411204338, 0.0036885649897158146, 0.027694126591086388, -0.01914256252348423, 0.035894062370061874, 0.013987713493406773, -0.0015761670656502247, -0.003885475918650627, 0.018734674900770187, -0.012630434706807137, 0.004655538592487574, -0.0033703427761793137, 0.004662571009248495, -0.0022679928224533796, 0.021125737577676773, -0.006902433931827545, 0.0008166531915776432, -0.0397760234773159, -0.010014330968260765, 0.004567631985992193, -0.01257417444139719, 0.006185115315020084, 0.012152221985161304, 0.02150549367070198, 0.0005252425326034427, 0.00048788217827677727, 0.012461653910577297, -0.029255349189043045, -0.0025809407234191895, 0.009958070702850819, 0.02016931213438511, 0.026484530419111252, -0.003931187558919191, 0.023207368329167366, -0.013003158383071423, -0.01697654090821743, 0.030380554497241974, -0.015513774007558823, 0.03952285274863243, 0.03724430873990059, -0.0015383672434836626, 0.013797835446894169, -0.01575287990272045, -0.0330810472369194, -0.08433417230844498, -0.03223714232444763, 0.011448968201875687, 0.04033862426877022, -0.030155513435602188, 0.01434637326747179, -0.007320869714021683, 0.012778117321431637, -0.00917745940387249, 0.025809407234191895, -0.004103484563529491, -0.00969786662608385, -0.005787776783108711, 0.0018548313528299332, -0.01977549120783806, -0.032152753323316574, -0.012792183086276054, -0.042448386549949646, 0.00986664742231369, 0.033531129360198975, 0.003734276629984379, -0.027665995061397552, 0.017384428530931473, -0.02022557333111763, -0.014740195125341415, -0.0028446607757359743, -0.03704739734530449, 0.012363198213279247, 0.011090309359133244, 0.016118571162223816, 0.019522318616509438, -0.01441669836640358, 0.01697654090821743, -0.018186137080192566, 0.0018688964191824198, -0.011308318004012108, -0.017089061439037323, -0.0160482469946146, 0.017145322635769844, -0.03184332326054573, 0.012363198213279247, 0.030436815693974495, 0.05201263353228569, -0.009655672125518322, -0.010464413091540337, 0.003614723449572921, -0.020689720287919044, 0.043770503252744675, 0.01377673726528883, -0.018186137080192566, -0.002637200988829136, -0.01648426428437233, -0.004026126582175493, -0.007229446899145842, 0.011547423899173737, -0.008551563136279583, 0.0067863971926271915, 0.022349398583173752, -0.02396688237786293, -0.014458893798291683, -0.013671249151229858, -0.028355184942483902, -0.014838650822639465, 0.01387519296258688, 0.011990473605692387, 0.01254604384303093, -0.024374770000576973, -0.015724750235676765, -0.0013915629824623466, -0.022461919113993645, -0.019817685708403587, 0.012370230630040169, -0.01707499660551548, 0.008671117015182972, -0.016118571162223816, -0.027004936710000038, 0.013854095712304115, -0.016104506328701973, 0.020830370485782623, 0.01042925100773573, -0.0180173572152853, -0.00934624020010233, 0.00533769465982914, -0.02908656746149063, 0.01316490676254034, 0.003969866316765547, -0.030774377286434174, -0.0014152978546917439, 0.01131535042077303, -0.018875326961278915, 0.008150708861649036, 0.005847553722560406, 0.028974046930670738, 0.006796945817768574, -0.016498329117894173, 0.00907900370657444, -0.008762539364397526, -0.00812257919460535, 0.0029097117949277163, 0.017778251320123672, -0.05254710838198662, 0.01078087743371725, -0.0795520469546318, 0.02839737944304943, 0.009205589070916176, -0.008671117015182972, -0.01131535042077303, -0.014029908925294876, 0.02121012844145298, -0.005946008954197168, 0.0024666618555784225, 0.002253927756100893, -0.023755906149744987, -0.003458249382674694, 0.004166777245700359, 0.016568655148148537, -0.014782390557229519, -0.0002238324232166633, 0.03282787650823593, -0.02445915900170803, 0.013298525474965572, 0.0031593667808920145, -0.0025440198369324207, 0.01963483914732933, 0.019916141405701637, 0.03434690460562706, -0.020281832665205002, 0.013755640015006065, 0.007714691571891308, 0.013699379749596119, -0.019297277554869652, -0.003351003397256136, 0.006195663940161467, -0.02396688237786293, 0.0031787061598151922, 0.018368983641266823, -0.008769571781158447, -0.002394578419625759, 0.007630301173776388, 0.019423864781856537, 0.016849955543875694, 0.03685048595070839, -0.030549336224794388, -0.04250464588403702, 0.013495435938239098, 0.004848933313041925, -0.006107757333666086, -0.0051056211814284325, 0.003581318771466613, 0.00774985458701849, 0.006860238499939442, -0.006519160699099302, 0.01760946959257126, -0.008150708861649036, -0.022349398583173752, -0.022968262434005737, 0.027876971289515495, 0.007770951837301254, 0.02578127570450306, 0.0020552584901452065, -0.005432633683085442, -0.005415052641183138, 0.024726396426558495, 0.0014768325490877032, 0.02111167274415493, -0.0029747625812888145, 0.028073882684111595, 0.002762028481811285, -0.019648905843496323, -0.0018688964191824198, -0.008776605129241943, 0.005917878821492195, -0.023052653297781944, -0.010183111764490604, 0.021224193274974823, 0.02908656746149063, 0.01146303303539753, 0.005249788053333759, 0.00018746103160083294, -0.00042436958756297827, 0.0045816972851753235, 0.0034125379752367735, 0.03271535784006119, -0.011610716581344604, -0.006199180148541927, -0.0063398308120667934, 0.013502468355000019, 0.0094517283141613, -0.01805955171585083, 0.009240752086043358, 0.01796109601855278, 0.012939865700900555, -0.007792049553245306, 0.002568633761256933, 0.014058039523661137, -0.006125338841229677, 0.009944005869328976, 0.04112626984715462, -0.02755347453057766, 0.016765564680099487, 0.027975426986813545, 0.0195926446467638, 0.015935726463794708, 0.00809444859623909, 0.0017968128668144345, -0.015555969439446926, -0.03724430873990059, 0.0002940479025710374, -0.012095961719751358, -0.011477098800241947, 0.0055310893803834915, 0.010119819082319736, -0.014100234024226665, 0.02469826489686966, 0.004831352271139622, 0.0012790424516424537, -0.014114299789071083, 0.022054031491279602, -0.016751499846577644, -0.010154982097446918, -0.020042726770043373, 0.029649170115590096, 0.00445159524679184, -0.020056791603565216, 0.022771351039409637, -0.007155605126172304, 0.015190277248620987, 0.020591264590620995, 0.017257843166589737, -0.027370629832148552, 0.017145322635769844, -0.0072435117326676846, 0.009627541527152061, -0.0031048646196722984, -0.009219654835760593, -0.006775848101824522, -0.01977549120783806, -0.0015330928144976497, 0.000712923298124224, 0.003465282032266259, -0.01158961933106184, 0.09215434640645981, 0.011666976846754551, -0.005246271844953299, -0.008087416179478168, -0.001546278828755021, -0.004950905218720436, 0.018664350733160973, 0.022068098187446594, -0.007742821704596281, -0.02987421303987503, -0.004152712412178516, -0.0021396491210907698, -0.014796455390751362, -0.01849556900560856, -0.025992251932621002, -0.0005744702648371458, 0.0018407662864774466, 0.045683354139328, 0.00924778450280428, 0.008966483175754547, 0.022082163020968437, 0.002566875657066703, 0.0014135397505015135, -0.006737169343978167, -0.020549070090055466, -0.019916141405701637, 0.028917787596583366, -0.0158513356000185, 0.014261982403695583, -0.053616054356098175, 0.0016605574637651443, -0.010548803955316544, -0.029002178460359573, -0.014261982403695583, 0.003252547699958086, 0.02081630565226078, 0.012672629207372665, -0.021378908306360245, 0.009184491820633411, -0.003215627046301961, -0.003931187558919191, 0.03724430873990059, -0.021589884534478188, -0.042251475155353546, -0.0028569677378982306, 0.0070219868794083595, -0.024093467742204666, -0.006171050015836954, -0.04090122878551483] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_intelligent_communication_over_realistic_wireless_networks_in_multiagent_cooperative_games.json b/database/embeddings/publications_txt/2022_intelligent_communication_over_realistic_wireless_networks_in_multiagent_cooperative_games.json new file mode 100644 index 0000000000000000000000000000000000000000..f35df17f23ca043b6b5c3cff61502de6e491db4e --- /dev/null +++ b/database/embeddings/publications_txt/2022_intelligent_communication_over_realistic_wireless_networks_in_multiagent_cooperative_games.json @@ -0,0 +1 @@ +[-0.01841922663152218, 0.012663217261433601, 0.004821092821657658, -0.0012541121104732156, 0.012188782915472984, 0.0145539790391922, -0.008902626112103462, -0.0010439305333420634, -0.019591357558965683, -0.04278283938765526, 0.014581887051463127, 0.04091300815343857, -0.011881795711815357, 0.023512421175837517, -0.012119012884795666, -0.006607199553400278, 0.034354645758867264, -0.007402575109153986, -0.022661229595541954, -0.0024210119154304266, -0.011072466149926186, -0.006192069035023451, -0.023610098287463188, -0.01515399944037199, -0.0006087414803914726, 0.014498163014650345, 0.027196265757083893, -0.04663413017988205, -0.014246991835534573, -0.003296622773632407, 0.021517004817724228, -0.006526964250952005, -0.014016752131283283, -0.024740369990468025, -0.0041826991364359856, -0.0032094104681164026, 0.01864248886704445, -0.01709359884262085, 0.045350365340709686, -0.030391722917556763, 0.02169840596616268, 0.01839131861925125, 0.01652148738503456, -0.026038087904453278, -0.00937706045806408, 0.025298528373241425, 0.02423802576959133, -0.0147074731066823, -0.017805252224206924, 0.03276389464735985, 0.006167649757117033, 0.03644774109125137, -0.03734079375863075, -0.019675081595778465, -0.028200950473546982, 0.0020477434154599905, 0.0031221983954310417, 0.040187399834394455, -0.013877212069928646, -0.014888874255120754, 0.014484209008514881, -0.0005891186883673072, -0.04395497217774391, 0.01840527169406414, -0.009809632785618305, -0.003361159935593605, -0.03792686015367508, 0.035666320472955704, 0.01174923311918974, 0.0010875366861000657, 0.0330708809196949, 0.020009977743029594, 0.011009673587977886, -0.018321547657251358, 0.013367892242968082, -0.015098183415830135, -0.020233239978551865, 0.014093498699367046, -0.024628737941384315, 0.018098285421729088, -0.0031291753984987736, -0.006554872263222933, -0.007304897531867027, 0.02767070010304451, 0.01621450111269951, 0.01476328819990158, 0.0004321366723161191, -0.0070327953435480595, -0.012467862106859684, -0.009279382415115833, 0.015698203817009926, 0.00623044278472662, 0.031005697324872017, 0.003673379775136709, -0.011253868229687214, 0.019675081595778465, -0.017484311014413834, 0.02468455396592617, 0.019102970138192177, -0.03474535793066025, 0.033015068620443344, -0.009446830488741398, -0.024726415053009987, -0.021586773917078972, 0.007071168627589941, -0.02282867766916752, -0.012084128335118294, 0.033684857189655304, 0.015949375927448273, 0.0027576510328799486, -0.03524769842624664, 0.020261147990822792, 0.004587363917380571, -0.04353635013103485, -0.019200647249817848, -0.025535745546221733, -0.008058411069214344, 0.014414439909160137, 0.002068674424663186, -0.0006497311987914145, 0.026372982189059258, 0.01102362759411335, 0.006481613963842392, -0.007821193896234035, 0.01740058697760105, 0.010611985810101032, -0.01042360719293356, -0.02797768823802471, -0.015405170619487762, -0.018265731632709503, -0.0033437174279242754, -0.004311773460358381, 0.016940105706453323, 0.027726516127586365, -0.007995618507266045, 0.016605211421847343, -0.015098183415830135, 0.007821193896234035, -0.021140247583389282, -0.03823384642601013, -0.002419267548248172, 0.03321042284369469, -0.03669891133904457, 0.00504086771979928, -0.03008473478257656, 0.010884087532758713, 0.019772760570049286, 0.004486197605729103, 0.02767070010304451, 0.02261936664581299, 0.008470052853226662, -0.0070816343650221825, -0.032345276325941086, 0.028689339756965637, -0.002516945358365774, 0.020093699917197227, -0.012984158471226692, 0.037954770028591156, 0.0016003446653485298, -0.019144831225275993, 0.015502848662436008, 0.030894065275788307, -0.029582392424345016, -0.006223465781658888, -0.011149212718009949, 0.030726617202162743, 0.029498668387532234, 0.019996022805571556, -0.0017215696861967444, -0.0016622653929516673, -0.015684250742197037, 0.004789696540683508, 0.006021133158355951, -0.005110637284815311, -0.013479524292051792, 0.029387038201093674, 0.025996224954724312, 0.007486299145966768, -0.009474738501012325, -0.009258451871573925, 0.018014561384916306, -0.00042537771514616907, -0.0007055470487102866, 0.029582392424345016, 0.0043152617290616035, 0.026414845138788223, 0.010932927019894123, -0.024196164682507515, 0.004029205534607172, -0.006192069035023451, 0.035666320472955704, 0.028507938608527184, 0.012677171267569065, -0.0024210119154304266, -0.5912013053894043, -0.00416176812723279, -0.007325828541070223, -0.0076886313036084175, -0.010716640390455723, 0.014177221804857254, 0.012328322976827621, 0.004992028698325157, -0.030475446954369545, 0.03661518916487694, -0.025940408930182457, -0.010430584661662579, 0.0003287901636213064, -0.02292635478079319, -0.009195659309625626, -0.0008167426567524672, 0.005159476306289434, -0.023638006299734116, 0.007618861738592386, 0.00661417655646801, 0.0037187300622463226, 0.003764080349355936, -0.014023728668689728, -0.010332906618714333, -0.014805150218307972, 0.0033472059294581413, 0.023861270397901535, -0.021642589941620827, 0.02127978764474392, 0.013626040890812874, -0.03502443805336952, 0.030280090868473053, 0.036112844944000244, -0.00931426789611578, 0.046689946204423904, 0.005079241003841162, -0.012593448162078857, 0.02853584662079811, 0.034773264080286026, 0.018572719767689705, -0.018265731632709503, -0.015795880928635597, -0.003221620339900255, -0.0014747590757906437, -0.0137167414650321, -0.003997809253633022, 0.01894947700202465, -0.004615271929651499, -0.013249283656477928, -0.04462476074695587, -0.014512117020785809, 0.011735279113054276, -0.02292635478079319, -0.015726111829280853, 0.033684857189655304, 0.0027576510328799486, 0.021126294508576393, -0.011735279113054276, 0.004890862386673689, 0.009684047661721706, -0.005906013306230307, 0.00664557283744216, -0.003239062614738941, -0.03803849220275879, -0.013653948903083801, 0.03173130378127098, -0.00931426789611578, 0.022019347175955772, 0.00909798126667738, -0.019033199176192284, 0.008686339482665062, 0.04080137610435486, -0.013109744526445866, -0.0063385856337845325, 0.01063989382237196, 0.016716843470931053, 0.007576999720185995, 0.01820991560816765, -0.02500549517571926, 0.0270009096711874, 0.0032146433368325233, -0.022954262793064117, -0.0039908322505652905, -0.025968316942453384, 0.028717247769236565, -0.012823687866330147, -0.007318851538002491, -0.010053827427327633, 0.008058411069214344, 0.0003451424418017268, 0.0074235061183571815, 0.02722417376935482, -0.01763780415058136, -0.006024621892720461, 0.0027593954000622034, 0.02214493229985237, 0.013633017428219318, 0.0030751037411391735, -0.019019246101379395, -0.01907506212592125, -0.022242611274123192, -0.005756007973104715, 0.02525666542351246, -0.009244497865438461, 0.018600627779960632, 0.016144730150699615, -0.014240015298128128, -0.00892355665564537, 0.03270807862281799, 0.004078044556081295, 0.0028326536994427443, -0.007486299145966768, -0.007542114704847336, -0.0035076765343546867, 0.00451759435236454, -0.02182399109005928, 0.025591561570763588, 0.016995921730995178, 0.036001212894916534, 0.01052826177328825, -0.0031291753984987736, 0.0034047660883516073, 0.004144325852394104, 0.004011763259768486, -0.006268816068768501, 0.002337288111448288, 0.024838047102093697, -0.02479618415236473, -0.024740369990468025, 0.010877110995352268, 0.011665510013699532, -0.016563348472118378, 0.013221375644207, -0.01763780415058136, 0.020861169323325157, -0.013919074088335037, 0.015907512977719307, -0.023093802854418755, 0.016828473657369614, -0.012684148736298084, -0.027084633708000183, -0.0007696480606682599, 0.0022971704602241516, -0.029275406152009964, -0.04565735533833504, -0.018349455669522285, -0.03265226259827614, -0.007186288945376873, 0.0035233746748417616, 0.0001918669295264408, -0.014226061291992664, 0.01696801371872425, -0.031033605337142944, 0.001423303852789104, -0.016340086236596107, -0.004088509827852249, -0.0021035592071712017, -0.018112238496541977, -0.028605615720152855, 0.00650603324174881, -0.012119012884795666, 0.02007974684238434, -0.0002808234130498022, -0.007570022717118263, 0.004636202938854694, 0.023065894842147827, -0.0022308891639113426, 0.011421315371990204, -0.0019884391222149134, -0.02974984049797058, 0.004102463833987713, -0.014372577890753746, -0.03128477558493614, 0.019814621657133102, -0.01631217822432518, 0.01213296689093113, -0.00482458109036088, 0.012712056748569012, -0.013081836514174938, -0.01151899341493845, -0.014156291261315346, 0.02610785700380802, -0.010779432952404022, -0.021991439163684845, 0.022758906707167625, 0.0033245307859033346, 0.03485698997974396, -0.0007024946389719844, -0.021349556744098663, 0.004479220602661371, -0.0031361521687358618, 0.03658727928996086, -0.007911894470453262, 0.022661229595541954, -0.03639192506670952, 0.020805353298783302, -0.0020355337765067816, 0.00016461311315651983, 0.014986552298069, 0.036754727363586426, 0.027252081781625748, 0.00793980248272419, -0.007346759550273418, -0.003246039617806673, 0.004705972503870726, -0.010109643451869488, 0.026177626103162766, 0.008574707433581352, 0.028856787830591202, -0.012684148736298084, 0.03298715874552727, -0.0014477232471108437, -0.005933920852839947, 0.0010744548635557294, -0.012900435365736485, 0.025172941386699677, -0.018809936940670013, 0.020972799509763718, -0.0429781936109066, -0.005661818664520979, -0.016451718285679817, -0.004412939306348562, 0.024614783003926277, -0.012788803316652775, -0.0032931342720985413, -0.002597180660814047, 0.028200950473546982, 0.025396205484867096, 0.008595638908445835, -0.0036070984788239002, -0.035889580845832825, 0.00920961331576109, 0.015921467915177345, 0.005850197281688452, 0.015307492576539516, -0.033991843461990356, 0.024056624621152878, -0.005972294602543116, 0.03848502039909363, -0.010332906618714333, 0.013702787458896637, 0.028689339756965637, 0.03429882973432541, -0.010109643451869488, 0.03390812128782272, -0.03206619620323181, 0.009711955673992634, 0.025633422657847404, -0.003246039617806673, 0.020916983485221863, -0.022242611274123192, 0.023107755929231644, -0.017777344211935997, 0.006819997448474169, 0.02589854784309864, 0.000941020087338984, 0.004283865448087454, -0.017051737755537033, 0.035219792276620865, 0.028912601992487907, 0.018126193434000015, -0.0008603487513028085, 0.0140586132183671, 0.005473440513014793, -0.02182399109005928, -0.016479626297950745, -0.02083326131105423, -0.016061006113886833, 0.0009628231637179852, -0.016144730150699615, 0.017372678965330124, -0.01797269843518734, 0.0053513431921601295, -0.010263136588037014, 0.01784711331129074, 0.030447538942098618, 0.0051699415780603886, -0.00304370722733438, 0.021782130002975464, 0.006781624164432287, -0.03976878151297569, -0.014679565094411373, 0.017554080113768578, 0.007256058510392904, -0.004988540429621935, -0.01707964576780796, 0.015781927853822708, 0.0072141969576478004, -0.02930331416428089, -0.02172631397843361, 0.006237419787794352, -0.004587363917380571, -0.01984252966940403, -0.02227051928639412, -0.010814318433403969, 0.0033349962905049324, 0.03890363872051239, 0.00976079422980547, -0.01029802206903696, -0.014470255002379417, 0.0029390526469796896, 0.03661518916487694, -0.008560753427445889, -0.013556270860135555, 0.04001995548605919, -0.0030088224448263645, -0.006017644889652729, -0.010130573995411396, 0.009656139649450779, 0.0004931852454319596, 0.006349051371216774, -0.018056422472000122, -0.006928140763193369, 0.002654740586876869, 0.042503759264945984, -0.00022566168627236038, 0.016395902261137962, -0.01731686294078827, 0.007856078445911407, -0.02370777539908886, -0.0005481289699673653, -0.031173143535852432, 0.0012794035719707608, 0.009858472272753716, 0.059890393167734146, 0.0036070984788239002, 0.008072365075349808, 0.0028727713506668806, -0.015781927853822708, -0.024628737941384315, -0.038401294499635696, -0.0056653073988854885, 0.008142135106027126, -0.007283966522663832, -0.009774748235940933, 0.02634507417678833, 0.00853982288390398, -0.012523678131401539, 0.02613576501607895, -0.010793386958539486, -0.009635208174586296, -0.02072162926197052, 0.00837237574160099, -0.0064711482264101505, 0.020456504076719284, -0.022354241460561752, 0.0003996501036453992, 0.011246890760958195, 0.01906110718846321, -0.019549496471881866, 0.02797768823802471, 0.010011965408921242, -0.0076049077324569225, -0.04264329746365547, 0.019144831225275993, 0.02556365355849266, 0.022549597546458244, -0.018935522064566612, -0.0007469728589057922, 0.023442650213837624, 0.02238214947283268, -0.0028239323291927576, 0.014805150218307972, 0.015460986644029617, 0.03198247402906418, 0.021586773917078972, -0.002712300745770335, -0.014135360717773438, -0.0005629550432786345, -0.058048468083143234, 0.0033838350791484118, 0.021796083077788353, -0.0007892707944847643, -0.0294149462133646, 0.033349961042404175, 0.001129398588091135, -0.02732185088098049, -0.02393103949725628, 0.01629822328686714, 0.021182110533118248, -0.006973491050302982, -0.007758401334285736, 0.0017660479061305523, -0.02856375463306904, -0.004172233864665031, -0.008728201501071453, 0.013193468563258648, -0.005330412182956934, -0.03494071215391159, -0.025382250547409058, -0.02016347087919712, 0.016577303409576416, -0.0026355539448559284, 0.0006340330000966787, 0.008414236828684807, -0.006042064167559147, -0.039294347167015076, -0.012914389371871948, 0.014819104224443436, 0.010409653186798096, 0.04518291726708412, 0.006970002315938473, -0.004604806657880545, 0.009160773828625679, -0.009837540797889233, -0.021028615534305573, 0.015293538570404053, -0.04387124627828598, 0.001550633693113923, -0.028256766498088837, -0.003230341477319598, -0.015447032637894154, -0.008183997124433517, 0.011456199921667576, -0.005347854923456907, -0.010095689445734024, 0.011839933693408966, -0.00843516830354929, 0.007828171364963055, 0.025270620360970497, 0.0076397922821342945, 0.01123991422355175, 0.023735683411359787, 0.01763780415058136, 0.014023728668689728, -0.013179514557123184, -0.036894265562295914, -0.03374067321419716, 0.012391115538775921, -0.0024524081964045763, -0.006987445056438446, 0.016381947323679924, -0.041722338646650314, -0.002068674424663186, 0.02181003801524639, -0.007270012516528368, 0.02800559625029564, -0.017693620175123215, 0.014609795063734055, 0.00964916218072176, 0.01751221902668476, -0.0019832064863294363, -0.009781724773347378, -0.009886380285024643, -0.0012262040982022882, -0.02083326131105423, -0.0005590304499492049, 0.02832653746008873, -0.005762984976172447, 0.02468455396592617, 0.0032861572690308094, -0.016730796545743942, -0.03390812128782272, 0.010772456414997578, 0.0017704085912555456, 0.0219216700643301, -0.006199046038091183, -0.042503759264945984, -0.01786106824874878, -0.01685638166964054, -0.007102564908564091, -0.00440596230328083, -0.019814621657133102, -0.018349455669522285, 0.009174727834761143, 0.004730392247438431, 0.005888570565730333, -0.010800364427268505, 0.01851690374314785, -0.02356823720037937, -0.006296724081039429, 0.03142431378364563, 0.014219083823263645, 0.032233644276857376, 0.0011232936521992087, 0.026052040979266167, -0.026763692498207092, -0.010095689445734024, -0.027586976066231728, -0.04663413017988205, -0.022521689534187317, -0.006879301741719246, 0.028410259634256363, 0.038875728845596313, 0.04328517988324165, -0.0001118497020797804, 0.007207219954580069, 0.027754424139857292, 0.014330715872347355, 0.019116923213005066, 0.006376959383487701, 0.007297920528799295, -0.0004334448603913188, 0.014609795063734055, 0.017498264089226723, -0.005162964574992657, 0.03240109235048294, -0.010277090594172478, 0.020749537274241447, -0.0012480071745812893, -0.001464293571189046, -0.0059967138804495335, -0.011421315371990204, -0.028284674510359764, 0.00903518870472908, 0.0075560687109827995, 0.005836243275552988, 0.012139944359660149, -0.04110836237668991, -0.017330817878246307, 0.018907614052295685, 0.008407260291278362, 0.00015883530431892723, -0.011770164594054222, 0.02613576501607895, -0.01841922663152218, 0.03519188612699509, 0.018126193434000015, 0.018014561384916306, 0.003805942367762327, -0.0013884189538657665, -0.040494389832019806, 0.008693316020071507, 0.020009977743029594, 0.0007936314214020967, 0.0007570022717118263, 0.0016081937355920672, -0.005899036303162575, -0.004189676139503717, 0.021530957892537117, 0.0010500353528186679, -0.009537531062960625, -0.023065894842147827, -0.014819104224443436, -0.029721932485699654, -0.023526374250650406, -0.008086319081485271, -0.013193468563258648, 0.010221274569630623, -0.011679464019834995, -0.006202534772455692, 0.021670497953891754, 0.00332278641872108, -0.022968215867877007, 0.032345276325941086, 0.001883784425444901, 0.02447524480521679, -0.009851494804024696, -0.006314166355878115, 0.03142431378364563, -0.01674475148320198, 0.004838535096496344, -0.008630523458123207, -0.00026883173268288374, -0.0009384037111885846, 0.011232936754822731, 0.014226061291992664, -0.0319545641541481, -0.015670295804739, -0.00402571726590395, 0.017261046916246414, -0.02492177113890648, -0.02051232010126114, 0.0038478041533380747, 0.04847605153918266, 0.014316761866211891, -0.01841922663152218, -0.033349961042404175, -0.013591156341135502, 0.009188681840896606, -0.010270114056766033, -0.0032146433368325233, 0.010479423217475414, -0.009272405877709389, 0.011484107933938503, 0.02370777539908886, 0.014456300996243954, 0.020456504076719284, 0.0028274208307266235, -0.01096083503216505, 0.0015096439747139812, -0.01417024526745081, -0.01652148738503456, -0.0011546900495886803, 0.0015192372957244515, 0.028131181374192238, -0.00672231987118721, 0.005640888120979071, 0.01597728207707405, 0.007283966522663832, 0.004357123747467995, -0.003952458966523409, -0.0012837642570957541, 0.02843816764652729, -0.01762384921312332, -0.009579393081367016, 0.014484209008514881, -0.01640985533595085, 0.009614277631044388, -0.011839933693408966, 0.011916681192815304, -0.007946779951453209, -0.02084721438586712, -0.01262833271175623, -0.007486299145966768, 0.013298123143613338, 0.0048769088461995125, 0.005012959707528353, 0.014240015298128128, -0.020135562866926193, -0.0011529457988217473, -0.0042315381579101086, -0.02757302299141884, -0.008295628242194653, -0.026652062311768532, -0.012335299514234066, -0.03262435644865036, 0.01820991560816765, 0.01400279812514782, 0.011428291909396648, 0.030587077140808105, 0.03441046178340912, -0.03153594583272934, 0.0008437784272246063, -0.0005171686061657965, -0.0210565235465765, -0.0050094714388251305, 0.0013805697672069073, 0.01576797291636467, -0.027293942868709564, 0.02733580581843853, 0.005058309994637966, -0.04585270956158638, -0.01196551974862814, 0.0010587566066533327, -0.010988743044435978, 0.004325727466493845, -0.002649507950991392, 0.018782028928399086, -0.002928587142378092, -0.02434965781867504, -0.015837743878364563, -0.014470255002379417, 0.03161967173218727, -0.012872527353465557, 0.011986450292170048, 0.026763692498207092, 0.002473339205607772, 0.04085719212889671, 0.0004949294961988926, 0.003690822049975395, 0.003889665938913822, -0.03407556936144829, -0.01101665012538433, -0.0025152009911835194, 0.02522875741124153, -0.007360713556408882, -0.023721730336546898, 0.011351545341312885, -0.01389116607606411, -0.020554181188344955, 0.014051636680960655, -0.014400485903024673, -0.01003987342119217, 0.013305099681019783, -0.0064711482264101505, -0.004542013630270958, -0.004615271929651499, -0.01074454840272665, -0.02038673311471939, -0.012474839575588703, 0.009356129914522171, -0.028131181374192238, -0.010221274569630623, 0.01119107473641634, 0.026763692498207092, 0.0009584625368006527, -0.026540430262684822, -0.04300609976053238, -0.03496862202882767, -0.02877306379377842, -0.02028905600309372, -0.014498163014650345, -0.0152656314894557, -0.0066525498405098915, 0.015684250742197037, 0.006464171689003706, 0.008832856081426144, -0.011560854502022266, -0.012272506952285767, 0.0011355034075677395, -0.018349455669522285, -0.019870437681674957, -0.008086319081485271, -0.004782719537615776, 0.0008926173322834074, -0.048336513340473175, -0.0047792308032512665, 0.0398804135620594, 0.009739863686263561, -0.02423802576959133, 0.028745155781507492, -0.018684351816773415, -0.010765478946268559, -0.011616670526564121, -0.016019145026803017, -0.020261147990822792, -0.020972799509763718, 0.002715789247304201, -0.03734079375863075, -0.014428393915295601, 0.017930837348103523, -0.026093903928995132, 0.012335299514234066, -0.007270012516528368, 0.026861371472477913, 0.007821193896234035, 0.02115420252084732, -0.007549091707915068, -0.011672486551105976, 0.014651657082140446, -0.021851899102330208, 0.01784711331129074, -0.0005380995571613312, 0.013081836514174938, 0.02139141969382763, 0.012426000088453293, 0.013326031155884266, -0.01618659310042858, 0.014484209008514881, -0.005410647485405207, -0.004360612016171217, 0.021670497953891754, -0.0063699823804199696, -0.009565439075231552, -0.012398092076182365, -0.002933819778263569, -0.03614075481891632, -0.00793980248272419, -0.02084721438586712, -0.012202736921608448, -0.02305193990468979, 0.027056725695729256, 0.005264130886644125, -0.024852000176906586, -0.011435269378125668, -0.018377363681793213, 0.01754012703895569, -0.009321244433522224, -0.018782028928399086, -0.0028937021270394325, 0.012188782915472984, -0.011735279113054276, 0.002384382765740156, -0.021098386496305466, 0.03773150593042374, -0.0015715645859017968, 0.00208262843079865, -0.02501944825053215, -0.0055990261025726795, 0.19356931746006012, -0.010981765575706959, -0.003486745525151491, 0.021907715126872063, 0.002394848270341754, -0.00012842002615798265, 0.01973089762032032, -0.0046466682106256485, -0.011812026612460613, 0.018670396879315376, -0.004608294926583767, 0.02776837907731533, -0.02404267154633999, -0.002583226654678583, 0.004475732333958149, 0.011463177390396595, -0.03547096252441406, -0.0226054135710001, -0.011846911162137985, 0.012516701593995094, 0.0065688262693583965, -0.008484006859362125, -0.005257153883576393, -0.0214890968054533, 0.004751322790980339, -0.02171236090362072, -0.002197748515754938, -0.01597728207707405, 0.007022329606115818, 0.0216146819293499, -0.04258748143911362, 0.023177525028586388, 0.0015872628428041935, 0.004402474034577608, -0.018237823620438576, 0.0043152617290616035, 0.0053339009173214436, 0.016493579372763634, 0.025410158559679985, 2.590476105979178e-05, -0.0002782070660032332, -0.0060804374516010284, -0.002801257185637951, -0.024335704743862152, 0.020763490349054337, 0.016354039311408997, -0.00664557283744216, -0.010263136588037014, -0.012802757322788239, 0.004995517432689667, -0.030252182856202126, 0.021517004817724228, 0.00804445706307888, 0.01400279812514782, -0.004918770398944616, 0.0048769088461995125, -0.0049117933958768845, 0.015112137421965599, 0.01982857473194599, 0.02281472273170948, -0.0006907209753990173, 0.014791196212172508, -0.0018523880280554295, 0.006104857195168734, -0.0007338910363614559, 0.026596246287226677, -0.023944992572069168, 0.025745054706931114, 0.021586773917078972, 0.0003368572797626257, -0.020456504076719284, -0.0070990766398608685, -0.01963322050869465, -0.002126234583556652, -0.021530957892537117, -0.02280076965689659, 0.037843137979507446, 0.005096683278679848, 0.023958947509527206, 0.039071086794137955, -0.010228252038359642, 0.013667902909219265, -0.010235228575766087, -0.00011228576477151364, -0.027042772620916367, -0.0199402067810297, 0.028354443609714508, -0.004053625278174877, -0.011602716520428658, -0.004999005701392889, -0.019102970138192177, 0.013109744526445866, 0.00685837073251605, 0.01333998516201973, -0.005933920852839947, -0.017275001853704453, 0.025103172287344933, -0.018586672842502594, -0.00898634921759367, 0.028605615720152855, -0.022744953632354736, 0.06798368692398071, 0.02402871660888195, 0.0055501870810985565, -0.002530899364501238, -0.013584178872406483, -0.014065590687096119, 0.024321749806404114, 0.01476328819990158, 0.0166610274463892, -0.02447524480521679, -0.02349846623837948, 0.0005729844560846686, -0.0014451068127527833, -0.008546799421310425, 0.025214804336428642, 0.005776938982307911, -0.010409653186798096, 0.024182211607694626, -0.0059478748589754105, -0.011972496286034584, -0.02391708642244339, -0.010500353761017323, 0.017135461792349815, -0.008518892340362072, -0.015893559902906418, -0.02797768823802471, -0.023233341053128242, -0.028480030596256256, -0.01608891412615776, 0.026721831411123276, 0.0022989148274064064, 0.024517105892300606, -0.0031291753984987736, -0.0012070174561813474, 0.007256058510392904, 0.015237723477184772, -0.010416630655527115, 0.013430685736238956, 0.011972496286034584, -0.02545202150940895, -0.020205331966280937, 0.008853786624968052, 0.01720523089170456, 0.003362904069945216, -0.0533878467977047, 0.017275001853704453, 0.0001264577585970983, -0.02335892803966999, -0.023721730336546898, -0.00647463696077466, -0.01629822328686714, -0.0057978699915111065, -0.017023829743266106, 0.03217782825231552, 0.001939600333571434, -0.026498567312955856, -0.02779628522694111, -0.008121203631162643, 0.007765378337353468, -0.04331308975815773, 0.005885082297027111, 0.003000101074576378, -0.014372577890753746, -0.012509724125266075, -0.002776837907731533, -0.17794089019298553, 0.018684351816773415, 0.020023930817842484, -0.03362904116511345, 0.010130573995411396, 0.0004875164304394275, 0.004880397114902735, 0.00048010339378379285, -0.030447538942098618, 0.00018336373614147305, 0.013542316854000092, 0.011177120730280876, -0.0013840582687407732, -0.005183895584195852, -0.009125889278948307, 0.03441046178340912, -0.021754221990704536, 0.014693519100546837, 0.0030070780776441097, 0.0052362228743731976, 0.006680457852780819, -0.04507128894329071, 0.00440596230328083, 0.003314065281301737, -0.0023163571022450924, 0.02381940744817257, 0.0036175637505948544, 0.026275305077433586, -0.04175024479627609, -0.03097778931260109, 0.0021018150728195906, -0.008351444266736507, 0.03198247402906418, 0.0016858126036822796, 0.02261936664581299, 0.016786612570285797, -0.028480030596256256, 0.002407057909294963, -0.013026020489633083, 0.05280178040266037, 0.021670497953891754, 0.036084938794374466, -0.0026861371006816626, -0.013235329650342464, -0.028633523732423782, 0.012300414964556694, 0.010500353761017323, 0.007144426926970482, 0.01597728207707405, -0.031173143535852432, 0.0021053035743534565, 0.000552053505089134, 0.013242307119071484, -0.015586571767926216, 0.023275204002857208, 0.041722338646650314, -0.0003290081804152578, -0.006589757278561592, 0.012907411903142929, -0.008595638908445835, -0.010842226445674896, -0.013214399106800556, 0.009495669044554234, -0.0005075752269476652, 0.006007179152220488, -0.018558764830231667, -0.030391722917556763, 0.015084229409694672, -0.031117327511310577, 0.018586672842502594, -0.00496412068605423, -0.023972900584340096, -0.014526071026921272, -0.021237924695014954, 0.0221728403121233, 0.01939600333571434, 0.013360915705561638, -0.004451313056051731, 0.01974485255777836, -0.021670497953891754, -0.024656645953655243, 0.024447336792945862, -0.017386632040143013, 0.0063211433589458466, 0.003921062685549259, -0.03817803040146828, 0.01378651149570942, 0.014944690279662609, -0.0029983569402247667, -0.006202534772455692, 0.029052142053842545, -0.006872324738651514, -0.009118911810219288, -0.03362904116511345, 0.006132764741778374, 0.014240015298128128, 0.002251820173114538, 0.006558360531926155, 0.012195760384202003, -0.02930331416428089, 0.002087861066684127, 7.151404133765027e-05, 0.0006929012597538531, -0.005490882787853479, -0.0020285567734390497, 0.004374566022306681, -0.022982170805335045, -0.0017015108605846763, 0.030894065275788307, -0.02479618415236473, -0.02062395215034485, 0.02479618415236473, 0.01730290986597538, 0.02280076965689659, -0.001275915070436895, 0.010318952612578869, -0.027266034856438637, -0.022019347175955772, 0.03175920993089676, 0.002796024549752474, 0.04289447143673897, 0.024293841794133186, -0.0050443559885025024, 0.01687033660709858, -0.01168644055724144, -0.03226155415177345, -0.08031898736953735, -0.028521891683340073, 0.004011763259768486, 0.049201659858226776, -0.026819508522748947, 0.0204983651638031, -0.011274798773229122, 0.006139741744846106, -0.008183997124433517, 0.016674980521202087, 0.007458391133695841, -0.017902929335832596, -0.01643776334822178, -0.019535543397068977, 0.014121406711637974, -0.03175920993089676, -0.01765175722539425, -0.04995517432689667, 0.0048280698247253895, 0.028242813423275948, 0.003701287554576993, -0.03482908010482788, 0.0007500252686440945, -0.021126294508576393, -0.001288997009396553, -0.004604806657880545, -0.029135866090655327, 0.027866056188941002, 0.002536132000386715, -0.0076397922821342945, 0.014777242206037045, -0.010430584661662579, 0.023275204002857208, -0.03441046178340912, 0.009070073254406452, -0.02225656434893608, 0.009991034865379333, -0.005274596624076366, 0.02490781620144844, -0.017721528187394142, 0.0074723451398313046, 0.03064289316534996, 0.01862853579223156, -0.0038478041533380747, -0.008616569451987743, -0.021907715126872063, -0.011860865168273449, 0.03700589761137962, -0.0028256766963750124, -0.03337787091732025, -0.007535137701779604, -0.025549698621034622, -0.018809936940670013, 0.0006950816023163497, 0.035777948796749115, 0.006380447652190924, 0.008909602649509907, 0.0031884796917438507, -0.024224072694778442, -0.0030890577472746372, -0.0139958206564188, -0.004465267062187195, -0.03943388909101486, 0.021740268915891647, 0.025549698621034622, 0.004782719537615776, -0.007793285883963108, -0.009963126853108406, 0.013946982100605965, -0.02203330025076866, -0.025968316942453384, 0.004702484235167503, -0.011288752779364586, -0.0006104857311584055, -0.04627132788300514, -0.005724611692130566, -0.013158583082258701, -0.040717653930187225, 0.018544811755418777, 0.00608741445466876, -0.0007033667643554509, -0.027712563052773476, 0.009879402816295624, -0.011763187125325203, 0.009384036995470524, 0.003247783984988928, -0.004015251528471708, 0.0012357975356280804, -0.012900435365736485, -0.00821888167411089, -0.005002494435757399, 0.012056220322847366, 0.01698196865618229, 0.011225960217416286, -0.018237823620438576, 0.006799066439270973, 0.0067851124331355095, -0.01151201594620943, 0.002637298312038183, 0.015781927853822708, -0.058048468083143234, 0.00992824137210846, -0.07161171734333038, 0.022982170805335045, 0.013737672939896584, -0.0026425309479236603, 0.010507331229746342, -0.012767872773110867, 0.0048455120995640755, -0.019019246101379395, -0.00011893569899257272, 0.009921264834702015, -0.022186795249581337, 0.015614479780197144, -0.000484027958009392, 0.0015366796869784594, 0.00390013144351542, -0.00034427031641826034, 0.027056725695729256, -0.02335892803966999, 0.010821294970810413, -0.0008974139927886426, -0.006118811201304197, 0.02788000926375389, 0.029359130188822746, 0.018377363681793213, -0.010165459476411343, 0.00010661696433089674, -0.02238214947283268, -0.011784118600189686, -0.00493272440508008, 0.022103071212768555, -0.005756007973104715, -0.02899632602930069, -0.012684148736298084, 0.017665712162852287, -0.005888570565730333, -0.008163065649569035, -0.0019221578259021044, 0.02577296271920204, 0.006673480849713087, 0.05497859790921211, -0.019465772435069084, -0.022856583818793297, 0.0221728403121233, -0.013312077149748802, -0.0031378965359181166, 0.02083326131105423, -0.010667801834642887, 0.0135004548355937, 0.006069972179830074, 0.004144325852394104, 0.026861371472477913, -0.008211905136704445, -0.021865854039788246, -0.037843137979507446, 0.0028378863353282213, -0.0051699415780603886, 0.030140550807118416, 0.008421214297413826, -0.02447524480521679, 0.000365201267413795, 0.035973306745290756, -0.012537632137537003, 0.007402575109153986, -0.007360713556408882, 0.002658229088410735, -0.028968418017029762, -0.014847012236714363, 0.011107351630926132, 0.004126883577555418, 0.0058467090129852295, -0.002783814910799265, -0.01597728207707405, 0.0004066270776093006, 0.022758906707167625, 0.01294927392154932, 0.01808433048427105, 0.02853584662079811, 0.023651961237192154, -0.008588661439716816, 0.013974890112876892, 0.03572213649749756, -0.004078044556081295, -0.011595739983022213, 0.009635208174586296, 0.016688935458660126, 0.019354140385985374, -0.021558865904808044, 0.009956149384379387, -0.004590852651745081, -0.0017067436128854752, -0.019465772435069084, 0.019996022805571556, -0.013039974495768547, 0.0076049077324569225, -0.004590852651745081, 0.026819508522748947, -0.008128181099891663, 0.006844416726380587, 0.026386937126517296, 0.019758805632591248, 0.024433381855487823, 0.0021087920758873224, 0.008037480525672436, -0.03828966245055199, -0.037954770028591156, -0.0017573266522958875, -0.035889580845832825, -0.01640985533595085, 0.000698134012054652, -0.00608741445466876, 0.0003776290104724467, 0.01996811479330063, 0.021126294508576393, 0.006628130562603474, -0.002982658799737692, 0.04214095696806908, -0.008023526519536972, 0.0009384037111885846, -0.041164178401231766, 0.03748033195734024, 0.00738164409995079, -0.013207422569394112, 0.007618861738592386, -0.015335400588810444, 0.015698203817009926, 0.01654939539730549, 0.020261147990822792, -0.044373590499162674, 0.007409552112221718, -0.0038198961410671473, 0.013479524292051792, 0.0010901530040428042, 0.014944690279662609, 0.002722766250371933, -0.02779628522694111, 0.00926542840898037, -0.003676868276670575, 0.007988641038537025, -0.027154404670000076, 0.08668199181556702, 0.037647780030965805, 0.003889665938913822, 0.015949375927448273, -0.011121305637061596, -0.02349846623837948, 0.0023634517565369606, 0.012370184995234013, 0.001725930254906416, -0.029610300436615944, -0.014072567224502563, 0.004489686340093613, -0.0028204440604895353, -0.022870538756251335, -0.014986552298069, 0.012063197791576385, -0.007444437127560377, 0.0409967303276062, -0.02437756583094597, -0.00976079422980547, 0.04152698069810867, 0.028298629447817802, -0.016047053039073944, 0.006464171689003706, -0.029080050066113472, -0.022870538756251335, 0.02677764743566513, 0.011637602001428604, 0.0022186795249581337, -0.0548669658601284, 0.005033890716731548, 0.007339782547205687, -0.027531160041689873, -0.03008473478257656, 0.0008267720695585012, 0.0005141161964274943, 0.02688927948474884, -0.01438653189688921, 0.014651657082140446, -0.0007713923114351928, 0.018698304891586304, 0.028159089386463165, -0.014316761866211891, -0.03881991282105446, -0.013912096619606018, 0.004046648275107145, -0.038764096796512604, -0.0033960447181016207, -0.04551781341433525] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_learning_practical_communication_strategies_in_cooperative_multiagent_reinforcement_learning.json b/database/embeddings/publications_txt/2022_learning_practical_communication_strategies_in_cooperative_multiagent_reinforcement_learning.json new file mode 100644 index 0000000000000000000000000000000000000000..74f9c9973a0d57fac4702b12c6fbb51a29d63d7d --- /dev/null +++ b/database/embeddings/publications_txt/2022_learning_practical_communication_strategies_in_cooperative_multiagent_reinforcement_learning.json @@ -0,0 +1 @@ +[-0.02052624709904194, 0.0191587433218956, 0.01940489374101162, -0.01269044540822506, -0.013490435667335987, 0.024970639497041702, -0.004820454400032759, 0.010201586410403252, -0.02569541707634926, -0.04685071483254433, 0.00701529998332262, 0.022276654839515686, -0.012239168398082256, 0.017025435343384743, -0.010146886110305786, 0.002887144684791565, 0.02931930497288704, -0.03919268772006035, 0.004006789065897465, 0.01210925541818142, 0.03194491192698479, -0.007199913263320923, -0.024177486076951027, -0.010112698189914227, -0.005661469884216785, 0.013182747177779675, 0.024546712636947632, -0.031233811751008034, 0.017093811184167862, -0.0004226444580126554, 0.023548433557152748, -0.017162185162305832, 0.006410179194062948, -0.036512378603219986, -0.013476760126650333, -0.017914313822984695, 0.006704192608594894, -0.010543462820351124, 0.031698763370513916, -0.011740028858184814, 0.00028247523005120456, 0.02439628727734089, 0.009750309400260448, -0.030522707849740982, -0.011152002029120922, 0.017353637143969536, 0.039739690721035004, -0.026078317314386368, -0.03044065833091736, 0.0358559787273407, -0.004909342620521784, 0.026215068995952606, -0.02970220521092415, -9.364203287987038e-05, -0.012136605568230152, -0.004707635380327702, 0.0012042589951306581, 0.055876247584819794, -0.009189632721245289, -0.023493733257055283, 0.036266230046749115, -0.010181074030697346, -0.03500812500715256, -0.004167471081018448, 0.013087021186947823, -0.0077400775626301765, -0.033558569848537445, 0.03643032908439636, 0.011309265159070492, 0.0021657857578247786, 0.015042553655803204, 0.01065286248922348, 0.00634522270411253, -0.040478143841028214, 0.027760349214076996, -0.03539102524518967, -0.024915939196944237, -0.004871736280620098, -0.011760542169213295, 0.009839197620749474, -0.0019777538254857063, -0.008711005561053753, -0.005545231979340315, 0.006181121803820133, 0.02358945831656456, 0.013647698797285557, 0.012909245677292347, -0.007917853072285652, -0.016232281923294067, -0.01179472915828228, 0.016533134505152702, 0.004642678890377283, 0.02151085063815117, -0.005240962374955416, -0.03249191492795944, 0.03377737104892731, -0.005787964444607496, 0.023780910298228264, 0.018516015261411667, -0.025791142135858536, 0.024040736258029938, -0.0051486557349562645, -0.03230046480894089, -0.021333076059818268, -0.002461508847773075, -0.02116897515952587, -0.007281963247805834, 0.004317896440625191, 0.01446820143610239, 0.016040831804275513, -0.04099779576063156, 0.021073250100016594, -0.008027253672480583, -0.0435960553586483, 0.0025965499226003885, -0.03880978748202324, -0.014946827664971352, 0.012697282247245312, -0.021633926779031754, -0.016013482585549355, 0.035527776926755905, 0.009210145100951195, -0.0005311901913955808, -0.025599690154194832, -0.0017051076283678412, 0.015439129434525967, -0.007117862813174725, -0.020115995779633522, -0.009784497320652008, -0.010543462820351124, 0.011240890249609947, 0.0103725241497159, -0.009189632721245289, 0.023712534457445145, 0.004570885095745325, 0.02475183829665184, -0.015904081985354424, -0.00013001979095861316, -0.01958267018198967, -0.028170600533485413, -0.0011521228589117527, 0.0393841415643692, -0.041462745517492294, 0.005066605284810066, -0.011377640068531036, -0.003482009284198284, 0.020772399380803108, -0.00040811471990309656, 0.02806119993329048, 0.024779187515378, 0.003579444019123912, 0.002150401473045349, -0.018406614661216736, 0.028498800471425056, 0.009326383471488953, 0.017832262441515923, -0.011336615309119225, 0.03328506648540497, 0.03612947836518288, -0.018762167543172836, 0.012396431528031826, 0.020758723840117455, -0.016875009983778, -0.019801469519734383, -0.0063247098587453365, 0.024204835295677185, 0.050078026950359344, 0.022659555077552795, -0.0036444005090743303, 0.010051161050796509, -0.018447641283273697, -0.005787964444607496, -0.012854545377194881, -0.026707369834184647, 0.0009444330353289843, 0.031179111450910568, 0.04881992191076279, 0.012403269298374653, -0.017982689663767815, 0.008690493181347847, 0.0038016634061932564, -0.008847756311297417, 0.012758820317685604, 0.030741509050130844, 0.011131489649415016, 0.01747671142220497, 0.019035667181015015, -0.027336422353982925, -0.0019674976356327534, -0.012724632397294044, 0.05754460394382477, 0.030085107311606407, 0.012081905268132687, 0.012369081377983093, -0.6113293766975403, -0.03498077392578125, -0.005982833914458752, -0.010310987010598183, -0.009011857211589813, 0.007787940092384815, 0.014057950116693974, 0.012129767797887325, -0.04523706063628197, 0.03388677164912224, -0.010475086979568005, 0.018898917362093925, -0.004369177855551243, -0.012020368129014969, 0.0103725241497159, -0.010290473699569702, 0.02869025245308876, -0.016341682523489, 0.011083627119660378, 0.023821935057640076, 0.0025401401799172163, 0.016355358064174652, -0.01593143120408058, -0.00032734646811150014, 0.0004564047558233142, 0.0005025580176152289, 0.01390752475708723, -0.017531411722302437, 0.028307350352406502, -0.0035828626714646816, -0.04507296159863472, 0.017216885462403297, 0.029866306111216545, -0.020061295479536057, 0.04373280704021454, 0.005576001014560461, -0.02893640287220478, 0.02956545539200306, 0.038262784481048584, 0.036895282566547394, -0.02014334686100483, -0.0046563539654016495, -0.01996557042002678, 0.010707562789320946, -0.014085300266742706, -0.01951429434120655, 0.01909036748111248, 0.0087041687220335, -0.005565744824707508, -0.02788342349231243, -0.025572340935468674, 0.004017045721411705, -0.014153675176203251, -0.024163810536265373, 0.02200315333902836, -0.007651189807802439, 0.017285261303186417, -0.010769100859761238, -0.007767427712678909, 0.0032290208619087934, -0.010003297589719296, 0.009805009700357914, -0.00024593720445409417, -0.029264604672789574, 0.009114420041441917, 0.011008414439857006, 0.0004478578339330852, -0.0002553387894295156, 0.002119632437825203, -0.03333976864814758, 1.2773617527273018e-05, 0.009880222380161285, -0.0024512524250894785, -0.024615086615085602, 0.015493829734623432, 0.018474990501999855, 0.01877584122121334, 0.024027060717344284, -0.009681934490799904, 0.019350193440914154, -0.005603351164609194, -0.0016093823360279202, 0.021715976297855377, -0.028006499633193016, 0.00796571560204029, -0.011432340368628502, -0.0033418398816138506, -0.015179303474724293, 0.006711029913276434, -0.005787964444607496, 0.018789516761898994, 0.01732628606259823, -0.005217031110078096, -0.01024944894015789, -0.01249899435788393, 0.03175346180796623, -0.01351778581738472, 0.018092088401317596, -0.007835802622139454, -0.02229032851755619, -0.01729893684387207, 0.005015323869884014, 0.024601412937045097, 0.007275125943124294, 0.011384477838873863, 0.017599787563085556, -0.011651141569018364, 0.003976020496338606, 0.028033848851919174, -0.0031418423168361187, -0.001011953572742641, 0.0015572461998090148, -0.011131489649415016, -0.004471740685403347, 0.027090271934866905, -0.03719613328576088, 0.012006692588329315, 0.01316907163709402, 0.011815241537988186, 0.025080038234591484, 0.018967293202877045, 0.005948645994067192, 0.008813568390905857, 0.014604952186346054, -0.005794801749289036, 0.01435880083590746, 0.018652766942977905, -0.02967485599219799, -0.008724681101739407, 0.014632302336394787, 0.01866644062101841, -0.007411876227706671, 0.018584391102194786, -0.006297359708696604, 0.03530897572636604, -0.0050768619403243065, 0.03448847308754921, -0.013107534497976303, 0.013415222987532616, 0.011097301729023457, -0.032191064208745956, -0.0007940075010992587, 0.008293917402625084, -0.011733192019164562, -0.03588332608342171, -0.034898724406957626, -0.018433965742588043, 0.010994738899171352, 0.004991392605006695, 0.0036478191614151, -0.013510948047041893, 0.005746939219534397, -0.006146934349089861, 0.0070563252083957195, -0.01779123768210411, -0.018160464242100716, -0.007555464282631874, -0.011644303798675537, -0.02513473853468895, -0.011384477838873863, -0.011152002029120922, 0.006505904253572226, -0.015056228265166283, -0.017463037744164467, -0.003119620494544506, 0.017216885462403297, -0.001011953572742641, 0.017107484862208366, -0.002801675582304597, -0.03632092848420143, -0.001029047416523099, -0.016081856563687325, -0.02893640287220478, 0.0031059454195201397, -0.016546808183193207, 0.007090512663125992, -0.01817413978278637, 0.009059719741344452, -0.01842029020190239, -0.003205089597031474, -0.03003040701150894, 0.0268988199532032, -0.0059520648792386055, -0.008020415902137756, 0.021606577560305595, 0.01750406250357628, 0.029127852991223335, -0.0013606672873720527, -0.017039110884070396, -0.013257959857583046, -0.0044751595705747604, 0.012451131828129292, -0.0007226408342830837, 0.01768183708190918, -0.01895361766219139, 0.016929710283875465, -0.012806682847440243, 0.014563926495611668, -0.010365686379373074, 0.025503965094685555, 0.009005019441246986, 0.03194491192698479, -0.007049487438052893, -0.0024734744802117348, 0.0009965691715478897, -0.021333076059818268, 0.011220376938581467, -0.01582203060388565, 0.01718953624367714, 0.010269961319863796, 0.034789323806762695, -0.013948549516499043, -0.006687098648399115, -0.007391363848000765, -0.0015837415121495724, 0.0011965667363256216, -0.011042601428925991, 0.008273404091596603, -0.04233795031905174, 0.006605048663914204, -0.011363965459167957, -0.00910758227109909, 0.01589040644466877, -0.010228936560451984, -0.005199937149882317, -0.002558943349868059, 0.024519361555576324, 0.02808854915201664, 0.016163907945156097, -0.009750309400260448, -0.025791142135858536, 0.010755425319075584, 0.029620155692100525, 0.0016307495534420013, -0.005292243789881468, -0.015001527965068817, 0.04529175907373428, -0.008191353641450405, 0.030468007549643517, -0.011610115878283978, -0.005039255600422621, 0.02882700227200985, 0.05095323175191879, -0.008738355711102486, 0.012868220917880535, -0.019610019400715828, 0.007781102787703276, 0.016150232404470444, -0.0012692154850810766, 0.018939942121505737, -0.025777466595172882, 0.023302283138036728, -0.015275029465556145, 0.009360570460557938, 0.032956868410110474, -0.006123003084212542, -0.026638993993401527, -0.01320325955748558, 0.01839294098317623, 0.018926266580820084, 0.018516015261411667, 0.0072682881727814674, 0.0074392263777554035, 0.025722766295075417, 0.0029777418822050095, -0.025777466595172882, -0.01336052268743515, -0.026215068995952606, 6.46893895464018e-05, -0.02197580225765705, -0.0095793716609478, -0.015179303474724293, -0.00451618479564786, -0.0072682881727814674, -0.00013322489394340664, 0.025544989854097366, 0.0061332592740654945, -0.006099071819335222, 0.008492205291986465, 0.012478481978178024, -0.028225300833582878, -0.010734912939369678, 0.005794801749289036, 0.03325771912932396, 0.0047554983757436275, -0.01870746724307537, -7.740291039226577e-05, 0.00824605394154787, -0.041708897799253464, -0.009237495250999928, 0.009326383471488953, -0.0033144899643957615, -0.018297215923666954, -0.01582203060388565, -0.02323390729725361, -0.006417016498744488, 0.020553598180413246, 0.006991368718445301, -0.016888685524463654, -0.018474990501999855, 0.0049469489604234695, 0.0016837404109537601, 0.004803360905498266, -0.0005098229157738388, 0.04559261351823807, -0.0014854521723464131, 0.016410058364272118, -0.02200315333902836, 0.0042119151912629604, -0.005637538619339466, 0.012348568998277187, 0.00016153651813510805, -0.010509274899959564, 0.013367359526455402, 0.035801276564598083, -0.012369081377983093, 0.013032320886850357, -0.014399826526641846, -0.0045845601707696915, -0.012827195227146149, -0.020963849499821663, -0.02647489495575428, -0.013353684917092323, 0.02021172270178795, 0.04269350320100784, 0.021893752738833427, 0.02239972911775112, 0.007746914867311716, 0.0002222195325884968, -0.004058070480823517, -0.051035281270742416, -0.0019999758806079626, 0.001911088009364903, -0.006673423573374748, -0.02781504951417446, 0.022345028817653656, 0.0020033945329487324, -0.012006692588329315, 0.043678104877471924, -0.0021674952004104853, -0.007917853072285652, -0.00961355958133936, 0.018502341583371162, 0.002068351022899151, 0.026174042373895645, -0.024697137996554375, 0.002878597704693675, 0.013934874907135963, 0.02833470143377781, -0.01902199350297451, 0.02896375209093094, 0.0081708412617445, -0.0009427236509509385, -0.036293577402830124, 0.02101854979991913, 0.024915939196944237, 0.030358606949448586, -0.008239217102527618, -0.011801566928625107, 0.03818073496222496, 0.034926075488328934, 0.008888782002031803, 0.028991103172302246, 0.026023617014288902, 0.033449169248342514, 0.028033848851919174, 0.006717867683619261, -0.010119535960257053, -0.009948598220944405, -0.039466191083192825, 0.007028975058346987, 0.016109207645058632, 0.004676866810768843, -0.03290216624736786, 0.017695512622594833, 0.01785961352288723, -0.025312514975667, -0.018926266580820084, 0.04203709959983826, 0.013791286386549473, -0.005729845259338617, 0.002774325432255864, 0.008020415902137756, -0.031233811751008034, -0.0018375846557319164, 0.00017414319154340774, 0.010201586410403252, 0.0012136605801060796, -0.015192979015409946, -0.00210937624797225, -0.037989284843206406, -0.006475135684013367, -0.0048478045500814915, 0.00744606414809823, 0.010734912939369678, -0.0036238878965377808, -0.05349678918719292, -0.010714400559663773, -0.006481972988694906, 0.011179352179169655, 0.03451582416892052, -0.007623839657753706, -0.011452852748334408, 0.011028926819562912, -0.0214424766600132, -0.026488568633794785, -0.006396504119038582, -0.029483404010534286, 0.00038140563992783427, -0.0012256262125447392, -0.021182650700211525, -0.0001978608634090051, -0.0011837463825941086, 0.022837331518530846, -0.018857892602682114, -0.01223233062773943, 0.010338337160646915, -0.009975948370993137, 0.015657929703593254, 0.01947326958179474, 0.01855704002082348, 0.02179802767932415, -0.0012393012875691056, 0.015808356925845146, -0.009251170791685581, -0.012909245677292347, -0.02970220521092415, -0.015493829734623432, 0.006540092173963785, 0.01225284393876791, -0.0021914264652878046, 0.018256189301609993, -0.03137056156992912, 0.005945227574557066, 0.02495696395635605, -0.01848866604268551, 0.016587834805250168, -0.013551972806453705, 0.017449362203478813, -0.003364061936736107, 0.022030502557754517, 0.00450934749096632, 0.02021172270178795, -0.04056019335985184, -0.0038802949711680412, -0.013182747177779675, 0.014208375476300716, 0.03768843412399292, -0.002765778684988618, 0.039001237601041794, 0.005675144959241152, -0.02869025245308876, -0.018406614661216736, 0.0012281902600079775, 0.006167446728795767, 0.021333076059818268, -0.004652935080230236, -0.00591445853933692, -0.02506636455655098, -0.002049547852948308, -0.006628979928791523, -0.004738404415547848, -0.023356983438134193, -0.03437907248735428, -0.005394806619733572, -0.0024187741801142693, -0.004704216495156288, 0.007534951902925968, 0.02942870371043682, -0.03194491192698479, -0.009558859281241894, 0.021319400519132614, 0.01221865601837635, 0.022085202857851982, 0.008040928281843662, 0.04209179803729057, -0.02471081353724003, 0.004287127871066332, -0.019254468381404877, -0.024478336796164513, -0.024738162755966187, -0.009312707930803299, 0.03273806720972061, 0.023124506697058678, 0.04789001867175102, 0.00799990352243185, 0.010741750709712505, 0.018187815323472023, 0.016122883185744286, 0.018926266580820084, 0.00490592373535037, 0.013757098466157913, -0.01669723354279995, 0.002723044017329812, -0.0007743496098555624, -0.0018016876420006156, 0.02486123889684677, -0.0060614654794335365, 0.003934995271265507, -0.00011890882160514593, -0.0007974262698553503, -0.004625585395842791, -0.004598235245794058, -0.036020077764987946, 0.010543462820351124, 0.014126325026154518, -0.007001624908298254, 0.020662998780608177, -0.02674839459359646, -0.0036102128215134144, 0.024697137996554375, 0.002343561500310898, -0.031835511326789856, -0.01947326958179474, 0.00899818167090416, -0.02246810495853424, 0.021319400519132614, 0.018187815323472023, -0.003863201243802905, -0.001152977580204606, -0.002223904710263014, -0.04102514684200287, 0.011787892319262028, 0.016341682523489, 0.009476808831095695, 0.019459594041109085, 0.005323012825101614, -0.003422180889174342, -0.006078558973968029, 0.021004874259233475, 0.014823752455413342, -0.01732628606259823, -0.004365759436041117, -0.0035247437190264463, -0.019486945122480392, -0.015671605244278908, 0.005685401614755392, -0.019391218200325966, 0.007897340692579746, -0.02327493205666542, -0.00013675048830918968, 0.022317679598927498, -0.018926266580820084, -0.02528516575694084, 0.02869025245308876, -0.004505928605794907, 0.023151857778429985, -0.002282023662701249, 0.0008418702054768801, 0.03487137332558632, -0.01768183708190918, -0.0019435662543401122, 0.011589603498578072, 0.004252939950674772, 0.004926436115056276, 0.0062734284438192844, 0.028252650052309036, -0.028881702572107315, -0.020348472520709038, -0.0011256274301558733, 0.020115995779633522, -0.032683365046978, -0.020717699080705643, 0.01669723354279995, 0.036402978003025055, 0.0033332931343466043, -0.020621974021196365, -0.02436893619596958, -0.013634023256599903, -0.00420165853574872, -0.008847756311297417, -0.016683559864759445, 0.006095652934163809, -0.005056349094957113, -0.0044067841954529285, 0.010769100859761238, 0.005104212090373039, 0.01234173122793436, 0.005787964444607496, -0.015275029465556145, 0.00674179894849658, 0.0018563878256827593, -0.019664719700813293, 0.005405062809586525, -0.01649210788309574, 0.021319400519132614, 0.004769172985106707, 0.0154664795845747, 0.013825474306941032, 0.0014640848385170102, 0.00674863625317812, -0.015808356925845146, 0.008177679032087326, 0.028854353353381157, -0.0053298501297831535, 0.0022615110501646996, 0.0009016985422931612, -0.024054409936070442, 0.017777564004063606, -0.012731470167636871, 0.014249400235712528, 0.012950271368026733, -0.02137410081923008, -0.020266421139240265, 0.004293965175747871, 0.020485222339630127, -0.009360570460557938, 0.003517906181514263, 0.009647746570408344, -0.0193365179002285, 0.010427224449813366, 0.0002163435419788584, -0.020444197580218315, -0.02045787312090397, -0.019104043021798134, 0.0012700700899586082, -0.021456150338053703, 0.009770821779966354, 0.014276750385761261, 0.016355358064174652, 0.022317679598927498, 0.018830541521310806, -0.02683044597506523, 0.00477259187027812, -0.021839052438735962, -0.018010038882493973, -0.019733095541596413, -0.02728172205388546, -0.007001624908298254, -0.013162233866751194, 0.003381155664101243, 0.0004091830924153328, -0.025531316176056862, -0.015316054224967957, 0.00147861463483423, 0.005377712659537792, 0.005685401614755392, 0.00898450706154108, 0.010324661619961262, 0.005729845259338617, -0.02088179998099804, -0.012751982547342777, -0.00688196811825037, 0.037387583404779434, -0.01673826016485691, -0.004468322265893221, 0.01446820143610239, -0.018051063641905785, 0.036402978003025055, -0.004940111190080643, 0.018010038882493973, 0.007917853072285652, -0.038727737963199615, -0.0036956819240003824, 0.026816770434379578, 0.024355260655283928, -0.011726354248821735, -0.021100599318742752, -0.0007192220655269921, -0.013333172537386417, -0.024902263656258583, 0.01534340437501669, -0.0029281696770340204, -0.006399922538548708, 0.010099023580551147, 0.005647795274853706, 0.010536625050008297, -0.009175957180559635, -0.01817413978278637, -0.015206653624773026, -0.01448187604546547, 0.01940489374101162, -0.02148350141942501, 0.0007752043311484158, 0.008177679032087326, 0.03287481516599655, 0.015138278715312481, -0.03328506648540497, -0.038864489644765854, -0.03240986540913582, -0.017886962741613388, -0.010269961319863796, 0.0006811883649788797, -0.0006354624056257308, -0.003304233541712165, 0.006249497178941965, -0.01810576394200325, 0.02421851083636284, -0.008738355711102486, 0.015657929703593254, 0.02179802767932415, -0.011411827988922596, 0.002646121894940734, 0.019391218200325966, -0.002075188560411334, 0.011097301729023457, -0.04597551375627518, -0.007931528612971306, 0.023466384038329124, 0.00970244687050581, -0.005319593939930201, 0.023616809397935867, -0.0047896858304739, -0.006799918133765459, 0.0009871675865724683, -0.0006046935450285673, -0.026324467733502388, -0.011069951578974724, 0.0036067941691726446, -0.03298421576619148, -0.02721334621310234, 0.007883665151894093, -0.0006589664262719452, 0.013196421787142754, -0.005428994074463844, 0.0006790516199544072, -0.013408385217189789, 0.024027060717344284, -0.012198143638670444, -0.009121257811784744, 0.0033418398816138506, -0.01821516454219818, 0.03752433508634567, 0.002205101540312171, 0.011432340368628502, 0.007917853072285652, 0.010153723880648613, 0.013975899666547775, -0.009996460750699043, 0.013716073706746101, -0.022481780499219894, -0.011411827988922596, 0.01792798936367035, -0.012745145708322525, -0.006970855873078108, -0.020772399380803108, 0.010194748640060425, -0.02482021227478981, -0.012683607637882233, -0.013305822387337685, -0.009975948370993137, -0.03137056156992912, 0.0267210453748703, 0.0040922584012150764, -0.035418376326560974, -0.031233811751008034, -0.02544926479458809, -0.0012709248112514615, -0.003338421229273081, -0.0098460353910923, -0.005859758239239454, -0.006639236118644476, -0.014645976945757866, 0.0005833262694068253, -0.019842496141791344, 0.014372476376593113, -0.015726305544376373, -0.002126469975337386, -0.031206460669636726, 0.0024324492551386356, 0.17886963486671448, -0.020334796980023384, 0.009620396420359612, 0.022509129717946053, -0.015739981085062027, -0.011117814108729362, 0.018652766942977905, -0.0067247049883008, -0.003931576386094093, -0.007562302052974701, 0.009182794950902462, -0.003440984059125185, -0.01680663414299488, -0.0017187827033922076, 0.0029110759496688843, -0.0016333136009052396, -0.06421802937984467, -0.03610212728381157, -0.029209904372692108, 0.0042153336107730865, 0.0069571807980537415, 0.00253159343264997, -0.006533254403620958, -0.021538201719522476, 0.004868317395448685, -0.01568528078496456, -0.003500812454149127, -0.004458065610378981, -0.003355514956638217, 0.023808259516954422, -0.008211866952478886, 0.01954164355993271, -0.0063349660485982895, 0.0077605899423360825, -0.008663143031299114, -0.009312707930803299, 0.018447641283273697, -0.00799990352243185, 0.033175669610500336, 0.0069469246082007885, 7.377047586487606e-05, -0.0267210453748703, 0.014687002636492252, -0.033667970448732376, -0.0027794535271823406, 0.02464243769645691, -0.0031948331743478775, 0.0021127949003130198, -0.012013530358672142, 0.004663191735744476, -0.02869025245308876, 0.00450934749096632, 0.035418376326560974, 0.027227021753787994, 0.00914177019149065, -0.006256334949284792, 0.001715363934636116, 0.021292051300406456, 0.0038597823586314917, 0.02327493205666542, 0.0007645206642337143, 0.02369885891675949, 0.011685328558087349, -0.00898450706154108, 0.01448187604546547, 0.007883665151894093, -0.03667648136615753, -0.005887108389288187, 0.020239071920514107, -0.01021526101976633, 0.002723044017329812, -0.013175909407436848, -0.0013521204236894846, -0.007411876227706671, -0.028553500771522522, -0.04386955499649048, 0.018324565142393112, 0.022016828879714012, 0.030358606949448586, 0.039466191083192825, -0.019869845360517502, 0.007254613097757101, -0.01264258287847042, -0.007671702187508345, -0.01638270728290081, -0.04307640343904495, 0.034789323806762695, -0.0035691875964403152, -0.021360425278544426, 0.0018563878256827593, -0.01954164355993271, 0.014071624726057053, -0.008977669291198254, 0.0026153530925512314, -0.00197262573055923, -0.021702302619814873, 0.004239264875650406, 0.001587160280905664, 0.00011655842536129057, 0.011206702329218388, -0.03870038688182831, 0.07357176393270493, 0.03224576637148857, 0.017244236543774605, -0.013128046877682209, -0.00887510646134615, -0.00040063619962893426, 0.013401547446846962, 0.01904934272170067, -0.008765705861151218, -0.015357079915702343, -0.02224930375814438, -0.0019743351731449366, 0.0016093823360279202, -0.027090271934866905, 0.014112650416791439, 0.0036614942364394665, -0.0004521312948781997, 0.020088646560907364, -0.005664888769388199, -0.025613365694880486, -0.023507408797740936, 0.005815314594656229, 0.0041435398161411285, -0.0027606503572314978, 0.0037059381138533354, -0.027062920853495598, -0.015425454825162888, -0.022304004058241844, -0.01170584186911583, 0.03952088952064514, 0.0023743303027004004, 0.02544926479458809, 0.015480155125260353, 0.006570860743522644, 0.003545256331562996, 0.009640908800065517, -0.005295662675052881, 0.02088179998099804, -0.0054597631096839905, -0.03314831852912903, -0.013565648347139359, -0.01100157666951418, -0.017777564004063606, 0.0015581008046865463, -0.02992100641131401, 0.004868317395448685, -0.0019999758806079626, -0.016546808183193207, 0.000451703934231773, 0.00337944645434618, -0.01962369494140148, -0.005805057939141989, -0.020403172820806503, 0.02871760167181492, -0.016040831804275513, -0.017832262441515923, -0.035527776926755905, -0.008519555442035198, -0.012724632397294044, -0.024738162755966187, 0.014222050085663795, 0.0011393025051802397, -0.008943481370806694, -0.014810077846050262, -0.012102417647838593, -0.17416541278362274, 0.015972455963492393, 0.02721334621310234, -0.027309071272611618, -0.000911954790353775, 0.009374246001243591, -0.004300802946090698, 0.006211890839040279, -0.030604759231209755, 0.00970244687050581, 0.023124506697058678, 8.963567233877257e-05, -0.012663095258176327, -0.002823897637426853, -0.015480155125260353, 0.039602939039468765, 0.007322988472878933, 0.0034614966716617346, 0.004587978590279818, 0.004054652061313391, 0.010926363989710808, -0.028662901371717453, 0.002357236575335264, 0.0007611018954776227, -0.01320325955748558, 0.019240792840719223, -0.0015589555259793997, 0.026625320315361023, -0.0344611220061779, -0.019733095541596413, 0.00915544480085373, 0.011719516478478909, 0.022454429417848587, 0.008334942162036896, 0.030987659469246864, 0.008205029182136059, -0.017271585762500763, -0.014700677245855331, -0.005876852199435234, 0.0446627102792263, 0.005678563844412565, 0.03487137332558632, 0.0013760518049821258, -0.03424232080578804, -0.018269864842295647, 0.02179802767932415, 0.012505832128226757, 0.006591373588889837, 0.017586112022399902, -0.0214424766600132, 0.0020871541928499937, -0.011213540099561214, 0.027856074273586273, -0.0016999795334413648, 0.00337944645434618, 0.03623887896537781, -0.0054495069198310375, -0.018926266580820084, 0.010174236260354519, 0.009565696120262146, -0.0035726064816117287, -0.02745949663221836, 0.004793104715645313, 0.0014179316349327564, -0.01170584186911583, -0.02095017395913601, -0.019746771082282066, 0.02323390729725361, -0.03741493448615074, 0.021606577560305595, 0.013900686986744404, -0.01817413978278637, -0.010304149240255356, -0.03571922704577446, 0.024109110236167908, 0.005227287299931049, -0.002687147120013833, 0.01989719644188881, 0.02566806599497795, -0.013476760126650333, -0.019418569281697273, 0.04017729312181473, -0.012416943907737732, -0.00031644917908124626, 0.01725791208446026, -0.03186286240816116, 0.011931479908525944, 0.0107212383300066, 0.0004457211180124432, -0.025927891954779625, 0.019733095541596413, -0.020444197580218315, -0.019486945122480392, -0.021962128579616547, -0.0035042311064898968, 0.015767330303788185, -0.01084431353956461, 0.008847756311297417, -0.002487149555236101, -0.01262206956744194, -0.001996556995436549, 0.009128094650804996, -0.019527969881892204, 0.002652959432452917, 0.016820309683680534, -0.0059520648792386055, -0.02513473853468895, 0.0012350277975201607, 0.028143249452114105, -0.02488858811557293, -0.008478529751300812, 0.015562205575406551, 0.01796901412308216, 0.033750019967556, -0.015808356925845146, 0.019979245960712433, -0.022659555077552795, -0.016013482585549355, 0.02439628727734089, -0.010919526219367981, 0.015151954255998135, -0.0018563878256827593, 0.01877584122121334, 0.02549029141664505, -0.02576379105448723, -0.031206460669636726, -0.06219412013888359, -0.024478336796164513, 0.005746939219534397, 0.03643032908439636, -0.032573964446783066, 0.014550251886248589, -0.004495672415941954, 0.013743423856794834, -0.002128179417923093, 0.013962225057184696, 0.009975948370993137, -0.0020803166553378105, -0.012013530358672142, -0.014112650416791439, 0.01694338582456112, -0.034789323806762695, -0.01593143120408058, -0.04017729312181473, -0.004259777721017599, 0.019733095541596413, 0.009305870160460472, -0.006834105588495731, 0.0145912766456604, -0.025572340935468674, -0.005128143355250359, 0.010509274899959564, -0.033804718405008316, 0.03596537932753563, 0.007869990542531013, 0.009989622980356216, 0.01135712768882513, -0.018926266580820084, 0.00686487415805459, -0.028881702572107315, 0.011589603498578072, -0.007664864882826805, -0.013579322956502438, -0.018857892602682114, 0.04321315512061119, -0.022864680737257004, 0.01638270728290081, 0.020936500281095505, 0.030714159831404686, -0.03079620935022831, -0.011678491719067097, -0.015247679315507412, -0.018857892602682114, 0.03932943940162659, 0.005982833914458752, -0.034324370324611664, -0.027541548013687134, -0.02495696395635605, 0.006102490238845348, -8.755236194701865e-05, 0.021469825878739357, 0.0038837138563394547, 0.00066794065060094, 0.019678395241498947, -0.03413292020559311, -0.003249533474445343, -0.013490435667335987, -0.00942210853099823, -0.02703557163476944, 0.02517576515674591, 0.022085202857851982, 0.014399826526641846, -0.0039623454213142395, -0.01909036748111248, 0.028389401733875275, -0.02334330789744854, -0.006242659874260426, 0.0029332980047911406, -0.017709188163280487, 0.0016657918458804488, -0.0053879693150520325, -0.011261402629315853, -0.007302476093173027, -0.02893640287220478, 0.017695512622594833, -0.013989574275910854, -0.0159998070448637, -0.012669932097196579, -0.007685377262532711, -0.011398153379559517, 0.009524671360850334, 0.012451131828129292, -0.013004970736801624, 0.019924545660614967, -0.0030461170244961977, -0.022591181099414825, 0.009182794950902462, 0.01750406250357628, 0.030139807611703873, -0.0014692130498588085, -0.004974299110472202, -0.008375966921448708, 0.0023828772827982903, -0.028526151552796364, -0.006799918133765459, 0.02499798871576786, -0.052512187510728836, 0.0017572437645867467, -0.08845021575689316, 0.018078414723277092, 0.00034230356686748564, -0.02155187726020813, -0.003603375284001231, -0.007596489507704973, 0.010181074030697346, -0.018201489001512527, 0.008259729482233524, 0.0010170817840844393, -0.026803094893693924, -0.0029367166571319103, -0.0008747757528908551, 0.008977669291198254, 0.0016375870909541845, 0.004892248660326004, 0.03771578520536423, -0.014085300266742706, 0.0064443666487932205, 0.0023469801526516676, -0.010960550978779793, 0.01631433330476284, 0.04469005763530731, 0.011152002029120922, -0.01803738996386528, 0.010611837729811668, 0.007309313397854567, 0.0005692238919436932, -0.024615086615085602, 0.012827195227146149, 0.00048589156358502805, -0.03273806720972061, -0.0042153336107730865, 0.025503965094685555, 0.012758820317685604, -0.003223892766982317, 0.012943433597683907, 0.008211866952478886, 0.0013555391924455762, 0.034406423568725586, -0.029100503772497177, -0.028416750952601433, 0.021456150338053703, -0.006389666348695755, -0.015083578415215015, 0.00868365541100502, -0.018816865980625153, 0.006991368718445301, 0.018078414723277092, -0.013264796696603298, 0.022167254239320755, -0.002610224997624755, -0.009784497320652008, -0.01718953624367714, 0.0221535786986351, -0.00603753374889493, 0.017353637143969536, 0.005849502049386501, -0.01761346310377121, -0.0007517003105022013, 0.0309329591691494, -0.018516015261411667, 0.023439032956957817, -0.02945605479180813, -0.0010187911102548242, 0.0011880198726430535, 0.0029538103844970465, -0.0017059623496606946, -0.023931335657835007, -0.0035384187940508127, -0.016218608245253563, 0.0038358510937541723, 0.008423830382525921, 0.04028669372200966, 0.02092282474040985, 0.014126325026154518, 0.0030204763170331717, 0.016286982223391533, -0.01821516454219818, 0.015835706144571304, 0.02492961287498474, 0.004721310455352068, -0.003976020496338606, -0.011220376938581467, 0.03722348064184189, 0.03358592092990875, -0.015835706144571304, 0.011500716209411621, 0.006051208823919296, -0.007193075492978096, -0.019596343860030174, 0.013428897596895695, 0.0159998070448637, 0.013634023256599903, 0.014126325026154518, 0.021606577560305595, -0.0014145128661766648, -0.0015136569272726774, 0.026803094893693924, 0.021524526178836823, 0.013914361596107483, -0.0009093907428905368, 0.01471435185521841, -0.03905593976378441, -0.04064224287867546, -0.014263075776398182, -0.03555512800812721, 0.002297408180311322, 0.005124724470078945, 0.013271634466946125, -0.005302499979734421, 0.020580947399139404, 0.010741750709712505, 0.005517882294952869, -0.01586305722594261, 0.010051161050796509, -0.009934922680258751, 0.01388701144605875, -0.029100503772497177, 0.04860112443566322, -0.0027213345747441053, -0.020102322101593018, 0.016970735043287277, -0.009353733621537685, 0.003979438915848732, 0.02549029141664505, 0.004861479625105858, -0.04392425715923309, 0.021880077198147774, -0.014208375476300716, 0.005374294240027666, -0.003164064371958375, -0.008410154841840267, -0.008581092581152916, -0.02858085185289383, 0.008601605892181396, -0.008854594081640244, -0.006974274758249521, -0.008806731551885605, 0.08314429223537445, 0.01937754452228546, -0.002972613787278533, 0.02032112143933773, -0.0033589338418096304, -0.01534340437501669, 0.006341803818941116, 0.015480155125260353, -0.019856169819831848, -0.027240697294473648, -0.01651945896446705, -0.004037558101117611, -0.023931335657835007, -0.018297215923666954, -0.005394806619733572, -0.009661422111093998, -0.0019196349894627929, 0.02869025245308876, -0.0015700665535405278, 0.0026068061124533415, 0.021114274859428406, 0.017517738044261932, -0.011958830058574677, 0.0010897304164245725, -0.016040831804275513, -0.009934922680258751, 0.028362050652503967, 0.0013880174374207854, 0.014769052155315876, -0.04819086939096451, 0.01001697313040495, 0.00926484540104866, -0.02981160581111908, -0.023917660117149353, 0.0069366684183478355, 0.006488810759037733, 0.011945154517889023, 0.018119439482688904, 0.006365735083818436, -0.006611885968595743, 0.005111049395054579, 0.021141625940799713, -0.012280194088816643, -0.046002864837646484, -0.021086925640702248, -0.015398104675114155, -0.04214650020003319, -0.0029162040445953608, -0.034406423568725586] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_multiobjective_network_synthesis_for_dispersed_computing_in_tactical_environments.json b/database/embeddings/publications_txt/2022_multiobjective_network_synthesis_for_dispersed_computing_in_tactical_environments.json new file mode 100644 index 0000000000000000000000000000000000000000..6b1c570284b2a3d95089e7310ec939d4ccf7b486 --- /dev/null +++ b/database/embeddings/publications_txt/2022_multiobjective_network_synthesis_for_dispersed_computing_in_tactical_environments.json @@ -0,0 +1 @@ +[-0.034215737134218216, 0.019388917833566666, 0.017411045730113983, -0.0032248692587018013, 0.0015339333331212401, 0.02761801891028881, -0.016155024990439415, 0.022839365527033806, -0.029191652312874794, -0.04752666875720024, 0.035630565136671066, 0.03617917001247406, -0.01847938448190689, 0.023445719853043556, -0.009723332710564137, 0.026116568595170975, 0.027589144185185432, -0.013505831360816956, -0.026506368070840836, -0.0027231827843934298, -0.003369239391759038, -0.0020933677442371845, -0.010084258392453194, -0.028498675674200058, -0.0011991749051958323, 0.012415836565196514, 0.01769978553056717, -0.026058819144964218, 0.002515650587156415, -0.0037319695111364126, 0.006280103232711554, -0.016429327428340912, 0.010502931661903858, -0.019345605745911598, -0.004908586386591196, 0.003742797300219536, 0.005345306359231472, -0.03799823671579361, 0.04374416917562485, -0.02906171977519989, 0.00710662268102169, 0.01788746751844883, 0.0005323651130311191, -0.01443701982498169, 0.013267620466649532, 0.005500504281371832, 0.032627664506435394, -0.007250993046909571, -0.005406663753092289, 0.024701740592718124, -0.001759511767886579, 0.028339868411421776, -0.013455302454531193, 0.005572689697146416, -0.025741206482052803, -0.009528432972729206, -0.001524910214357078, 0.004850838333368301, -0.009218037128448486, -0.03840247169137001, 0.026939477771520615, -0.017382171005010605, -0.04103000834584236, -0.012004381977021694, -0.011636237613856792, -0.020890366286039352, -0.01787303015589714, 0.030606480315327644, -0.02337353490293026, -0.012062129564583302, 0.031270582228899, 0.034244611859321594, 0.009088103659451008, -0.019605472683906555, -0.0070633115246891975, -0.021799899637699127, -0.02115023322403431, 0.007954797707498074, -0.008654993027448654, 0.008510623127222061, 0.00310035003349185, -0.017165616154670715, 0.00034536057501100004, 0.02155447006225586, 0.010113132186233997, 0.015693040564656258, -0.014956751838326454, 0.0006212429725565016, -0.008698304183781147, -0.031992435455322266, 0.0040604118257761, 0.03187694028019905, 0.01667475700378418, -0.018378324806690216, -0.024846110492944717, 0.02416757121682167, -0.0241964440792799, 0.031588196754455566, 0.003132833167910576, -0.007629964966326952, 0.005110704805701971, 0.009239692240953445, -0.01989421248435974, -0.020601626485586166, -0.008424000814557076, -0.025293657556176186, -0.006940597202628851, 0.02660742588341236, 0.011001008562743664, 0.007442283444106579, -0.031588196754455566, 0.022290758788585663, -0.011636237613856792, -0.013282057829201221, -0.006915332283824682, -0.03554394096136093, -0.000705609330907464, 0.016530387103557587, 0.0015790490433573723, -0.024138696491718292, 0.03456222265958786, 0.010329687036573887, 0.0061970907263457775, -0.03173257037997246, 0.010098694823682308, 0.015952905640006065, -0.017353298142552376, -0.0071210600435733795, -0.016977934166789055, -0.017757533118128777, 0.016198335215449333, 0.007272648625075817, -0.009073666296899319, 0.018753688782453537, 0.027112722396850586, 0.0022305194288492203, -0.00033069797791540623, 0.015360988676548004, -0.036670029163360596, -0.047411173582077026, 0.00022320984862744808, 0.04934573173522949, -0.02805112861096859, 0.0075289057567715645, -0.004933851305395365, 0.026881730183959007, 0.009283003397285938, -0.006240401417016983, 0.01728111132979393, 0.021395662799477577, -0.004038756247609854, -0.002228714758530259, -0.008683866821229458, 0.02679510787129402, -0.018782561644911766, 0.01650151237845421, -0.0012478998396545649, 0.019027991220355034, 0.03848909214138985, -0.0022070594131946564, 0.031183961778879166, 0.013924505561590195, -0.005323650781065226, -0.03658340871334076, 0.006070766597986221, 0.012747888453304768, 0.03205018490552902, -0.002445270074531436, -0.004915805067867041, 0.0059660980477929115, -0.026260938495397568, 0.0037283601704984903, -0.0011116504902020097, -0.017642037943005562, -0.013368680141866207, 0.0401637889444828, 0.06311865150928497, 0.009773862548172474, -0.012365306727588177, 0.0010890926932916045, 0.019663220271468163, 0.007070530205965042, 0.009983198717236519, 0.03398474305868149, -0.013065502978861332, 0.0248028002679348, 0.030606480315327644, 0.0030768897850066423, -0.007045265287160873, -0.0006189871928654611, 0.034822091460227966, -0.0033836765214800835, 1.0355459380662069e-05, 0.002414591610431671, -0.584410548210144, -0.0023622573353350163, 0.002124046441167593, -0.044177278876304626, -0.020024145022034645, 0.014487548731267452, 0.011138160713016987, 0.015000062994658947, -0.03467772156000137, 0.041751861572265625, -0.019836464896798134, 0.00188042176887393, -0.013635764829814434, -0.01849382184445858, -0.03025999292731285, -0.02216082438826561, -0.0034721032716333866, -0.020197389647364616, 0.016790254041552544, -0.002178185386583209, -0.010712268762290478, 0.00946346577256918, 0.011535178869962692, 0.0070921857841312885, 0.010077039711177349, -0.003066061995923519, 0.023128105327486992, -0.018262829631567, 0.03155932575464249, 0.005922787357121706, -0.043570924550294876, 0.019230110570788383, 0.023720022290945053, -0.025524649769067764, 0.0556691475212574, 0.010300813242793083, -0.026564115658402443, 0.03046211041510105, 0.03326289355754852, 0.01726667582988739, -0.042156096547842026, -0.011289749294519424, -0.010726705193519592, -0.00184432917740196, -0.020226264372467995, 0.003387285629287362, 0.011665111407637596, -0.004890540149062872, -0.010712268762290478, -0.03635241463780403, 0.00026843833620660007, 0.00976664386689663, -0.009506776928901672, -0.001889444887638092, 0.0051648435182869434, -0.0164437647908926, 0.015476484782993793, -0.01703568361699581, 0.013267620466649532, 0.01948997564613819, 0.010510150343179703, 0.009420155547559261, -0.016559261828660965, -0.04287794604897499, 0.000744408811442554, -0.0009654756868258119, -0.004334715195000172, 0.003883558325469494, 0.01473297830671072, -0.03164594620466232, 0.004951897542923689, 0.027805699035525322, 0.005767589434981346, -0.020067457109689713, 0.017642037943005562, 0.02397988922894001, 0.03008674830198288, 0.009528432972729206, -0.013751260936260223, 0.013253184035420418, 0.0032681801822036505, -0.010806108824908733, 0.007803209125995636, -0.03173257037997246, 0.027156032621860504, 0.005652093328535557, -0.014076094143092632, 0.01667475700378418, 0.013058284297585487, 0.0037897175643593073, 0.02415313385426998, 0.020399508997797966, 0.004507959354668856, -0.012365306727588177, -0.007608309388160706, 0.028310995548963547, 0.004760607145726681, 0.022088639438152313, -0.021641092374920845, -0.013780134730041027, -0.02396545186638832, -0.01006260234862566, 0.0082218823954463, -0.03695876896381378, 0.02556796185672283, 0.0046162367798388, -0.012589081190526485, 0.004027928225696087, 0.03326289355754852, -0.018580444157123566, 0.010957697406411171, -0.012350870296359062, -0.039499685168266296, 0.006359506864100695, 0.03386924788355827, -0.03355163335800171, 0.022002017125487328, -0.0014464089181274176, -0.00012418092228472233, 0.02828212082386017, -0.0029668074566870928, 0.007550561334937811, -0.0018768125446513295, -0.004457429517060518, -0.012430273927748203, 0.02597219869494438, 0.016949061304330826, -0.04995208606123924, -0.02152559533715248, -0.001170300878584385, -0.007629964966326952, -0.0019526068354025483, 0.02823881059885025, -0.010394654236733913, 0.02802225388586521, -0.008597245439887047, 0.019056865945458412, -0.01650151237845421, -0.0009086299105547369, -0.04293569549918175, -0.011203126981854439, -0.01360689103603363, 0.00279536796733737, -0.018407199531793594, -0.026535240933299065, -0.005875866860151291, -0.026665175333619118, 0.003890776773914695, -0.00020268221851438284, 0.009427373297512531, -0.021597780287265778, 0.023705586791038513, -0.01502893678843975, 0.012155970558524132, -0.02032732404768467, -0.021669965237379074, -0.0010548047721385956, -0.010546242818236351, -0.03112621419131756, -0.011621800251305103, -0.0008535887463949621, 0.022002017125487328, -0.026751797646284103, -0.023041483014822006, -0.02048613131046295, 0.010943260975182056, -0.01808958500623703, 0.013087158091366291, 0.024268629029393196, -0.0231858529150486, -0.03256991505622864, -0.010113132186233997, -0.004334715195000172, 0.012235374189913273, -0.01650151237845421, 0.0032862266525626183, 0.0005174769321456552, 0.006994735915213823, 0.007077748887240887, -0.0033566069323569536, -0.016429327428340912, 0.01352748740464449, -0.019388917833566666, 0.0020338150206953287, 0.02416757121682167, 0.027184907346963882, 0.038315851241350174, 0.0038979952223598957, 0.004219219088554382, -0.00039318320341408253, -0.0036327149718999863, -0.0012442906154319644, -0.012625173665583134, 0.03430235758423805, -0.02377777174115181, -0.010113132186233997, -0.008561152964830399, -0.0008107288740575314, 0.005312823224812746, 0.043801918625831604, 0.02317141555249691, 0.006929769180715084, 0.01830613985657692, -0.024340813979506493, -0.01046683918684721, -0.007149933837354183, 0.01650151237845421, -0.001798311248421669, 0.017208926379680634, 0.011426900513470173, 0.03866233676671982, 0.0091314148157835, -0.0067168232053518295, -0.008813800290226936, 0.004464648198336363, 0.025871139019727707, -0.00963671039789915, 0.005027691833674908, -0.02255062386393547, 0.003421573666855693, -0.020255139097571373, -0.025495776906609535, 0.035861555486917496, -0.019807590171694756, -0.01687687635421753, -0.005738715175539255, 0.03254104033112526, 0.01403278298676014, 0.015187744051218033, -0.0106833940371871, -0.028080003336071968, 0.0023008999414741993, -0.007810427341610193, -0.0008950951742008328, -0.008561152964830399, -0.017151178792119026, 0.021005863323807716, -0.012199281714856625, 0.037911612540483475, -0.01768534816801548, 0.025755641981959343, 0.026564115658402443, 0.036467909812927246, -0.019230110570788383, 0.009434591978788376, -0.019186798483133316, 0.005735105834901333, -0.004172298591583967, -0.0009564525098539889, -0.004800308961421251, -0.012877820990979671, 0.00771658681333065, -0.017627600580453873, 0.005973316729068756, 0.04697806015610695, -0.005572689697146416, -0.01948997564613819, -0.00452600559219718, 0.028137750923633575, 0.01832057721912861, 0.01475463341921568, 0.006305368151515722, -0.00026302444166503847, 0.0082218823954463, -0.007882612757384777, -0.0324832946062088, -0.010784453712403774, 0.0072149005718529224, -0.004432165063917637, -0.021857647225260735, 0.002360452665016055, -0.0172522384673357, 0.005839774385094643, -0.006294540595263243, 0.024874985218048096, 0.006189872045069933, 0.008084731176495552, -0.009860483929514885, 0.023315785452723503, 0.013375898823142052, -0.03473546728491783, 0.009181944653391838, 0.005688185803592205, 0.02094811573624611, 0.018970243632793427, -0.018551569432020187, 3.191934592905454e-05, 0.0162416473031044, -0.02602994628250599, -0.01886918395757675, 0.01852269656956196, 0.017353298142552376, -0.013455302454531193, -0.02948039397597313, -0.01583741046488285, 0.0014608459314331412, 0.026679612696170807, -0.006886458024382591, -0.0332917682826519, 0.003970180172473192, 0.015707477927207947, 0.011910540983080864, 0.020601626485586166, -0.015924032777547836, 0.06144395470619202, -0.020601626485586166, 0.002715964335948229, -0.005605172831565142, 0.011051538400352001, -0.0092324735596776, 0.01647263951599598, -0.002133069559931755, -0.02906171977519989, -0.009398499503731728, 0.03796936199069023, -0.009795517660677433, 0.01933116838335991, -0.007875394076108932, 0.019850902259349823, -0.003273594193160534, 0.004338324535638094, -0.03231004998087883, -0.015389862470328808, 0.01891249604523182, 0.04689143970608711, 0.04004829004406929, -0.007380926050245762, 0.014169934205710888, -0.007543342653661966, -0.00024046660109888762, -0.03848909214138985, -0.0013642982812598348, 0.014985626563429832, -0.013419209979474545, -0.01973540522158146, 0.010365779511630535, -0.007164370734244585, -0.01628495752811432, 0.01098657213151455, -0.00176402332726866, -0.0028765760362148285, -0.00368865835480392, -5.33774946234189e-05, -0.016400454565882683, 0.01628495752811432, -0.009737769141793251, 0.000644251995254308, 0.0252070352435112, 0.020413946360349655, -0.03210793063044548, 0.022651683539152145, 0.016602572053670883, 0.008012546226382256, -0.025365842506289482, -0.001402195543050766, 0.021900959312915802, 0.03493758663535118, 0.009283003397285938, -0.012228155508637428, 0.013830664567649364, 0.04426390305161476, 0.028599735349416733, 0.018854746595025063, 0.018335014581680298, 0.022103076800704002, -0.00874161534011364, 0.007651620078831911, -0.013736823573708534, 0.00705609330907464, -0.04244483634829521, -0.01912905089557171, 0.033407263457775116, -0.011961070820689201, -0.002410982269793749, 0.03548619523644447, -0.005125141702592373, -0.027387026697397232, -0.03776724264025688, 0.014971189200878143, -0.011239219456911087, 0.0018641800852492452, -0.011347496882081032, 0.006038283463567495, -0.03641016408801079, -0.005078221671283245, -0.017367733642458916, -0.0017360516358166933, -0.005027691833674908, -0.011542396619915962, -0.0022593934554606676, -0.02070268616080284, -0.003746406640857458, -0.00845287460833788, 0.007463939022272825, -0.006128514651209116, -0.009391280822455883, -0.05595788732171059, -0.006045501679182053, 0.011614582501351833, 0.005583517253398895, 0.040134914219379425, 0.0015871698269620538, 0.005237028934061527, 0.0031129822600632906, -0.034042492508888245, -0.015216618776321411, -0.00284589733928442, -0.047064684331417084, 0.007738242391496897, 0.0068395379930734634, -0.009398499503731728, -0.0033205144573003054, -0.01664588414132595, 0.02800781838595867, -0.008178571239113808, -0.012300340458750725, -0.010055383667349815, -0.0013642982812598348, 0.012856165878474712, 0.02722821943461895, 0.007723805494606495, 0.01564972847700119, 0.030808599665760994, 0.008517841808497906, 0.005251465830951929, -0.01515887025743723, -0.014285430312156677, -0.03785386309027672, 0.0153321148827672, 0.008322942070662975, -0.01097213476896286, 0.004529614932835102, -0.022868238389492035, 0.010712268762290478, 0.02478836290538311, -0.019403353333473206, -0.0017676325514912605, 0.0020717123989015818, 0.00345044769346714, 0.023070357739925385, 0.0006343265413306653, 0.013859538361430168, -0.0036597843281924725, -0.013816227205097675, 0.004089285619556904, 0.0008292262791655958, 0.02522147260606289, 0.012617954984307289, -0.00203020591288805, 0.03193468600511551, -0.012127096764743328, -0.02481723576784134, -0.028917349874973297, 0.008676649071276188, -0.010885512456297874, 0.034013617783784866, -0.02539471723139286, -0.02317141555249691, 0.005500504281371832, 0.011975507251918316, -0.0038763396441936493, -0.010560679249465466, -0.026896167546510696, -0.04426390305161476, 0.020962553098797798, -0.0011856402270495892, 0.0057892450131475925, 0.011029883287847042, 0.012257029302418232, -0.023691149428486824, -0.021164670586586, -0.0004263432347215712, 0.01494231540709734, 0.039932794868946075, -0.002815218875184655, 0.019417790696024895, -0.00752168707549572, -0.01360689103603363, -0.013549142517149448, -0.03817147761583328, -0.035284075886011124, -0.008914859034121037, 0.04230046644806862, 0.03112621419131756, 0.0369298942387104, 0.006926159840077162, 0.0006022943998686969, 0.010308031924068928, 0.005565471015870571, 0.005428319331258535, -0.005280339624732733, -0.004955506883561611, -0.01564972847700119, 0.01950441300868988, 0.03193468600511551, -0.02130904048681259, 0.004587362986057997, -0.011751733720302582, 0.020659374073147774, 0.01645820215344429, -0.010502931661903858, -0.031992435455322266, 0.0009212623117491603, -0.0385468415915966, 0.008979826234281063, 0.013267620466649532, 0.011758952401578426, 0.005861429963260889, -0.04172298684716225, -0.01372238714247942, 0.02522147260606289, 0.03300302475690842, -0.017959652468562126, -0.0023063139524310827, 0.023027045652270317, 0.0012803832069039345, 0.014985626563429832, 0.017829718068242073, 0.011369152925908566, 0.00936240702867508, -0.008734396658837795, -0.030115623027086258, -0.0069514247588813305, 0.002670848509296775, -0.0028711622580885887, 0.010798890143632889, 0.017800845205783844, 0.015389862470328808, 0.0014626504853367805, 0.017959652468562126, 0.013159343041479588, -0.017367733642458916, -0.005695404019206762, -0.013715168461203575, -0.013996690511703491, -0.012661266140639782, -0.03955743461847305, 0.0027304012328386307, 0.028744105249643326, -0.004450211301445961, 0.0008932905620895326, -0.007160761393606663, -0.007456720340996981, -0.025293657556176186, 0.013794572092592716, -0.004854447674006224, 0.012509677559137344, -0.01451642345637083, -0.0006844049785286188, 0.031241709366440773, -0.02477392554283142, -0.012516896240413189, 0.021251292899250984, 0.023691149428486824, -0.0017450747545808554, 0.02825324609875679, 0.03256991505622864, -0.039153195917606354, -0.003210432128980756, -0.00018666614778339863, 0.016198335215449333, -0.014530859887599945, -0.026304248720407486, -0.0001506863918621093, 0.032627664506435394, -0.00036543706664815545, -0.020774871110916138, -0.012971661984920502, -0.01790190488100052, 0.009939887560904026, -0.018450511619448662, -0.017540978267788887, 0.014270993880927563, 0.0006302661495283246, 0.006973080337047577, 0.026982789859175682, -0.023113667964935303, 0.039730679243803024, 0.008322942070662975, -0.02320029027760029, -0.011917759664356709, -0.009066448546946049, -0.004396072588860989, 0.007795990444719791, -0.006067157257348299, 0.035024210810661316, -0.0018822264391928911, 0.010697831399738789, 0.03955743461847305, 0.012119878083467484, 0.01451642345637083, -0.011102068237960339, 0.006691558286547661, 0.03254104033112526, 0.010308031924068928, -0.004966334905475378, 0.029119467362761497, -0.024297503754496574, 0.020154079422354698, -0.0043491520918905735, 0.023431282490491867, -0.018147332593798637, -0.002905450062826276, -0.008849892765283585, -0.009896576404571533, 0.01138358935713768, 0.0020410337019711733, 0.013859538361430168, 0.013390335254371166, -0.02663630060851574, 0.0005386812845245004, -0.011549615301191807, -0.004569316748529673, -0.010611209087073803, -0.025856701657176018, 0.006680730730295181, -0.022637246176600456, 0.025322532281279564, 0.016833564266562462, 0.012155970558524132, 0.03271428495645523, 0.03317626938223839, -0.03461997210979462, -0.004609018564224243, -0.004684812854975462, -0.017107868567109108, -0.03418686240911484, 0.007492813281714916, -0.012069348245859146, -0.031617071479558945, 0.022218571975827217, 0.00142294866964221, -0.016530387103557587, -0.013043846935033798, -0.0039052136708050966, -0.0044105094857513905, -0.00017053728515747935, -0.016588134691119194, -0.006139342673122883, 0.014068875461816788, -0.008633337914943695, -0.024138696491718292, -0.017728660255670547, 0.03306077420711517, -0.008553934283554554, 0.010293594561517239, -0.002270221244543791, 0.0048652756959199905, 0.03389812260866165, -0.016097277402877808, -0.009838828817009926, -0.0020681030582636595, -0.03069310262799263, 0.0031490749679505825, -0.008683866821229458, 0.02441299892961979, -0.00831572338938713, -0.013347024098038673, 0.014841255731880665, -0.012747888453304768, -0.02822437323629856, 0.009434591978788376, 0.015909595414996147, -0.008582808077335358, 0.00976664386689663, -0.006067157257348299, 0.01556310709565878, -0.013960598036646843, -0.025322532281279564, -0.04385966435074806, -0.028541987761855125, -0.00477143470197916, -0.02623206377029419, -0.01322430931031704, 0.006622982677072287, 0.028325432911515236, 0.023633399978280067, -0.018854746595025063, -0.031010717153549194, -0.009903795085847378, -0.025250347331166267, -0.015346551313996315, 0.0034143549855798483, -0.006983908358961344, 0.0038330287206918, 0.01847938448190689, -0.025105977430939674, 0.023633399978280067, -0.023517904803156853, 0.013715168461203575, -0.010416309349238873, -0.014285430312156677, -0.011130942031741142, 0.0035045864060521126, 0.011636237613856792, -0.006204308941960335, -0.06467784941196442, -0.004464648198336363, 0.023315785452723503, 0.01871037669479847, -0.0030606482177972794, 0.01167233008891344, 0.003923260141164064, -0.009607836604118347, -0.017165616154670715, -0.015129996463656425, -0.02415313385426998, -0.028975097462534904, 0.008748834021389484, -0.04042365401983261, -0.015274366363883018, -0.0021384835708886385, -0.010394654236733913, 0.01664588414132595, -0.0007218509563244879, 0.020009709522128105, -0.01788746751844883, 0.022998172789812088, -0.029567016288638115, -0.02052944153547287, 0.001101725036278367, -0.0034251827746629715, 0.016357142478227615, 0.022694993764162064, 0.004507959354668856, 0.023662274703383446, 0.01830613985657692, 0.010142005980014801, -0.023214727640151978, 0.001366102951578796, -0.014797944575548172, -0.005969707388430834, 0.014783508144319057, -0.010459620505571365, 0.009744987823069096, -0.016429327428340912, 0.021193545311689377, -0.03337838873267174, -0.006482221651822329, -0.026275375857949257, -0.010142005980014801, -0.01705011911690235, 0.01625608466565609, 0.026982789859175682, -0.025293657556176186, -0.0200818944722414, -0.004666766617447138, -0.005955270491540432, 0.0021114139817655087, 0.0009763034177012742, 0.008351815864443779, -0.02562570944428444, -0.00031287726596929133, 0.0014337764587253332, -0.014899004250764847, 0.0009501363383606076, -0.02054387889802456, 0.002934324089437723, -0.021049173548817635, -0.009578962810337543, 0.17566965520381927, -0.0033114913385361433, 0.011130942031741142, 0.03880670666694641, 0.003854684066027403, -0.003412550548091531, 0.03308964893221855, 0.0017062752740457654, -0.005594344809651375, 0.01689131185412407, 0.013585234992206097, -0.006857584230601788, -0.011361934244632721, -0.009304659441113472, 0.012148751877248287, 0.010308031924068928, -0.032858654856681824, -0.030750852078199387, -0.012430273927748203, -0.00012519603478722274, -0.0005544718005694449, -0.004890540149062872, 0.006348679307848215, -0.0268239825963974, 0.009860483929514885, -0.018363889306783676, -0.004655938595533371, -0.021872084587812424, 0.014364833943545818, 0.018825873732566833, -0.017411045730113983, 0.009304659441113472, 0.00833737850189209, 0.014126623049378395, -0.0014698690501973033, 0.0016449178801849484, 0.007391754072159529, -0.014870129525661469, 0.022406253963708878, 0.0035713575780391693, 0.004150643013417721, -0.027805699035525322, -0.00594083359465003, -0.023705586791038513, 0.016097277402877808, -0.002481362782418728, -0.02949483133852482, 0.0024416609667241573, -0.01866706646978855, 0.0026401698123663664, -0.03678552433848381, -0.002560766413807869, 0.025293657556176186, 0.017006808891892433, 0.004821964539587498, -0.0014012932078912854, 0.0028007817454636097, 0.0393553152680397, 0.014595826156437397, 0.010077039711177349, 0.003075085114687681, 0.018652629107236862, -0.004562098067253828, 0.019417790696024895, 0.008770489133894444, 0.01413384173065424, -0.007990890182554722, 0.006348679307848215, 0.02477392554283142, -0.01787303015589714, -0.011174253188073635, -0.003134637838229537, -0.019591035321354866, -0.003569553140550852, -0.012155970558524132, -0.021078048273921013, 0.00407123938202858, -0.011701203882694244, 0.02704053744673729, 0.03597705066204071, -0.019461102783679962, 0.01827726699411869, -0.008813800290226936, 0.017584290355443954, 0.004446601960808039, -0.029595889151096344, 0.031039591878652573, -0.016414891928434372, -0.011809482239186764, 0.0028964269440621138, -0.030779724940657616, 0.023431282490491867, -0.012047693133354187, -0.006305368151515722, -0.011867229826748371, -0.011296967975795269, 0.014415363781154156, -0.015476484782993793, -0.003959352616220713, 0.020832618698477745, -0.03539957106113434, 0.10227184742689133, 0.020774871110916138, 0.0021457020193338394, 0.004504350014030933, -0.006478612311184406, -0.001941779162734747, 0.020053019747138023, 0.018753688782453537, -0.000983521924354136, -0.015173307619988918, -0.04391741380095482, 0.0021366789005696774, 0.0004624357679858804, -0.011657892726361752, 0.027300404384732246, 0.01930229552090168, -0.025163725018501282, 0.03395586833357811, -0.009528432972729206, -0.0015844629378989339, -0.03877783566713333, -0.006583280861377716, 0.010502931661903858, -7.517400808865204e-05, -6.637645128648728e-05, 0.002264807466417551, -0.011340279132127762, -0.019027991220355034, -0.007752679288387299, 0.0369298942387104, 8.464830170851201e-05, 0.028931787237524986, -0.001010591397061944, 0.006991126574575901, -0.018623754382133484, 0.005576298572123051, -0.001675596577115357, -0.002829655772075057, 0.013043846935033798, -0.022882675752043724, -0.017555415630340576, 0.002358647994697094, 0.009586180560290813, 0.006222355179488659, -0.02582782693207264, -0.004818355198949575, -0.011585707776248455, -0.026318686082959175, -0.025654584169387817, 0.014487548731267452, -0.012661266140639782, 0.011210345663130283, -0.019042428582906723, 0.02294042333960533, -0.033667128533124924, -0.019648782908916473, -0.03744962811470032, -0.00783208291977644, 0.002454293193295598, -0.030375488102436066, -0.005803681910037994, 0.025885576382279396, 0.004284185357391834, -0.030606480315327644, -0.004403290804475546, -0.18525584042072296, 0.0324832946062088, 0.026578553020954132, -0.01667475700378418, -0.004699249751865864, -0.01198272593319416, 0.03378262370824814, 0.0023225555196404457, -0.015317677520215511, 0.007406190969049931, 0.027127159759402275, 0.013982253149151802, -0.011607363820075989, -0.023720022290945053, -0.004493522457778454, 0.02823881059885025, -0.0025192599277943373, 0.014350397512316704, -0.0002903194399550557, 0.02806556597352028, 0.02376333437860012, -0.051482412964105606, 0.00467037595808506, -0.012285903096199036, -0.00276829837821424, 0.01827726699411869, 0.0004746170016005635, 0.03170369565486908, -0.025004917755723, -0.00249038590118289, 0.020399508997797966, -0.0009699872462078929, 0.017165616154670715, 0.008250756189227104, 0.016703631728887558, 0.021381225436925888, -0.014704104512929916, 0.011621800251305103, -0.0035731622483581305, 0.05650649219751358, -0.0034522523637861013, 0.019995272159576416, -0.0010024704970419407, -0.01221371814608574, -0.010625646449625492, 0.012877820990979671, -0.00395574327558279, 0.017324423417448997, -0.00473173288628459, -0.033436138182878494, 0.020413946360349655, -0.008698304183781147, 0.006460566073656082, -0.007305131759494543, 0.015216618776321411, 0.02457180619239807, 0.01888362132012844, -0.009824391454458237, 0.01627052016556263, 0.016313832253217697, -0.02171327732503414, -0.029119467362761497, 0.013744042254984379, -0.0033890902996063232, -0.029350459575653076, -0.013426427729427814, -0.02402319945394993, 0.011910540983080864, -0.045620981603860855, 0.008294067345559597, 0.0008021568646654487, 0.005969707388430834, -0.0013345220359042287, -0.004428555723279715, 0.03308964893221855, 0.007254602387547493, -0.0003667905111797154, 0.0068395379930734634, 0.01554866973310709, -0.004832792095839977, 0.01097213476896286, 0.0357171855866909, -0.004861666355282068, -0.00513596972450614, 0.034244611859321594, -0.03196356073021889, 0.02275274321436882, 0.005608782172203064, 0.01686243899166584, 0.003908822778612375, 0.00965114776045084, -0.019403353333473206, 0.016703631728887558, -0.005208154674619436, 0.014797944575548172, -0.000720497511792928, 0.004832792095839977, 0.0014509204775094986, 0.005637655965983868, -0.007113841362297535, 0.003944915719330311, -0.0014725759392604232, -0.011780607514083385, 0.021900959312915802, 0.010510150343179703, 0.02457180619239807, -0.015519795939326286, 0.010654520243406296, 0.008438438177108765, -0.03479321673512459, -0.02012520469725132, 0.03170369565486908, 0.013520268723368645, 0.038113731890916824, -0.003298858879134059, 0.02844092808663845, 0.014285430312156677, -0.018811436370015144, 0.035024210810661316, -0.013022191822528839, 0.04209834709763527, 0.0239943265914917, -0.0039052136708050966, 0.0156352911144495, -0.002900036284700036, -0.040510278195142746, -0.09701677411794662, -0.020024145022034645, 0.01931673288345337, 0.04027928411960602, -0.02825324609875679, 0.008351815864443779, 0.0023929360322654247, 0.007990890182554722, -0.009629491716623306, 0.008597245439887047, 0.0064028180204331875, -0.001607020734809339, -0.008799362927675247, -0.009499559178948402, -0.005247856490314007, -0.030000125989317894, -0.015591980889439583, -0.05145353823900223, -0.0018046274781227112, 0.04065464809536934, 0.006059939041733742, -0.00984604749828577, -0.0002041484840447083, -0.018580444157123566, -0.010142005980014801, 0.02442743629217148, -0.02685285545885563, 0.006377553101629019, 0.003672416787594557, 0.013816227205097675, 0.01811845973134041, -0.01567860320210457, 0.027372589334845543, -0.026073256507515907, -0.0064028180204331875, -0.02273830585181713, -0.0014852083986625075, -0.026506368070840836, 0.01888362132012844, -0.022853801026940346, -0.0028549206908792257, 0.009896576404571533, 0.01728111132979393, -0.0064316922798752785, -0.026333123445510864, 0.013491394929587841, -0.029220527037978172, 0.020875930786132812, 0.017771970480680466, -0.018002962693572044, -0.009853266179561615, -0.023835519328713417, -0.007969235070049763, -0.008611681871116161, 0.011109285987913609, 0.0061357333324849606, 0.004179517272859812, -0.0025210645981132984, -0.03921094536781311, -0.00395574327558279, -0.010091476142406464, -0.003778889775276184, -0.006063548382371664, 0.00905201118439436, -0.008128042332828045, -0.0029234965331852436, -0.03418686240911484, -0.010654520243406296, -0.0018948587821796536, -0.0229837354272604, -0.022319631651043892, -0.007211291231215, -0.029971253126859665, -0.0012352674966678023, -0.025957761332392693, -0.0011459384113550186, -0.010423528030514717, -0.023720022290945053, 0.014610263518989086, -0.012011599726974964, -0.013621327467262745, -0.00976664386689663, -0.00472090533003211, -0.027488084509968758, 0.00032144924625754356, 0.010149224661290646, 0.00447547622025013, 0.006305368151515722, 0.020630501210689545, -0.014458674937486649, 0.007099404465407133, 0.002560766413807869, 0.01930229552090168, 0.005016864277422428, -0.007323177997022867, -0.013390335254371166, 0.0025733986403793097, -0.02439856342971325, -0.0154331736266613, 0.019749842584133148, -0.03903770074248314, 0.02253618650138378, -0.07582322508096695, 0.017829718068242073, 0.008734396658837795, -0.023720022290945053, -0.010416309349238873, -0.021251292899250984, -0.01605396531522274, -0.016183897852897644, 0.01035134308040142, 0.006518314126878977, -0.02760358154773712, -0.0156352911144495, -4.81468941870844e-06, 0.013361461460590363, -0.015014500357210636, -0.01411218661814928, 0.027300404384732246, -0.021785462275147438, 0.023821081966161728, 0.03461997210979462, -0.03144382685422897, 0.01709343120455742, 0.027704639360308647, 0.026058819144964218, -0.03981729969382286, -0.0012506068451330066, 0.005828946363180876, -0.020413946360349655, -0.027502521872520447, -0.003387285629287362, -0.0010719486745074391, -0.025134850293397903, -0.04689143970608711, 0.022189699113368988, -0.026520805433392525, -0.004540442489087582, 0.027719076722860336, 0.014162716455757618, 0.004096504300832748, 0.04230046644806862, -0.01990864984691143, -0.025481339544057846, 0.007680494338274002, 0.003491954179480672, -0.005128751043230295, -0.001349861267954111, -0.020601626485586166, 0.015794098377227783, 0.005233419593423605, 0.008503404445946217, 0.017829718068242073, -0.0090303560718894, 0.000902764848433435, -0.009297440759837627, 0.023691149428486824, 0.005662920884788036, 0.0162416473031044, 0.009911013767123222, 0.0036453474313020706, -0.018248392269015312, 0.017338860780000687, -0.016977934166789055, 0.03433123230934143, 0.006482221651822329, 0.013765698298811913, -0.008561152964830399, -0.03332063928246498, 0.01259629987180233, -0.010618427768349648, 0.006994735915213823, -0.033638253808021545, -0.003049820428714156, 0.029538141563534737, 0.021005863323807716, 0.011636237613856792, -0.003203213680535555, 0.0037319695111364126, 0.007846520282328129, -0.003710313932970166, 0.015519795939326286, 0.02822437323629856, -0.0063017588108778, -0.01138358935713768, 0.011174253188073635, 0.019605472683906555, 0.009730551391839981, -0.006460566073656082, 0.02685285545885563, -0.004240874666720629, 0.0039737895131111145, 0.005605172831565142, 0.009506776928901672, -0.004273357801139355, 0.008048638701438904, 0.013137687928974628, 0.017006808891892433, 0.006955034099519253, -0.0011197712738066912, 0.026766233146190643, 0.02722821943461895, 0.004879712592810392, 0.009593399241566658, 0.02923496440052986, -0.018999118357896805, -0.0427335761487484, 0.02052944153547287, -0.011578490026295185, -0.009932669810950756, 0.00447547622025013, -0.00042205723002552986, -0.02679510787129402, 0.01765647530555725, 0.005893913097679615, 0.006186262704432011, -0.03106846660375595, 0.013642983511090279, 0.0004360431048553437, 0.007824864238500595, -0.028123313561081886, 0.02845536544919014, 0.004471866879612207, -0.016732504591345787, 0.023272475227713585, 0.010921604931354523, 0.014162716455757618, 0.01869593933224678, 0.02719934470951557, -0.03802710771560669, 0.027921196073293686, -0.0023730851244181395, 0.015909595414996147, -0.011325841769576073, 0.0030101186130195856, -0.008676649071276188, -0.008128042332828045, -0.009643929079174995, 0.00498077180236578, -0.008510623127222061, -0.0029650027863681316, 0.08257975429296494, 0.03473546728491783, -0.004977162461727858, -0.02561127208173275, -0.03236779570579529, -0.010474057868123055, 0.005359743256121874, 0.01137637160718441, -0.022045329213142395, -0.028931787237524986, -0.005464411806315184, 0.010228628292679787, -0.0134119912981987, -0.027083847671747208, -0.015115559101104736, -0.001340838149189949, -0.011650674976408482, 0.05055844038724899, -0.008748834021389484, 0.004562098067253828, 0.0345044769346714, 0.0032320877071470022, -0.01027193944901228, 0.009008700028061867, -0.013253184035420418, -0.020976988598704338, 0.019143488258123398, -0.0075000314973294735, 0.010365779511630535, -0.06057773157954216, -0.0052442471496760845, -0.0001045555982273072, -0.028094438835978508, -0.014740196987986565, -0.0063089774921536446, 0.01849382184445858, 0.025293657556176186, 0.0023478202056139708, 0.016515949741005898, 0.01829170435667038, 3.809455665759742e-05, 0.023315785452723503, -0.007348442915827036, -0.04103000834584236, -0.02112135849893093, 0.00016546178085263819, -0.03112621419131756, -0.005626828409731388, -0.04735342413187027] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_network_synthesis_for_tactical_environments_scenario_challenges_and_opportunities.json b/database/embeddings/publications_txt/2022_network_synthesis_for_tactical_environments_scenario_challenges_and_opportunities.json new file mode 100644 index 0000000000000000000000000000000000000000..7fc6af35bb9a111f5ed52f8f3900c22a7d062855 --- /dev/null +++ b/database/embeddings/publications_txt/2022_network_synthesis_for_tactical_environments_scenario_challenges_and_opportunities.json @@ -0,0 +1 @@ +[-0.009666942991316319, -0.0023727950174361467, 0.002298974897712469, 0.003610163927078247, 0.020416583865880966, 0.022638222202658653, -0.010362963192164898, 0.006165752187371254, -0.028557907789945602, -0.052616290748119354, 0.025619156658649445, 0.018926117569208145, -0.005522461142390966, 0.005170935764908791, 0.004046055022627115, 0.02256791852414608, 0.03610866889357567, -0.0017567472532391548, -0.015059339813888073, 0.002571406774222851, -0.01888393424451351, 0.004875654354691505, -0.01989632658660412, -0.0005281665944494307, -0.011255837045609951, 0.01258460246026516, 0.008563154377043247, -0.046823155134916306, -0.02231482043862343, 0.00016840254829730839, -0.00034757054527290165, -0.00541700329631567, -0.011150379665195942, -0.01407506875693798, 2.2698091925121844e-05, 0.004372973460704088, 0.009716156870126724, -0.03428073599934578, 0.035293132066726685, -0.0196854118257761, 0.005684162490069866, 0.040720678865909576, 0.0008379481732845306, -0.021738318726420403, -0.01804027333855629, 0.010159078054130077, 0.02817825973033905, -0.004179634619504213, -0.014665631577372551, 0.027545515447854996, 0.00446437019854784, 0.03222782909870148, -0.03838655352592468, -0.0009666943224146962, -0.007382029201835394, -0.01150190457701683, -0.010236414149403572, 0.025225449353456497, -0.014651570469141006, -0.02635032869875431, 0.011776094324886799, -0.01452502142637968, -0.02833293192088604, -0.0082327201962471, -0.006366121582686901, -0.019854143261909485, -0.014293015003204346, 0.03692420572042465, -0.019024543464183807, -0.012394778430461884, 0.020036935806274414, 0.04460151866078377, 0.0023306121584028006, -0.038302186876535416, 0.014124282635748386, -0.011396447196602821, -0.0061903586611151695, -0.005311545915901661, -0.011094135232269764, 0.018124639987945557, 0.004756135866045952, -0.0144125334918499, -0.002599528757855296, 0.018237126991152763, 0.012064345180988312, 0.010053620673716068, -0.018433982506394386, 0.004271031357347965, 0.011298020370304585, -0.02464894764125347, 0.016170158982276917, 0.0052763931453228, 0.01227525994181633, -0.005434579681605101, -0.03309961408376694, 0.013758696615695953, -0.02398807927966118, 0.029190652072429657, 0.007093778345733881, -0.031946610659360886, 0.014665631577372551, 0.001225065323524177, -0.016127975657582283, -0.024592703208327293, -0.0018630835693329573, -0.02578788809478283, 0.007881195284426212, 0.028248565271496773, 0.025591034442186356, 0.019615106284618378, -0.027953283861279488, 0.013315774500370026, -0.0031953640282154083, -0.004967051092535257, -0.0006468063802458346, -0.0388646274805069, 0.00931541807949543, -0.000655594514682889, -0.007550761569291353, -0.019671350717544556, 0.04544517770409584, -0.007104324176907539, -0.002444857731461525, -0.0375710129737854, 0.019910387694835663, 0.00970209576189518, 0.002182971453294158, -0.025872254744172096, -0.016001427546143532, -0.023256907239556313, 0.0035117368679493666, 0.008851404301822186, -0.003237547120079398, 0.03484317660331726, 0.006619219668209553, 0.004411641508340836, -0.013800879009068012, -0.003283245489001274, -0.03129980340600014, -0.031693510711193085, -0.0020634529646486044, 0.04763869568705559, -0.02910628728568554, 0.0015493473038077354, 0.006749283988028765, 0.029809337109327316, 0.0005505763692781329, -0.001813870039768517, 0.0031408776994794607, 0.029246896505355835, 0.001791020855307579, 0.007747615221887827, -0.018490225076675415, 0.01744971051812172, -0.0013305229367688298, 0.004763166420161724, -0.01683102734386921, 0.023734981194138527, 0.016254525631666183, -0.007255480159074068, 0.018827689811587334, 0.008598306216299534, -0.008345208130776882, -0.025562912225723267, -0.0005598038551397622, 0.023889653384685516, 0.024916106835007668, 0.016170158982276917, 0.005279908422380686, -0.007628096733242273, -0.019741656258702278, 0.0033148827496916056, 0.006327453535050154, -0.014363319613039494, -0.0012083678739145398, 0.05092897266149521, 0.04567015543580055, -0.0042886072769761086, -0.016535745933651924, -0.018251188099384308, 0.006777405738830566, 0.015621780417859554, 0.015270254574716091, 0.019080787897109985, -0.0037261671386659145, 0.03281839191913605, 0.030428022146224976, -0.0025204357225447893, -0.004524129442870617, -0.00501274922862649, 0.02452239766716957, 0.005536521784961224, 0.016634171828627586, 0.006840680260211229, -0.6092353463172913, -0.016437318176031113, 0.009280265308916569, -0.02733459882438183, -0.0032639114651829004, 0.022919442504644394, 0.002248003613203764, 0.0027331083547323942, -0.023172540590167046, 0.0494103841483593, -0.008668611757457256, -0.0006788830505684018, -0.0013999490765854716, -0.017998090013861656, -0.02452239766716957, -0.03506815433502197, -0.002694440772756934, -0.013484506867825985, 0.023538127541542053, 0.011298020370304585, -0.012394778430461884, 0.010461390018463135, 0.006309877149760723, -0.003933567088097334, 0.0116425147280097, 0.0019509649137035012, 0.014904668554663658, -0.036502376198768616, 0.021653952077031136, 0.0030301471706479788, -0.04235175624489784, 0.013899306766688824, 0.01984008215367794, -0.022638222202658653, 0.05298187956213951, -0.0051674204878509045, -0.02820638194680214, 0.03686796501278877, 0.036193035542964935, 0.0173653457313776, -0.02815013751387596, -0.013948519714176655, -0.0026698338333517313, 0.009962224401533604, -0.017210673540830612, 0.01252132747322321, 0.011614392511546612, 0.0012681271182373166, -0.01515776664018631, -0.046204473823308945, 0.0050725084729492664, -0.005979443900287151, -0.012767395004630089, -0.001181124709546566, 0.011382386088371277, -0.015087462030351162, 0.02030409500002861, -0.021836744621396065, 0.01294315792620182, 0.005712284706532955, 0.0014140100684016943, 0.006580551620572805, 0.00026957588852383196, -0.025591034442186356, -0.0011846399866044521, 0.025056716054677963, -0.004204241558909416, 0.00277880672365427, 0.00764918839558959, -0.026448756456375122, 0.003172514960169792, 0.03056863136589527, -0.007283602375537157, -0.02964060567319393, 0.013899306766688824, 0.02755957655608654, 0.020163485780358315, 0.010876189917325974, -0.0159592442214489, 0.009280265308916569, 0.009863797575235367, -0.00013039387704338878, -0.012753333896398544, -0.02306005358695984, 0.036502376198768616, 0.004914322402328253, -0.03388702869415283, 0.010039559565484524, 0.0049424441531300545, 0.009765369817614555, 0.014496899209916592, 0.018869873136281967, -0.017098186537623405, -0.0025678914971649647, -0.0010686366586014628, 0.012085436843335629, 0.0124158700928092, 0.014581264927983284, 0.0008770553977228701, -0.017688747495412827, -0.012936127372086048, -0.014314106665551662, 0.018743323162198067, -0.021091511473059654, 0.026547182351350784, 0.0072695412673056126, -0.017534077167510986, 0.0010326053015887737, 0.04575452208518982, -0.0037261671386659145, 0.0021337580401450396, -0.003058269154280424, -0.03309961408376694, -0.01701381988823414, 0.027882978320121765, -0.02740490436553955, 0.02504265494644642, -0.004144482314586639, -0.0023446730338037014, 0.014131313189864159, 0.010433267802000046, 0.009399783797562122, 0.005438094958662987, -0.0016205311985686421, -0.00020696046703960747, 0.032537173479795456, 0.02668779343366623, -0.043757855892181396, -0.00458740396425128, -0.0018841751152649522, 0.0008933134377002716, -0.011846398934721947, 0.02905004285275936, 0.007839011959731579, 0.02467706985771656, -0.01402585580945015, 0.022483551874756813, -0.008900618180632591, 0.003235789481550455, -0.02359437197446823, -0.012394778430461884, -0.014946851879358292, -0.011459721252322197, -0.011269898153841496, -0.03841467574238777, -0.007712462916970253, -0.03211534395813942, 0.011677667498588562, -0.003669923171401024, 0.012619754299521446, -0.012753333896398544, 0.02040252275764942, -0.010876189917325974, 0.008549093268811703, 0.011494874022901058, -0.011621423065662384, -0.00602865731343627, -0.0263784509152174, -0.020852474495768547, -0.017941845580935478, -0.003736712969839573, 0.024620825424790382, -0.025436364114284515, -0.017660625278949738, -0.0060602943412959576, 0.020444706082344055, -0.021611768752336502, 0.010004406794905663, 0.008851404301822186, -0.038639649748802185, -0.01012392621487379, -0.03433698043227196, -0.014194587245583534, 0.02210390381515026, -0.008218659088015556, 0.020515011623501778, -0.014946851879358292, 0.011818277649581432, 0.0075015476904809475, 0.005673616658896208, -0.028318870812654495, 0.01698569767177105, -0.017801236361265182, -0.004538190551102161, 0.02395995706319809, 0.01714036799967289, 0.025070777162909508, 0.009132624603807926, 0.01069339644163847, 0.0033974910620599985, 0.0018982361070811749, 0.01195185724645853, -0.014749997295439243, 0.027812674641609192, -0.02210390381515026, 0.0006533974665217102, -0.005083054304122925, 0.006851226091384888, -0.011009769514203072, 0.04277358576655388, 0.03374641761183739, 0.0063485451973974705, 0.008106171153485775, -0.008935770951211452, -0.010426237247884274, -0.01543898694217205, 0.014749997295439243, -0.006580551620572805, 0.028600091114640236, 0.008028835989534855, 0.02905004285275936, 0.003979265224188566, -0.012394778430461884, -0.013055645860731602, 0.014032886363565922, 0.032002855092287064, -0.012310412712395191, -0.00406011613085866, -0.016043610870838165, 0.01726691797375679, -0.002290186705067754, -0.02725023403763771, 0.027376782149076462, -0.00506899319589138, -0.02012130245566368, 0.015199949964880943, 0.03518064320087433, 0.019826021045446396, 0.012528358027338982, -0.011305050924420357, -0.037458524107933044, 0.008492848835885525, 0.020683743059635162, -0.0016117430059239268, 0.0010115137556567788, -0.012099497020244598, 0.02774236910045147, -0.012043253518640995, 0.04156434163451195, -0.010067681781947613, 0.02194923348724842, 0.02303193137049675, 0.03900523483753204, -0.023875592276453972, 0.020599376410245895, -0.0004811501130461693, 0.010194230824708939, 0.0037964722141623497, -0.0008700249018147588, 0.00040667070425115526, -0.0066121891140937805, 0.01950261741876602, -0.012598663568496704, 0.003691014600917697, 0.033493321388959885, -0.003211182774975896, -0.017688747495412827, -0.006243087816983461, 0.02442397177219391, 0.01909484900534153, 0.003996841609477997, 0.0031795455142855644, -0.00970209576189518, 0.003413309808820486, -0.0040917531587183475, -0.027826735749840736, -0.009420875459909439, 0.006693040020763874, 0.005747437011450529, -0.033183980733156204, 0.003350035287439823, -0.004007387440651655, -0.0064153349958360195, -0.005371305160224438, 0.02526763081550598, 0.0033148827496916056, 0.019207337871193886, 0.006074355449527502, 0.016381073743104935, -0.0022655799984931946, -0.047076255083084106, -0.015003095380961895, 0.011276928707957268, 0.024409910663962364, 0.008049926720559597, -0.020360339432954788, 0.0065840668976306915, 0.009652881883084774, -0.030231166630983353, -0.019390130415558815, 0.016662294045090675, 0.009603668935596943, -0.019938509911298752, -0.015987366437911987, -0.028937553986907005, -0.0020247851498425007, 0.028192320838570595, 0.0012162772472947836, -0.022427307441830635, -0.004429217427968979, 0.015537413768470287, 0.016043610870838165, 0.006577036343514919, -0.0016011972911655903, 0.049269773066043854, -0.017646566033363342, -0.0016811692621558905, -0.0063204229809343815, -0.0029229321517050266, -0.01860271394252777, 0.014468776993453503, -0.0035996180959045887, -0.02148522064089775, -0.017463771626353264, 0.03700857236981392, -0.015846755355596542, 0.0048791696317493916, -0.015481170266866684, 0.006745768710970879, -0.004640132654458284, 0.010967586189508438, -0.041001901030540466, -0.0357712060213089, 0.04637320339679718, 0.058606281876564026, 0.028009528294205666, 0.013154072687029839, 0.0033148827496916056, -0.016606049612164497, -0.022188270464539528, -0.05098521709442139, -0.0172387957572937, 0.006513761822134256, -0.021274305880069733, -0.01683102734386921, 0.035293132066726685, 0.002300732536241412, -0.010468420572578907, 0.024409910663962364, -0.008324116468429565, -0.013315774500370026, -0.01008877344429493, 0.007178144529461861, -0.011487843468785286, 0.02253979630768299, -0.01532649900764227, -0.010573877952992916, 0.01819494366645813, 0.007691371254622936, -0.03338083252310753, 0.013090798631310463, 0.025647278875112534, 0.008879526518285275, -0.01906672678887844, 0.006204419769346714, 0.005308030638843775, 0.03644613176584244, 0.01608579233288765, -0.013287652283906937, 0.02120400033891201, 0.036783598363399506, 0.036502376198768616, 0.025562912225723267, 0.004763166420161724, 0.014707814902067184, -0.008295995183289051, 0.02452239766716957, -0.019629167392849922, 0.007396090310066938, -0.04029884934425354, 0.0008546456228941679, 0.015073400922119617, -0.009603668935596943, -0.019952571019530296, 0.02061343751847744, 0.01402585580945015, -0.027517393231391907, -0.032846514135599136, 0.0006665796390734613, 0.009863797575235367, 0.013076737523078918, -0.007473425939679146, 0.003216455690562725, -0.02635032869875431, -0.015270254574716091, -0.013196256011724472, -0.00261886278167367, -0.0015950455563142896, -0.025028593838214874, -0.005870470777153969, -0.01912297122180462, -0.004422186873853207, -0.00892874039709568, 0.008485818281769753, -0.01747783273458481, -0.016409195959568024, -0.045951373875141144, -0.011783124879002571, 0.0105527862906456, -0.008816252462565899, 0.02532387524843216, -0.024170873686671257, -0.009554455056786537, 0.004826440941542387, -0.02223045378923416, -0.01590299978852272, 0.001049302751198411, -0.03433698043227196, 0.006260663736611605, -0.0002658409357536584, -0.014053978025913239, -0.02334127388894558, -0.01469375379383564, 0.008499879390001297, -0.009062319993972778, -0.0005641979514621198, -0.002365764696151018, -0.004285091999918222, 0.01819494366645813, 0.013386080041527748, 0.010426237247884274, 0.030540509149432182, 0.02969684824347496, 0.01213464979082346, 0.013589964248239994, -0.03141229227185249, -0.02306005358695984, -0.041339363902807236, -0.0025889831595122814, 0.004960020538419485, -0.02207578346133232, 0.00203005806542933, -0.0172387957572937, 0.00564197963103652, 0.023706858977675438, -0.00787416473031044, 0.009399783797562122, 0.006183328106999397, 0.0012523084878921509, 0.013372018933296204, 0.005146328825503588, 0.006439941469579935, 0.013864153996109962, 0.0004679679113905877, 0.0030248742550611496, 0.0010976374614983797, 0.014300045557320118, -0.0024132204707711935, 0.003362338524311781, 0.02619565837085247, -0.000760612660087645, -0.030737362802028656, -0.03568683937191963, 0.012254168279469013, -0.00606732489541173, 0.03329646587371826, -0.011340202763676643, -0.04429217427968979, -0.0027366236317902803, -0.009716156870126724, -0.010602000169456005, -0.002838565967977047, -0.021583646535873413, -0.03146853670477867, 0.00537833571434021, 0.004780742805451155, -0.0035925875417888165, 0.005016264505684376, 0.023425638675689697, -0.025464486330747604, -0.027362721040844917, 0.015073400922119617, 0.002028300426900387, 0.021035268902778625, -0.008661581203341484, 0.006686009466648102, -0.01146675180643797, -0.01853240840137005, -0.0159592442214489, -0.04201429337263107, -0.050169676542282104, -0.0061516910791397095, 0.043448515236377716, 0.028122015297412872, 0.03751476854085922, 0.014946851879358292, 0.01834961585700512, 0.02640657313168049, 0.013983672484755516, 0.004228848032653332, 0.0006586703239008784, -0.00523772556334734, -0.025464486330747604, 0.009364631026983261, 0.028431357815861702, -0.015734268352389336, 0.017041942104697227, 0.00017158823902718723, 0.017843419685959816, 0.023510005325078964, 0.0021548494696617126, -0.03307149186730385, -0.0012918551219627261, -0.03475881367921829, -0.0012654907768592238, 0.0097794309258461, -0.007079717703163624, 0.02064155973494053, -0.041704948991537094, 0.0054697319865226746, 0.028782883659005165, 0.03203097730875015, -0.01051060389727354, -0.0026592882350087166, 0.020261913537979126, -0.012078406289219856, 0.009645851328969002, 0.00712190056219697, 0.006000535096973181, -0.00472801411524415, -0.01695757545530796, -0.03354956582188606, 0.007719493471086025, 0.015410864725708961, -0.0054978542029857635, 0.009231051430106163, 0.02501453272998333, 0.016479501500725746, 0.007543731015175581, 0.02545042522251606, 0.03118731640279293, -0.0022813985124230385, -0.005388881545513868, -0.007937438786029816, -0.008577214553952217, -0.018841750919818878, -0.03245280683040619, -0.0076984018087387085, 0.014960912987589836, -0.002571406774222851, -0.004387034568935633, 0.011677667498588562, -0.02192111127078533, -0.016901331022381783, 0.030371777713298798, 0.0004732407978735864, 0.0024712220765650272, 0.0018507802160456777, 0.031609147787094116, 0.029331263154745102, -0.006394243333488703, -0.010412176139652729, 0.014567204751074314, 0.012570541352033615, -0.004109329544007778, 0.020599376410245895, 0.009195899590849876, -0.026800282299518585, 0.006288785953074694, 0.00198787497356534, 0.026856524869799614, -0.041339363902807236, -0.021555526182055473, 0.011255837045609951, 0.023636555299162865, 0.000289568881271407, -0.034702569246292114, -0.020163485780358315, -0.02334127388894558, 0.01287988293915987, -0.02647687867283821, 0.0003706393763422966, 0.003821078920736909, -0.006489155348390341, 0.00550136948004365, 0.019390130415558815, -0.017309101298451424, 0.027165867388248444, 0.0008941922569647431, -0.013737604953348637, 0.005023295059800148, 0.003842170350253582, -0.0051392982713878155, 0.00554003706201911, 0.011958887800574303, 0.03298712521791458, -0.006214965600520372, 0.008457696065306664, 0.023734981194138527, 0.00342912832275033, 0.013913367874920368, -0.0012083678739145398, 0.012085436843335629, 0.03841467574238777, 0.01834961585700512, 0.002578437328338623, 0.007276571821421385, -0.025155143812298775, 0.032593417912721634, -0.011129288002848625, 0.021246183663606644, -0.024902045726776123, 0.008324116468429565, -0.017534077167510986, -0.0060567790642380714, 0.010074712336063385, 0.011558149009943008, -0.0014025855343788862, 0.018546469509601593, -0.024381788447499275, -0.009399783797562122, 0.02176644094288349, -0.005536521784961224, -0.016845088452100754, -0.0131892254576087, 0.008745946921408176, -0.0038492009043693542, 0.01105195190757513, 0.024747373536229134, 0.006794982124119997, 0.016324831172823906, 0.03270590305328369, -0.031356047838926315, -0.005061963107436895, 0.0015344074927270412, -0.007034019101411104, -0.025689462199807167, -0.0012452780501917005, -0.008661581203341484, -0.009828644804656506, 0.025689462199807167, -0.014609387144446373, -0.018279310315847397, -0.008752977475523949, -0.009062319993972778, 0.005311545915901661, -0.006141145247966051, -0.02374904230237007, 0.019854143261909485, 0.00231303577311337, -0.01153002679347992, -0.007367968093603849, -0.020993085578083992, 0.029162529855966568, -0.0039019298274070024, 0.00750857824459672, 0.010967586189508438, 0.0013542508240789175, 0.03450571373105049, -0.015692085027694702, 0.005438094958662987, 0.0013138254871591926, -0.026153475046157837, -0.007839011959731579, 0.010152047500014305, 0.026645610108971596, -0.0008252054103650153, -0.018462102860212326, 0.010503573343157768, -0.005061963107436895, -0.023889653384685516, -0.0033271859865635633, 0.004594434518367052, -0.014778119511902332, 0.0012716423952952027, -0.008668611757457256, 0.014890607446432114, -0.010637152940034866, -0.02192111127078533, -0.026420634239912033, -0.007803859654814005, -0.01272521261125803, -0.02687058597803116, -0.008021805435419083, 0.002845596522092819, 0.045332688838243484, 0.011663606390357018, -0.027728307992219925, -0.025984743610024452, -0.025239508599042892, -0.026111291721463203, -0.019643228501081467, -0.0045135836116969585, -0.0012523084878921509, 0.002972145564854145, -0.003434401238337159, -0.006204419769346714, 0.032846514135599136, -0.01639513485133648, -0.010911342687904835, -0.009645851328969002, -0.007030503824353218, -0.00750857824459672, -0.01621234230697155, 0.006506731268018484, -0.0003014328540302813, -0.05871877074241638, -0.011902643367648125, 0.02166801318526268, -0.0009245112887583673, -0.012964249588549137, 0.01819494366645813, -0.030399899929761887, -0.01557959709316492, -0.013892276212573051, -0.014665631577372551, -0.009259173646569252, -0.01927764154970646, 0.028079833835363388, -0.0429704412817955, 0.0005910017644055188, -0.012992371805012226, -0.010960555635392666, 0.004517098888754845, 0.004327275324612856, 0.01455314364284277, -0.017969967797398567, 0.022792894393205643, -0.02017754688858986, -0.022961625829339027, -0.00314615061506629, 0.0005835318588651717, 0.03585556894540787, -0.0007157931686379015, 0.020065058022737503, 0.009990346617996693, 0.032565295696258545, 0.0036418011877685785, -0.031665388494729996, 0.0022233969066292048, -0.022525735199451447, -0.020093180239200592, 0.02380528673529625, -0.010981647297739983, 0.020725926384329796, -0.010468420572578907, 0.028192320838570595, -0.027236172929406166, -0.005508400034159422, -0.006390728056430817, -0.01290800515562296, -0.012155741453170776, 0.014932790771126747, 0.016873208805918694, -0.020683743059635162, -0.016254525631666183, -0.01191670447587967, -0.020852474495768547, 0.0044186715967953205, 0.0014008278958499432, -0.003168999683111906, -0.02246949076652527, -0.010152047500014305, 0.007403120864182711, -0.008141323924064636, 0.005511915311217308, -0.01247914507985115, 0.012261198833584785, -0.03669923171401024, -0.010243444703519344, 0.168282151222229, -0.01058793906122446, -0.004411641508340836, 0.034646324813365936, -0.0006960199098102748, 0.004847532603889704, 0.02293350361287594, 0.0018824174767360091, 0.0008928740280680358, 0.012148710899055004, 0.009519302286207676, 0.0072695412673056126, 0.0031092404387891293, -0.004945959430187941, 0.022989748045802116, 0.011044922284781933, -0.04178931564092636, -0.026153475046157837, -0.02002287469804287, -0.008021805435419083, 0.0001552203466417268, -0.016282647848129272, -0.001311189029365778, -0.029949946328997612, 0.021260244771838188, -0.011972947977483273, 0.005571674555540085, -0.022272637113928795, 0.017491893842816353, 0.017041942104697227, -0.02107745036482811, 0.011340202763676643, 0.01934794709086418, 0.001047545112669468, -0.013379049487411976, 0.002648742403835058, 0.021400853991508484, -0.016437318176031113, 0.030962340533733368, 0.0006437305128201842, 0.008099140599370003, -0.009062319993972778, 0.009139655157923698, -0.03973640874028206, -0.006341514643281698, 0.006408304441720247, -0.013203286565840244, -0.001187276327982545, -0.01670447736978531, 0.006411819718778133, -0.024044323712587357, -0.004836986772716045, 0.028262626379728317, 0.012148710899055004, -0.0027998981531709433, 0.0037437432911247015, 0.008436604402959347, 0.031131071969866753, 0.02244136855006218, 0.012162772007286549, 0.004819410387426615, 0.01744971051812172, -0.003583799349144101, 0.02194923348724842, -0.004780742805451155, 0.01469375379383564, -0.0028526270762085915, 0.01894017867743969, 0.024634886533021927, -0.021428976207971573, -0.0014931033365428448, -0.007515608798712492, -0.01785748079419136, 0.0012241865042597055, -0.015551474876701832, -0.021583646535873413, 0.012528358027338982, 0.00020531269547063857, 0.02231482043862343, 0.0342244952917099, -0.009568516165018082, 0.0015229829587042332, -0.0008599185384809971, 0.020233791321516037, 0.00010617159568937495, -0.0232850294560194, 0.028656333684921265, -0.019938509911298752, -0.015410864725708961, 0.002965115010738373, -0.032537173479795456, 0.018841750919818878, -0.013343896716833115, -0.01912297122180462, 6.5052759055106435e-06, -0.020669681951403618, 0.041704948991537094, -0.004636617377400398, -0.003555677365511656, 0.02148522064089775, -0.024916106835007668, 0.09347758442163467, 0.016015488654375076, 0.007747615221887827, -0.0015625294763594866, -0.0043413364328444, -0.006137629970908165, 0.013618086464703083, 0.011719849891960621, 0.006014596205204725, -0.024845801293849945, -0.03208722174167633, -0.010412176139652729, -0.0023517035879194736, -0.006081386003643274, 0.016409195959568024, 0.010489512234926224, -0.02696901373565197, 0.015073400922119617, -0.005480277817696333, -0.024747373536229134, -0.01667635515332222, -0.008408483117818832, 0.016254525631666183, -0.009772400371730328, -0.0035785266663879156, -0.008071018382906914, -0.021007146686315536, -0.033240221440792084, -0.008675642311573029, 0.049550991505384445, 0.01195185724645853, 0.0168591495603323, 0.0056630708277225494, -0.0026715914718806744, -0.031946610659360886, 0.013878215104341507, -0.004450309090316296, 0.01430707611143589, 0.0257316455245018, -0.011958887800574303, -0.025127021595835686, -0.003828109474852681, 0.00872485525906086, -0.005374820437282324, -0.02907816506922245, 0.002622378058731556, -0.017182551324367523, -0.02005099691450596, -0.013287652283906937, 0.003295548725873232, -0.016437318176031113, 0.005346698220819235, -0.009512271732091904, 0.04086128994822502, -0.035293132066726685, 0.010433267802000046, -0.035939935594797134, -0.010812914930284023, 0.005634949076920748, -0.023580310866236687, 0.0034168248530477285, 0.01150190457701683, 0.0015352863119915128, -0.02244136855006218, -0.006193873938173056, -0.18031837046146393, 0.01906672678887844, 0.024438032880425453, -0.018405860289931297, 0.004798319190740585, 0.006102477665990591, 0.025998804718255997, 0.013217347674071789, -0.030512386932969093, 0.0028737185057252645, 0.03189036622643471, 0.02336939610540867, 0.004717468284070492, -0.022947564721107483, -0.00917480792850256, 0.011860460042953491, -0.008176475763320923, 0.020852474495768547, 0.00409878371283412, 0.022427307441830635, 0.011719849891960621, -0.043139174580574036, 0.014398472383618355, -0.012514296919107437, 0.009681004099547863, 0.0074663953855633736, -0.0020634529646486044, 0.028122015297412872, -0.01896829903125763, -0.002443100092932582, 0.00349064520560205, -0.013287652283906937, 0.012465083971619606, 0.009575546719133854, 0.021991416811943054, 0.021583646535873413, -0.0082327201962471, 0.004285091999918222, -0.02275071106851101, 0.054134879261255264, 0.013540750369429588, 0.03062487579882145, -0.002182971453294158, -0.01829337142407894, -0.016127975657582283, -0.00756482221186161, 0.00864752009510994, 0.006932076998054981, 0.0052623325027525425, -0.02964060567319393, 0.0036171942483633757, -0.005947806406766176, 0.007016443181782961, -0.007972591556608677, 0.019390130415558815, 0.03785223513841629, 0.009434936568140984, -0.008331147022545338, 0.023383457213640213, 0.01498903427273035, -0.027264295145869255, -0.011058982461690903, 0.023242846131324768, -0.00716056814417243, -0.03090609610080719, -0.0038105330895632505, -0.02095090225338936, 0.012078406289219856, -0.015003095380961895, 0.013836031779646873, -0.008457696065306664, -0.00815538503229618, -0.003940597642213106, -0.018433982506394386, 0.029584361240267754, -0.005504884757101536, -0.00984270591288805, 0.013125951401889324, 0.004910807125270367, -0.005961867514997721, 0.02632220648229122, 0.03852716088294983, -0.017773114144802094, 0.0035029486753046513, 0.026237841695547104, -0.03523688763380051, 0.024564580991864204, 0.014180527068674564, 0.010377024300396442, 0.00044358085142448545, 0.015621780417859554, -0.018180882558226585, 0.0017497166991233826, -0.020782170817255974, 0.03180599957704544, -0.012324473820626736, 0.008492848835885525, -0.0004130421148147434, 0.005617372691631317, -0.018209004774689674, 0.004787773359566927, 0.003480099607259035, 0.0002095968957291916, 0.02359437197446823, 0.01708412542939186, 0.012331504374742508, -0.004271031357347965, 0.007410151418298483, 0.004590919241309166, -0.030399899929761887, -0.02550666779279709, 0.014082099311053753, 0.018982360139489174, 0.02653312310576439, -0.020515011623501778, 0.017843419685959816, -0.0040917531587183475, -0.02048688940703869, 0.01532649900764227, 0.002028300426900387, 0.040467582643032074, 0.031946610659360886, 0.006749283988028765, 0.01806839555501938, -0.024353666231036186, -0.01934794709086418, -0.0880219116806984, -0.016282647848129272, 0.013421231880784035, 0.031637270003557205, -0.008837343193590641, 0.004583888687193394, -0.018462102860212326, 0.01111522689461708, -0.004619040992110968, 0.009688034653663635, -0.0004277622210793197, -0.00864752009510994, -0.0074663953855633736, -0.015312437899410725, -0.010292657651007175, -0.035883691161870956, -0.013097829185426235, -0.02905004285275936, 0.01287988293915987, 0.03281839191913605, 0.009385722689330578, -0.017280979081988335, 0.01602954976260662, -0.01047545112669468, -0.008992014452815056, 0.01754813827574253, -0.033155858516693115, 0.010559816844761372, 0.00012973476259503514, 0.0003425173636060208, 0.0136391781270504, -0.017871541902422905, 0.013744635507464409, -0.024944229051470757, 0.015143705531954765, -0.016226403415203094, 0.00854206271469593, -0.025380119681358337, 0.003891383996233344, -0.01927764154970646, -0.007325785234570503, 0.01146675180643797, 0.034646324813365936, -0.01605767197906971, -0.011909673921763897, 0.0006674584583379328, -0.039539553225040436, 0.012837700545787811, -0.012936127372086048, -0.0299780685454607, -0.018124639987945557, -0.020725926384329796, 0.002773533808067441, -0.008007744327187538, 0.015185888856649399, 0.00694262282922864, 0.0011530026094987988, 0.006615704391151667, -0.030174924060702324, -0.0057579828426241875, -0.011684698052704334, -0.00797962211072445, -0.008274903520941734, 0.015354621224105358, 0.010679335333406925, 0.01287988293915987, -0.046316958963871, -0.01919327676296234, 0.012549449689686298, -0.018265249207615852, -0.00633096881210804, -0.0034484623465687037, -0.028965676203370094, 0.0008274024585261941, -0.026589365676045418, -0.022328881546854973, -0.0030740879010409117, -0.023355334997177124, 0.029303140938282013, -0.015537413768470287, -0.014778119511902332, -0.02185080572962761, 0.001813870039768517, -0.019952571019530296, -0.008373330347239971, 0.009898949414491653, -0.0032885181717574596, 0.0030459659174084663, 0.009575546719133854, -0.012816608883440495, 0.0039019298274070024, 0.0033113674726337194, 0.02176644094288349, -0.0031777878757566214, -0.01392039842903614, -0.00911153294146061, -0.00858424510806799, -0.011030861176550388, -0.004232363309711218, 0.020346278324723244, -0.05798759683966637, 0.02133054845035076, -0.07919159531593323, 0.023299090564250946, 0.01407506875693798, -0.016043610870838165, -0.01469375379383564, -0.003691014600917697, 0.006847710814327002, -0.025534790009260178, 0.01287988293915987, -0.00533263711258769, -0.030540509149432182, 0.011551118455827236, -1.8098055079462938e-05, 0.012795517221093178, -0.011621423065662384, 0.00854206271469593, 0.028909431770443916, -0.007881195284426212, 0.02640657313168049, 0.01788560301065445, -0.01965728960931301, 0.018982360139489174, 0.012872853316366673, 0.029021920636296272, -0.026547182351350784, -0.004538190551102161, -0.00032845637178979814, -0.014138343743979931, -0.033802662044763565, -0.00555761344730854, 0.012781456112861633, -0.02867039479315281, -0.028164198622107506, 0.015481170266866684, -0.024916106835007668, -0.004759651143103838, 0.026083169505000114, 0.014271923340857029, -0.0007557792123407125, 0.048932306468486786, -0.03062487579882145, -0.03174975514411926, 0.005814226809889078, 0.0019070241833105683, -0.00257667968980968, -0.008949832059442997, -0.013730574399232864, 0.004784258082509041, 0.026912769302725792, 0.009786461479961872, 0.007839011959731579, 0.0006318665691651404, -0.023383457213640213, -0.011206623166799545, 0.022328881546854973, 0.0181387010961771, 0.010081742890179157, 0.01577645167708397, 0.01247914507985115, -0.014567204751074314, 0.03799284249544144, -0.0008924346184358001, 0.02086653560400009, 0.004496007226407528, 0.002311278134584427, -0.0013410686515271664, -0.029809337109327316, 0.02194923348724842, -0.002838565967977047, -0.002580194966867566, -0.026589365676045418, -0.012296351604163647, 0.013076737523078918, 0.014440655708312988, 0.006671948358416557, 0.005174451041966677, 0.0012690059375017881, 0.02359437197446823, 0.008099140599370003, 0.01160736195743084, 0.016324831172823906, 0.00864752009510994, -0.020233791321516037, -0.002863172674551606, 0.019727595150470734, 0.00474910531193018, -0.008457696065306664, 0.009744278155267239, 0.004931898787617683, 0.00018839554104488343, -0.004358912352472544, -0.002731350716203451, -0.00048730181879363954, 0.012324473820626736, -0.006791466847062111, 0.02442397177219391, 0.017899664118885994, 0.0044749160297214985, 0.04029884934425354, 0.019826021045446396, 0.02681434154510498, 0.00694262282922864, 0.03025928884744644, -0.02117587812244892, -0.04083316773176193, 0.0053642746061086655, -0.025675401091575623, -0.012985341250896454, 0.0022796408738940954, -0.011473782360553741, -0.01593112200498581, 0.01621234230697155, -0.003209425136446953, 0.002165395300835371, -0.02665967121720314, 0.01899642124772072, 0.002226912183687091, 0.004242909140884876, -0.043167293071746826, 0.029865581542253494, -0.0029194168746471405, -0.015692085027694702, 0.010285627096891403, -0.001986117335036397, 0.018982360139489174, 0.023425638675689697, 0.028656333684921265, -0.026983074843883514, 0.016127975657582283, -0.01543898694217205, 0.005761498119682074, -0.010222353041172028, -0.019460435956716537, -0.011347233317792416, -0.02774236910045147, 0.0015036490513011813, -0.004169088788330555, -0.004583888687193394, -0.009238081984221935, 0.08425355702638626, 0.035911813378334045, 0.01150190457701683, -0.014974973164498806, -0.035321250557899475, -0.025900376960635185, 0.018251188099384308, 0.02455051988363266, -0.02712368406355381, -0.026645610108971596, -0.0014175253454595804, 0.0020142393186688423, -0.020908718928694725, -0.02030409500002861, -0.01965728960931301, -0.00011622301826719195, -0.014454715885221958, 0.0440109558403492, -0.006443456746637821, 0.003277972573414445, 0.03444946929812431, -0.002182971453294158, 0.004720983561128378, 0.0028666879516094923, -0.014637509360909462, -0.011206623166799545, 0.013850092887878418, -0.01266193762421608, 0.0005439852247945964, -0.03751476854085922, 0.00045917980605736375, -0.000995695125311613, -0.04243612289428711, -0.020908718928694725, -0.005961867514997721, 0.003807018045336008, 0.016901331022381783, -0.009420875459909439, 0.008893587626516819, -0.0035714961122721434, 0.031046705320477486, 0.03152478113770485, -0.007853073067963123, -0.04552954435348511, -0.011431599967181683, 0.009202930144965649, -0.03236844018101692, -0.003293791087344289, -0.05416300147771835] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_neural_networks_for_ddos_attack_detection_using_an_enhanced_urban_iot_dataset.json b/database/embeddings/publications_txt/2022_neural_networks_for_ddos_attack_detection_using_an_enhanced_urban_iot_dataset.json new file mode 100644 index 0000000000000000000000000000000000000000..547aa9626fa3cb0af7c23542dc37e08639296035 --- /dev/null +++ b/database/embeddings/publications_txt/2022_neural_networks_for_ddos_attack_detection_using_an_enhanced_urban_iot_dataset.json @@ -0,0 +1 @@ +[-0.02100236341357231, 0.017948521301150322, 0.02093033865094185, -0.0035958264488726854, -0.0023588044568896294, 0.011797623708844185, -0.0012433241354301572, 0.005855597089976072, -0.017588399350643158, -0.048919085413217545, 0.019389012828469276, 0.04606691375374794, -0.009975402615964413, 0.007490554824471474, -0.0023299946915358305, 0.02551110088825226, 0.03249748423695564, 0.0006963875493966043, -0.017127441242337227, 0.0007922702352516353, 0.005751161836087704, -0.0008624941692687571, -0.019734730944037437, -0.01685374788939953, 0.00444031460210681, 0.014937895350158215, 0.020339736714959145, -0.03751039505004883, -0.019849970936775208, 0.00011068150342907757, 0.009651292115449905, -0.0043430812656879425, 0.0009462227462790906, -0.007382518146187067, 0.0007877686875872314, 0.001890644896775484, 0.014952300116419792, -0.013418177142739296, 0.03327535092830658, -0.01459938008338213, 0.00010466069943504408, 0.021708203479647636, 0.005272198468446732, -0.033246539533138275, 0.0009390203049406409, 0.0076994262635707855, 0.03229581564664841, -0.005477468483150005, -0.003975756000727415, 0.013223710469901562, -0.0006333660567179322, 0.028492918238043785, -0.02840648964047432, 0.001146090915426612, -0.030826514586806297, -0.005967235192656517, 0.006460603792220354, 0.0031528754625469446, -0.013814311474561691, -0.03431250527501106, 0.026072893291711807, -0.010594814084470272, -0.04272497445344925, -0.005473867058753967, 0.0025496697053313255, -0.015830999240279198, -0.015946239233016968, 0.035897042602300644, 0.0006212118896655738, -0.00604286091402173, 0.025928843766450882, 0.022903813049197197, 0.007915499620139599, -0.033073682337999344, 0.0271676667034626, -0.025770390406250954, -0.024488352239131927, -0.002625295426696539, -0.006871143821626902, 0.009557659737765789, -0.0021967492066323757, -0.00928396638482809, -0.010277905501425266, 0.004966093692928553, 0.015744570642709732, 0.014440925791859627, -0.027009213343262672, -0.002492049941793084, -0.013122876174747944, -0.008405267260968685, -0.009039083495736122, 0.005646726116538048, 0.02790231630206108, -0.010947734117507935, -0.015946239233016968, 0.030596036463975906, -0.028147200122475624, 0.03128747269511223, 0.00705840764567256, -0.0212184377014637, 0.006003247573971748, -0.0015116155846044421, -0.01868317276239395, -0.025885628536343575, -0.0012973424745723605, -0.011747206561267376, 0.004278259351849556, 0.031950097531080246, -0.004328676499426365, 0.0051209465600550175, -0.006644266191869974, 0.010393144562840462, -0.026865163818001747, -0.030307937413454056, -0.0009205639944411814, -0.02726850099861622, 0.013677464798092842, 0.00268831686116755, -0.006813523825258017, -0.02088712342083454, 0.03503274917602539, -0.0046887993812561035, 0.011271844618022442, -0.025482291355729103, 0.02541026659309864, 0.015398852527141571, -0.0025694763753563166, -0.014390508644282818, 0.014304079115390778, -0.008750984445214272, -0.007778653409332037, 0.013677464798092842, 0.002367807552218437, 0.00626613711938262, 0.012164949439466, 0.030797705054283142, -0.0006297648069448769, -0.010378739796578884, -0.028492918238043785, -0.03402440622448921, 0.010177071206271648, 0.033073682337999344, -0.03258391469717026, -0.007252873852849007, -0.013742287643253803, 0.03526322916150093, -0.007141235750168562, 0.011415894143283367, 0.017746852710843086, 0.02257249876856804, -0.012402630411088467, -0.011264641769230366, -0.038403499871492386, 0.02297583594918251, -0.007335701957345009, 0.023897750303149223, -0.007764248177409172, 0.01623433642089367, 0.015326827764511108, -0.015629330649971962, 0.01301483903080225, 0.021650584414601326, -0.034542981535196304, -0.015931833535432816, 0.007252873852849007, 0.020959148183465004, 0.04079471528530121, 0.005988842807710171, 0.0037920933682471514, -0.023984180763363838, -0.01974913664162159, 0.011905660852789879, -0.007857880555093288, -0.01168238464742899, 0.0015134161803871393, 0.046153340488672256, 0.06084635481238365, 0.004281860310584307, -0.01318769808858633, -0.003071847837418318, -0.0023317954037338495, 0.022875001654028893, 0.027527788653969765, 0.013209305703639984, 0.01607588306069374, 0.028824230656027794, 0.031056992709636688, -0.009428015910089016, -0.004577161278575659, -0.019504252821207047, 0.028708992525935173, 0.01408800482749939, -0.010256297886371613, 0.0066838799975812435, -0.5895642638206482, -0.01264751423150301, 0.011660777032375336, -0.00032928731525316834, -0.017228275537490845, 0.025770390406250954, 0.004429510794579983, -0.003943345043808222, -0.02523740753531456, 0.04837169870734215, -0.019201749935746193, -0.0017474960768595338, -0.00812437105923891, -0.01448414009064436, -0.010659635998308659, 0.00047986366553232074, 0.006507419515401125, -0.0067198919132351875, 0.018323048949241638, 0.012777158059179783, 0.010061832144856453, 0.01629195734858513, -0.006572241894900799, -0.017343515530228615, 0.004897670354694128, 0.020397357642650604, 0.006316554266959429, -0.027916721999645233, 0.03292963281273842, 0.004814842250198126, -0.03468703106045723, 0.01080368459224701, 0.042869020253419876, -0.002740534720942378, 0.052491504698991776, -0.007670616265386343, -0.016824938356876373, 0.03586823493242264, 0.01855352893471718, 0.047680262476205826, -0.04209115728735924, -0.036876577883958817, -0.008498898707330227, 0.016493625938892365, -0.010429156944155693, -0.0011703992495313287, 0.02715326100587845, -0.016493625938892365, -0.012316200882196426, -0.0413132905960083, -0.016594460234045982, -0.00024690921418368816, -0.013771097175776958, -0.011948875151574612, 0.01872638799250126, -0.00577276898548007, 0.016738509759306908, -0.020296523347496986, 0.029501263052225113, -0.0018870435887947679, 0.006856738589704037, 0.010047427378594875, -0.01069564837962389, -0.026605874300003052, 0.004058584105223417, -0.007771450560539961, -0.0031384704634547234, 0.0007373514818027616, 0.01704101264476776, -0.03886445611715317, 0.016104692593216896, 0.015153968706727028, -0.0021121203899383545, -0.025496697053313255, 0.019043294712901115, 0.036818958818912506, 0.034658219665288925, 0.017242681235074997, -0.022889407351613045, 0.020685454830527306, -0.012978826649487019, -0.014015980996191502, 0.0005964534357190132, -0.025381457060575485, 0.015600521117448807, 0.01884162612259388, -0.008138775825500488, 0.01363425049930811, -0.007076413836330175, -0.0023227923084050417, 0.00786508247256279, 0.030019840225577354, -0.020584620535373688, -0.027210881933569908, -0.008729377761483192, 0.01787649653851986, -0.010990948416292667, 0.021420106291770935, -0.02631777711212635, -0.013396569527685642, 0.0013891737908124924, 0.002945804735645652, 0.008686162531375885, -0.010551598854362965, 0.029414832592010498, 0.020296523347496986, 0.0031024583149701357, 0.007598591968417168, 0.017847687005996704, -0.001910451683215797, -0.021059982478618622, -0.0009178630425594747, -0.016623269766569138, -0.0012496262788772583, 0.021549750119447708, -0.026807542890310287, 0.016508029773831367, 0.005632320884615183, 0.011250237002968788, 0.009960997849702835, -0.0032158968970179558, 0.00479683605954051, 0.01106297317892313, -0.00568633945658803, -0.020743075758218765, 0.016608865931630135, 0.028680182993412018, -0.03206533566117287, -0.016911368817090988, 0.0075913891196250916, 0.02252928353846073, -0.019547468051314354, 0.023796916007995605, -0.01907210610806942, 0.029616501182317734, 0.013843121938407421, 0.03016388788819313, -0.026505040004849434, 0.0014647996285930276, -0.021881062537431717, -0.014721821062266827, -0.010645231232047081, 0.008045144379138947, -0.01567254588007927, -0.049985047429800034, 0.00315467594191432, -0.01128624938428402, 0.009175930172204971, -0.011430298909544945, 0.014008778147399426, -0.0186687670648098, 0.02019568905234337, -0.0019122522789984941, 0.0016223533311858773, -0.021232841536402702, -0.017790067940950394, -0.007879487238824368, -0.02964531071484089, -0.02365286834537983, -0.02009485475718975, -0.007519364822655916, 0.029846981167793274, -0.016147907823324203, -0.005394639912992716, 0.003478786675259471, 0.013115673325955868, -0.005441456101834774, 0.01781887747347355, 0.01114940270781517, -0.01804935559630394, 0.0024632401764392853, -0.024747641757130623, -0.011898458003997803, 0.01685374788939953, -0.004022572189569473, 0.01777566224336624, -0.005261394660919905, 0.00024195753212552518, -0.008823009207844734, 0.0013162489049136639, -0.011444703675806522, 0.007670616265386343, -0.008383659645915031, -0.005005707498639822, 0.035897042602300644, 0.016335172578692436, 0.031201042234897614, -0.010990948416292667, -0.0169689878821373, 0.003612031927332282, 1.600858558958862e-05, -0.001002041739411652, -0.012164949439466, 0.017674827948212624, -0.008931046351790428, 0.014556164853274822, 0.005891609471291304, -0.01895686611533165, -0.0038893267046660185, 0.029069114476442337, 0.04067947342991829, 0.00891664158552885, -0.004364688880741596, 0.0015863410662859678, -0.014606582000851631, -0.013727881945669651, 0.01714184693992138, 0.001210913062095642, 0.02925637923181057, 0.008405267260968685, 0.03278558328747749, -0.007389720529317856, -0.0367901474237442, -5.207713911659084e-05, -0.019821161404252052, 0.04347402974963188, 9.520747698843479e-05, 0.00014179835852701217, -0.03229581564664841, 0.011106188409030437, -0.013785501942038536, -0.015470877289772034, 0.027369335293769836, 0.0019392614485695958, 0.0011253838893026114, 0.0010596613865345716, 0.012287391349673271, 0.028564943000674248, 0.015773380175232887, -0.033304158598184586, -0.015744570642709732, 0.03604109212756157, 0.011804826557636261, 0.002077908720821142, 0.002349801594391465, -0.004998505115509033, 0.0322670042514801, 0.009183132089674473, 0.03900850564241409, -0.027686243876814842, 0.020642241463065147, 0.02647623047232628, 0.026605874300003052, -0.031085802242159843, 0.02239963971078396, -0.01742994599044323, 0.014044790528714657, 0.020224498584866524, 0.004786032252013683, 0.00581598374992609, -0.011581550352275372, 0.02551110088825226, -0.02399858646094799, 0.013050851412117481, 0.03707824647426605, -0.008844616822898388, -0.024416327476501465, -0.007468947675079107, 0.037884920835494995, 0.008902236819267273, 0.03128747269511223, -0.002429028507322073, 0.009039083495736122, 0.015975048765540123, 0.00048346491530537605, -0.02409942075610161, 0.007994727231562138, 0.006759505718946457, 0.01012665405869484, -0.017069822177290916, 0.004353885073214769, -0.03344820812344551, 0.0005442356341518462, -0.01789090223610401, 0.016997797414660454, 0.012258580885827541, 0.010184274055063725, 0.010349930264055729, 0.02964531071484089, 0.029011495411396027, -0.04044899716973305, -0.013036446645855904, 0.012611501850187778, 0.018179001286625862, 0.01731470599770546, -0.017415540292859077, -0.0025478689931333065, 0.011495120823383331, -0.025165382772684097, -0.021016769111156464, 0.019489847123622894, 0.016032667830586433, -0.01709863170981407, -0.019994020462036133, -0.03915255516767502, -0.015874214470386505, 0.03863397613167763, -0.010256297886371613, -0.017285896465182304, -0.0003542708291206509, 0.027369335293769836, 0.011214224621653557, -0.016450410708785057, -0.005391038954257965, 0.040765903890132904, -0.017285896465182304, 0.01505313441157341, 0.006032057572156191, 0.011898458003997803, 0.010220286436378956, 0.01202810276299715, 0.0028323661535978317, -0.012229771353304386, 0.015168373472988605, 0.018481504172086716, -0.00010381665924796835, 0.029184354469180107, -0.008895033970475197, 0.016392791643738747, 0.02015247382223606, 0.00732849957421422, -0.05416247248649597, -0.0367901474237442, 0.0038857252802699804, 0.03897969424724579, 0.039757560938596725, 0.0004731113731395453, 0.00679191667586565, -0.006723493337631226, -0.03310249000787735, -0.03820183128118515, 0.008153180591762066, 0.011999293230473995, 0.0015962444012984633, -0.022039517760276794, 0.008455684408545494, 0.009982604533433914, 0.003251909278333187, 0.03399559482932091, -0.003372550243511796, 0.010457967408001423, -0.012200961820781231, 0.017689233645796776, -0.012805967591702938, 0.00564312469214201, -0.031892478466033936, 0.00038915773620828986, 0.017962926998734474, 0.035407278686761856, -0.02852172777056694, 0.03220938518643379, 0.015917429700493813, 0.00131985021289438, 0.005477468483150005, -0.003838909324258566, 0.0356377549469471, 0.03388035669922829, -0.0048364498652517796, -0.02636099047958851, 0.024545973166823387, 0.03203652799129486, 0.008642948232591152, 0.026303371414542198, -0.0024470346979796886, 0.026130512356758118, -0.007454542443156242, -0.009428015910089016, 0.01776125840842724, 0.0038137007504701614, -0.06534069031476974, 0.01748756505548954, 0.025280622765421867, -0.02343679405748844, -0.021420106291770935, 0.015542901121079922, 0.011826434172689915, -0.05105101317167282, -0.03558013588190079, 0.02071426622569561, -0.01012665405869484, -0.0032843202352523804, -0.010983746498823166, -0.010141058824956417, -0.01012665405869484, -0.010832495056092739, -0.006186910439282656, -0.004523142706602812, -0.006950370501726866, -0.015715761110186577, -0.006759505718946457, -0.012020899914205074, 0.0072060576640069485, -0.02444513700902462, 0.010616420768201351, -0.02218356728553772, -0.012287391349673271, -0.06050063669681549, 0.007829070091247559, 0.016047073528170586, 0.009067893028259277, 0.024632401764392853, -0.014023182913661003, -0.004415106028318405, 0.008131573908030987, -0.029213164001703262, -0.01176881417632103, -0.008383659645915031, -0.03267034515738487, -0.011905660852789879, -0.0017961126286536455, -0.01624874211847782, -0.0033203326165676117, -0.0029962218832224607, 0.016594460234045982, -9.447597403777763e-05, -0.016896963119506836, -0.004746418911963701, 0.008117168210446835, 0.0169689878821373, 0.021924277767539024, 0.016954582184553146, 0.014318483881652355, 0.019273774698376656, 0.0037848909851163626, 0.01044356171041727, -0.023163100704550743, -0.020584620535373688, -0.027138857170939445, 0.008671757765114307, -0.0012757350923493505, -0.002967412117868662, 0.0003592225257307291, 0.00612568948417902, 0.014296876266598701, 0.021132007241249084, -0.017458755522966385, 0.007807462941855192, 0.0003326634760014713, 0.003892927896231413, 0.015009920112788677, 0.007598591968417168, -0.027081236243247986, -0.004854455590248108, -0.018092570826411247, -0.019144129008054733, -0.006957573350518942, 0.026288967579603195, 0.014210446737706661, 0.01822221465408802, 0.03122985176742077, -0.0046347808092832565, -0.02371048741042614, -0.0345141738653183, 0.0016223533311858773, 0.003671452170237899, 0.03298725187778473, -0.00697557907551527, -0.041687820106744766, -0.012172151356935501, 4.5521777792600915e-05, -0.029069114476442337, -0.004940885119140148, -0.010241893120110035, -0.03206533566117287, -0.001494509750045836, -0.00944962352514267, -0.0029710133094340563, -0.004191829822957516, 0.013115673325955868, -0.0257415808737278, -0.012784360907971859, 0.018351860344409943, 0.050964582711458206, 0.02427227981388569, -0.0077498434111475945, 0.010479574091732502, -0.033419400453567505, -0.006230125203728676, -0.03762563318014145, -0.03434131294488907, -0.0350903682410717, 0.014808250591158867, 0.026836354285478592, 0.02404179982841015, 0.05551653727889061, 0.029962219297885895, 0.02173701487481594, 0.021232841536402702, 0.004551952704787254, 0.01479384582489729, 0.00826121773570776, -0.01066683791577816, -0.013281330466270447, 0.007476150058209896, 0.02614491805434227, -0.011379881761968136, 0.030077459290623665, -0.003208694513887167, -0.004494333174079657, -0.01640719547867775, 0.0024020192213356495, -0.033188920468091965, -0.010789279825985432, -0.03673252835869789, 0.004411504603922367, 0.01578778587281704, 0.009572064504027367, 0.015629330649971962, -0.03272796422243118, -0.0072636776603758335, 0.030768895521759987, 0.00046500860480591655, -0.012633108533918858, 0.00028674781788140535, 0.03255510330200195, -0.0038497131317853928, 0.002450635889545083, 0.018985675647854805, 0.009665696881711483, 0.001553029753267765, -0.004407903645187616, -0.025784794241189957, -0.010393144562840462, 0.02976055070757866, 0.0014251860557124019, 0.01060921885073185, 7.686371827730909e-05, 0.008808604441583157, 0.0006171605200506747, 0.016421601176261902, 0.02257249876856804, -0.0178332831710577, -0.022875001654028893, -0.015413257293403149, -0.01951865665614605, -0.012489059939980507, -0.04030494764447212, 0.006161701865494251, 0.008297230117022991, -0.008873426355421543, -0.002573077566921711, 0.0036912590730935335, -0.009435217827558517, -0.007036800030618906, 0.019259369000792503, 0.011264641769230366, 0.012071317061781883, -0.018265429884195328, 0.015269207768142223, 0.03373630717396736, 0.003759682411327958, -0.007000787649303675, 0.0060860756784677505, 0.009478433057665825, -0.005578302778303623, 0.020613430067896843, 0.0017312904819846153, -0.0035238019190728664, -0.02189546823501587, 0.011984887532889843, 0.00944962352514267, -0.0019950803834944963, -0.019446633756160736, 0.026836354285478592, 0.03278558328747749, -0.00038173020584508777, -0.014145624823868275, -0.045692384243011475, 0.0009840356651693583, 0.0021031172946095467, -0.023854536935687065, -0.0026937187649309635, 0.01636398211121559, -0.00817478820681572, 0.002785550197586417, 0.02059902623295784, -0.013814311474561691, 0.04724811390042305, -0.01242423802614212, -0.011927268467843533, 0.017516374588012695, 0.0005289303953759372, -0.017473159357905388, -0.004213436972349882, 0.0031204642727971077, 0.0260296780616045, -0.013036446645855904, 0.016896963119506836, 0.04088114574551582, -0.008851819671690464, 0.020296523347496986, 0.006583045236766338, 9.783805580809712e-06, 0.036358002573251724, -0.0030466392636299133, -0.004224240779876709, 0.01804935559630394, -0.03128747269511223, 0.00630935188382864, 0.00047941351658664644, 0.005697143264114857, -0.0166952945291996, -0.012467452324926853, -0.025093359872698784, 0.005761965177953243, 0.005830388516187668, 0.015009920112788677, 0.01372068002820015, 0.005920419469475746, -0.03004864975810051, 0.0008841015514917672, 0.0032555104698985815, -0.004908474162220955, -0.013519011437892914, -0.01878400705754757, -0.007007990498095751, -0.017228275537490845, 0.02541026659309864, 0.022932622581720352, 0.015946239233016968, 0.014664201997220516, 0.028262440115213394, -0.0200804490596056, -0.017617208883166313, 0.0046347808092832565, -0.013317341916263103, -0.009211941622197628, 0.009291169233620167, -0.00541984848678112, -0.004587965086102486, 0.02239963971078396, -0.005430652294307947, -0.03949827328324318, -0.023494413122534752, -0.031892478466033936, -0.0027135254349559546, 0.007915499620139599, -0.01624874211847782, 0.017905307933688164, -0.0007792157703079283, -0.010407550260424614, -0.018121380358934402, -0.026807542890310287, 0.045404285192489624, -0.008045144379138947, 0.005635922309011221, 0.03203652799129486, 0.009960997849702835, 0.0248916894197464, -0.029054710641503334, 0.0009858362609520555, -0.0019176540663465858, -0.03851873800158501, -0.011531133204698563, -0.006420989986509085, 0.028737802058458328, -0.010688445530831814, -0.00444031460210681, 0.019028890877962112, -0.020397357642650604, -0.03146032989025116, 0.018812816590070724, 0.004703204147517681, 0.0008674458949826658, 0.01601826399564743, 0.007728235796093941, 0.01100535411387682, 0.005448658484965563, -0.0002568126074038446, -0.04191829636693001, -0.0029512066394090652, 0.003091654507443309, -0.015802189707756042, -0.011077377945184708, -0.006475008558481932, 0.021520940586924553, 0.015975048765540123, -0.02133367583155632, -0.044223085045814514, -0.019619492813944817, -0.024978119879961014, -0.009204739704728127, -0.01698339357972145, -0.006172505207359791, -0.007267278619110584, 0.014822655357420444, 0.0038641178980469704, 0.026447420939803123, -0.01397996861487627, 0.015370042994618416, 0.001226218300871551, -0.005517081823199987, -0.013461391441524029, 0.005689940880984068, 0.005988842807710171, -0.004134210292249918, -0.04854455962777138, -0.00786508247256279, 0.00469960318878293, 0.012179354205727577, 0.012064115144312382, 0.018063761293888092, -0.010933329351246357, -0.020699860528111458, 0.000461857533082366, -0.009896175004541874, -0.019259369000792503, -0.03243986517190933, 0.006561438087373972, -0.036242760717868805, -0.02659147046506405, -0.005488271825015545, -0.004555553663522005, 0.010767673142254353, -0.005470265634357929, 0.024545973166823387, -0.009118310175836086, 0.0056647323071956635, -0.03661729022860527, -0.007778653409332037, 1.4545586054737214e-05, -0.011833636090159416, 0.01901448518037796, 0.004202633630484343, 0.005283001810312271, 0.02931399829685688, 0.007692223880439997, 0.013843121938407421, -0.038173019886016846, 0.006673076190054417, -0.018207810819149017, 0.003017829265445471, 0.028392083942890167, -0.015931833535432816, 0.011574347503483295, -0.021261652931571007, 0.02880982682108879, -0.03586823493242264, -0.01613350212574005, -0.027931127697229385, -0.013439783826470375, -0.0283056553453207, 0.015557306818664074, -0.0007382517796941102, -0.019878780469298363, -0.01884162612259388, -0.005671934690326452, 0.00911110732704401, -0.02071426622569561, -0.004793235100805759, -0.004011768382042646, -0.031604379415512085, -0.020728670060634613, 0.0033401392865926027, -0.019446633756160736, -0.0009354190551675856, -0.012892397120594978, -0.015758974477648735, -0.017631614580750465, -0.018150189891457558, 0.17954283952713013, -0.03128747269511223, 0.018524719402194023, 0.02320631593465805, -0.00362103502266109, -0.0008345846435986459, 0.009190334938466549, -0.0009111107792705297, -0.018135786056518555, 0.011667979881167412, 0.007072812411934137, 0.009147119708359241, -0.007598591968417168, -0.010652433149516582, 0.014952300116419792, 0.006817125249654055, -0.044511180371046066, -0.03258391469717026, 0.0012955418787896633, -0.01426086388528347, -0.020570216700434685, -0.016277551651000977, -0.012654716148972511, -0.01704101264476776, 0.009737721644341946, -0.011732801795005798, -0.004631179850548506, -0.0226445235311985, 0.03572418540716171, 0.02490609511733055, -0.011423096060752869, 0.023854536935687065, 0.02098795957863331, -0.015269207768142223, -0.01663767546415329, -0.01619112305343151, 0.018020546063780785, -0.02348000928759575, 0.026072893291711807, -0.00888783112168312, 0.009348788298666477, -0.023278340697288513, 0.010990948416292667, -0.02348000928759575, -0.01766042411327362, 0.020570216700434685, -0.007929904386401176, -0.007641806732863188, -0.002203951822593808, -0.00023948168382048607, -0.02761421911418438, -0.0062985485419631, 0.013439783826470375, 0.02104557864367962, -0.002095914911478758, 0.005657529924064875, 0.003163679037243128, 0.012640311382710934, 0.01617671735584736, 0.012762753292918205, 0.006784714292734861, 0.019374608993530273, -0.01128624938428402, 0.017473159357905388, 0.009888973087072372, 0.011134997941553593, -0.024315493181347847, 0.002886384492740035, 0.006763106677681208, -0.007901094853878021, -0.01163196749985218, -0.025784794241189957, -0.013331747613847256, -0.009543254971504211, -0.025727175176143646, -0.031604379415512085, 0.013691870495676994, 0.025957653298974037, 0.0390661247074604, 0.044568803161382675, -0.0007405025535263121, 0.02558312565088272, 0.006665873806923628, 0.0072600762359797955, -0.0028827833011746407, -0.0367901474237442, 0.035176798701286316, -0.015658140182495117, -0.024646807461977005, -0.004789633676409721, -0.024185849353671074, -0.003291522618383169, -0.01849590800702572, -0.004296265542507172, -0.0007121429080143571, -0.02042616717517376, 0.026015274226665497, -0.01488027535378933, 0.018179001286625862, 0.0240562055259943, -0.03344820812344551, 0.07772891223430634, 0.034658219665288925, -0.002436230890452862, -0.0005635922425426543, -0.010738862678408623, -0.01095493696630001, 0.015326827764511108, 0.01137267891317606, -0.008650150150060654, -0.024027395993471146, -0.04906313493847847, -0.0020707063376903534, 0.009759328328073025, -0.01434729341417551, 0.020728670060634613, 0.014527355320751667, -0.01380710955709219, 0.005607112310826778, -0.003860516706481576, -0.016551245003938675, -0.017113037407398224, -0.0012667321134358644, 0.005207376088947058, -0.01253227423876524, -0.00019863025227095932, -0.025669556111097336, -0.00222195778042078, -0.02653384953737259, -0.014181637205183506, 0.036588478833436966, -0.012409833259880543, 0.01878400705754757, 0.00529020419344306, 0.009687304496765137, 0.004670793190598488, 0.017790067940950394, -0.006071670912206173, 0.03949827328324318, 0.02587122470140457, -0.03050960600376129, -0.028838636353611946, -0.003403160721063614, 0.006248130928725004, -0.013972765766084194, -0.033765118569135666, 0.004793235100805759, 0.002637899713590741, -0.01601826399564743, -0.029458047822117805, 0.008426873944699764, -0.025395862758159637, -0.0010407549561932683, -0.012128937058150768, 0.0217802282422781, -0.02726850099861622, 0.005257793236523867, -0.031056992709636688, -0.006608253810554743, -0.009485634975135326, -0.03485989198088646, -0.016162313520908356, -0.002295783022418618, 0.0006032057572156191, -0.027743862941861153, -0.007677818648517132, -0.18495908379554749, 0.03560894727706909, 0.012215366587042809, -0.024776451289653778, -0.009564862586557865, 0.021751418709754944, 0.01675291359424591, -0.008959855884313583, -0.019259369000792503, -0.01016266644001007, 0.02251487970352173, -0.002987218787893653, -0.0009372196509502828, -0.0186687670648098, -0.008239610120654106, 0.010105046443641186, 0.006511020939797163, 0.020959148183465004, 0.008470089174807072, 0.008895033970475197, 0.021967492997646332, -0.0367901474237442, -0.0016889760736376047, -0.00026581567362882197, -0.011740004643797874, 0.023004647344350815, -0.018755197525024414, 0.022601308301091194, -0.020527001470327377, -0.020166879519820213, 0.015758974477648735, -0.012388225644826889, 0.04344521835446358, 0.01704101264476776, 0.0183950737118721, 0.018380669876933098, 0.01095493696630001, 0.001516117132268846, -0.018985675647854805, 0.03713586553931236, 0.007180849090218544, 0.03650205209851265, 0.0011577949626371264, -0.007184450514614582, -0.005578302778303623, 0.011977685615420341, -8.170287037501112e-05, -0.01760280318558216, 0.003799295984208584, -0.01675291359424591, 0.015514091588556767, -0.007685021497309208, 0.030135078355669975, -0.007987524382770061, -0.0027657432947307825, 0.03872040659189224, 0.002501053037121892, -0.006885548587888479, 0.018524719402194023, -0.01940341852605343, -0.009240752086043358, -0.014750631526112556, 0.014419318176805973, 0.0012838379479944706, -0.012092924676835537, -0.034888699650764465, -0.02071426622569561, 0.020224498584866524, -0.03241105377674103, 0.01725708693265915, -0.012121734209358692, -0.019907590001821518, -0.0097665311768651, -0.009997010231018066, 0.029342807829380035, 0.015211588703095913, -0.027196476235985756, 0.006820726674050093, 0.015802189707756042, -0.011732801795005798, -0.0007175447535701096, 0.04459761083126068, -0.022284401580691338, 0.007821868173778057, 0.016277551651000977, -0.033016059547662735, 0.005797977559268475, 0.010004212148487568, 0.01327412761747837, 0.0031672802288085222, 0.006129290442913771, -0.015830999240279198, 0.02116081677377224, -0.03258391469717026, 0.00475362129509449, 0.004757222719490528, 0.012971624732017517, 0.01052278932183981, -0.0027801482938230038, 0.008340444415807724, -0.005661130882799625, -0.007540971972048283, -0.009435217827558517, 0.009809746406972408, 0.013194900937378407, 0.017271490767598152, -0.012215366587042809, 0.00973051879554987, 0.006082474719733, -0.023811321705579758, -0.01163196749985218, 0.02185225300490856, 0.018034951761364937, 0.016450410708785057, -0.009651292115449905, 0.014455330558121204, -0.026346586644649506, -0.010760470293462276, 0.009860163554549217, -0.012100127525627613, 0.04183186963200569, 0.022039517760276794, 0.009852960705757141, 0.016781723126769066, -0.02139129675924778, -0.0322670042514801, -0.08406707644462585, -0.01827983558177948, 0.023177506402134895, 0.028420893475413322, -0.03457179293036461, 0.006028456147760153, -0.002430829219520092, 0.027484575286507607, -0.012525072321295738, 0.01731470599770546, -0.01415282767266035, -0.005981640424579382, -0.007454542443156242, -0.004750020336359739, -0.0050705294124782085, -0.0257415808737278, -0.00891664158552885, -0.012287391349673271, -0.008297230117022991, 0.045289047062397, 0.0024632401764392853, -0.011660777032375336, -0.002315589925274253, -0.013461391441524029, -0.016320766881108284, 0.0021229241974651814, -0.04226401448249817, 0.025900034233927727, 0.013526213355362415, 0.008772592060267925, 0.022442854940891266, -0.018913650885224342, 0.01248185709118843, -0.009154322557151318, -0.00047986366553232074, -0.007072812411934137, 0.0072060576640069485, 0.0033275349996984005, 0.014577772468328476, -0.03310249000787735, 0.014160029590129852, 0.020685454830527306, 0.047161687165498734, -0.005012909881770611, -0.023163100704550743, -0.01318769808858633, -0.036242760717868805, 0.03909493610262871, -0.0035147988237440586, -0.034658219665288925, -0.01058040838688612, -0.01225137896835804, 0.0034931914415210485, 0.0023011849261820316, 0.012849182821810246, 0.0022183565888553858, -0.004008166957646608, 0.008477291092276573, -0.022658929228782654, -0.011653575114905834, -0.023969775065779686, -0.0288530420511961, -0.023134291172027588, 0.016436006873846054, 0.034946318715810776, 0.01403038576245308, -0.027931127697229385, -0.006420989986509085, -0.0005716949817724526, -0.009831353090703487, -0.0041990322060883045, -0.01912972517311573, -0.017242681235074997, -0.018294239416718483, -0.02879542112350464, -0.012323403730988503, 9.520747698843479e-05, -0.022716548293828964, 0.011214224621653557, -0.013216507621109486, -0.0006779312388971448, -0.007685021497309208, -0.022197971120476723, -0.028953876346349716, 0.010969341732561588, -0.0018546326318755746, -0.0006878346321173012, 0.001202810206450522, 0.0011244835332036018, -0.020642241463065147, 0.01799173653125763, 0.0018654363229870796, 0.036761339753866196, 0.028248034417629242, -0.021924277767539024, 0.024373114109039307, -0.005891609471291304, -0.018236620351672173, 0.00026896674535237253, 0.01957627758383751, -0.042638543993234634, 0.01800614222884178, -0.07156360894441605, 0.027686243876814842, 0.002275976352393627, -0.010544396936893463, 0.005023713689297438, -0.009788138791918755, 0.012575489468872547, -0.006233726162463427, -0.0022453658748418093, 0.013295735232532024, -0.009917782619595528, -0.004890467971563339, 0.0007900194614194334, 0.019950805231928825, -0.015686949715018272, -0.012352213263511658, 0.025986462831497192, -0.014649797230958939, 0.0041054002940654755, 0.016652079299092293, -0.014448127709329128, 0.023119885474443436, 0.008081156760454178, 0.022601308301091194, -0.023047860711812973, -0.012942814268171787, 0.013569428585469723, -0.005362228956073523, -0.022673333063721657, 0.0025280623231083155, 0.00826121773570776, -0.03984399139881134, -0.020123664289712906, 0.00936319399625063, -0.01446253340691328, -0.01708422787487507, 0.0037200688384473324, 0.021592965349555016, 0.020815100520849228, 0.03151794895529747, -0.02981816977262497, -0.03696300834417343, 0.00448352936655283, -0.011437500827014446, -0.019763540476560593, -0.011790421791374683, -0.006903554778546095, -0.000934518757276237, -0.005844793748110533, -0.015427662059664726, 0.031777240335941315, -0.0005410845624282956, -0.025539910420775414, -0.03033674694597721, 0.01731470599770546, 0.009564862586557865, 0.017674827948212624, 0.012827575206756592, 0.004530345089733601, 0.007670616265386343, 0.02167939394712448, -0.015701355412602425, 0.024704426527023315, 0.005488271825015545, -0.0035057957284152508, 0.005117345601320267, -0.02925637923181057, -0.002989019500091672, -0.024286683648824692, 0.01092612650245428, 0.009824151173233986, -0.015153968706727028, 0.0034499766770750284, 0.02494931034743786, 0.014649797230958939, 0.016306361183524132, 0.0040513817220926285, 0.0027153261471539736, 0.003394157625734806, 0.0008940049447119236, 0.018827222287654877, 0.00018174949218519032, -0.013619845733046532, 0.0028683783020824194, 0.018265429884195328, 0.008210800588130951, 0.00616890424862504, 0.01941782236099243, 0.0020833106245845556, 0.011250237002968788, -0.009521647356450558, 0.012215366587042809, 0.009788138791918755, 0.005038118455559015, -0.014145624823868275, 0.02496371418237686, -0.0027135254349559546, 0.0037308726459741592, 0.03016388788819313, 0.028723396360874176, 0.03203652799129486, 0.00015732865722384304, 0.009384800679981709, -0.027081236243247986, -0.048573367297649384, 0.016652079299092293, -0.013763894326984882, -0.01941782236099243, 0.003903731470927596, -0.002897188300266862, -0.023926561698317528, 0.026101702824234962, 0.010378739796578884, 0.008181991055607796, -0.019345799461007118, 0.03578180447220802, 0.00924795400351286, 0.004353885073214769, -0.03592585399746895, 0.0333905890583992, 0.010479574091732502, -0.019043294712901115, 0.025712769478559494, -0.01242423802614212, 0.026015274226665497, 0.01986437477171421, 0.017573993653059006, -0.026562660932540894, 0.02471883036196232, -0.0011812029406428337, 0.009370395913720131, 0.0015692352317273617, -0.008614137768745422, -0.007288886234164238, -0.028564943000674248, -0.0027963537722826004, -0.009067893028259277, 0.014952300116419792, -0.010421955026686192, 0.08366373926401138, 0.020498191937804222, -0.010148261673748493, -0.018150189891457558, -0.021261652931571007, -0.01505313441157341, 0.001226218300871551, 0.004166621249169111, 0.0065218242816627026, -0.030826514586806297, -0.01663767546415329, 0.005102940369397402, -0.031114613637328148, -0.027657434344291687, -0.018193405121564865, -0.01611909829080105, -0.0014197842683643103, 0.027974341064691544, -0.009125513024628162, 0.008030739612877369, 0.02778707817196846, 0.01318769808858633, -0.009651292115449905, -0.005603511352092028, -0.019561871886253357, -0.007836272940039635, 0.022284401580691338, -0.01957627758383751, 0.0007630102336406708, -0.05540129542350769, 0.006006848998367786, 0.010911721736192703, -0.036415621638298035, -0.01596064306795597, -0.003010626882314682, 0.02496371418237686, 0.02326393499970436, -0.015009920112788677, 0.008664554916322231, -0.0017916110809892416, 0.0023425989784300327, 0.03722229599952698, -0.009867365472018719, -0.04165900871157646, 0.005131750367581844, -0.014268066734075546, -0.02958769164979458, -0.01420324482023716, -0.04223520681262016] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_optimal_trading_on_a_dynamic_curve_automated_market_maker.json b/database/embeddings/publications_txt/2022_optimal_trading_on_a_dynamic_curve_automated_market_maker.json new file mode 100644 index 0000000000000000000000000000000000000000..51338ae04e58e7f75cb17df7176e3376ebf994c4 --- /dev/null +++ b/database/embeddings/publications_txt/2022_optimal_trading_on_a_dynamic_curve_automated_market_maker.json @@ -0,0 +1 @@ +[-0.0035655105020850897, -0.0011032698675990105, 0.005779202561825514, -0.0038873720914125443, -0.014533836394548416, -0.0012865520548075438, -0.020427478477358818, 0.005414426326751709, -0.023574570193886757, -0.03430328890681267, 0.035447683185338974, 0.01167999766767025, -0.004895871505141258, 0.021471740677952766, -0.015291999094188213, 0.010335331782698631, 0.018625054508447647, -0.011429660953581333, -0.017795367166399956, 0.01007068995386362, -0.011179324239492416, 0.012788631953299046, -0.02065635845065117, -0.017337609082460403, -0.024304121732711792, 0.013882961124181747, 0.0205848328769207, -0.032786961644887924, 0.00568979699164629, -0.003926710691303015, 0.008211045525968075, 0.004363012034446001, -0.014476616866886616, -0.009283917024731636, -0.01334652490913868, -0.008826158940792084, 0.013782826252281666, -0.007166783791035414, 0.045804474502801895, -0.005897218827158213, -0.003901677206158638, 0.01605016179382801, 0.006945056840777397, -0.020341649651527405, 0.007274070754647255, 0.015406439080834389, 0.035647954791784286, 0.0007076483452692628, -0.008411315269768238, 0.007960708811879158, 0.015077425166964531, 0.03842311352491379, -0.03550490364432335, -0.0037908137310296297, 0.0008909306488931179, 0.0061404029838740826, 0.00033728405833244324, 0.019697926938533783, -0.01312479842454195, -0.027064979076385498, 0.02433273196220398, 0.004116251599043608, -0.03613432124257088, 0.004026845563203096, -0.003120268927887082, -0.018396174535155296, -0.012867309153079987, 0.033988580107688904, 0.00712386891245842, 0.0190828125923872, 0.020456088706851006, 0.023374300450086594, -0.004148437641561031, -0.012824393808841705, 0.0108717679977417, -0.02958265133202076, -0.032157544046640396, 0.0077747441828250885, -0.014662581495940685, 0.01709442399442196, -0.011358136311173439, 0.006483722012490034, 0.011222238652408123, 0.013725606724619865, 0.00884761568158865, -0.00012192741269245744, -0.003077354049310088, 0.013339372351765633, -0.02192949876189232, 0.007016581483185291, 0.03235781192779541, -0.018281735479831696, 0.02905336767435074, 0.004924481734633446, -0.03327333182096481, 0.009148020297288895, -0.000717035960406065, 0.030469559133052826, 0.007063072640448809, -0.006143979262560606, 0.027351077646017075, -0.0037300176918506622, -0.025891972705721855, -0.024718966335058212, -0.019211556762456894, -0.029782921075820923, -0.014920070767402649, 0.02298806607723236, 0.011465423740446568, 0.010464075952768326, -0.009441271424293518, 0.01310334075242281, 0.0010603549890220165, -0.029267942532896996, -0.017909806221723557, -0.016207516193389893, -0.0030183459166437387, -0.017180252820253372, -0.00019110528228338808, -0.011014817282557487, 0.024132462218403816, 0.02541990950703621, 0.004016116727143526, -0.0065302131697535515, 0.017595097422599792, 0.006294181104749441, -0.02747982367873192, -0.0031596075277775526, -0.00572913559153676, -0.01736621744930744, -0.003908829763531685, 0.027208028361201286, 0.013382287696003914, 0.028695743530988693, -0.0029360924381762743, 0.024575917050242424, -0.014920070767402649, -0.013275000266730785, -0.0330730602145195, -0.03673512861132622, -0.004777855705469847, 0.04056885838508606, -0.03799396753311157, 0.005257071927189827, -0.04506061598658562, 0.012438160367310047, -0.018739493563771248, -0.001482351217418909, 0.008211045525968075, 0.002662510145455599, -0.01635056547820568, -0.0035655105020850897, -0.018582139164209366, 0.03902392461895943, 0.0006419349811039865, 0.0094841867685318, 0.009884725324809551, 0.028037715703248978, 0.0002228444063803181, -0.023030981421470642, -0.003055896610021591, 0.004230691120028496, -0.016293346881866455, -0.010113604366779327, 0.01239524595439434, 0.017308998852968216, 0.038823653012514114, 0.004270029719918966, 0.00811806321144104, -0.009941945783793926, -0.010778785683214664, 0.007710372097790241, -0.0138185890391469, -0.016393480822443962, -0.01579267345368862, 0.05009596049785614, 0.04311514273285866, 0.011465423740446568, -0.0026642982847988605, -0.0036173660773783922, 0.01424773782491684, 0.010435466654598713, 0.014648276381194592, 0.03805118799209595, 0.012752869166433811, 0.0076316948980093, 0.00763884698972106, -0.01653653010725975, 0.01143681351095438, -0.01570684276521206, 0.011322373524308205, 0.01361116673797369, -0.01706581376492977, 0.004373740870505571, -0.578606903553009, -0.035791002213954926, -0.031041758134961128, -0.0009968767408281565, -0.03873782604932785, -0.0021815060172230005, 0.012945986352860928, 0.009140867739915848, -0.013232085853815079, 0.0176952313631773, -0.01600724644958973, -0.00101475790143013, -0.01660805568099022, -0.022787796333432198, 0.0023317080922424793, -0.017237473279237747, 0.02819507010281086, -0.02805202081799507, 0.003905253252014518, 0.012509685009717941, 0.012624124996364117, 0.017151644453406334, 0.0070344628766179085, -0.006669686175882816, 0.0008484628051519394, 0.011286611668765545, 0.006287028547376394, -0.0161932110786438, 0.012531142681837082, 0.001453741337172687, -0.038451723754405975, 0.022845016792416573, 0.008203892968595028, -0.01527769397944212, 0.04889434576034546, -0.01451237965375185, -0.020828017964959145, 1.9809012883342803e-05, 0.013196323066949844, 0.037850916385650635, -0.031213417649269104, -0.031442295759916306, -0.006583856418728828, -0.011136408895254135, 0.012702802196145058, -0.006533789448440075, 0.020742187276482582, -0.006297757383435965, -0.01527769397944212, -0.04239989444613457, -0.0022619713563472033, 0.010456923395395279, -0.016135992482304573, -0.01025665458291769, 0.0045239427126944065, -0.02081371285021305, 0.011780132539570332, -0.024876320734620094, 0.012323720380663872, 0.014934375882148743, 0.01878240890800953, 0.01623612642288208, -0.025663092732429504, -0.045346714556217194, 0.012252195738255978, 0.007438577711582184, 0.010414008982479572, 0.023073896765708923, -0.0006034903926774859, -0.013439507223665714, -0.005360782612115145, 0.012545447796583176, -0.011100647039711475, -0.013167712837457657, 0.012259348295629025, 0.007445730268955231, 0.04683443158864975, 0.0037300176918506622, 0.0009405509335920215, 0.023417215794324875, -0.004820770584046841, -0.008690261282026768, -0.007066648919135332, -0.0383945070207119, 0.024060938507318497, 0.024962151423096657, -0.008447077125310898, -0.008897683583199978, 0.009848963469266891, 0.022401563823223114, 0.03358804062008858, 0.022244209423661232, 0.018467700108885765, -0.036019884049892426, 0.003783661173656583, 0.05212726444005966, 0.02114272676408291, -0.005224885884672403, 0.014111840166151524, -0.036305982619524, 0.00824680831283331, 0.01400455366820097, 0.0023460129741579294, -0.000717035960406065, 0.026521390303969383, 0.02523394487798214, -0.004152013920247555, -0.00597231974825263, 0.060138039290905, -0.02617807127535343, -0.005671915598213673, -0.019769450649619102, -0.009205239824950695, -0.007531560026109219, 0.0306412186473608, -0.04005388170480728, 0.024461476132273674, 0.0029986766166985035, 0.012416702695190907, 0.0029825835954397917, 0.023073896765708923, 0.006698296405375004, 0.02155757136642933, -0.008318332955241203, -0.009848963469266891, 0.015907112509012222, 0.013239238411188126, -0.01194463949650526, -0.013210628181695938, 0.007753286976367235, 0.024919236078858376, -0.0051855468191206455, 0.03513297438621521, -0.021214252337813377, 0.02846686542034149, -0.007581627462059259, 0.029782921075820923, -0.00931967981159687, 0.008690261282026768, -0.02609224244952202, -0.022244209423661232, -0.0006647334666922688, 0.005754169076681137, -0.04397343844175339, -0.026049327105283737, -0.007531560026109219, -0.021457435563206673, 0.007048767525702715, 0.004974548704922199, -3.93945119867567e-05, -0.014540988951921463, 0.009384051896631718, -0.021514656022191048, 0.010728717781603336, -0.00836124736815691, -0.009691608138382435, -0.01942613162100315, -0.009026427753269672, -0.012295111082494259, -0.015492268837988377, -0.011300915852189064, 0.02002694085240364, -0.035905443131923676, -0.005661186762154102, 0.01031387411057949, 0.008840464055538177, -0.007091682404279709, 0.01188741996884346, 0.008718871511518955, -0.03066982887685299, -0.027622872963547707, -0.021271470934152603, -0.006308486219495535, 0.005392969120293856, -0.03719288855791092, 0.014204822480678558, 0.0019633553456515074, -0.009498491883277893, -0.018625054508447647, -0.008296875283122063, -0.025820447131991386, 0.018911153078079224, -0.010034927166998386, -0.013804283924400806, 0.04068329930305481, 0.0023585299495607615, 0.02380344830453396, 0.0011801589280366898, 0.006179741583764553, -0.008919141255319118, -0.01080024242401123, 0.0580495186150074, -0.00924100261181593, 0.016450701281428337, -0.004109099041670561, -0.012624124996364117, -0.01803855039179325, -0.0074171205051243305, 0.016364870592951775, 0.03968195244669914, 0.02782314270734787, -0.009312527254223824, -0.01263843011111021, -0.005468070041388273, -0.006447959691286087, -0.03473243489861488, 0.02451869659125805, -0.006022387184202671, 0.0409407876431942, 0.002034880220890045, 0.027908971533179283, -0.009155172854661942, 0.002242302056401968, -0.008704566396772861, -0.0002201622410211712, 0.048694074153900146, -0.009226697497069836, 0.013925875537097454, -0.0013723818119615316, 0.02553434856235981, -0.013890113681554794, -0.009555711410939693, 0.02152896113693714, -0.0019418979063630104, -0.002837745938450098, 0.011587015353143215, 0.002419325988739729, 0.001376852160319686, 0.0032811996061354876, -0.010456923395395279, -0.031928665935993195, -0.009655846282839775, 8.476804941892624e-05, -0.01667957939207554, 0.015063120052218437, 0.009448423981666565, 0.03295862302184105, -0.008318332955241203, 0.051125917583703995, -0.028223680332303047, 0.006405044812709093, 0.02553434856235981, 0.023374300450086594, -0.023345690220594406, 0.020527614280581474, -0.018567834049463272, 0.024175377562642097, 0.026936234906315804, 0.01025665458291769, -0.0055217137560248375, -0.03272974118590355, 0.013267847709357738, 0.005675491876900196, 0.00408764136955142, 0.02283071167767048, 0.007545865140855312, 0.007438577711582184, -0.0015002323780208826, 0.024475781247019768, 0.02099967747926712, -0.004903024062514305, 0.01574975810945034, -0.01417621225118637, 0.0152633897960186, 0.007595932111144066, -0.01623612642288208, -0.001362547161988914, -0.014877155423164368, -0.006133250426501036, -0.01748065836727619, 0.010843157768249512, -0.013997401110827923, -0.012309416197240353, -0.008110910654067993, 0.023116810247302055, 0.016221821308135986, 0.009956249967217445, -0.001823882106691599, -0.013682691380381584, 0.01780967228114605, -0.04614779353141785, -0.025920582935214043, 0.024161072447896004, 0.015606708824634552, 0.013439507223665714, -0.02849547564983368, 0.0046455347910523415, 0.004033998120576143, -0.018496310338377953, 0.012566905468702316, -0.015435049310326576, -0.0016853028209879994, -0.019325997680425644, -0.022816406562924385, -0.019325997680425644, 0.0073384433053433895, 0.051612287759780884, -0.004577586427330971, -0.004531095270067453, -0.015806978568434715, 0.020570527762174606, 0.013017510995268822, -0.010185129940509796, -0.01293883379548788, 0.036277372390031815, 0.0028216529171913862, -0.002000905806198716, -0.02872435376048088, 0.004688449669629335, 0.0051390561275184155, 0.028938928619027138, -0.017123034223914146, -0.032043103128671646, -0.0020044820848852396, 0.02958265133202076, 0.006573128048330545, 0.022516002878546715, 0.003862338373437524, 0.023603180423378944, 0.0032651065848767757, -0.0051497844979166985, -0.026821795850992203, -0.031556736677885056, 0.011529795825481415, 0.04337263107299805, 0.025105200707912445, 0.011851657181978226, 0.01385435089468956, 0.008032233454287052, -0.011844504624605179, -0.0044452655129134655, -0.012867309153079987, 0.006372858304530382, 0.014397939667105675, -0.013518184423446655, -0.006623195018619299, -0.027193723246455193, -0.010664345696568489, 0.008082300424575806, -0.03272974118590355, -0.011386745609343052, -0.02190089039504528, 0.020856628194451332, 0.0037908137310296297, 0.006548094097524881, -0.00980604812502861, -0.014126145280897617, 0.015649624168872833, 0.006859227083623409, -0.024547306820750237, 0.01852492056787014, 0.011708607897162437, 0.01213060412555933, -0.012795784510672092, 0.005371511448174715, 0.02921072207391262, 0.012531142681837082, 0.013654082082211971, -0.02650708518922329, 0.021242860704660416, 0.021500350907444954, 0.0028198647778481245, 0.015735452994704247, 0.014676886610686779, 0.04076912999153137, -0.0018900424474850297, -4.016284492536215e-06, -0.0023245555348694324, -0.0004121615784242749, -0.0460333526134491, -0.0021064048632979393, 0.007238308433443308, -0.0002268676762469113, -0.004620501305907965, 0.014705495908856392, -0.005146208219230175, -0.04837936535477638, -0.01235233061015606, 0.020713578909635544, 0.03318750113248825, -0.004624077584594488, -0.0004278076230548322, 0.0004262430302333087, -0.052327532321214676, -0.020599137991666794, -0.021958108991384506, 0.013439507223665714, 0.001398309599608183, -0.0016906671226024628, -0.018996983766555786, -0.03719288855791092, 0.002837745938450098, -0.0010889648692682385, 0.01984097622334957, -0.007889184169471264, 0.0036531283985823393, -0.05021040141582489, -0.012066231109201908, -0.0025319773703813553, 0.020198600366711617, 0.030383728444576263, 0.0003645528922788799, 0.009105104953050613, 0.027737312018871307, -0.017165949568152428, -0.01901128888130188, -0.013131950981914997, -0.047378018498420715, -0.0019830246455967426, -0.0036084253806620836, -0.008733176626265049, -0.010042079724371433, -0.02192949876189232, 0.04840797558426857, -0.002703636884689331, -0.01635056547820568, 1.1518005521793384e-05, -0.018467700108885765, 0.017638012766838074, -0.0004034444864373654, 0.011916029267013073, 0.03190005570650101, 0.01956918090581894, 0.0029360924381762743, 0.012445312924683094, -0.01605016179382801, -0.016822630539536476, -0.04320096969604492, -0.00793209858238697, -0.002447935752570629, -0.012810089625418186, 0.01044261921197176, -0.0052177333272993565, -0.015992943197488785, -0.002279852516949177, -0.015950027853250504, -0.01235233061015606, -0.02182936482131481, 0.02366039901971817, 0.015077425166964531, 0.009984860196709633, -0.01893976330757141, -0.0022655476350337267, 0.009713065810501575, 0.009169477969408035, 0.0040626078844070435, 0.017080118879675865, 0.023746229708194733, 0.007645999547094107, 0.0064980266615748405, 0.006433654576539993, -0.028409644961357117, -0.0022548187989741564, 0.008275417611002922, 0.023302774876356125, 0.004506061784923077, -0.010220891796052456, -0.04611918330192566, -0.027508432045578957, -0.02182936482131481, -0.022172683849930763, -0.01306757889688015, -0.023274164646863937, -0.012688497081398964, -0.0015440413262695074, 0.01882532425224781, -0.005396544933319092, -0.01582128368318081, 0.038308676332235336, -0.026893319562077522, 0.0034385540056973696, -0.0017371582798659801, 0.025548653677105904, 0.04285765066742897, -0.01224504318088293, 0.0018882544245570898, -0.014240585267543793, 0.00405903160572052, -0.023674704134464264, -0.041598815470933914, -0.0217435359954834, -0.010156519711017609, 0.02895323373377323, 0.038566164672374725, 0.051383405923843384, 0.02032734453678131, 0.010206586681306362, 0.01265273429453373, 0.016593750566244125, 0.010027775540947914, 0.0005266012158244848, 0.00645868806168437, -0.02560587413609028, 0.015735452994704247, 0.02148604579269886, -0.006548094097524881, 0.027465518563985825, -0.02095676213502884, 0.01642209105193615, 0.009076495654881, -0.014719801023602486, -0.00935544166713953, -0.021400216966867447, -0.015878502279520035, -0.006076030433177948, -0.014018857851624489, -0.010263807140290737, 0.009670151397585869, -0.05647597089409828, -0.017609402537345886, 0.022058244794607162, 0.002975431038066745, 0.0011765827657654881, -0.0008185117621906102, 0.024418562650680542, -0.013096188195049763, 0.03167117387056351, 0.005353630054742098, 0.00667326245456934, 0.005732711870223284, -0.015163254924118519, -0.0434870719909668, -0.007939251139760017, 0.019697926938533783, 0.0001570192544022575, 0.03304444998502731, 0.012895919382572174, -0.006637500133365393, 0.009848963469266891, 0.007202546112239361, 0.00475282222032547, -0.027908971533179283, 0.02321694605052471, -0.007277647033333778, -0.020642053335905075, -0.023388605564832687, -0.015950027853250504, -0.001086282660253346, 0.0024640290066599846, 0.004126979969441891, 0.013232085853815079, 0.002215480199083686, -0.02028442919254303, -0.013532489538192749, 0.030841488391160965, 0.0020205751061439514, 0.023946499451994896, -0.004430960398167372, 0.006569551769644022, 0.036506250500679016, -0.009348290041089058, 0.005525289569050074, 0.000809124147053808, -0.014104687608778477, -0.002673238981515169, 0.02546282485127449, 0.022287122905254364, 0.0034403421450406313, -0.03244364261627197, -0.010163672268390656, 0.008697413839399815, -0.022258512675762177, -0.018210209906101227, 0.025820447131991386, 0.026106547564268112, 0.011258001439273357, 0.0010451559210196137, -0.012080536223948002, -0.013997401110827923, 0.019783755764365196, -0.025777533650398254, 0.02328846976161003, 0.03244364261627197, -0.015449353493750095, -0.003358088666573167, 0.006616042926907539, 0.007967861369252205, 0.02680749073624611, -0.002426478313282132, -0.028524084016680717, 0.0017371582798659801, -0.01473410613834858, -0.030612608417868614, 0.032043103128671646, 0.00832548551261425, 0.02752273716032505, -0.0026803913060575724, 0.03321611136198044, 0.0323864221572876, -0.0016557987546548247, -0.012209281325340271, -0.009326832368969917, -0.004105522762984037, 0.02992597036063671, -0.004116251599043608, 0.014662581495940685, 0.020684968680143356, -0.024947846308350563, 0.002419325988739729, -0.019955415278673172, 0.00935544166713953, -0.02523394487798214, -0.02370331436395645, -0.011629930697381496, 0.014705495908856392, 0.01822451502084732, 0.007209698669612408, 0.016135992482304573, 0.006859227083623409, -0.01192318182438612, 0.0021385911386460066, 0.018796714022755623, -0.0011622777674347162, -0.02703636884689331, -0.0062619950622320175, -0.007266918197274208, 0.0019347454654052854, 0.015764063224196434, 0.013031816110014915, -0.0002574892423581332, 0.0033884868025779724, 0.028896013274788857, -0.025319773703813553, -0.0011882055550813675, 0.012116299010813236, -0.009412662126123905, -0.0014224492479115725, -0.011029122397303581, -0.0013133739121258259, -0.027279553934931755, 0.0010666133603081107, -0.021686315536499023, -0.05392969027161598, -0.015206169337034225, -0.03865199536085129, 0.0008837781497277319, -0.012717107310891151, 0.009469881653785706, -0.01695137470960617, 0.028667135164141655, -0.010399703867733479, -0.005528865847736597, 0.0006544517818838358, 0.03521880507469177, -0.016221821308135986, 0.007245460990816355, 0.017108729109168053, -0.0069235991686582565, 0.022516002878546715, 0.0013822164619341493, -0.004237843677401543, -0.004169894848018885, -0.027436908334493637, -0.004320097155869007, -0.0014412244781851768, 0.018167296424508095, -0.016808325424790382, 0.006934328004717827, 0.013339372351765633, -0.00215647229924798, -0.029868751764297485, 0.009734523482620716, 0.0025444943457841873, -0.022172683849930763, 0.025434214621782303, -0.004155590198934078, -0.015177560038864613, -0.006365706212818623, -0.014111840166151524, -0.024647440761327744, -0.0038301523309201, 0.026421256363391876, -0.01991249993443489, -0.0007729147328063846, -0.01044261921197176, 0.012588362209498882, 0.0190828125923872, -0.02958265133202076, -0.05001012980937958, 0.005164089612662792, -0.05350054055452347, -0.019039899110794067, -0.02650708518922329, 0.00017456518253311515, -0.002560587367042899, 0.006269147619605064, -0.006891413126140833, 0.040626078844070435, -0.012044774368405342, -0.0033098096027970314, -0.02155757136642933, 0.00031694420613348484, 0.01306757889688015, -0.00021759180526714772, 0.036620691418647766, -0.009527101181447506, -0.04248572140932083, 0.0006964725907891989, 0.011165019124746323, 0.03802257776260376, 0.013081883080303669, 0.03456077724695206, -0.016436396166682243, -0.00046133488649502397, 0.010335331782698631, -0.006494450848549604, -0.005049650091677904, -0.015578098595142365, 0.008840464055538177, -0.06923599541187286, 0.00927676446735859, 0.020341649651527405, -0.0025427062064409256, 0.011186476796865463, 0.0002057455130852759, 0.0066088903695344925, -0.016979984939098358, 0.02564878761768341, -0.032271984964609146, -0.007452882826328278, -0.006093911826610565, -0.013232085853815079, 0.04391621798276901, -0.006097488105297089, 0.019969720393419266, 0.026035021990537643, 0.011644234880805016, -0.010857462882995605, -0.028280900791287422, 0.032043103128671646, -0.022072549909353256, -0.03198588639497757, 0.017008595168590546, -0.005038921255618334, 0.029239332303404808, -0.002390715992078185, 0.008940597996115685, 0.013096188195049763, -0.0036173660773783922, -0.04385899752378464, -0.008575822226703167, -0.019941110163927078, 0.013360830023884773, -0.00716320751234889, -0.01623612642288208, 0.004223538562655449, -0.012924528680741787, 0.01167999766767025, -0.01293883379548788, -0.008597278967499733, 0.004888718947768211, 0.0005158724961802363, -0.007746134418994188, -0.019039899110794067, -0.028781574219465256, 0.001956203021109104, 0.015377828851342201, -0.018310345709323883, -0.014147602953016758, -0.008876225911080837, 0.1836756467819214, 0.005975896026939154, -0.0037478988524526358, 0.033759698271751404, 0.023631788790225983, 0.002226209035143256, 0.000979889533482492, 0.009970555081963539, -0.02808063104748726, 0.004649111069738865, 0.0020205751061439514, 0.005779202561825514, -0.008919141255319118, -0.012795784510672092, 0.0020813713781535625, 0.010621430352330208, -0.015778368338942528, -0.03527602553367615, 0.005271376576274633, -0.0011175747495144606, 0.0009825717424973845, 0.019254472106695175, -0.012681344524025917, -0.012888766825199127, -0.009963402524590492, -0.013539642095565796, 0.008904836140573025, -0.013296457938849926, 0.0004137262003496289, 0.012516837567090988, -0.03487548604607582, 0.005997353233397007, 0.005003158934414387, -0.013768521137535572, -0.01194463949650526, -0.01449092198163271, 0.007667457219213247, -0.0061475555412471294, 0.028810184448957443, 0.009441271424293518, 0.016093077138066292, -0.004327249713242054, -0.015907112509012222, -0.03848033398389816, -0.003000464756041765, 0.01117217168211937, -0.014819935895502567, -0.005392969120293856, -0.023860668763518333, 0.004978124983608723, -0.01878240890800953, 0.009841810911893845, 0.029110588133335114, 0.018839629366993904, -0.011293764226138592, -0.0033741819206625223, -0.006834193132817745, 0.02800910733640194, 0.0044881803914904594, 0.020670663565397263, -0.010449771769344807, 0.030355120077729225, 0.02114272676408291, 0.016021551564335823, -0.01550657395273447, 0.013825741596519947, -0.049895692616701126, -0.013582557439804077, 0.029153503477573395, -0.020613443106412888, -0.0002735823218245059, -0.006101064383983612, -0.019583486020565033, -0.004548976197838783, -0.037593428045511246, -0.03913836181163788, 0.008261112496256828, 0.018768103793263435, 0.03467521816492081, 0.02095676213502884, 0.01503450982272625, 0.005021039862185717, -0.00793209858238697, 0.005085412412881851, -0.015363523736596107, -0.026764575392007828, 0.03250086307525635, -0.016107382252812386, -0.0035798156168311834, 0.009305374696850777, -0.02148604579269886, 0.00806084368377924, -0.010628582909703255, 0.007105987519025803, -0.014719801023602486, -0.036620691418647766, 0.01893976330757141, -0.025033675134181976, -0.011873114854097366, 0.02590627782046795, -0.03879504278302193, 0.06946486979722977, 0.03682095929980278, -0.002725094323977828, 0.019783755764365196, 0.0005082730203866959, -0.04686304181814194, 0.005257071927189827, 0.020456088706851006, -0.04752106964588165, 0.0038873720914125443, -0.02321694605052471, -0.002710789442062378, -0.011858809739351273, -0.004134132526814938, 0.0076960669830441475, 0.029196418821811676, -0.011036274954676628, -0.0024425715673714876, 0.013174865394830704, -0.018539223819971085, -0.027236638590693474, -0.010084995068609715, 0.004473875276744366, 0.0032043105456978083, -0.012681344524025917, -0.04188491404056549, -0.01875379867851734, -0.019697926938533783, -0.011594167910516262, 0.016293346881866455, 0.012030469253659248, -0.0071131400763988495, -0.01149403303861618, 0.008954903110861778, 0.006773397326469421, 0.0204703938215971, -0.034331899136304855, 0.013718454167246819, 0.009677303954958916, -0.02358887530863285, 0.005925828590989113, -0.0001068401470547542, 0.014090383425354958, 0.012452465482056141, -0.02396080270409584, 0.004234267398715019, -0.004574010148644447, 0.010664345696568489, -0.022773491218686104, 0.0003913746913895011, -0.005246343091130257, -0.0076531521044671535, -0.03175700455904007, 0.01589280739426613, -0.019597791135311127, -0.02812354639172554, -0.009019275195896626, 0.010750175453722477, 0.002412173431366682, -0.027050673961639404, 0.004041150212287903, -0.009333984926342964, -0.013911571353673935, -0.013038968667387962, -0.022144073620438576, -0.18298901617527008, 0.02981153130531311, 0.019554875791072845, -0.001482351217418909, 0.0021189218387007713, 0.016035856679081917, 0.0069128707982599735, 0.0016486463136970997, -0.0335308201611042, 0.010063537396490574, 0.010492686182260513, 0.02275918796658516, -0.010378246195614338, -0.01055705826729536, 0.022287122905254364, 0.00600092951208353, -0.018095770850777626, -0.011050579138100147, 0.007088106125593185, 0.015835586935281754, 0.017566487193107605, -0.029639871791005135, 0.0019544148817658424, 0.006984395440667868, 0.01336798258125782, 0.023689009249210358, 0.0010371094103902578, 0.03187144547700882, -0.03407440707087517, -0.024733271449804306, 0.005403697490692139, 0.005657610483467579, 0.026464171707630157, 0.010306721553206444, 0.028710048645734787, 0.022415868937969208, -0.021242860704660416, -0.0005851621390320361, 0.015363523736596107, 0.05372941866517067, 0.003958896733820438, 0.03573378175497055, -0.006719753611832857, 0.004588315263390541, -0.02943960204720497, 0.03707844763994217, -0.006519484333693981, -0.012473923154175282, -0.005414426326751709, -0.015392133966088295, 0.035676565021276474, 0.0031917935702949762, 0.01788119599223137, 0.013239238411188126, 0.01822451502084732, 0.0247475765645504, 0.005128327291458845, -0.017108729109168053, -0.012309416197240353, -0.009791743010282516, -0.01216636598110199, 0.0010916470782831311, -0.009927640669047832, -0.006580280140042305, -0.03355943039059639, -0.02301667630672455, -0.022902237251400948, 0.02860991470515728, -0.03498992696404457, 0.010042079724371433, 0.005661186762154102, 0.005042497534304857, 0.021013982594013214, -0.00016696567763574421, 0.02155757136642933, -0.0059937769547104836, 0.003476104699075222, 0.005593238398432732, 0.02361748367547989, -0.022029634565114975, -0.017380522564053535, 0.03985361009836197, -0.02493354119360447, -0.004820770584046841, 0.03478965535759926, -0.010077842511236668, 0.007331290747970343, 0.0263640359044075, -0.013282152824103832, 0.0010371094103902578, -0.007131021004170179, -0.01841047964990139, 0.027050673961639404, -0.007352747954428196, 0.004981701262295246, 0.010785938240587711, -0.018996983766555786, 0.007839116267859936, -0.011114952154457569, -0.017080118879675865, 0.00026128898025490344, 0.00380511861294508, -0.01637917570769787, 0.02418968267738819, 0.023603180423378944, 0.027837447822093964, -0.018324650824069977, 0.0018989830277860165, 0.02215837873518467, -0.015163254924118519, -0.01806716062128544, 0.007020157761871815, 0.011601320467889309, 0.022659052163362503, -0.0035512056201696396, 0.008954903110861778, 0.005360782612115145, -0.03381691873073578, 0.01210914645344019, 0.004774279426783323, 0.04177047684788704, 0.020499004051089287, 0.010192282497882843, 0.012953138910233974, -0.006669686175882816, -0.03393135964870453, -0.08062274008989334, -0.01076448056846857, -0.006351401098072529, 0.04357289895415306, -0.01739482767879963, 0.0026660864241421223, -0.028752963989973068, 0.016064466908574104, 0.0002595008700154722, 0.017452048137784004, -0.02587766759097576, -0.014719801023602486, -0.0028609915170818567, 0.005639729555696249, 0.0019007711671292782, -0.008082300424575806, -0.011222238652408123, -0.02088523842394352, -0.006612466648221016, 0.03275835141539574, -0.002455088309943676, -0.03922419250011444, 0.010700108483433723, -0.01630765199661255, 0.009219544939696789, 0.010435466654598713, -0.030727047473192215, 0.030727047473192215, 0.011186476796865463, -0.0029968884773552418, 0.015735452994704247, -0.00903358031064272, 0.023045286536216736, -0.03370247781276703, 0.009233850054442883, -0.01406177319586277, 5.199516817810945e-05, -0.013732759281992912, 0.025376994162797928, -0.036277372390031815, 0.017652317881584167, 0.026006411761045456, 0.03790813684463501, 0.0013008570531383157, 0.010700108483433723, -0.004091217648237944, -0.032071713358163834, 0.027351077646017075, -0.006076030433177948, -0.029725700616836548, -0.01334652490913868, -0.012237890623509884, -0.03164256736636162, 0.004441689234226942, 0.043172359466552734, 0.0024246901739388704, -0.013325068168342113, 0.016293346881866455, -0.008253959938883781, -0.010371093638241291, -0.012194976210594177, -0.008504297584295273, -0.03441772609949112, -0.007202546112239361, 0.028924623504281044, 0.008418467827141285, -0.03599127382040024, -0.00430221576243639, 0.00962008349597454, -0.009148020297288895, -0.02328846976161003, 0.035075753927230835, -0.028781574219465256, -0.000489050755277276, -0.029110588133335114, -0.011551253497600555, -0.022859321907162666, -0.02328846976161003, 0.002753704320639372, -0.01889684796333313, -0.009062190540134907, -0.029353773221373558, -0.007645999547094107, -0.02155757136642933, 0.013646929524838924, 0.019511962309479713, -0.004860109183937311, 0.009777437895536423, 0.02208685502409935, -0.0413985475897789, 0.00956286396831274, 0.003930286969989538, 0.03444633632898331, -0.01049983873963356, -0.023345690220594406, 0.01623612642288208, -0.0003113563288934529, -0.007098834961652756, 0.016479311510920525, 0.01926877722144127, -0.0582783967256546, 0.009169477969408035, -0.06854935735464096, 0.027694396674633026, -0.003123844973742962, 0.00022597362112719566, 0.003626306774094701, -0.00931967981159687, 0.03416023775935173, -0.011916029267013073, 0.014991595409810543, 0.013618319295346737, -0.03044094890356064, -0.010321026667952538, 0.0038659146521240473, -0.02666443958878517, -0.023531654849648476, -0.016965679824352264, 0.03424606844782829, -0.005189123097807169, 0.023746229708194733, 0.03315889090299606, 0.009069343097507954, 0.007224003318697214, -0.005310715176165104, -0.006612466648221016, -0.042914871126413345, 0.012867309153079987, 0.0005042497650720179, 0.011358136311173439, -0.01667957939207554, 0.012788631953299046, 0.0031059638131409883, -0.02340291067957878, 0.01406177319586277, 0.02647847682237625, -0.013139103539288044, 0.01679402031004429, 0.020556224510073662, 0.027165114879608154, 0.03115619719028473, 0.02245878241956234, -0.023789143189787865, -0.025849057361483574, -0.0013598649529740214, -0.004119827877730131, 0.009605778381228447, -0.0006236067274585366, 0.007560169789940119, -0.008196740411221981, 0.013754216022789478, -0.03184283524751663, 0.03101314790546894, 0.0007045191596262157, -0.022029634565114975, -0.0446314662694931, 0.00032074397313408554, -0.02002694085240364, -0.0038229997735470533, -0.004731364548206329, -0.0013992036692798138, -0.0077389818616211414, 0.02886740304529667, -0.031184807419776917, 0.02155757136642933, -0.04125549644231796, 0.008511449210345745, -0.007467187941074371, -0.030011801049113274, -0.009076495654881, 0.0028913894202560186, 0.0019204404670745134, -0.0167654100805521, 0.00761023722589016, 0.007331290747970343, 0.001156913465820253, -0.006877108011394739, -0.0023746229708194733, -0.0011506549781188369, 0.018567834049463272, 0.007274070754647255, 0.01924016699194908, 0.006129674147814512, -0.006787702441215515, -0.0030398033559322357, -0.0016835146816447377, 0.0034045798238366842, 0.02215837873518467, -0.010099300183355808, 0.005797083955258131, -0.010099300183355808, 0.015148949809372425, -0.0062619950622320175, 0.01218782365322113, -0.0026231715455651283, 0.005389392841607332, -0.017123034223914146, 0.022258512675762177, -0.02192949876189232, -0.003654916537925601, 0.027851751074194908, 0.016879849135875702, 0.04179908707737923, -0.0037335939705371857, 0.01240955013781786, -0.022730577737092972, -0.019826671108603477, -0.012988901697099209, -0.020298734307289124, -0.032186154276132584, 0.0034743165597319603, 0.005586085841059685, -0.01400455366820097, 0.00646941689774394, -0.033301942050457, 0.0038265760522335768, 0.001561922486871481, 0.030383728444576263, -0.015406439080834389, 0.0009906182531267405, -0.022973760962486267, 0.04022553935647011, 0.0036656453739851713, -0.007302680518478155, -0.001299068913795054, 0.002773373620584607, 0.018567834049463272, 0.02680749073624611, 0.01855352893471718, -0.028767269104719162, 0.018152991309762, -0.01023519691079855, 0.010514143854379654, 0.012030469253659248, -0.002369258552789688, -0.013360830023884773, -0.019025593996047974, -0.0306412186473608, -0.00690929451957345, 0.016150297597050667, 0.0013097976334393024, 0.09670151025056839, 0.03450355678796768, 0.007975013926625252, -0.014633971266448498, -0.023932194337248802, 0.005364358890801668, 0.013382287696003914, 0.0037300176918506622, 0.03232920169830322, -0.03424606844782829, -0.0035529937595129013, 0.008025080896914005, -0.014862850308418274, -0.030212070792913437, 0.015492268837988377, 0.00806084368377924, 0.01579267345368862, 0.04039720073342323, -0.008082300424575806, -0.0014921858673915267, 0.023860668763518333, 0.02891031838953495, -0.007098834961652756, 0.008661651983857155, -0.01218782365322113, -0.011601320467889309, 0.02418968267738819, 0.0047420933842659, 0.012645582668483257, -0.0420851856470108, -0.010943292640149593, 0.005156937055289745, -0.01593572273850441, -0.012523990124464035, -0.007989319041371346, -0.019411826506257057, 0.005936557427048683, -0.0023513773921877146, 0.026793185621500015, 0.011644234880805016, -0.0022440901957452297, 0.03078426793217659, -0.013096188195049763, -0.03933863341808319, -0.02669304981827736, -0.008740329183638096, -0.022859321907162666, -0.009627236053347588, -0.050296228379011154] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_trip_planning_for_autonomous_vehicles_with_wireless_data_transfer_needs_using_reinforcement_learning.json b/database/embeddings/publications_txt/2022_trip_planning_for_autonomous_vehicles_with_wireless_data_transfer_needs_using_reinforcement_learning.json new file mode 100644 index 0000000000000000000000000000000000000000..6e980cbaf153c6117531932a6d197cd3adad8d61 --- /dev/null +++ b/database/embeddings/publications_txt/2022_trip_planning_for_autonomous_vehicles_with_wireless_data_transfer_needs_using_reinforcement_learning.json @@ -0,0 +1 @@ +[0.00374713446944952, 0.014918102882802486, 0.0028156335465610027, 0.00673709437251091, 0.03130125254392624, 0.0039091347716748714, -0.006906137801706791, -0.001742382301017642, -0.02034158632159233, -0.041838306933641434, 0.0012387731112539768, 0.03758404031395912, -0.014791320078074932, 0.009952445514500141, -0.007325225044041872, 0.0073181819170713425, 0.02786402963101864, -0.0024616983719170094, -0.004032395780086517, 0.01079766359180212, -0.0001708045310806483, -0.0010406749788671732, -0.01576332189142704, -0.015228016301989555, 0.0126430569216609, 0.0026553941424936056, 0.026779333129525185, -0.03592177852988243, 0.006536354776471853, -0.011227316223084927, 0.02318715490400791, -0.010100359097123146, 0.003620351664721966, -0.015002625063061714, -0.004993831273168325, -0.021341761574149132, 0.014150363393127918, -0.03459760174155235, 0.0535304918885231, -0.013114970177412033, 0.017763670533895493, 0.023018112406134605, 0.0025391767267137766, -0.022229241207242012, 0.00874800980091095, 0.02904733642935753, 0.013157231733202934, -0.012009142898023129, -0.01122027263045311, 0.029075508937239647, 0.0033650253899395466, 0.017665062099695206, -0.016509931534528732, -0.00880435761064291, -0.011325925588607788, 0.010417315177619457, 0.01166401244699955, 0.034822992980480194, -0.01820036768913269, -0.02280680648982525, 0.024159155786037445, 0.003993656486272812, -0.04366961121559143, -0.002850850811228156, -0.0038175692316144705, -0.012685317546129227, -0.016594452783465385, 0.04113395884633064, 0.0194118469953537, 0.012445839121937752, 0.007747834548354149, 0.014206711202859879, 0.016439495608210564, -0.0296389888972044, 0.02738507278263569, -0.03369603678584099, -0.017101584002375603, -0.0009720010566525161, -0.019327325746417046, 0.021271327510476112, -0.0023542852140963078, -0.007360442541539669, -0.009114271029829979, 0.03913360834121704, 0.0194118469953537, 0.017989063635468483, 0.00029362531495280564, 0.015566104091703892, -0.010938533581793308, -0.027554117143154144, -0.012981144711375237, 0.008494444191455841, 0.02093324065208435, -0.009029748849570751, 0.015087146311998367, 0.017510104924440384, -0.004465570207685232, 0.029779858887195587, 0.001148968585766852, -0.015664711594581604, 0.016819844022393227, -0.0008808759739622474, -0.02284906804561615, -0.02125724032521248, -0.008959313854575157, -0.027934465557336807, -0.013319231569766998, 0.018031323328614235, 0.006085571832954884, 0.005666484124958515, -0.03569638729095459, 0.03521743044257164, -0.011586533859372139, -0.0070505291223526, -0.02476489543914795, -0.024708548560738564, -0.004335265606641769, 0.022426458075642586, -0.02997707575559616, -0.022398285567760468, 0.043979525566101074, 0.001384044997394085, 0.011734447441995144, -0.014072884805500507, 0.03144212067127228, 0.008431052789092064, 0.0015750995371490717, -0.006656093988567591, 0.0032523295376449823, -0.005191049072891474, -0.02362385205924511, 0.016566278412938118, 0.0007193160126917064, 0.025455158203840256, 0.01155131682753563, 0.00023111437621992081, -0.012692361138761044, 0.0033086775802075863, -0.013812275603413582, -0.03363968804478645, -0.014115145429968834, 0.026779333129525185, -0.04936074838042259, 0.004458526615053415, -0.026201767846941948, 0.013136100955307484, 0.007360442541539669, 0.00447613513097167, 0.02986438013613224, 0.015058972872793674, -0.002945937914773822, -0.015115320682525635, -0.008015486411750317, 0.026117244735360146, 0.0062193977646529675, 0.0041767871007323265, -0.011649925261735916, 0.023835156112909317, 0.015636539086699486, -0.012650100514292717, 0.006631441880017519, 0.03082229383289814, -0.008022530004382133, -0.003153720870614052, 0.003292829729616642, 0.030174292623996735, 0.02649759314954281, 0.021088195964694023, -0.0011745012598112226, -0.007163225207477808, -0.035780906677246094, 0.017002975568175316, -0.005208657588809729, -0.02399011328816414, -0.016101408749818802, 0.023313937708735466, 0.03704873472452164, 0.003111459780484438, -0.028878292068839073, 0.002651872346177697, 0.024412721395492554, 0.0020637414418160915, 0.025638287886977196, 0.034090470522642136, 0.020806457847356796, 0.010036967694759369, 0.023778807371854782, -0.027469594031572342, -0.0046733529306948185, 2.346911423956044e-05, 0.0321182943880558, 0.01642540842294693, 0.010311663150787354, -0.01504488568753004, -0.6004430651664734, -0.00789574719965458, 0.0311603806912899, 0.0016472951974719763, -0.015185755677521229, 0.006501137278974056, 0.012178187258541584, -0.0007989954319782555, -0.009776358492672443, 0.039077259600162506, -0.011044185608625412, 0.009304444305598736, -0.0014060558751225471, -0.032202817499637604, -0.00018742276006378233, -0.02170802280306816, -0.0014896972570568323, -0.034935690462589264, 0.025384722277522087, 0.024159155786037445, -0.004349352326244116, 0.018651150166988373, -0.0008579845889471471, 0.006846268195658922, 0.0044867005199193954, 0.02004576101899147, 0.01269940473139286, -0.006089093629270792, 0.011199142783880234, -0.004296526312828064, -0.04423309117555618, 0.004437395837157965, 0.029441770166158676, -0.0038598303217440844, 0.051361098885536194, -0.0009077292634174228, -0.009346705861389637, 0.030765946954488754, 0.03958439081907272, 0.03471029922366142, -0.020313413813710213, -0.029808031395077705, -0.0002645709319040179, 0.005994006525725126, -0.0013690775958821177, -0.0038175692316144705, 0.028216203674674034, -0.005645353812724352, -0.018834281712770462, -0.04998057708144188, -0.008832531049847603, 0.010994881391525269, -0.04150021821260452, -0.01347418874502182, 0.020017586648464203, -0.002009154297411442, 0.02938542328774929, -0.004300048109143972, 0.015284364111721516, -0.0026694810949265957, 0.0005621582386083901, 0.004944527056068182, 0.0016781104495748878, -0.024074634537100792, -0.009346705861389637, 0.005733397323638201, 0.004750831052660942, 0.011037142015993595, 0.001968654338270426, -0.02706107310950756, 0.0031906990334391594, 0.011382273398339748, 0.021581239998340607, -0.029131857678294182, 0.018439846113324165, 0.027849942445755005, 0.02075010910630226, 0.01253036130219698, -0.03510473296046257, 0.009100183844566345, -0.0010512402513995767, 0.004490222316235304, 0.0006193865556269884, -0.014312363229691982, 0.016848018392920494, -0.009128357283771038, -0.0024669808335602283, -0.00749426893889904, 0.011882361024618149, 0.015284364111721516, 0.0194541085511446, 0.023764722049236298, -0.012431752867996693, -0.01979219540953636, 0.006472963374108076, 0.027258289977908134, 0.0014835342299193144, 0.011403403244912624, -0.010769490152597427, -0.02551150508224964, -0.020721934735774994, -0.0038668736815452576, 0.025074809789657593, 0.0011313599534332752, 0.03535829856991768, 0.012389491312205791, 0.005349527578800917, -0.006694833282381296, 0.014918102882802486, -0.007508355658501387, -0.0003182775108143687, 0.01979219540953636, -0.018707498908042908, 0.011854186654090881, 0.008867749013006687, -0.027779508382081985, 0.01091035921126604, 0.0042472220957279205, 0.009558009915053844, -0.0032171120401471853, 0.014861755073070526, 0.0022644808050245047, 0.019425934180617332, -0.002190524013713002, -0.017256541177630424, 0.0047085704281926155, 0.02834298647940159, -0.03149846941232681, -0.005060744471848011, 0.0032664164900779724, 0.0036238734610378742, -0.006275746040046215, 0.014298276044428349, -0.006117267534136772, 0.0223278496414423, -0.008290182799100876, 0.011156881228089333, -0.02337028644979, -0.003669656114652753, -0.030202466994524002, -0.02344072051346302, 0.011502012610435486, 0.009734097868204117, -0.03330159932374954, -0.03471029922366142, -0.006666659377515316, -0.013284014537930489, 0.009882010519504547, 0.0012625448871403933, -0.0016693061916157603, -0.0005071309860795736, 0.010994881391525269, -0.02708924561738968, -0.005043135955929756, -0.017256541177630424, -0.017524192109704018, -0.013171318918466568, -0.011459751054644585, -0.017510104924440384, -0.0070540509186685085, -0.01258670911192894, -0.000805598683655262, 0.00145359942689538, -0.005525614600628614, 0.00839583482593298, 0.019017411395907402, -0.006156006827950478, 0.026455333456397057, -0.002940655220299959, -0.024018285796046257, -0.011382273398339748, -0.032090120017528534, -0.02849794365465641, 0.021384023129940033, -0.03008977137506008, 0.011466794647276402, -0.01199505664408207, 0.005719310604035854, -0.008571921847760677, -0.00244937208481133, -0.03023064136505127, 0.02403237298130989, 0.00797322578728199, -0.010832881554961205, 0.021693935617804527, -8.386150147998706e-05, 0.031216729432344437, 0.003645004006102681, -0.027934465557336807, 0.009684792719781399, 0.0005973756196908653, 0.03344247117638588, -0.019355498254299164, 0.01587601751089096, -0.02096141315996647, 0.026863854378461838, -0.004426830913871527, 0.010191923938691616, 0.011079403571784496, 0.014720885083079338, 0.02122906595468521, 0.03082229383289814, -0.0008236475987359881, -0.006141919642686844, 0.002960024867206812, -0.007677399553358555, 0.0009675988694652915, -0.004736744333058596, 0.038739170879125595, -0.008522617630660534, 0.03442855924367905, -0.007959138602018356, -0.02893463894724846, -0.007332268636673689, 0.0006651692092418671, 0.03008977137506008, -0.00967070646584034, 0.01612958312034607, -0.03423134237527847, 0.012276795692741871, -0.014720885083079338, 0.006462398450821638, 0.0359499529004097, -0.024666287004947662, -0.02494802698493004, 0.004116917494684458, 0.020806457847356796, 0.039668913930654526, 0.022102458402514458, -0.015608364716172218, -0.023792894557118416, 0.031019510701298714, 0.009910184890031815, 0.009600271470844746, -0.005458701401948929, -0.008677574805915356, 0.015805581584572792, -0.0022063718643039465, 0.03355516493320465, -0.03442855924367905, 0.02029932662844658, 0.03569638729095459, 0.02761046402156353, -0.026863854378461838, 0.01724245399236679, -0.008262008428573608, -0.004028873983770609, 0.02351115643978119, -0.010551141574978828, 0.022567328065633774, -0.015157581306993961, 0.037189606577157974, -0.01646766997873783, -0.0007175551145337522, 0.02425776608288288, -0.011023055762052536, -0.0029582639690488577, -0.008311313576996326, 0.031611163169145584, 0.007325225044041872, 0.03070959821343422, 0.016228191554546356, -0.006117267534136772, 0.004271874204277992, -0.02642715908586979, -0.028469769284129143, -0.019313238561153412, 0.004779004957526922, 0.007011790294200182, 0.0004833592101931572, 0.008578965440392494, -0.03437221050262451, 0.009212879464030266, -0.0004543048271443695, 0.031836554408073425, 0.02517341822385788, 0.016932539641857147, 0.0026659592986106873, 0.015847843140363693, 0.028173943981528282, -0.0282443780452013, 0.004314135294407606, 0.009903141297399998, 0.030991338193416595, 0.00439161341637373, -0.03431586176156998, -0.0007325225160457194, 0.011058272793889046, -0.024229591712355614, -0.023271678015589714, 0.025370635092258453, 0.008769139647483826, -0.010234184563159943, -0.010220098309218884, -0.023384373635053635, 0.010980794206261635, 0.06339137256145477, 0.006934311706572771, -0.008987488225102425, -0.018355324864387512, 0.005666484124958515, 0.01708749681711197, -0.010699055157601833, -0.0007290007779374719, 0.054319363087415695, -0.02166576310992241, 0.012002100236713886, -0.019468195736408234, 0.013924971222877502, -0.02284906804561615, -0.005476310383528471, -0.0011049468303099275, -0.01249514427036047, -0.006215876433998346, 0.0121429692953825, -0.010114445351064205, 0.02875150926411152, -0.004955092445015907, 0.010008793324232101, 0.005856658332049847, -0.0039091347716748714, -0.03107585944235325, -0.007747834548354149, 0.013072709552943707, 0.06508181244134903, 0.0170593224465847, -0.00017355589079670608, 0.019059672951698303, -0.004659265745431185, -0.013410797342658043, -0.04783935472369194, -0.009663662873208523, -0.0022415893618017435, -0.0025638288352638483, -0.012600796297192574, 0.005462223198264837, 0.016002800315618515, -0.004324700217694044, 0.03727412596344948, -0.009424184449017048, 0.0017943279817700386, -0.025863679125905037, 0.02439863421022892, -0.023497069254517555, 0.012326099909842014, -0.02366611175239086, 0.003923221491277218, 0.008240878582000732, 0.027920378372073174, -0.013164275325834751, 0.026145419105887413, 0.02348298206925392, -0.012741666287183762, -0.01546749472618103, 0.02539880946278572, 0.03287899121642113, 0.022877242416143417, -0.011790795251727104, -0.02576507069170475, 0.013403753750026226, 0.03651342913508415, 0.025483332574367523, 0.01620001718401909, 0.03431586176156998, 0.02621585503220558, 0.020905066281557083, -0.009022705256938934, -0.016693061217665672, 0.019876716658473015, -0.05037501081824303, 0.002431763568893075, 0.010051053948700428, -0.021327674388885498, -0.029413597658276558, 0.023821068927645683, 0.01041027158498764, -0.030033422634005547, -0.03352699428796768, 0.02339846082031727, 0.00027931822114624083, 0.014734972268342972, -0.015368886291980743, -0.0031167424749583006, -0.019538629800081253, -0.01303044892847538, -0.014720885083079338, 0.014213754795491695, -0.01690436527132988, -0.010036967694759369, -0.0074097472243011, -0.023750634863972664, -0.005240353289991617, -0.01631271280348301, 0.02218697965145111, -0.0039549171924591064, -0.0036062647122889757, -0.03938717395067215, 0.01439688540995121, 0.007402703631669283, 0.0010908598778769374, 0.027779508382081985, -0.013023405335843563, -0.013523492962121964, 0.02182071842253208, -0.011875317431986332, -0.015213929116725922, 0.001590947387740016, -0.02499028854072094, -0.014333494007587433, -0.015622451901435852, -0.00789574719965458, 0.004951570648699999, 0.004162699915468693, 0.018594803288578987, 0.0011207946809008718, -0.012121839448809624, 0.0072829644195735455, -0.002484589582309127, 0.004634613636881113, 0.01979219540953636, 0.011748534627258778, 0.010191923938691616, 0.019623151049017906, -0.007564703933894634, 0.019989412277936935, 0.00359393865801394, -0.02827255241572857, -0.011318881995975971, 0.017848193645477295, 0.003477721009403467, -0.002271524164825678, -0.004581787623465061, 0.010825837962329388, -0.00047499508946202695, 0.011516098864376545, -0.009128357283771038, -0.004377526231110096, -0.007909834384918213, 0.008888878859579563, 0.032540906220674515, 0.010135576128959656, -0.010790619999170303, -0.0010001750197261572, -0.014051754027605057, -0.011959838680922985, -0.022088371217250824, 0.014580016024410725, 0.010058097541332245, 0.0008082399726845324, 0.027075160294771194, -0.01291775330901146, -0.019609063863754272, -0.023201242089271545, -0.004131004214286804, 0.028836030513048172, 0.0341186448931694, 0.0008760335622355342, -0.042655348777770996, -0.005201614461839199, -0.021172719076275826, -0.0013866862282156944, -0.00607148464769125, -0.02159532718360424, -0.02259550243616104, 0.006170093547552824, 0.0184539332985878, 0.007698529865592718, 0.0015037842094898224, 0.02790629118680954, -0.02307445928454399, -0.008924096822738647, 0.02938542328774929, 0.005965832620859146, 0.03476664423942566, 0.0036133083049207926, 0.017172018066048622, -0.018735671415925026, 0.001116392551921308, -0.029667161405086517, -0.04347239434719086, -0.0311603806912899, 7.340632873820141e-05, 0.024933939799666405, 0.02772315964102745, 0.054093971848487854, -0.0033298078924417496, 0.019256889820098877, 0.0036520473659038544, 0.011473838239908218, 0.0009631966822780669, -0.00553617998957634, -0.0015689365100115538, -0.01487584225833416, 0.0027927421033382416, 0.016157755628228188, -0.0035270254593342543, 0.038372911512851715, -0.008205660618841648, 0.0071702683344483376, 0.025821419432759285, -0.009079053066670895, -0.022609589621424675, -0.011170968413352966, -0.03479481860995293, 0.010931489989161491, 0.023595677688717842, 0.012192273512482643, 0.017453758046030998, -0.03738682344555855, -0.009149488061666489, 0.026680724695324898, 9.815482371777762e-06, -0.01174149103462696, 0.01676349714398384, 0.0131431445479393, -0.016566278412938118, 0.02594820223748684, 0.02580733224749565, 0.004229613114148378, -0.0017890454037114978, 0.009086096659302711, -0.03792212903499603, -0.0036062647122889757, 0.011255490593612194, -0.0010899794287979603, 0.0001548466389067471, 0.013784102164208889, 0.009015661664307117, -0.012488100677728653, 0.021496718749403954, 0.004624048247933388, -0.025666462257504463, -0.005088918376713991, -0.009072009474039078, -0.021989762783050537, -0.021454457193613052, -0.02661028876900673, -0.009459401480853558, 0.004300048109143972, 0.0020426108967512846, 0.00010796343121910468, 0.016707148402929306, -0.029103683307766914, -0.022834980860352516, 0.011988013051450253, 0.003553438698872924, 0.013755927793681622, -0.0072477469220757484, 0.010572272352874279, 0.03983795642852783, -0.020088020712137222, -0.011058272793889046, 0.005222744774073362, -0.0004443999205250293, -0.011523142457008362, 0.004838874563574791, 0.02289132960140705, -0.022130632773041725, -0.023468894883990288, -0.016453582793474197, 0.012488100677728653, -0.02856837771832943, -0.05012144520878792, 0.018129931762814522, 0.050290487706661224, 0.005050179548561573, -0.007776008453220129, -0.0232857633382082, -0.018228542059659958, 0.016552191227674484, -0.014206711202859879, -0.005839049816131592, 0.02196158841252327, 0.002127132611349225, -0.009057923220098019, 0.03375238552689552, -0.00254622008651495, 0.015340711921453476, 0.0034900472965091467, -0.03606264665722847, 0.016988888382911682, -0.0024757853243499994, -0.025666462257504463, -0.005779180210083723, 0.005162875168025494, 0.022947676479816437, -0.009790445677936077, 0.027216028422117233, 0.027483681216835976, -0.0009508705697953701, 0.011790795251727104, 0.0013664362486451864, 0.0174960196018219, 0.02521567977964878, -0.0019070238340646029, -0.007564703933894634, 0.0010785338236019015, -0.02015845663845539, 0.0040957871824502945, -0.011248447000980377, 0.006740615703165531, -0.011861230246722698, -0.026624375954270363, -0.015213929116725922, -0.004965657368302345, 0.02089097909629345, -0.006906137801706791, 0.01498853787779808, 0.0101848803460598, -0.031104033812880516, 0.0022292633075267076, 0.011114620603621006, 0.017876366153359413, -0.010825837962329388, -0.022426458075642586, 0.01694662682712078, -0.01742558367550373, 0.026089072227478027, 0.008811401203274727, 0.02000349946320057, 0.006039788946509361, 0.039556216448545456, -0.047191355377435684, 0.009163575246930122, 0.007113920524716377, 0.013305144384503365, -0.009720010682940483, 0.0034002428874373436, 0.00019028417591471225, -0.0121429692953825, 0.018918802961707115, -0.009248096495866776, -0.04696596413850784, -0.001522273407317698, -0.015397059731185436, -0.002252154517918825, -0.011565404012799263, -0.004134526010602713, 0.004296526312828064, 0.008184530772268772, -0.012685317546129227, -0.010029924102127552, -0.02000349946320057, 0.03011794574558735, -0.00606444152072072, 0.01658036559820175, 0.025497417896986008, -0.018115846440196037, 0.04150021821260452, 0.003877438837662339, 0.003194220829755068, 0.004581787623465061, -0.02414506860077381, -0.009579140692949295, -0.0012563817435875535, 0.025455158203840256, -0.02882194332778454, -0.009755227714776993, 0.024454982951283455, -0.01708749681711197, -0.027878116816282272, 0.009959489107131958, -0.006029224023222923, -0.022680023685097694, 0.03428768739104271, -0.014094015583395958, 0.007096312008798122, -0.018355324864387512, -0.010832881554961205, -0.007290008012205362, 0.01155131682753563, 0.018735671415925026, -0.024835331365466118, -0.011121664196252823, 0.00450430903583765, 0.04288074001669884, 0.0034055253490805626, -0.03383690491318703, -0.032907165586948395, -0.032061945647001266, -0.02961081452667713, -0.011861230246722698, -0.011466794647276402, -0.011847143061459064, -0.01107235997915268, -0.013593927957117558, -0.008233834989368916, 0.008712791837751865, -0.007902790792286396, 0.0005806473782286048, 0.028469769284129143, -0.0036661343183368444, -0.013079753145575523, -0.0015548494411632419, -0.0048705702647566795, 0.005289657972753048, -0.07240703701972961, -0.02093324065208435, 0.010311663150787354, -0.004278917796909809, 0.01727062650024891, 0.026004549115896225, -0.00419087428599596, -0.0063250502571463585, -0.004690961446613073, 0.01079766359180212, -0.012960013933479786, -0.030146120116114616, 0.010903315618634224, -0.04279622063040733, -0.01900332421064377, 0.01979219540953636, 0.0009966532234102488, 0.015552016906440258, -0.012995230965316296, 0.01529845129698515, 0.000595614779740572, -1.601292569830548e-05, -0.014312363229691982, -0.008198617957532406, 0.00038871236029081047, -0.026511680334806442, 0.0272442027926445, 0.0005828484427183867, 0.0009667184203863144, 0.029103683307766914, 0.010360967367887497, 0.008276095613837242, -0.011424534022808075, 0.014143319800496101, -0.011086446233093739, -0.008226791396737099, 0.004088743589818478, -0.02207428403198719, 0.022313762456178665, 0.006370833143591881, 0.026384897530078888, -0.012790970504283905, 0.005050179548561573, -0.01760871522128582, -0.029948901385068893, -0.026441246271133423, 0.018651150166988373, -0.002084871754050255, -0.03440038487315178, -0.02248280681669712, -0.014256015419960022, -0.00874800980091095, -0.0062440503388643265, -0.016524016857147217, 0.01569288596510887, -0.02325759083032608, -0.006684267893433571, -0.019397759810090065, -0.026553941890597343, 0.012002100236713886, 0.007374529726803303, -0.01339671015739441, -0.041472043842077255, 0.000297807389870286, 0.16498661041259766, -0.013495318591594696, 0.007290008012205362, -0.0075506167486310005, -0.02107410877943039, -0.01205140445381403, 0.024525417014956474, 0.006300398148596287, -0.006141919642686844, -0.004497265908867121, 0.0030146120116114616, 0.005539701785892248, -0.009205835871398449, -0.014734972268342972, -0.008283139206469059, 0.011487925425171852, -0.0456981360912323, -0.04620526731014252, -0.015242103487253189, 0.003976047970354557, -0.01162879541516304, 0.008092964999377728, -0.013939058408141136, -0.02291950210928917, 0.02045428194105625, -0.009558009915053844, -0.0014993820805102587, -0.02096141315996647, 0.0028402856551110744, 0.03144212067127228, -0.024130983278155327, 0.006307441741228104, 0.002437046030536294, 0.00466983113437891, -0.012720535509288311, 0.010790619999170303, 0.017665062099695206, -0.008586009033024311, 0.038992736488580704, 0.00539883179590106, 0.00472617894411087, -0.021975675597786903, 0.011311838403344154, -0.03287899121642113, -0.01160766463726759, 0.0020056325010955334, -0.013502362184226513, 0.007240703329443932, -0.017467845231294632, -0.0028279596008360386, -0.011234359815716743, -0.004303569905459881, 0.019665412604808807, 0.018848368898034096, 0.0018577193841338158, -0.013016361743211746, 0.0035516778007149696, 0.028596552088856697, 0.010635663755238056, 0.004518396221101284, -0.004733222536742687, 0.013861579820513725, -0.01041027158498764, 0.01487584225833416, 0.0007514518802054226, 0.014312363229691982, -0.013734797015786171, 0.005465744994580746, 0.0204120222479105, -0.013262883760035038, -0.01872158609330654, -0.018961064517498016, -0.01358688436448574, -0.010748359374701977, -0.0276808999478817, -0.0282021164894104, 0.02403237298130989, -0.006472963374108076, 0.01683393120765686, 0.036344386637210846, -0.0018612411804497242, 0.021313587203621864, -0.004962135571986437, -0.009656619280576706, -0.009480532258749008, -0.03344247117638588, 0.017890453338623047, -0.015622451901435852, -0.023680198937654495, -0.013079753145575523, -0.019101932644844055, -0.0009869683999568224, -0.01024122815579176, -0.023778807371854782, -0.02321532927453518, -0.020313413813710213, 0.026638463139533997, -0.02244054526090622, 0.0073533994145691395, 0.020440196618437767, -0.027511855587363243, 0.07297050952911377, 0.023018112406134605, 0.0007316420669667423, -0.011382273398339748, -0.003340373048558831, -0.00032135905348695815, 0.010692011564970016, -0.004958614241331816, -0.02735689841210842, -0.008156356401741505, -0.033245254307985306, 0.006229963153600693, 0.005201614461839199, 0.0016332082450389862, 0.003849264932796359, -0.005229788366705179, -0.01101601216942072, 0.01384044997394085, 0.012614883482456207, -0.01356575358659029, -0.03893639147281647, -0.012417665682733059, -0.01412218902260065, -0.005261484067887068, 0.008431052789092064, -0.03155481815338135, 0.00422609131783247, -0.030315162613987923, -0.009466445073485374, 0.03023064136505127, 0.005768614821135998, 0.013748884201049805, 0.00883957464247942, 0.014481406658887863, -0.015890104696154594, 0.0001689336058916524, -0.018834281712770462, -0.0002595084370113909, 0.00699418131262064, -0.020721934735774994, -0.01306566596031189, 0.016101408749818802, 0.014439146034419537, -0.004127482883632183, -0.02901916205883026, 4.217837340547703e-05, -0.01101601216942072, -0.04412039369344711, -0.022750459611415863, 0.009184705093502998, -0.033977776765823364, -0.005740440916270018, -0.025821419432759285, 0.02553967945277691, -0.015157581306993961, -0.006247572135180235, -0.03800664842128754, 0.005127657670527697, -0.008008443750441074, -0.024793069809675217, 0.006603267975151539, 0.00013195529754739255, 0.02096141315996647, -0.016383148729801178, -0.022285589948296547, -0.18020054697990417, 0.01842575892806053, 0.032569076865911484, -0.02503254823386669, -0.018411671742796898, -0.0018612411804497242, 0.02949811890721321, 0.016777582466602325, -0.00936079304665327, 0.004180308897048235, 0.02104593627154827, -0.0011833056341856718, -0.01362210139632225, -0.007142094429582357, 0.00441978732123971, 0.012347230687737465, -0.009480532258749008, 0.004469091538339853, 0.002970590256154537, -0.001653458341024816, 0.011861230246722698, -0.04581083357334137, 0.0064060501754283905, -0.01970767416059971, -0.010065141133964062, 0.006624398287385702, -0.013671405613422394, 0.01446731947362423, -0.02653985470533371, -0.02872333489358425, -0.005684093106538057, 0.007818269543349743, 0.03149846941232681, 0.0031361121218651533, 0.018327150493860245, 0.031695686280727386, -0.008100008592009544, 0.003160764230415225, -0.01849619299173355, 0.06446198374032974, -0.0025937636382877827, 0.033977776765823364, 0.00746609503403306, -0.007832355797290802, -0.01487584225833416, 0.0296389888972044, -0.01558019034564495, -0.006363789550960064, 0.011178012005984783, -0.018961064517498016, 0.005346005782485008, -0.007635138463228941, 0.00845218263566494, -0.004402178805321455, 0.017665062099695206, 0.019764021039009094, -0.004402178805321455, -0.006451833061873913, 0.012459926307201385, 0.006789920385926962, -0.029920727014541626, -0.009036792442202568, 0.03380873054265976, -0.011304794810712337, -0.0252861138433218, -0.02373654767870903, -0.028300726786255836, 0.00129424047190696, -0.026751158758997917, 0.014622276648879051, -0.023229416459798813, -0.005902441218495369, -0.005226266570389271, -0.012438795529305935, 0.022694110870361328, 0.023933764547109604, -0.004039438907057047, 0.013241752982139587, 0.014664537273347378, -0.0016842735931277275, -0.0005295820883475244, 0.040288738906383514, -0.005335440393537283, 0.010966707020998001, 0.01790454052388668, -0.027103332802653313, 0.022567328065633774, 0.02144037000834942, -0.003023416269570589, -0.0021429804619401693, 0.014904015697538853, -0.007254790514707565, 0.002058458747342229, -0.02569463662803173, 0.0012968818191438913, 0.0036133083049207926, 0.00987496692687273, 0.010544097982347012, -0.0007175551145337522, -0.011213229037821293, 0.010311663150787354, -1.7691256289253943e-05, -0.008980444632470608, -0.013910884037613869, 0.00550800608471036, 0.007501312531530857, -0.010769490152597427, 0.0005110929487273097, 0.02617359347641468, -0.017341062426567078, -0.026680724695324898, 0.010586359538137913, 0.003444264642894268, 0.012347230687737465, -0.002384220017120242, 0.026384897530078888, 0.0037647432181984186, -0.012234535068273544, 0.04902265965938568, -0.007874617353081703, 0.03547099605202675, 0.016439495608210564, 0.0031977426260709763, 0.02129950188100338, -0.013600971549749374, -0.023680198937654495, -0.07719660550355911, -0.03476664423942566, 0.025863679125905037, 0.005751006305217743, -0.03023064136505127, 0.003387916600331664, -0.005948223639279604, 0.03200560063123703, 0.00045210373355075717, 0.025272026658058167, 0.0019334368407726288, -0.01982036978006363, -0.008487400598824024, -0.015918277204036713, 0.011783751659095287, -0.017045235261321068, -0.013636188581585884, -0.02831481210887432, 0.0061736153438687325, 0.03144212067127228, -0.0017018822254613042, -0.0203697606921196, 0.006909659598022699, 0.0017591106006875634, -0.007747834548354149, 0.001721251872368157, -0.040035173296928406, 0.02446907013654709, -0.00244937208481133, 0.005127657670527697, 0.012023230083286762, -0.022172892466187477, 0.04488109052181244, -0.02916003204882145, 0.011248447000980377, -0.022426458075642586, -0.007670355960726738, -0.005670005921274424, 0.031808383762836456, -0.03580908104777336, 0.011854186654090881, 0.02565237507224083, 0.02310263365507126, -0.006117267534136772, -0.03223099187016487, -0.009790445677936077, -0.02646942064166069, 0.03473847359418869, -0.0011885882122442126, -0.029244553297758102, -0.012805056758224964, -0.04119030386209488, -0.0056770495139062405, 0.003340373048558831, 0.01979219540953636, -0.016890278086066246, 0.0018189802067354321, 0.00023089426395017654, -0.017411496490240097, -0.012741666287183762, -0.0331607311964035, -0.007959138602018356, -0.0341186448931694, 0.029075508937239647, 0.00939601007848978, 0.0065927025862038136, -0.009543923661112785, -0.012938883155584335, 0.033019863069057465, -0.013939058408141136, -0.022680023685097694, -0.0069730510003864765, -0.013741840608417988, -0.0164958443492651, -0.044345784932374954, -0.0055960495956242085, -0.013375579379498959, -0.014960363507270813, 0.015932364389300346, -0.01110757701098919, -0.002512763487175107, -0.0194118469953537, 0.002065502107143402, -0.026201767846941948, 0.002326111076399684, 0.01624227873980999, -0.03366786241531372, 0.014115145429968834, -0.0004208482860121876, -0.024187330156564713, -0.003849264932796359, 0.01587601751089096, 0.017143843695521355, 0.0034794819075614214, -0.002636024495586753, 0.014439146034419537, -0.008719835430383682, 0.012769839726388454, -0.012093665078282356, 0.003567525651305914, -0.047895703464746475, 0.01694662682712078, -0.07736565172672272, 0.016185929998755455, 0.028047161176800728, -0.009924271143972874, -0.009466445073485374, 0.009304444305598736, 0.010494793765246868, -0.012558535672724247, -0.002451132982969284, 0.013875667005777359, -0.02399011328816414, 0.01690436527132988, -0.0003904732584487647, 0.008924096822738647, -0.005546744912862778, -0.004979744553565979, 0.016524016857147217, -0.029582640156149864, 0.017820019274950027, 0.020848717540502548, -0.006198267452418804, 0.02093324065208435, 0.041725609451532364, 0.015129407867789268, -0.0024071112275123596, 0.010177836753427982, -0.005937658715993166, 0.00886070542037487, -0.0007554138428531587, 0.005043135955929756, 0.010304619558155537, -0.04293708875775337, -0.023652024567127228, 0.009205835871398449, -0.0232857633382082, 0.003368547186255455, 0.00926218368113041, 0.015382973477244377, 0.01676349714398384, 0.04293708875775337, -0.015932364389300346, -0.035273775458335876, 0.010466620326042175, 0.0006215876201167703, -0.012382447719573975, 0.004116917494684458, 0.001949284691363573, 0.012981144711375237, 0.004771961830556393, 0.0003123345668427646, 0.006233484949916601, 0.004817744251340628, -0.022172892466187477, -0.02159532718360424, 0.017453758046030998, 0.01393201481550932, -0.007297051139175892, 0.002940655220299959, -0.017031148076057434, -0.009205835871398449, 0.028962813317775726, 0.0025180461816489697, 0.01827080175280571, -0.006518746260553598, -0.0031924599315971136, -0.003849264932796359, -0.030146120116114616, 0.0033843950368463993, -0.02952629327774048, 0.010276446118950844, -0.032061945647001266, 0.004546570125967264, 0.016298625618219376, 0.022820893675088882, 0.009776358492672443, 0.02273637242615223, -0.001693077851086855, 0.017693236470222473, -0.011340011842548847, 0.01982036978006363, 0.029695335775613785, -0.018806107342243195, -0.02104593627154827, -0.014749059453606606, 0.02369428612291813, 0.018552541732788086, -0.009903141297399998, 0.01439688540995121, -0.006666659377515316, -0.0019580889493227005, -0.014213754795491695, 0.013791144825518131, 0.00022308040934149176, -0.009072009474039078, 0.00026303017511963844, 0.02218697965145111, -0.0017996106762439013, -0.01642540842294693, 0.04085221886634827, 0.04316247999668121, 0.03093498945236206, -0.0031361121218651533, 0.013748884201049805, -0.03772490844130516, -0.03817569464445114, -0.012072534300386906, -0.025314288213849068, -0.011783751659095287, -0.0011516099330037832, -0.012389491312205791, 0.0015935886185616255, 0.035048384219408035, -0.013410797342658043, 0.008628270588815212, -0.0074097472243011, 0.018003148958086967, -0.00838174857199192, -0.010424358770251274, -0.03679516911506653, 0.029948901385068893, 0.016101408749818802, -0.0008769140113145113, 0.014227841049432755, -0.008332443423569202, 0.030174292623996735, 0.039809782058000565, 0.017510104924440384, -0.016101408749818802, 2.5312526759080356e-06, -0.028033073991537094, 0.011170968413352966, -0.002822676906362176, 0.007663312368094921, 0.00494804885238409, -0.023863330483436584, -0.01339671015739441, -0.009234010241925716, 0.0033755905460566282, -0.03380873054265976, 0.08638130873441696, 0.021989762783050537, -0.004384569823741913, -0.01255149208009243, -0.006504659075289965, -0.012072534300386906, 0.019538629800081253, 0.02203202433884144, -0.01579149439930916, -0.030681423842906952, 0.002188763115555048, 0.008240878582000732, 0.014192624017596245, -0.024004200473427773, -0.018242627382278442, -0.0002559866989031434, -0.013974275439977646, 0.03245638310909271, -0.008564879186451435, 0.005265005864202976, 0.015002625063061714, -0.009241053834557533, -0.015735147520899773, -0.004659265745431185, -0.030061597004532814, -0.01079766359180212, 0.02291950210928917, 0.002808589953929186, 0.017298800870776176, -0.044317614287137985, 0.0076562692411243916, 0.012995230965316296, -0.02856837771832943, -0.015143494121730328, 0.0021024805027991533, -0.003560482058674097, -0.0028913510031998158, -0.016988888382911682, 0.02517341822385788, -0.0062546152621507645, 0.01653810404241085, 0.039218127727508545, -0.007106877397745848, -0.06198267638683319, -0.01594645157456398, 0.009529836475849152, -0.04428943991661072, -0.002981155412271619, -0.03428768739104271] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2022_using_reinforcement_learning_for_operating_educational_campuses_safely_during_a_pandemic_student_abstract.json b/database/embeddings/publications_txt/2022_using_reinforcement_learning_for_operating_educational_campuses_safely_during_a_pandemic_student_abstract.json new file mode 100644 index 0000000000000000000000000000000000000000..af363de95f10fa8c1e7ba17f5dfbdacdf07c222b --- /dev/null +++ b/database/embeddings/publications_txt/2022_using_reinforcement_learning_for_operating_educational_campuses_safely_during_a_pandemic_student_abstract.json @@ -0,0 +1 @@ +[-0.002852702746167779, -0.0009749856544658542, 0.00238171243108809, -0.014094028621912003, 0.016399027779698372, 0.01361590251326561, -0.009234264492988586, 0.0022925096563994884, -0.02691781148314476, -0.03022901527583599, 0.014151118695735931, 0.024049051105976105, -0.0026600249111652374, 0.019638869911432266, -0.0016966356197372079, 0.00438877334818244, 0.0329122319817543, -0.01539995614439249, -0.013080686330795288, -0.005444933660328388, -0.002123024547472596, -0.0050916909240186214, -0.008770410902798176, -0.03944901004433632, -0.01245269924402237, -0.004349524155259132, 0.03002920188009739, -0.021779734641313553, 0.01838289573788643, 0.006037239450961351, 0.016498934477567673, -0.018083173781633377, 0.009020178578794003, -0.012445562519133091, -0.006062216591089964, -0.022593263536691666, -0.0029436894692480564, -0.015499863773584366, 0.04230349510908127, -0.0027046261820942163, 0.015328594483435154, 0.022693170234560966, 0.006258462555706501, -0.031456444412469864, 0.02908722124993801, 0.01998140849173069, 0.025547657161951065, -0.012003117240965366, -0.025076666846871376, 0.038649752736091614, 0.01728391833603382, 0.037393778562545776, -0.014928965829312801, 0.014522201381623745, -0.015442773699760437, -0.012723875232040882, 0.008613414131104946, 0.019852956756949425, -0.0027884768787771463, -0.02661808952689171, 0.02599010244011879, -0.032027341425418854, -0.03294077888131142, 0.01568540558218956, 0.005159485153853893, 0.01992431841790676, -0.010568737983703613, 0.030000656843185425, 0.003177400678396225, 0.013901351019740105, 0.022764531895518303, 0.02469131164252758, 0.001071324571967125, -0.007514436729252338, 0.01769781857728958, -0.019895773380994797, -0.02656099945306778, 0.01609930582344532, 0.0092128561809659, 0.017012741416692734, 0.0001898902701213956, -0.00957680307328701, -0.02039530873298645, 0.01314491219818592, 0.022921528667211533, -0.014928965829312801, 0.01245269924402237, 0.01708410307765007, -0.013323317281901836, -0.007139785215258598, -0.009077267721295357, 0.01931060291826725, 0.01801181212067604, 0.001302359625697136, -0.011460764333605766, 0.03927773982286453, -0.01328049972653389, 0.019610324874520302, 0.015071691013872623, -0.02991502173244953, 0.0075215729884803295, 0.009034451097249985, -0.024405863136053085, -0.02687499299645424, -0.008342238143086433, -0.022750260308384895, -0.010597282089293003, 0.013451769016683102, 0.01769781857728958, 0.003288011997938156, -0.05026751384139061, 0.023635150864720345, -0.025019576773047447, -0.023792147636413574, -0.005452069919556379, -0.026689451187849045, -0.00926994625478983, 0.011218133382499218, -0.012566878460347652, -0.012638240121304989, 0.02738880179822445, 0.01170339621603489, 0.0181259922683239, -0.0045350659638643265, 0.013444633223116398, -0.0017876223428174853, -0.016242031008005142, -0.01387280598282814, 0.006344097200781107, -0.007535845506936312, 0.01211729645729065, 0.014714879915118217, -0.0004301800800021738, 0.012566878460347652, 0.0004205908044241369, 0.0267037246376276, -0.001584240235388279, -0.00688644964247942, -0.02604719251394272, -0.03137081116437912, 0.0026225598994642496, 0.025504840537905693, -0.027602888643741608, 0.0032255700789391994, -0.024520041421055794, 0.006101465784013271, 0.010725734755396843, 0.003800035687163472, 0.023563789203763008, 0.02189391478896141, -0.010204790160059929, -0.015870947390794754, -0.013209138065576553, 0.018154535442590714, -0.001668982789851725, -0.012952233664691448, 0.003639470785856247, 0.023421064019203186, -0.004477976355701685, -0.034196753054857254, 0.025975830852985382, 0.013045004568994045, -0.01868261583149433, -0.0015316106146201491, -0.008270875550806522, 0.01604221574962139, 0.0528080053627491, 0.014536473900079727, 0.0007176358485594392, 0.013573084957897663, -0.027859792113304138, 0.035852354019880295, -0.019952863454818726, -0.0040533714927732944, -0.013587357476353645, 0.03767922520637512, 0.020352492108941078, 0.0007203118875622749, -0.002834862330928445, -0.0033326135016977787, -0.0034467929508537054, 0.011046864092350006, 0.01619921252131462, 0.04644250124692917, 0.004210368264466524, 0.005056009627878666, 0.04007699713110924, -0.01584240235388279, -0.013387543149292469, 0.011089681647717953, 0.041076064109802246, 0.011874665506184101, -0.0058445618487894535, 0.00391064677387476, -0.6005840301513672, -0.01574249565601349, 0.016527479514479637, 0.007286077830940485, -0.036680154502391815, 0.003657311201095581, 0.005038169212639332, 0.011539262719452381, -0.021508557721972466, 0.047041941434144974, 0.010062065906822681, -0.0065867286175489426, -0.0026511047035455704, -0.016655931249260902, 0.015585497952997684, -0.02587592415511608, 0.0048169465735554695, -0.0035217232070863247, 0.027303166687488556, 0.023278340697288513, -0.01568540558218956, 0.020837754011154175, 0.0014040507376194, -0.011432220228016376, 0.005209438502788544, 0.03810739889740944, 0.008813228458166122, -0.023306885734200478, 0.027874063700437546, -0.002740307478234172, -0.019867228344082832, 0.020994750782847404, 0.02262180857360363, -0.010982638224959373, 0.051380764693021774, -0.008784683421254158, -0.027117624878883362, 0.033054959028959274, 0.027246076613664627, 0.034767650067806244, -0.018468528985977173, -0.013844260945916176, 0.0112324059009552, -0.003878534073010087, 0.0015316106146201491, -0.010076338425278664, 0.0092128561809659, 0.00010447867680341005, -0.02350669912993908, -0.033511675894260406, -0.0027028422337025404, -0.0005642071482725441, -0.02086629904806614, -0.026475366204977036, 0.025376388803124428, -0.02339251898229122, 0.027003444731235504, -0.0014852251624688506, 0.022179363295435905, -0.01255260594189167, -0.0034574971068650484, 0.003735809586942196, -0.001121278153732419, -0.01568540558218956, -0.007107672281563282, 0.025276480242609978, 0.012902280315756798, 0.01775490865111351, 0.012852326966822147, -0.036680154502391815, 0.019638869911432266, 0.0037322414573282003, -0.007257532794028521, -0.02480548992753029, 0.034196753054857254, 0.017797725275158882, 0.019596051424741745, -0.012688194401562214, -0.03048591874539852, 0.014686334878206253, -0.00018888674094341695, -0.0037322414573282003, 0.008856045082211494, -0.009976431727409363, -0.008085333742201328, -0.006672362796962261, -0.0023192705120891333, -0.0008148667984642088, 0.0004007431853096932, 0.014229617081582546, 0.018768250942230225, 0.02815951220691204, -0.001585132209584117, -0.020595122128725052, -0.001668982789851725, 0.024776946753263474, 0.008349373936653137, 0.0009963943157345057, -0.013052141293883324, -0.022892983630299568, -0.02060939557850361, 0.003032892243936658, 0.027460163459181786, -0.013330454006791115, 0.03456783667206764, 0.016127850860357285, 0.0036162780597805977, -0.00804965291172266, 0.02977229841053486, -0.005412820726633072, -0.017212554812431335, -0.008706185035407543, -0.024762673303484917, 0.010946957394480705, 0.042332038283348083, -0.03839284926652908, 0.02644682116806507, 0.01245269924402237, 0.017098376527428627, 0.015342867001891136, 0.019695959985256195, 0.0016297335969284177, 0.006265598814934492, 0.0030114836990833282, -0.00354669988155365, 0.012845191173255444, 0.015000328421592712, -0.01978159323334694, -0.009484032168984413, 0.0032737397123128176, 0.00986225251108408, -0.008606277406215668, 0.013159184716641903, -0.00470990315079689, 0.02163700945675373, 0.005580521654337645, 0.013294772244989872, -0.023849237710237503, 0.024305954575538635, -0.03411111608147621, -0.02841641567647457, -0.004991783760488033, 0.019439054653048515, -0.02169409953057766, -0.03793612867593765, -0.01260255929082632, -0.02898731455206871, 0.007321758661419153, 0.009105812758207321, -0.008841772563755512, -0.007275373209267855, 0.007307486142963171, -0.004938262049108744, 0.00599085446447134, -0.015713950619101524, -0.012074478901922703, 0.00032425185781903565, -0.017098376527428627, -0.01143935602158308, -0.001473628799431026, 0.009662438184022903, 0.012024525552988052, -0.011838983744382858, 0.00429600290954113, -0.002938337391242385, 0.011774757876992226, -0.00156015541870147, 0.027831247076392174, 6.14383679931052e-05, -0.0368514247238636, -0.01631339266896248, -0.018625525757670403, -0.014857604168355465, 0.032112978398799896, 0.009341307915747166, 0.013780035078525543, -0.021009022369980812, 0.012110160663723946, -0.025305025279521942, 0.0010891651036217809, -0.02681790478527546, 0.018625525757670403, 0.007464482914656401, 0.0024602108169347048, 0.012174386531114578, 0.011375130154192448, 0.01599939912557602, 0.005730382166802883, -0.00608362490311265, -0.005180893465876579, 0.013851397670805454, 0.032798055559396744, -0.0073645762167871, 0.028502050787210464, -0.00941980630159378, 0.014215344563126564, -0.020737847313284874, 0.005377139430493116, 0.003767922753468156, 0.0284735057502985, 0.0017019878141582012, 0.022436266764998436, 0.010347514413297176, -0.011089681647717953, -0.015071691013872623, -0.03371148928999901, 0.009847979992628098, -0.0128095094114542, 0.032484062016010284, 0.013209138065576553, 0.02634691447019577, -0.011589216999709606, -0.024448679760098457, -0.027246076613664627, -0.028901679441332817, 0.021351560950279236, -0.0041568465530872345, 0.014379477128386497, -0.04041953384876251, 0.005541272461414337, -0.014586428180336952, 0.011617761105298996, 0.025033850222826004, -0.020352492108941078, -0.02210799977183342, -0.008142423816025257, -0.013780035078525543, 0.027945425361394882, 0.008377918973565102, -0.025590473785996437, -0.021151747554540634, 0.007179034408181906, 0.012666785158216953, 0.01594230905175209, -0.013166320510208607, -0.010304697789251804, 0.0350816436111927, -0.0031131748110055923, 0.02252190187573433, -0.017226828262209892, 0.010504511184990406, 0.040876250714063644, 0.01635620929300785, -0.011039728298783302, 0.022950073704123497, -0.0285734124481678, 0.0059480369091033936, 0.02831650897860527, -0.0003728673327714205, 0.012381336651742458, -0.012202931568026543, 0.036879971623420715, -0.007600071374326944, 0.022507628425955772, 0.01302359625697136, -0.02142292447388172, -0.016784382984042168, -0.0055519770830869675, 0.026004375889897346, 0.006436867639422417, 0.005359299015253782, 0.02774561196565628, 0.003082845825701952, -0.004549338482320309, -0.0059373327530920506, -0.021865369752049446, -0.022892983630299568, -0.011867528781294823, -0.014614972285926342, 0.0053842756897211075, -0.0012033446691930294, -0.010768551379442215, -0.003468201495707035, 0.01625630259513855, -0.00044311449164524674, 0.025347843766212463, 0.012367064133286476, 0.0032951482571661472, 0.035024553537368774, 0.01392275933176279, -0.01988150179386139, -0.002706410363316536, 0.01423675287514925, 0.01952468976378441, 0.005644747521728277, -0.019439054653048515, 0.006865040864795446, 0.0074288020841777325, -0.0512380376458168, -0.018154535442590714, 0.014857604168355465, 0.02764570526778698, -0.013009323738515377, -0.011303767561912537, -0.025504840537905693, -0.019553234800696373, 0.031085362657904625, 0.00238171243108809, -0.01218865904957056, -0.00830655638128519, 0.008013972081243992, 0.01718401163816452, -0.008927407674491405, 0.0012836270034313202, 0.027103353291749954, -0.00402482645586133, 0.011203860864043236, -0.023049980401992798, -0.011103954166173935, -0.01982441172003746, 0.02412041462957859, -0.0013210922479629517, -0.013801444321870804, 0.013958441093564034, 0.03513873368501663, 0.01434379629790783, 0.010012112557888031, -0.01169625949114561, 0.0014932533958926797, -0.0030792776960879564, -0.005898083560168743, -0.01781199872493744, -0.014315251260995865, 0.006336960941553116, 0.07387411594390869, 0.011503581888973713, 0.0022122273221611977, 0.039734456688165665, 0.014215344563126564, -0.0015976206632331014, -0.028958769515156746, -0.011360857635736465, -0.01552840881049633, 0.009819434955716133, -0.03262678533792496, 0.0007849838584661484, -0.003949895966798067, 0.007293214090168476, 0.024291682988405228, -0.028230875730514526, 0.0011863961117342114, -0.006090761162340641, 0.02023831196129322, -0.002321054693311453, 0.04961097985506058, -0.0017430210718885064, -0.005230847280472517, 0.031713347882032394, 0.013066413812339306, -0.018340077251195908, 0.04001990705728531, 0.022279269993305206, -0.019538963213562965, -0.02728889510035515, 0.016498934477567673, 0.02049521543085575, 0.01931060291826725, 0.011524990200996399, -0.01564258709549904, 0.007407393306493759, 0.012673921883106232, 0.014800514094531536, 0.014044075272977352, 0.013787171803414822, 0.015414228662848473, 0.036480341106653214, -0.0012818430550396442, -0.006633113604038954, 0.009669573977589607, -0.04378782957792282, 0.004106892738491297, 0.021294472739100456, -0.017997538670897484, -0.026846447959542274, 0.025704653933644295, -0.0022496923338621855, -0.03482474014163017, -0.028130967170000076, 0.027345983311533928, -0.017355279996991158, -0.008085333742201328, -0.004831219092011452, -0.00936985295265913, -0.019296331331133842, -0.02997211180627346, -0.023735057562589645, 0.01275955606251955, -0.007764204405248165, -0.025590473785996437, 0.010768551379442215, -0.011903210543096066, 0.009512577205896378, -0.021765463054180145, 0.012723875232040882, 0.014115437865257263, -0.01524295937269926, -0.064625583589077, 0.02173691801726818, 0.01786908693611622, -0.004784833639860153, 0.009241401217877865, 0.003091766033321619, -0.011724804528057575, 0.00024798355298116803, -0.011203860864043236, -0.014408022165298462, -0.0028562708757817745, -0.05126658454537392, -0.0009455487597733736, -0.008520643226802349, 0.010704325512051582, -0.024577131494879723, 0.00045604887418448925, 0.018753979355096817, 0.0035788128152489662, -0.017326734960079193, 0.008720457553863525, 0.004692062735557556, 0.0016752269584685564, 0.020480943843722343, 0.016498934477567673, 0.028915951028466225, 0.003750082105398178, -0.010490239597856998, 0.016955651342868805, -0.02143719606101513, -0.01631339266896248, -0.00890599936246872, -0.006254894193261862, -0.015014600940048695, -0.005534136202186346, 0.015157325193285942, -0.016855744644999504, -0.020980479195713997, 0.017226828262209892, -0.00762147968634963, 0.01498605590313673, 0.004474407993257046, 0.01441515889018774, 0.00503460131585598, 0.02242199331521988, 0.008078197948634624, 0.024562859907746315, -0.02630409598350525, -0.021665554493665695, -0.011346585117280483, 0.012738147750496864, 0.023720785975456238, -0.004845491610467434, 0.009355580434203148, -0.004171119071543217, -0.02703198976814747, -0.028716137632727623, -0.0036715837195515633, 0.005312913563102484, 0.024705583229660988, -0.03322622552514076, -0.03990572690963745, -0.0368514247238636, -0.023149888962507248, -0.007307486142963171, -0.0046278368681669235, -0.001285411068238318, -0.023635150864720345, -0.011332312598824501, 0.008263739757239819, -0.00614785123616457, -0.0008099606493487954, 0.03402548283338547, -0.02380642108619213, 0.005152348894625902, 0.03653743118047714, 0.023906327784061432, 0.012210067361593246, 0.011560671962797642, 0.0284735057502985, 0.0012176170712336898, 0.018868157640099525, -0.032541148364543915, -0.02686072140932083, -0.006394050549715757, 0.01749800518155098, 0.024862580001354218, 0.02593301236629486, 0.05740373209118843, -0.0002887937880586833, -0.006379778031259775, -0.0013799660373479128, 0.005584090016782284, 0.005683996714651585, -0.013758626766502857, -0.004549338482320309, -0.005059577990323305, 0.01879679597914219, 0.01203166227787733, -0.004017690196633339, 0.022507628425955772, -0.023321157321333885, 0.009134357795119286, 0.017840541899204254, 0.007014901377260685, -0.01755509339272976, -0.012581150978803635, -0.017255373299121857, -0.007225419860333204, 0.014800514094531536, -0.015342867001891136, 0.001465600566007197, -0.03976300358772278, -0.011360857635736465, 0.01514305267482996, 0.01032610610127449, -0.008898862637579441, 0.0022193635813891888, -0.009955022484064102, -0.018725434318184853, 0.0029169288463890553, 0.026989173144102097, 0.026932083070278168, 0.0015646156389266253, -0.015100235119462013, -0.04544343054294586, 0.0006721424288116395, 0.016327664256095886, 0.001610109000466764, 0.0016894993605092168, 0.017098376527428627, 0.000967849453445524, -0.02060939557850361, 0.024163231253623962, -0.0010918412590399384, -0.010033520869910717, 0.0009562530904076993, -0.011268086731433868, -0.01524295937269926, -0.011346585117280483, -0.0031470716930925846, -0.006647386122494936, 0.0019410511013120413, -0.006843632087111473, -0.0011605273466557264, 0.010261880233883858, -0.036737244576215744, -0.02386350929737091, 0.012509788386523724, 0.00804965291172266, 0.014643517322838306, 0.0007252180366776884, 0.006001558620482683, 0.021137475967407227, -0.012402744963765144, -0.00599085446447134, 0.005851698108017445, 0.014543610624969006, -0.019481873139739037, 0.02185109630227089, -0.0017064479179680347, -0.027602888643741608, -0.03493892028927803, -0.01769781857728958, 0.025604747235774994, -0.016441844403743744, -0.028330782428383827, 0.029015859588980675, 0.03893519937992096, -0.008449280634522438, -0.023692240938544273, -0.02604719251394272, -0.015357139520347118, 0.005673292558640242, -0.017526548355817795, -0.01853989250957966, 0.018211625516414642, -0.018454257398843765, -0.017483731731772423, 0.019439054653048515, 0.00804965291172266, 0.019510418176651, 0.022793076932430267, -0.045015256851911545, 0.009819434955716133, -0.009505441412329674, -0.011403675191104412, -0.004852627869695425, 0.0026760813780128956, 0.012238612398505211, 0.01356594916433096, 0.011774757876992226, 0.02349242754280567, -0.02267889864742756, 0.014871876686811447, 0.003477121703326702, -0.012631104327738285, 0.024520041421055794, 0.007771340664476156, -0.011774757876992226, -0.004824082832783461, -0.014243889600038528, -0.001969595905393362, -0.00895595271140337, 0.018925247713923454, -0.0011462548281997442, -0.019852956756949425, -0.007500164210796356, 0.01022619940340519, 0.018468528985977173, -0.012060207314789295, 0.010882731527090073, 0.014536473900079727, -0.008991633541882038, -0.0034574971068650484, -0.01729818992316723, 0.0002238988090539351, -0.015257231891155243, -0.008649094961583614, 0.00635480135679245, -0.013223410584032536, 0.02697490155696869, 0.0036715837195515633, 0.0285734124481678, 0.015271504409611225, 0.029172856360673904, -0.04421599954366684, 0.01578531228005886, -0.02309279888868332, -0.0007823078194633126, -0.026575272902846336, -0.011239541694521904, 0.0019731640350073576, 0.0006551939295604825, 0.014086892828345299, 0.0008443036931566894, -0.02267889864742756, -0.0076072076335549355, -0.022764531895518303, 0.011275223456323147, -0.0036965603940188885, -0.01439374964684248, 0.01578531228005886, 0.008963088504970074, -0.01718401163816452, 0.0019838684238493443, -0.03179898485541344, 0.037193965166807175, 0.0054770465940237045, -0.00991220586001873, 0.02303570881485939, -0.021151747554540634, 0.02835932746529579, -0.01169625949114561, 0.02065221220254898, -0.0023353269789367914, -0.030571553856134415, -0.004888308700174093, 0.014322387985885143, 0.017512276768684387, -0.014536473900079727, -0.029658118262887, 0.012581150978803635, 0.003928487654775381, -0.024548586457967758, 0.01027615275233984, 0.0076286159455776215, -0.03159916773438454, 0.010568737983703613, -0.016955651342868805, 0.0065153660252690315, -0.021508557721972466, -0.00397130474448204, -0.017426641657948494, 0.007400257047265768, 0.02628982439637184, -0.008021107874810696, -0.014928965829312801, 0.014365204609930515, 0.03348312899470329, 0.031228085979819298, -0.029001586139202118, -0.047184668481349945, -0.02397768944501877, -0.02216508984565735, 0.0194105114787817, -0.0011890721507370472, 0.01539995614439249, 0.0012479459401220083, -0.0029668821953237057, -0.011125362478196621, 0.014614972285926342, -0.018982337787747383, 0.013380407355725765, -0.005791040137410164, 0.002501244191080332, -0.001499497564509511, -0.00789265614002943, -0.011846120469272137, 0.001712692086584866, -0.028587685897946358, 0.013223410584032536, 0.027531525120139122, 0.014786241576075554, 0.011731941252946854, 0.00809960626065731, -0.020423853769898415, -0.009626757353544235, -0.004031962715089321, 0.018939519301056862, -0.0042424811981618404, -0.026204189285635948, 0.007514436729252338, -0.030314650386571884, -0.005683996714651585, 0.04218931496143341, -0.003312988905236125, 0.017169738188385963, -0.014686334878206253, 0.02272171527147293, -0.011425083503127098, 0.024291682988405228, -0.002073070965707302, -0.0004781265452038497, 0.016741564497351646, -0.016085034236311913, 0.025190846994519234, -0.0021016160026192665, -0.004021258559077978, 0.02262180857360363, -0.003486042143777013, -0.0015226902905851603, -0.016142122447490692, 0.0037465139757841825, 0.007114808540791273, -0.005687565077096224, 0.018668344244360924, -0.002961530117318034, 0.016299119219183922, -0.002089127665385604, 0.011689123697578907, 0.0025226527359336615, -0.012195794843137264, -0.020637940615415573, -0.025404933840036392, -0.02603292092680931, 0.012067343108355999, 0.00931989960372448, -0.017226828262209892, -0.021009022369980812, -0.010333242826163769, -0.013259091414511204, -0.006679499056190252, -0.0153714120388031, 0.029886476695537567, -0.0061300103552639484, -0.012131568975746632, -0.02506239525973797, -0.017640728503465652, 0.010675780475139618, 0.004467271734029055, 0.013894214294850826, -0.027403073385357857, 0.00445299968123436, 0.16955651342868805, 0.007246828638017178, 0.003735809586942196, -2.96529333354556e-06, -0.014308115467429161, 0.006265598814934492, 0.021094657480716705, 0.0023067821748554707, -0.018982337787747383, 0.004624268505722284, 0.0060443757101893425, 0.00762147968634963, 0.006279870867729187, -0.0052808006294071674, -0.02220790833234787, 0.023991961032152176, -0.04064789414405823, -0.020252583548426628, -0.02982938662171364, 0.009227128699421883, 0.014714879915118217, 0.006583160255104303, -0.016284847632050514, -0.013844260945916176, 0.02780270203948021, -0.004663517698645592, -0.015856673941016197, -0.015428501181304455, 0.024134686216711998, 0.016584567725658417, -0.009448351338505745, 0.027788428589701653, -0.0015093098627403378, 0.016969924792647362, -0.014457975514233112, -0.004956102930009365, 0.007321758661419153, -0.01568540558218956, 0.03939191997051239, 0.009519713930785656, -0.00657245609909296, -0.024677038192749023, -0.006611705292016268, -0.029629573225975037, -0.017954722046852112, 0.0008282472263090312, -0.01895379275083542, -0.010497375391423702, -0.004328115843236446, -0.0036002215929329395, -0.028202330693602562, 0.009284218773245811, 0.03385421261191368, 0.008841772563755512, -0.0014950374606996775, -0.004706335254013538, 0.0023763603530824184, 0.02894449606537819, 0.01457215566188097, 0.014607836492359638, 0.0029918591026216745, 0.011817575432360172, 0.002490539802238345, 0.009141494520008564, -0.013558812439441681, 0.006836495827883482, -0.013680128380656242, 0.020323947072029114, -0.007514436729252338, -0.013444633223116398, -0.01229570247232914, -0.022436266764998436, -0.014265297912061214, -0.012288565747439861, -0.018468528985977173, -0.008827500976622105, 0.01682719960808754, 0.009669573977589607, 0.034710559993982315, 0.03451074659824371, -0.013159184716641903, 0.02200809307396412, -0.02469131164252758, -0.0068828812800347805, -0.001190856215544045, -0.04504380375146866, 0.02982938662171364, -0.008556324057281017, -0.026789359748363495, 0.01838289573788643, -0.023378247395157814, 0.018154535442590714, -0.016527479514479637, 0.004495816770941019, 0.00206950306892395, -0.011382265947759151, 0.021879641339182854, 0.009897933341562748, 0.004324547480791807, 0.011917482130229473, -0.03982008993625641, 0.09020178765058517, 0.02459140494465828, -0.008499234914779663, 0.009020178578794003, -0.02376360259950161, -0.010176246054470539, 0.012838054448366165, 0.017198283225297928, -0.03225570172071457, -0.009455488063395023, -0.038335759192705154, -0.0003229138383176178, 0.004199663642793894, -0.006415459327399731, 0.022279269993305206, 0.028302237391471863, -0.007357439957559109, 0.016498934477567673, -0.008092470467090607, -0.03493892028927803, -0.01998140849173069, -0.02039530873298645, -0.011610625311732292, -0.0028705433942377567, -0.014714879915118217, -0.034282386302948, 0.002604719251394272, -0.030400285497307777, 0.010097747668623924, 0.038849566131830215, -0.00794260948896408, -0.0025583337992429733, 8.228950173361227e-05, 0.018368622288107872, -0.027517253533005714, 0.012923689559102058, -0.027945425361394882, 0.015713950619101524, -0.006750861182808876, -0.01935342140495777, -0.011111089959740639, 0.027146169915795326, -0.002868759213015437, -0.006115737836807966, -0.03048591874539852, -0.010290425270795822, 0.015043145976960659, -0.011139634996652603, -0.01982441172003746, 0.008370782248675823, -0.03505309671163559, -0.01972450502216816, -0.02402050606906414, 0.015514136292040348, -0.02536211535334587, -0.012987915426492691, -0.029886476695537567, -0.0066830674186348915, 0.0002687231753952801, -0.03816448897123337, 0.01584240235388279, 0.009990704245865345, 0.0003498976584523916, -0.024605676531791687, -0.003186320886015892, -0.18337222933769226, 0.02065221220254898, 0.017583638429641724, -0.011610625311732292, -0.013423223979771137, -0.017512276768684387, 0.010183381848037243, 0.01455074641853571, -0.010333242826163769, 0.0035056667402386665, 0.027988243848085403, 0.009897933341562748, -0.02344960905611515, -5.240659447736107e-05, 0.008420736528933048, 0.021394379436969757, -0.003750082105398178, -0.009698119014501572, 0.030514463782310486, 0.011539262719452381, 0.02484830841422081, -0.045643243938684464, -0.012623968534171581, 0.00418182322755456, -0.01584240235388279, -0.0012559741735458374, -0.03542418032884598, 0.006604569032788277, -0.014579291455447674, -0.050296057015657425, -0.02614709921181202, 0.014529338106513023, 0.028958769515156746, 0.007246828638017178, 0.003091766033321619, 0.020252583548426628, -0.003949895966798067, -0.0172410998493433, -0.025133756920695305, 0.05257964879274368, 0.02727462165057659, 0.015614042989909649, -0.02463422156870365, -0.012367064133286476, -0.0014076188672333956, 0.027574343606829643, 0.013266227208077908, -0.00614785123616457, 0.016184940934181213, -0.02159419283270836, -0.008456417359411716, -0.019596051424741745, 0.02334970235824585, -0.0016841472825035453, 0.009376989677548409, 0.014943238347768784, 0.01584240235388279, -0.0074288020841777325, -0.001978516113013029, 0.006536774802953005, -0.014800514094531536, -0.018910976126790047, 0.018782522529363632, -0.002449506428092718, -0.019396238029003143, -0.029543938115239143, -0.027674250304698944, 0.01883961260318756, -0.019710231572389603, 0.027160441502928734, 0.009277082048356533, -0.02220790833234787, -0.012845191173255444, -0.01467206235975027, 0.013887078501284122, 0.020480943843722343, 0.003539563622325659, 0.018154535442590714, 0.026832176372408867, 0.0047241756692528725, -0.0023495994973927736, 0.042018044739961624, -0.010183381848037243, 0.013416088186204433, 0.0016663067508488894, -0.01745518669486046, 0.013387543149292469, 0.019496144726872444, 0.0016547103878110647, -0.0008059465326368809, 0.008820364251732826, -0.0021176724694669247, -0.009120085276663303, -0.018853886052966118, -0.005787472240626812, 0.00016089939163066447, -0.0058445618487894535, -0.006262030452489853, 0.00012599883484654129, -0.01667020283639431, 0.003996281418949366, 0.007186170667409897, -0.00789265614002943, 0.013994121924042702, 0.03159916773438454, -0.01203166227787733, -0.022236453369259834, -0.0026154236402362585, 0.03322622552514076, -0.015128780156373978, -0.001712692086584866, 0.017926177009940147, 0.021922459825873375, 0.013580220751464367, -0.007150489371269941, 0.019852956756949425, -0.009027314372360706, -0.004499384667724371, 0.02143719606101513, -0.010661507956683636, 0.0490686297416687, 0.024248866364359856, 0.009548258036375046, 0.02443440817296505, -0.029743753373622894, -0.03596653416752815, -0.07707114517688751, -0.02029540203511715, 0.010083475150167942, 0.029030131176114082, -0.03199879825115204, 0.008092470467090607, -0.006993492599576712, 0.03593799099326134, -0.003992713522166014, 0.0075215729884803295, 0.003853557165712118, -0.0057589272037148476, -0.009847979992628098, -0.0038606934249401093, 0.0018821773119270802, -0.0008616982377134264, -0.016969924792647362, -0.029058676213026047, -0.002415609546005726, 0.015128780156373978, 0.009234264492988586, -0.023363973945379257, 0.02220790833234787, 0.011168180033564568, 0.01255260594189167, -7.621257100254297e-05, -0.017412370070815086, 0.03442510962486267, -9.296595635532867e-06, 0.03048591874539852, 0.011046864092350006, -0.008192377164959908, 0.02790260873734951, -0.01086845900863409, 0.008013972081243992, -0.030371740460395813, -0.01625630259513855, -0.010361786931753159, 0.02770279534161091, -0.03177043795585632, 0.028844589367508888, 0.01755509339272976, 0.014900421723723412, 0.002699274104088545, -0.03179898485541344, -0.004784833639860153, -0.02382069267332554, 0.03151353448629379, -0.006900722160935402, -0.047698475420475006, -0.019596051424741745, -0.04156132787466049, -0.00330763659439981, -0.0051095313392579556, 0.03142790123820305, -0.008841772563755512, 0.015085962601006031, 0.01651320606470108, -0.02210799977183342, -0.03368294611573219, -0.011567807756364346, -0.011810439638793468, -0.030086291953921318, -0.0028419983573257923, 0.026632362976670265, 0.012645376846194267, -0.023934872820973396, -0.019810138270258904, -0.003707264782860875, -0.023149888962507248, -0.010632963851094246, -0.006608136929571629, -0.015728222206234932, -0.001129306387156248, 0.0024780514650046825, 0.0001934583851834759, -0.018882431089878082, -0.033568765968084335, 0.0060229673981666565, -0.009384125471115112, 0.001234565512277186, -0.008285148069262505, -0.0010178029770031571, -0.031199540942907333, 0.01296650618314743, 0.007799885235726833, -0.014101165346801281, 0.023677967488765717, 0.001996356761083007, -0.0027956131380051374, -0.01001924928277731, 0.003179184626787901, 0.01604221574962139, 0.009148630313575268, -0.01936769299209118, 0.004620700608938932, -0.008534915745258331, -0.02863050252199173, -0.028088150545954704, 0.01754082180559635, -0.05954459682106972, 0.01555695291608572, -0.07330322265625, 0.015171597711741924, 0.013901351019740105, -0.02262180857360363, -0.028345054015517235, -0.0037893312983214855, 0.016227757558226585, -0.0070719909854233265, 0.018982337787747383, -0.01248124334961176, -0.03499601036310196, 0.0018125991337001324, 0.009690983220934868, 0.01361590251326561, -0.024577131494879723, -0.016113577410578728, 0.031085362657904625, -0.0223649051040411, 0.019125061109662056, 0.020894844084978104, -0.010204790160059929, 0.023892054334282875, 0.03405402973294258, 0.014022666960954666, -0.0015476670814678073, 0.006747293286025524, 0.007193306926637888, -0.002287157578393817, -0.035795263946056366, 0.0038499890360981226, -0.01064009964466095, -0.015514136292040348, -0.02723180502653122, 0.04204659163951874, -0.007535845506936312, -0.0010151269380003214, 0.05186602473258972, -0.0012309974990785122, 0.02402050606906414, 0.0344821996986866, -0.024405863136053085, -0.03765068203210831, 0.01138940267264843, -0.0042424811981618404, -0.01032610610127449, 0.002799181267619133, -0.024819763377308846, 0.020266856998205185, 0.004124733619391918, -0.010333242826163769, 0.0133518623188138, 0.005048873834311962, -0.03376857936382294, -0.019610324874520302, 0.029229944571852684, 0.0009963943157345057, -0.013037868775427341, 0.0029650982469320297, -0.010647236369550228, -0.0019125061808153987, 0.016755837947130203, -0.02630409598350525, 0.028444960713386536, -0.0033326135016977787, -0.006158555392175913, -0.01138940267264843, -0.02459140494465828, 0.00757152633741498, -0.04313129559159279, 0.009605348110198975, -0.019453328102827072, 0.010854186490178108, 0.0013523130910471082, 0.046099960803985596, -0.007785612717270851, 0.0001910053106257692, -0.00018531864043325186, 0.009291354566812515, -0.008699048310518265, 0.019610324874520302, 0.026518182829022408, -0.020823482424020767, -0.02904440276324749, -0.002866975264623761, 0.02230781503021717, 0.026846447959542274, 0.004381637088954449, 0.008998769335448742, -0.007714250590652227, 0.007232556119561195, -0.018311532214283943, 0.016213485971093178, -0.00820664968341589, -0.006358369253575802, 0.0005249579553492367, 0.008891726844012737, -0.014251025393605232, -0.010818504728376865, 0.04364510253071785, 0.026503911241889, 0.038078855723142624, 0.00877754669636488, 0.00757152633741498, -0.03371148928999901, -0.051494941115379333, -0.0037643546238541603, -0.01863979920744896, -5.511055132956244e-05, 0.015014600940048695, 0.008977361023426056, 0.014101165346801281, 0.025090940296649933, -0.02200809307396412, -0.0012987914960831404, -0.012581150978803635, 0.016013670712709427, -0.004945398308336735, -0.010411741212010384, -0.03573817387223244, 0.03850702941417694, 0.0059373327530920506, -0.01350885909050703, 0.013780035078525543, -0.007557253818958998, 0.012980778701603413, 0.0225647184997797, 0.005591226276010275, -0.01931060291826725, 0.009298491291701794, -0.014358068816363811, -0.0002673851267900318, -0.00519159808754921, -0.017383825033903122, -0.014386613853275776, -0.022550446912646294, -0.008392191492021084, 0.0001743913016980514, -0.010190517641603947, -0.009405533783137798, 0.07136216759681702, 0.015028873458504677, -0.01102545578032732, -0.010447422042489052, -0.02350669912993908, 0.00013034747098572552, 0.00890599936246872, 0.02878749929368496, -0.0026511047035455704, -0.026018647477030754, 0.002817021682858467, -0.01625630259513855, 0.0067794062197208405, -0.0307428240776062, -0.026732269674539566, -0.013730081729590893, -0.0037144010420888662, 0.04350237920880318, -0.01911078952252865, 0.013958441093564034, 0.02671799622476101, 0.01667020283639431, 0.01579958386719227, 0.017369551584124565, -0.03179898485541344, -0.011974572204053402, 0.027117624878883362, -0.01169625949114561, 0.006743725389242172, -0.04047662392258644, 0.004788401536643505, 0.0042603216134011745, -0.022350631654262543, -0.031456444412469864, 0.004056939389556646, -0.0059480369091033936, -0.0018768251175060868, 0.011353721842169762, 0.0075429813005030155, 0.001967811957001686, -0.005359299015253782, 0.02764570526778698, -0.024134686216711998, -0.05708973854780197, -0.03234133496880531, 0.0019196424400433898, -0.03987718001008034, -0.005437797401100397, -0.05460633337497711] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2023_a_queuestabilizing_framework_for_networked_multirobot_exploration.json b/database/embeddings/publications_txt/2023_a_queuestabilizing_framework_for_networked_multirobot_exploration.json new file mode 100644 index 0000000000000000000000000000000000000000..1591165a8fbe129787c858f690d8ae5c9fc6a193 --- /dev/null +++ b/database/embeddings/publications_txt/2023_a_queuestabilizing_framework_for_networked_multirobot_exploration.json @@ -0,0 +1 @@ +[-0.007017545402050018, 0.008068757131695747, -0.0022160669323056936, -0.005824278574436903, 0.01420555729418993, -0.004300732631236315, -0.00039975327672436833, 0.0028055976144969463, -0.01576816849410534, -0.023098235949873924, 1.8617049136082642e-05, 0.02164926938712597, -0.008416792377829552, 0.02951914817094803, -0.008068757131695747, 0.0004301620356272906, 0.023922158405184746, -0.011094540357589722, -0.014141632243990898, -0.00476241298019886, 0.00304709211923182, 0.008480717428028584, -0.006950069218873978, -0.014901629649102688, -0.00353363249450922, 0.016464240849018097, 0.008203709498047829, -0.0354570709168911, 0.016222747042775154, 0.020612264052033424, 0.014986863359808922, 0.009979404509067535, -0.004151574335992336, -0.016052279621362686, -0.006119044031947851, -0.0292634479701519, 0.02882307581603527, -0.020882168784737587, 0.02802756428718567, -0.022714685648679733, 0.03147951513528824, 0.021521419286727905, -0.00306129758246243, -0.01626536250114441, -0.003256624098867178, 0.025754675269126892, 0.007315861992537975, -0.017188724130392075, -0.010746504180133343, 0.018097879365086555, 0.014347612857818604, 0.027047380805015564, -0.03701968118548393, 0.0008563287556171417, -0.010668373666703701, -0.014859013259410858, -0.008544642478227615, 0.0033507358748465776, -0.005589887034147978, -0.03253072500228882, 0.018183114007115364, 0.006751191336661577, -0.038752760738134384, -0.014489668421447277, -0.0032939135562628508, 0.006229137070477009, -0.005710633937269449, 0.028127003461122513, -0.003231764305382967, -0.004773067310452461, 0.009752115234732628, 0.027161026373505592, 0.00572128826752305, -0.010263515636324883, 0.027956537902355194, -0.023538608103990555, -0.02490234188735485, 0.013218271546065807, -0.005636055022478104, 0.02674906514585018, 0.005206336732953787, 0.0014915835345163941, -0.014688546769320965, 0.021194692701101303, 0.006069324444979429, 0.03028624877333641, 0.008175298571586609, 0.00012341077672317624, -0.014901629649102688, -0.018793951719999313, 0.015725553035736084, 0.008658287115395069, 0.00828184001147747, -0.011343137361109257, -0.004513815976679325, 0.00017745848163031042, -0.023652253672480583, 0.021223103627562523, 0.023567019030451775, -0.03540024906396866, 0.024433558806777, 0.002713261405006051, -0.019333763048052788, -0.02606719732284546, -0.021961791440844536, -0.025001781061291695, -0.007013993803411722, 0.010433982126414776, 0.01303359866142273, 0.012195470742881298, -0.029718026518821716, 0.018481429666280746, 0.0035673705860972404, -0.009610059671103954, -0.008935295976698399, -0.03696285933256149, -0.007248385809361935, 0.007127638440579176, -0.003483912907540798, -0.02065488137304783, 0.03701968118548393, 0.00664109829813242, 0.016109101474285126, -0.014354716055095196, 0.013665745966136456, 0.009922581724822521, -0.014688546769320965, -0.017444424331188202, -0.010334542952477932, -0.009780526161193848, -0.008793240413069725, 0.007219974417239428, -0.0010964914690703154, 0.02647915855050087, -0.0017543863505125046, 0.02545635960996151, -0.021635064855217934, -0.020413385704159737, -0.027658220380544662, -0.022700481116771698, -0.005849138367921114, 0.039718739688396454, -0.025712059810757637, -0.0014640602748841047, -0.015171535313129425, 0.009908376261591911, 0.014283687807619572, 0.01764330267906189, 0.011215287260711193, 0.020811142399907112, -0.0018769092857837677, -0.0027008315082639456, -0.02037077024579048, 0.03954827040433884, 0.007862776517868042, -9.977184527087957e-05, -0.009119967930018902, 0.024632437154650688, 0.005618297960609198, -0.04145181551575661, -0.003395128296688199, 0.019035447388887405, -0.019333763048052788, -0.023595431819558144, 0.01303359866142273, 0.027814481407403946, 0.0345195047557354, 0.030570359900593758, -0.01022800151258707, -0.007763337343931198, -0.028127003461122513, 0.01565452478826046, -0.016805173829197884, -0.0027913921512663364, 0.0013885932276025414, 0.051282063126564026, 0.03125222772359848, -0.00392073392868042, -0.005181476939469576, 0.007876981981098652, 0.014099015854299068, 0.014830602332949638, 0.011130054481327534, 0.03713332861661911, -0.00628240779042244, 0.008622772991657257, 0.016393212601542473, -0.020214509218931198, 0.014248174615204334, 0.016776762902736664, 0.026820093393325806, 0.01101640984416008, -0.011783509515225887, 0.015583496540784836, -0.5954969525337219, -0.010000712238252163, 0.008686698041856289, -0.01375097967684269, -0.044434983283281326, 0.014716957695782185, 0.015484057366847992, 0.009297537617385387, -0.0036241929046809673, 0.0351729616522789, -0.013907240703701973, 0.006669509224593639, 0.007031750865280628, -0.014376023784279823, -0.017245545983314514, -0.0083244564011693, 0.02159244753420353, -0.025555798783898354, 0.019830958917737007, 0.00596278253942728, -0.012039209716022015, 0.035798005759716034, -0.01057603769004345, -0.00861567072570324, -0.006559416186064482, 0.030144192278385162, 0.03522978350520134, -0.026621215045452118, 0.00732296472415328, -0.016876202076673508, -0.027743453159928322, 0.02554159238934517, 0.022714685648679733, -0.014184249565005302, 0.05170822888612747, -0.0028375601395964622, -0.029036158695816994, 0.026720654219388962, 0.021137868985533714, 0.03145110607147217, -0.026351308450102806, -0.04676469415426254, 0.012025004252791405, -0.0018911148654296994, -0.008899781852960587, -0.009979404509067535, 0.01993039809167385, -0.001191491144709289, -0.03801407292485237, -0.05096954107284546, -0.0036401741672307253, -0.004897365812212229, 0.001741956453770399, 0.004808581434190273, 0.0234959926456213, -0.01764330267906189, 0.019504230469465256, -0.029149804264307022, 0.010000712238252163, 0.009155482053756714, 0.009602956473827362, 0.002477094065397978, -0.019177502021193504, -0.020001424476504326, -0.008196606300771236, 0.015881814062595367, 0.0050110104493796825, -0.005185028538107872, 0.0013868175446987152, -0.0220896415412426, 0.02147880382835865, 0.017884796485304832, 0.01097379345446825, -0.01618012972176075, 0.01802685298025608, 0.03147951513528824, 0.032786425203084946, 0.018538253381848335, -0.018950214609503746, 0.009162584319710732, 0.013083318248391151, -0.013367429375648499, -0.006175866350531578, -0.01174799632281065, 0.040684714913368225, 0.008992117829620838, -0.0314226932823658, -0.0029192420188337564, 0.004574189428240061, -0.00014549598563462496, 0.00862987618893385, 0.0363946370780468, -0.010796223767101765, -0.0007817496079951525, -0.005934371612966061, 0.027715042233467102, 0.0025303650181740522, 0.005167271476238966, 0.006818667519837618, -0.01464592944830656, -0.027317287400364876, -0.0012935935519635677, 0.011634351685643196, -0.02059805765748024, 0.04400881752371788, 0.021350953727960587, -0.006236239802092314, 0.006967825815081596, 0.020498620346188545, -0.024703465402126312, 0.004467647988349199, 0.015199946239590645, -0.009688190184533596, 0.00782726239413023, 0.013310607522726059, -0.03241708129644394, 0.041622284799814224, 0.007234180346131325, -0.015270974487066269, -0.000995276845060289, 0.0029618586413562298, -0.008594362065196037, 0.0024575614370405674, -0.008530437014997005, -0.0012918178690597415, 0.009162584319710732, 0.03156474977731705, -0.022700481116771698, -0.03397969529032707, 0.014873218722641468, 0.008345765061676502, -0.01645003631711006, 0.04150863736867905, -0.003956247586756945, 0.007408198434859514, -0.010902765206992626, 0.027089998126029968, -0.0342353954911232, 0.0012216779869049788, -0.04719086363911629, -0.02285674214363098, -0.0046274601481854916, 0.010419776663184166, -0.013360327109694481, -0.030030548572540283, -0.015924429520964622, -0.03937780484557152, 0.006811564788222313, 0.011300520971417427, 0.013204066082835197, 0.003981107380241156, 0.022174876183271408, -0.011279212310910225, 0.02007245272397995, -0.003194474847987294, -0.013992474414408207, -0.024149447679519653, -0.025328509509563446, -0.009965199045836926, -0.016663119196891785, 0.004691385198384523, 0.015157329849898815, -0.018708718940615654, -0.01706087402999401, -0.021635064855217934, 0.025328509509563446, -0.007763337343931198, -0.00988706760108471, -0.016606297343969345, -0.027217848226428032, -0.018822364509105682, -0.01708928495645523, -0.01667732372879982, 0.021194692701101303, -0.0015421907883137465, 0.022686274722218513, -0.007940907031297684, -0.00045635353308171034, -0.004094752017408609, -0.006186520215123892, -0.01463172398507595, 0.011066129431128502, -0.024135243147611618, -0.01420555729418993, 0.0304851271212101, 0.020228713750839233, 0.02059805765748024, 0.014447052031755447, -0.011108745820820332, 0.004258115775883198, 0.007102778647094965, 0.03128063678741455, -0.014873218722641468, 0.006790256593376398, -0.04400881752371788, -0.0025392433162778616, -0.007798851002007723, -0.004996804986149073, -0.00487960921600461, 0.03534342721104622, 0.02636551484465599, 0.0259819645434618, -0.008175298571586609, -0.011130054481327534, -0.011591735295951366, -0.025328509509563446, 0.017827974632382393, -0.00977342389523983, 0.03653669357299805, 0.007642589975148439, 0.03934939578175545, 0.006577173247933388, -0.020086659118533134, -0.015441440977156162, 0.003031110856682062, 0.04150863736867905, -0.016663119196891785, 0.00951062049716711, -0.02706158719956875, 0.02068329229950905, -0.023680664598941803, -0.018367785960435867, 0.023268703371286392, 0.007042405195534229, -0.006417360622435808, -0.0014232193352654576, 0.028070181608200073, 0.033013716340065, 0.013985371217131615, 0.005153066013008356, -0.03628099337220192, 0.026578597724437714, 0.006662406492978334, 0.00822501815855503, 0.014816396869719028, 0.009837348945438862, 0.0036969962529838085, -0.0001660274574533105, 0.05579942837357521, -0.024092625826597214, 0.017430219799280167, 0.02531430311501026, 0.032843250781297684, -0.000964202219620347, 0.009851554408669472, -0.007550253998488188, 0.01781376823782921, 0.013701260089874268, -0.010583139955997467, -0.00344839901663363, -0.020498620346188545, 0.020555442199110985, -0.002423823345452547, 0.009155482053756714, 0.024476176127791405, 0.006388949695974588, 0.000883408123627305, -0.009155482053756714, 0.032758016139268875, 0.009034734219312668, 0.010597346350550652, 0.009730806574225426, -0.01609489694237709, -0.006918106693774462, -0.008246325887739658, -0.023453375324606895, -0.01328219659626484, -0.014915835112333298, 0.0005003020050935447, -0.030655592679977417, 0.0026209254283457994, -0.012103134766221046, 0.006026707589626312, -0.010810429230332375, 0.013303504325449467, 0.007401095703244209, 0.0022551321890205145, 0.0019248530734330416, 0.013452663086354733, 0.002081114100292325, -0.0011613043025135994, -0.0166489128023386, 0.008473615162074566, 0.025882525369524956, 0.017941618338227272, -0.015057890675961971, 0.013758082874119282, 0.04369629546999931, -0.03591164946556091, -0.01370836328715086, 0.02048441395163536, -0.00286774686537683, -0.020910581573843956, -0.02294197492301464, -0.02387954294681549, -0.0007555580814369023, 0.02689111977815628, -0.01778535731136799, -0.01772853545844555, -0.03255913779139519, -0.0006938527221791446, 0.021848147734999657, -0.0040876492857933044, -0.006200725678354502, 0.03443427011370659, -0.01750124618411064, 0.004638114478439093, -0.006800910457968712, 0.02241636998951435, -0.004464096389710903, 0.003118119901046157, -0.011669865809381008, -0.0069713774137198925, -0.00513530895113945, -1.0466887943039183e-05, -0.008068757131695747, 0.02674906514585018, 0.0007036190363578498, 0.026791680604219437, -0.002786064986139536, -0.017217135056853294, -0.018097879365086555, -0.020242920145392418, 0.009489312767982483, 0.05588466301560402, 0.021635064855217934, 0.00788408424705267, 0.010718093253672123, 0.001921301707625389, -0.006222034338861704, -0.0429576076567173, -0.02167768031358719, 0.014745368622243404, -0.008459409698843956, -0.015356207266449928, 0.008700904436409473, -0.0013299953425303102, -0.008452306501567364, 0.01412032451480627, -0.007180909160524607, -0.0069642746821045876, -0.024589819833636284, 0.022544220089912415, -0.00785567332059145, 0.014546491205692291, 0.0009002772276289761, 0.0040734438225626945, 0.018950214609503746, 0.009695293381810188, -0.017984235659241676, 0.024476176127791405, 0.02650756947696209, 0.0005735493614338338, -0.027345698326826096, 0.02674906514585018, 0.014425743371248245, 0.017018258571624756, -0.0006632219883613288, -0.008523334749042988, 0.03446268290281296, 0.015256769023835659, 0.029718026518821716, 0.01723134145140648, 0.03159315884113312, 0.002152141882106662, 0.012763692997395992, -0.001101818517781794, -0.0006339229876175523, 0.02920662611722946, -0.06511827558279037, -0.0027984948828816414, 0.023311320692300797, -0.009716601110994816, -0.01576816849410534, 0.0429576076567173, -0.013303504325449467, -0.03795725107192993, -0.02581149712204933, 0.02396477572619915, -1.5343111954280175e-05, 0.008800342679023743, -0.007351376116275787, -0.013623129576444626, -0.05704952031373978, -0.011193979531526566, -0.023197675123810768, 0.01214575208723545, 0.004467647988349199, -0.004165779799222946, -0.011755098588764668, -0.02385113015770912, 0.0004874281876254827, -0.004847646690905094, -0.0011240147287026048, -0.009553237818181515, -0.0234959926456213, -0.038468651473522186, -0.010483701713383198, 0.012571918778121471, 0.005834932904690504, 0.02545635960996151, -0.0012270050356164575, -0.017870591953396797, 0.011286315508186817, -0.018424607813358307, -0.014070604927837849, 0.0036969962529838085, -0.04898076131939888, 0.001750834984704852, -0.016137514263391495, -0.009034734219312668, -0.0015359759563580155, -0.0028073734138160944, 0.01250799372792244, 0.009943890385329723, -0.014802191406488419, -0.009404079057276249, -0.003370268503203988, 0.022487398236989975, 0.027686631307005882, 0.015924429520964622, 0.022899359464645386, 0.02882307581603527, 0.008509129285812378, 0.0037715756334364414, -0.02173450216650963, -0.02733149193227291, -0.013367429375648499, 0.004318489693105221, 0.004783721640706062, -0.005405214615166187, 0.013253784738481045, -0.031735215336084366, -0.005795867647975683, 0.011215287260711193, -0.016861997544765472, -0.001999432221055031, 0.011137156747281551, 0.013935651630163193, 0.0284679364413023, 0.01071099005639553, -0.006871938239783049, 0.013644438236951828, -0.014326305128633976, -0.004034378565847874, -0.005408766213804483, 0.011705379001796246, 0.0171176977455616, 0.005618297960609198, 0.019561052322387695, -0.006129697896540165, -0.03682080656290054, -0.030627181753516197, 0.0035123240668326616, 0.01797003112733364, 0.034803617745637894, -0.009340154007077217, -0.04395199567079544, -0.024731876328587532, -0.015611907467246056, -0.022842535749077797, 0.001498686266131699, 0.0005229421076364815, -0.04673628509044647, -0.0022071884013712406, 0.007749131415039301, 0.0060089509934186935, -0.0030595220159739256, 0.0186661034822464, -0.028112798929214478, -0.001546630053780973, 0.007386889774352312, 0.0040805465541779995, 0.01995880901813507, -0.009169687516987324, 0.012010798789560795, -0.009929684922099113, 0.0056822230108082294, -0.024248886853456497, -0.03290007263422012, -0.03366716951131821, -0.010831737890839577, 0.02680588699877262, 0.015043685212731361, 0.03699127212166786, 0.011961079202592373, 0.014546491205692291, 0.011236595921218395, 0.016819380223751068, -0.004233255982398987, -0.0014374247984960675, 0.004140920005738735, 0.0010334543185308576, 0.008132681250572205, 0.013985371217131615, 0.003974004648625851, 0.018950214609503746, 0.0008367961272597313, 0.02478869818150997, 0.02112366445362568, 0.0005114000523462892, -0.019830958917737007, -0.022203287109732628, -0.03548548370599747, 0.014887424185872078, 0.011669865809381008, -0.0008350204443559051, -0.002622700994834304, -0.04403722658753395, -0.009560340084135532, 0.001894666231237352, 0.0030985872726887465, -0.01579657942056656, -0.0008456745999865234, 0.012777899391949177, -0.03247390314936638, 0.01377939060330391, 0.0122167794033885, 0.019475819543004036, 0.006847078911960125, 0.008786137215793133, -0.03253072500228882, -0.0017197603592649102, 0.013665745966136456, -0.0016061158385127783, 0.018154703080654144, 0.004623909015208483, 0.01372256875038147, -0.0029689616058021784, 0.0062895105220377445, 0.013928549364209175, -0.017799563705921173, 0.01576816849410534, -0.023950569331645966, -0.020754318684339523, -0.02879466488957405, -0.014063501730561256, -0.01215995755046606, -0.015867607668042183, 0.001709994045086205, 0.009119967930018902, 0.014574902132153511, -0.020910581573843956, -0.01662050187587738, 0.021606652066111565, 0.016549473628401756, 0.015114713460206985, -0.0070210970006883144, -0.0005651148385368288, 0.02562682516872883, -0.0012838272377848625, 0.010732298716902733, 0.004417928401380777, 0.005927268881350756, 0.00476241298019886, 0.02628028206527233, 0.016322186216711998, -0.021265719085931778, -0.022018613293766975, 0.003411109559237957, 0.013616027310490608, -0.024135243147611618, -0.03895163908600807, -0.0013548550195991993, 0.03750267252326012, 0.0014951349003240466, -0.016634708270430565, -0.021081047132611275, -0.0031962504144757986, 0.008019037544727325, -0.015995457768440247, 0.003902976866811514, -0.005959231406450272, 0.021862352266907692, -0.004158677067607641, 0.016663119196891785, 0.012898646295070648, 0.020839553326368332, 0.014716957695782185, -0.01618012972176075, -0.003286810824647546, 0.0024415801744908094, -0.029036158695816994, 0.0197457242757082, -0.018353579565882683, 0.027089998126029968, -0.00572128826752305, 0.021762914955615997, 0.0259819645434618, -0.010526318103075027, -0.010220898315310478, -0.007401095703244209, 0.008835856802761555, 0.041537050157785416, -0.024859726428985596, -0.0005371476290747523, 0.014397332444787025, -0.022132258862257004, 0.018651897087693214, -0.037673138082027435, 0.008665390312671661, -0.011989490129053593, -0.019390586763620377, -0.008935295976698399, 0.0028730740305036306, -0.003277932293713093, 0.0006942966138012707, 0.023723281919956207, 0.013949857093393803, -0.02829747088253498, -0.0039953128434717655, -0.004084097687155008, -0.012117340229451656, -0.016861997544765472, -0.007351376116275787, -0.01029902882874012, -0.0002630247618071735, 0.02291356399655342, 0.013367429375648499, 0.00393493939191103, 0.005188579671084881, 0.0351729616522789, -0.011655660346150398, 0.015995457768440247, 0.004531573038548231, -0.027288876473903656, -0.02089637517929077, -0.02056964673101902, -0.010739401914179325, 0.001118687679991126, 0.022728892043232918, -0.01647844724357128, -0.02164926938712597, -0.005550821777433157, -0.02601037546992302, 0.008672492578625679, -0.002226721029728651, -0.007564459461718798, 0.007013993803411722, -0.00628240779042244, -0.008686698041856289, -0.009610059671103954, -0.010753607377409935, 0.05471980944275856, -0.0038745657075196505, 0.009212303906679153, 0.01717451959848404, -0.0019550397992134094, 0.04775908589363098, -0.010774915106594563, -0.003411109559237957, -0.010803326033055782, -0.03628099337220192, -0.010029123164713383, -0.0010574262123554945, 0.030684003606438637, -0.028553171083331108, -0.034547917544841766, 0.016322186216711998, -0.02805597521364689, -0.026933737099170685, 0.006111941300332546, -0.0050181131809949875, -0.014361818321049213, 0.009354359470307827, -0.010888559743762016, 0.02010086365044117, -0.012827618047595024, -0.0006534556741826236, -0.01993039809167385, -0.005618297960609198, 0.016364801675081253, -0.004705591127276421, -0.015938635915517807, 0.0059485770761966705, 0.033752404153347015, 0.014376023784279823, -0.038752760738134384, -0.033866047859191895, -0.015327796339988708, -0.014262380078434944, 0.005604092497378588, 0.003725407412275672, -0.011513604782521725, -0.005802970379590988, 0.0021716745104640722, -0.002922793384641409, 0.01802685298025608, -0.009709498845040798, 0.007805953733623028, 0.00685418164357543, -0.006690817419439554, -0.0072519369423389435, -0.01059024315327406, -0.014525182545185089, -0.006293062120676041, -0.051509350538253784, -0.01130762416869402, 0.010625757277011871, 0.023822719231247902, 0.0010929401032626629, 0.01811208575963974, 0.0022569079883396626, -0.004812132567167282, -0.0037680240347981453, -0.006367641035467386, -0.005568578373640776, -0.028041770681738853, 0.0037396131083369255, -0.044434983283281326, -0.017416013404726982, 0.009965199045836926, -0.0114425765350461, 0.01764330267906189, 0.0029441018123179674, 0.001612330786883831, -0.019859369844198227, 0.009503518231213093, -0.024476176127791405, -0.021961791440844536, 0.013317709788680077, 0.0019177502254024148, 0.0314226932823658, -0.005117551889270544, 0.00911286473274231, 0.03591164946556091, 0.009325948543846607, -0.00218765577301383, -0.013204066082835197, 0.005930820479989052, -0.01328219659626484, -0.005767456255853176, 0.01846722513437271, -0.00040951959090307355, 0.01053342130035162, -0.0043859658762812614, 0.02802756428718567, -0.0039953128434717655, -0.0004989702138118446, 0.004705591127276421, -0.008793240413069725, -0.02206123061478138, 0.022402163594961166, 0.006293062120676041, -0.019333763048052788, -0.011350240558385849, -0.010263515636324883, -0.0028340087737888098, -0.023978980258107185, -0.0007142731919884682, 0.0043291435576975346, -0.02316926419734955, -0.009325948543846607, -0.011549117974936962, -0.015498262830078602, 0.024035803973674774, -0.007401095703244209, -0.012635843828320503, -0.004471199121326208, -0.0137651851400733, 0.1745578944683075, -0.016918819397687912, 0.016336390748620033, 0.021606652066111565, 0.0005562363658100367, -0.013118832372128963, 0.010803326033055782, 0.007685206830501556, -0.009219407103955746, 0.0033898011315613985, 0.011662762612104416, 0.013026496395468712, 0.009766320697963238, -0.002033170312643051, 0.005057178437709808, 0.00984445121139288, -0.016876202076673508, -0.05315719544887543, -0.02065488137304783, 0.019063858315348625, 0.005788764916360378, -0.01872292533516884, -0.013076215982437134, -0.019205912947654724, 0.021990202367305756, -0.0011763977818191051, 0.012770796194672585, -0.017217135056853294, 0.0018680308712646365, 0.01919170841574669, -0.020527031272649765, 0.00452091870829463, 0.027430931106209755, 0.015413030050694942, -0.015214151702821255, -0.0018378440290689468, 0.014745368622243404, -0.003249521367251873, 0.023424964398145676, 0.01097379345446825, 0.007472123485058546, -0.03122381493449211, -0.007770440075546503, -0.0292634479701519, -0.01811208575963974, 0.001628312049433589, -0.009595854207873344, -0.0022071884013712406, -0.027729248628020287, 0.007756234612315893, -0.04190639406442642, 0.016890408471226692, 0.02068329229950905, 0.01966049149632454, -0.01446836069226265, -0.003636622801423073, -0.000956211588345468, 0.03045671619474888, 0.011265006847679615, 0.025285892188549042, 0.003100362839177251, 0.020768525078892708, -0.010334542952477932, 0.010107254609465599, -0.0013885932276025414, 0.02139356918632984, -0.026692243292927742, 0.001084949471987784, 0.0228851530700922, -0.014425743371248245, -0.014376023784279823, -0.02112366445362568, -0.019617874175310135, 0.004425031132996082, -0.009823143482208252, -0.02797074243426323, 0.01218836847692728, 0.007393992505967617, 0.03616734966635704, 0.02551318146288395, 0.005810073111206293, 0.02352440357208252, -0.020200302824378014, -0.019149091094732285, -0.010625757277011871, -0.03792883828282356, 0.023368142545223236, -0.006179417483508587, -0.016549473628401756, -0.004286527168005705, -0.021777119487524033, 0.015697140246629715, -0.00709567591547966, -0.015498262830078602, 0.007273245602846146, -0.005550821777433157, 0.02630869299173355, 0.004243910312652588, -0.024561408907175064, 0.02352440357208252, -0.02007245272397995, 0.08222176879644394, 0.025328509509563446, 0.006186520215123892, -0.009297537617385387, 0.005760353524237871, -0.0014143408043310046, 0.02233113721013069, 0.005366149358451366, -0.021294130012392998, -0.015910224989056587, -0.019504230469465256, 0.011577529832720757, -0.007820159196853638, 0.008232120424509048, 0.009716601110994816, -0.010611551813781261, 0.0026049441657960415, 0.030684003606438637, -0.010064637288451195, -0.019788341596722603, -0.02791392058134079, -0.019532641395926476, 0.01662050187587738, 0.0022888705134391785, -0.02045600302517414, -0.033752404153347015, -0.017444424331188202, -0.02551318146288395, -0.020058246329426765, 0.014859013259410858, -0.007013993803411722, 0.011904257349669933, 0.001919525908306241, 0.01609489694237709, -0.007521842606365681, -0.0017490593018010259, -0.025257481262087822, -0.00513530895113945, 0.009290434420108795, -0.01217416301369667, -0.013800699263811111, 0.021166279911994934, 0.012777899391949177, -0.006459977477788925, -0.0373322069644928, 0.0012545282952487469, -0.001912423176690936, -0.016052279621362686, -0.03045671619474888, 0.0021255065221339464, -0.021265719085931778, -0.0018218627665191889, -0.006126146763563156, 0.02609560824930668, -0.023623842746019363, -0.02750195935368538, -0.048867117613554, 0.009340154007077217, 0.003686342155560851, -0.044690683484077454, -0.003492791438475251, 0.02385113015770912, -0.002615598263218999, -0.005920166149735451, -0.023723281919956207, -0.18217207491397858, 0.028979336842894554, 0.024888137355446815, -0.01300518773496151, 0.0060338107869029045, 0.006942966021597385, 0.03750267252326012, 0.024802902713418007, -0.029092982411384583, 0.016165925189852715, 0.023694869130849838, 0.01697564125061035, -0.01609489694237709, -0.014006679877638817, 0.0040201726369559765, 0.008857165463268757, 0.003347184509038925, -0.010796223767101765, 0.009389873594045639, 0.021237308159470558, 0.02885148674249649, -0.05707792937755585, 0.01562611386179924, -0.007663898169994354, 0.0013459766050800681, 0.03503090515732765, -0.007834364660084248, 0.03554230555891991, -0.018907597288489342, -0.029746437445282936, -0.02112366445362568, -0.004169330932199955, 0.02410683035850525, 0.005685774609446526, 0.01778535731136799, 0.03821295127272606, -0.013133037835359573, -0.0013255560770630836, -0.002436253009364009, 0.05085589736700058, 0.007734925951808691, 0.058356430381536484, -0.0016762558370828629, -0.006552313454449177, 0.005739045329391956, 0.025498975068330765, -0.011215287260711193, -0.007216423284262419, -0.005920166149735451, -0.027842892333865166, 0.005952128674834967, -0.0023616738617420197, 0.016819380223751068, 0.001376163330860436, 0.005572129972279072, 0.027729248628020287, -0.0013291074428707361, -0.010618654079735279, 0.014887424185872078, 0.016776762902736664, -0.02797074243426323, -0.00937566813081503, 0.018154703080654144, -0.010803326033055782, -0.027075791731476784, -0.028425320982933044, -0.04608282819390297, 0.0118190236389637, -0.04074154049158096, 0.008452306501567364, -0.0031287739984691143, -0.0043717604130506516, 0.007798851002007723, 0.009311743080615997, 0.014915835112333298, 0.01913488656282425, 0.026678036898374557, 0.0036312956362962723, 0.008779034949839115, -0.019859369844198227, 0.02007245272397995, 0.020271331071853638, -0.013303504325449467, -0.01057603769004345, 0.0432417169213295, -0.02510122023522854, 0.00024082859454210848, 0.025001781061291695, -0.0005429186276160181, -0.0166489128023386, 0.015356207266449928, -0.015938635915517807, 0.02355281449854374, -0.023567019030451775, -0.0001259633427252993, 0.00207401136867702, 0.0030737274792045355, 0.011939771473407745, -0.0030417649541050196, -0.02247319184243679, -0.01057603769004345, -0.02258683554828167, -0.009134173393249512, -0.008544642478227615, 0.009006323292851448, 0.019319558516144753, -0.021052636206150055, 0.0133887380361557, 0.02940550446510315, -0.021720297634601593, -0.02821223810315132, -0.008068757131695747, 0.011151362210512161, 0.0389232262969017, -0.002553449012339115, 0.030541948974132538, -0.009936787188053131, -0.010405571199953556, 0.046565815806388855, -0.01100220438092947, 0.04906599596142769, 0.026436543092131615, -0.01968890242278576, 0.019447408616542816, -0.00784146785736084, -0.03929257392883301, -0.08642660826444626, -0.012358834967017174, 0.023765897378325462, 0.01603807508945465, -0.039803970605134964, 0.006055118981748819, -0.011676968075335026, 0.004478301852941513, -0.009119967930018902, 0.02145039103925228, 0.012579021044075489, -0.011193979531526566, 0.01267135702073574, -0.017685920000076294, -0.001693124882876873, -0.01177640724927187, 0.005444279871881008, -0.031053349375724792, 0.0012625189265236259, 0.022217491641640663, 0.0026706447824835777, -0.026294486597180367, 0.022132258862257004, 0.003888771403580904, -0.010291926562786102, -0.009048939682543278, -0.03548548370599747, -0.000473666557809338, 0.010924073867499828, 0.018864979967474937, 0.018893390893936157, -0.011492296122014523, 0.012238088063895702, -0.028070181608200073, 0.008885576389729977, -0.01576816849410534, -0.011165568605065346, -0.018296757712960243, 0.023723281919956207, -0.0410824716091156, 0.004005967173725367, 0.019149091094732285, 0.039661917835474014, -0.006229137070477009, -0.022103847935795784, 0.00875062309205532, -0.023723281919956207, 0.035741183906793594, -0.015043685212731361, -0.025172248482704163, -0.01223098486661911, -0.0236380472779274, -0.0098728621378541, -0.012373040430247784, 0.032814837992191315, -0.023240292444825172, -0.0007915159221738577, 0.018154703080654144, -0.01600966416299343, -0.014340510591864586, -0.00722707761451602, -0.0049683935940265656, -0.035599127411842346, 0.00937566813081503, 0.005472691264003515, 0.005298673175275326, -0.014873218722641468, -0.012387245893478394, 0.0012181265046820045, -0.019589463248848915, -0.015100507996976376, 0.018353579565882683, -0.02015768550336361, 0.0013015841832384467, -0.04130976274609566, -0.013601820915937424, -0.02015768550336361, -0.020413385704159737, 0.006875489838421345, 0.007173806428909302, -0.015484057366847992, -0.013893035240471363, 0.019731519743800163, -0.023652253672480583, 0.028141209855675697, 0.015356207266449928, -0.006516799330711365, 0.008679595775902271, 0.009183892980217934, -0.01095958799123764, 0.0015040134312584996, 0.010448187589645386, 0.007656795438379049, 0.01609489694237709, -0.024703465402126312, 0.01451097708195448, 0.0004567974538076669, -0.007607075851410627, 0.00010509893036214635, 0.025726264342665672, -0.06489098817110062, 0.007543151266872883, -0.0768236517906189, 0.031820449978113174, 0.010675476863980293, -0.024064214900135994, -0.015043685212731361, -0.010632859542965889, 0.01464592944830656, -0.010512112639844418, 0.006452874280512333, 0.009574545547366142, -0.040514249354600906, 0.015611907467246056, 0.017629096284508705, 0.0040627894923090935, -0.01053342130035162, -0.02282833121716976, 0.023183470591902733, -0.026081403717398643, 0.01056183222681284, 0.0228851530700922, -0.005177925806492567, 0.017870591953396797, 0.029632793739438057, 0.022345341742038727, -0.019149091094732285, -7.657683454453945e-05, -0.0032743809279054403, -0.014731163159012794, -0.0069891344755887985, 0.002089992631226778, 0.00025791965890675783, -0.023325525224208832, 0.0020225162152200937, 0.014077707193791866, -0.026607008650898933, -0.0025126079563051462, 0.03522978350520134, 0.028780460357666016, 0.008494923822581768, 0.03812771663069725, -0.01893600821495056, -0.03608211502432823, 0.01098799891769886, -0.004538675770163536, -0.015171535313129425, 0.020754318684339523, 0.00902763195335865, 0.02551318146288395, 0.0021255065221339464, 0.0028304574079811573, 0.027729248628020287, 0.0015732655301690102, -0.011975284665822983, -0.03042830340564251, 0.011740893125534058, -0.001644293311983347, 0.018183114007115364, 0.010810429230332375, -0.034547917544841766, -0.03045671619474888, 0.03687762841582298, -0.0036827907897531986, 0.006051567383110523, -0.004144471604377031, 0.01192556507885456, -0.016776762902736664, -0.02534271404147148, -0.009105762466788292, -0.014674341306090355, -0.01653526909649372, -0.020910581573843956, -0.002738121198490262, 0.007976420223712921, 0.019944602623581886, 0.007656795438379049, -0.006452874280512333, -0.017913207411766052, -0.0005042973207309842, -0.009475107304751873, 0.016336390748620033, 0.031053349375724792, -0.008480717428028584, -0.01993039809167385, -0.010505009442567825, 0.006300164852291346, 0.011158465407788754, -0.0013424252392724156, 0.024561408907175064, -0.0057177371345460415, 0.021336747333407402, -0.017856385558843613, 0.02173450216650963, -0.008523334749042988, -0.0028144761454313993, -0.008928192779421806, 0.010782018303871155, -0.02849634923040867, 0.0043433490209281445, 0.024192065000534058, 0.03787201642990112, 0.009162584319710732, 0.0005771007854491472, 0.010036226361989975, -0.038695938885211945, -0.030996525660157204, -0.013942754827439785, -0.018325168639421463, -0.004236807581037283, -0.0059237172827124596, 0.0053235325030982494, -0.004769515711814165, 0.02920662611722946, 0.0166489128023386, 0.009276228956878185, -0.015128918923437595, 0.028254853561520576, -0.01379359606653452, -0.004787272773683071, -0.02876625396311283, 0.03562753647565842, 0.009737909771502018, -0.019291147589683533, 0.010476598516106606, -0.011357342824339867, 0.01902124099433422, 0.03244549408555031, 0.02735990472137928, -0.034633148461580276, 0.007045956328511238, -0.018978625535964966, 0.019390586763620377, 0.0010387813672423363, -0.009631368331611156, 0.0001988778094528243, -0.010767812840640545, -0.012479581870138645, -0.005621849559247494, 0.0002279548061778769, -0.013900138437747955, 0.09682507812976837, 0.02899354323744774, 0.0008243662887252867, 0.015981251373887062, -0.028198031708598137, -0.02724625915288925, 0.013985371217131615, 0.011641453951597214, 0.005167271476238966, -0.03628099337220192, 0.005465588066726923, 0.00761417904868722, -0.006062221713364124, -0.031138582155108452, -0.0009020529105328023, -0.008161093108355999, -0.0017845731927081943, 0.027487752959132195, -0.008871370926499367, 0.0014880321687087417, 0.0203991811722517, 0.006861284375190735, 0.010064637288451195, 0.0020633572712540627, -0.020115070044994354, -0.014702752232551575, 0.009382770396769047, 0.0057248398661613464, 0.0370480939745903, -0.061311185359954834, 0.02282833121716976, 0.0118190236389637, -0.04420769587159157, -0.02741672657430172, 0.01659209094941616, 0.007791748270392418, -0.0007431282429024577, -0.014901629649102688, 0.011293417774140835, -0.0026937287766486406, 0.009389873594045639, 0.009823143482208252, 0.003549613757058978, -0.04508844017982483, -0.023737486451864243, 0.0006747639854438603, -0.022544220089912415, -0.004815684165805578, -0.04574189707636833] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2023_a_survey_of_blockchainbased_strategies_for_healthcare.json b/database/embeddings/publications_txt/2023_a_survey_of_blockchainbased_strategies_for_healthcare.json new file mode 100644 index 0000000000000000000000000000000000000000..5eae3fa98e5d25345fcc98f634d10a8bc26a28a7 --- /dev/null +++ b/database/embeddings/publications_txt/2023_a_survey_of_blockchainbased_strategies_for_healthcare.json @@ -0,0 +1 @@ +[0.00723511166870594, 0.02636393904685974, 0.015765439718961716, -0.03147517144680023, -0.006643211003392935, 0.005173905752599239, -0.030611693859100342, -0.006082646548748016, -0.028773320838809013, -0.03573685511946678, 0.016907459124922752, 0.006660620216280222, 0.00727689266204834, 0.020807038992643356, -0.004279091488569975, 0.013683343306183815, 0.03821587190032005, -0.024205243214964867, -0.02719956263899803, -0.012917354702949524, -0.010027488693594933, -0.002519058296456933, -0.02563973143696785, 0.026224667206406593, -0.004338281694799662, 0.029581090435385704, 0.020194247364997864, -0.03478981554508209, -0.014094192534685135, -0.0043208724819123745, 0.0031196631025522947, -0.01065420638769865, -0.027631301432847977, -0.008370167575776577, -0.015542606823146343, 0.00018660094065126032, 0.011232179589569569, -0.020890600979328156, 0.012562214396893978, -0.006378597114235163, -0.0051251607947051525, 0.01880154013633728, 0.015904711559414864, 0.004971962887793779, 0.0011959868716076016, -0.00856514647603035, 0.045708633959293365, -0.02905186265707016, -0.023703869432210922, 0.01806340552866459, -0.014985524117946625, 0.04069489240646362, -0.031168777495622635, 0.012757194228470325, 0.006246289703994989, -0.009233646094799042, 0.013321240432560444, 0.014003666117787361, -0.0002698369207791984, -0.017548104748129845, 0.03529118746519089, -0.020166393369436264, -0.03863368555903435, -0.018968665972352028, -0.0062288809567689896, -0.010431373491883278, -0.011009346693754196, 0.030054612085223198, -0.007583288010209799, 0.02724134363234043, 0.014205608516931534, 0.010375665500760078, -0.0074788350611925125, -0.0070122783072292805, 0.015069087035953999, -0.02219974622130394, 0.002061205916106701, -0.012812902219593525, -0.0030152101535350084, 0.025305481627583504, -0.014108119532465935, 0.0015049937646836042, 0.0070401327684521675, 0.005142569541931152, 0.01884332299232483, 0.031308047473430634, -0.0011263515334576368, 0.023592451587319374, -0.011677846312522888, -0.00980465579777956, -0.007597215473651886, 0.006249771453440189, 0.01796591654419899, 0.004999817349016666, -0.021169142797589302, 0.02632215805351734, 0.002915979828685522, 0.012179220095276833, 0.012708448804914951, -0.019247207790613174, -0.004616823047399521, 0.010312993079423904, -0.026113251224160194, -0.028606196865439415, -0.015180503949522972, -0.01326553151011467, 0.0006075683049857616, 0.020222101360559464, 0.010354775004088879, -0.0020786148961633444, -0.03582041710615158, 0.04094557836651802, -0.030500277876853943, -0.010347811505198479, -0.012221002019941807, -0.02398240938782692, 0.005532527342438698, 0.0032397841569036245, 0.0036663005594164133, -0.0032467476557940245, 0.0340377539396286, 0.0062323627062141895, 0.009609676897525787, -0.009721092879772186, 0.01240205392241478, 0.009762873873114586, -0.03866153955459595, -0.017757011577486992, 0.005786696448922157, -0.025263700634241104, 0.0019445668440312147, -0.0023066706489771605, -0.008453729562461376, 0.019957488402724266, 0.025291554629802704, 0.013147152028977871, -0.0038369069807231426, -0.010118014179170132, -0.0340934619307518, -0.039831411093473434, 0.007520616520196199, 0.042978931218385696, -0.025820782408118248, -0.008425875566899776, -0.029720362275838852, 0.003234561299905181, 0.019470039755105972, 0.010904894210398197, 0.029692508280277252, 0.03072310984134674, -0.005525563843548298, -0.025207992643117905, -0.02650320902466774, 0.019316842779517174, -0.012353308498859406, 0.015486898832023144, -0.013390875421464443, 0.038772955536842346, 0.011413231492042542, -0.023662088438868523, -0.003916987683624029, 0.007471871562302113, -0.017422761768102646, -0.004240792244672775, 0.006113982759416103, 0.026823531836271286, 0.038884371519088745, 0.015459044836461544, 0.0010941452346742153, 0.0025991389993578196, -0.022784681990742683, 0.01891295798122883, -0.014289171434938908, -0.018509073182940483, -0.0054280743934214115, 0.04540224000811577, 0.01245079841464758, 0.012687558308243752, -0.013899213634431362, -0.023467108607292175, -0.007325637619942427, -0.013376948423683643, 0.02977607026696205, 0.04200403392314911, -0.009588785469532013, 0.02828587405383587, 0.04047205671668053, -0.005010262597352266, 0.010918821208178997, 0.0070436145178973675, 0.04676709324121475, 0.01970680058002472, 0.005038116592913866, 0.004578523337841034, -0.6069973111152649, -0.01064027938991785, 0.007820048369467258, -0.004846619442105293, -0.00245638657361269, -0.0059364126063883305, 0.037185270339250565, 0.016601065173745155, -0.02894044667482376, 0.022004766389727592, 0.0004900586791336536, 0.016823897138237953, 0.01458163931965828, -0.015472971834242344, -0.01976250857114792, -0.004867509938776493, 0.016601065173745155, -0.02994319424033165, 0.043953824788331985, -0.010410482995212078, 0.008732271380722523, 0.03261719271540642, 0.00989518128335476, -0.0008321422501467168, 0.006037383805960417, 0.012381162494421005, 0.02141983062028885, -0.009943925775587559, 0.016016127541661263, 0.006187099497765303, -0.04676709324121475, 0.022868243977427483, 0.006639729253947735, 0.006117464508861303, 0.04526297003030777, -0.00982554629445076, -0.01444236934185028, 0.013356057927012444, 0.032060109078884125, 0.017701303586363792, -0.004080630838871002, -0.033647794276475906, 0.018119115382432938, -0.012039950117468834, -0.017450615763664246, -0.0006114853313192725, 0.024414150044322014, 0.004233828280121088, -0.015110868029296398, -0.01534762792289257, -0.012917354702949524, -0.014108119532465935, 0.0005923355929553509, -0.0034365039318799973, 0.015988273546099663, 0.012889500707387924, 0.02632215805351734, -0.024455931037664413, 0.026113251224160194, 0.00490232789888978, 0.02481803484261036, 0.007450981065630913, -0.015974346548318863, -0.04356386512517929, -0.0002989967179019004, 0.027088146656751633, -0.0013047921238467097, 0.009943925775587559, -0.00010064482194138691, -0.023703869432210922, 0.011218252591788769, 0.013502292335033417, -0.011545538902282715, -0.0073395646177232265, 0.014428441412746906, 0.02910757064819336, 0.010375665500760078, 0.00940077006816864, 0.0037707535084336996, 0.007590251974761486, 0.012095658108592033, 0.0022422578185796738, -0.009929998777806759, -0.010243358090519905, 0.010145868174731731, 0.014874108135700226, -0.016754262149333954, -0.008216969668865204, 0.00989518128335476, 0.002266630297526717, 0.012576142325997353, 0.015194430947303772, 0.001981125446036458, -0.00940077006816864, 0.005111233796924353, 0.02385706640779972, -0.00702620530501008, 0.01321678701788187, -0.0005318399053066969, -0.02310500480234623, -0.010306029580533504, 0.0212109237909317, -0.013439619913697243, -0.006260216701775789, 0.014275244437158108, 0.015793293714523315, -0.014170791022479534, 0.0035479203797876835, 0.029274696484208107, -0.038160163909196854, 0.00012490838707890362, -0.0013665935257449746, -0.006493495311588049, -0.0027871544007211924, 0.02743632346391678, -0.038884371519088745, 0.026712115854024887, 0.00599908409640193, 0.003979659639298916, 0.014317025430500507, 0.018592635169625282, 0.008801906369626522, 0.0023745649959892035, -0.004839655943214893, -0.006820781156420708, 0.02040315419435501, 0.0041885655373334885, -0.0341770239174366, -0.004230346530675888, 0.001470176037400961, -0.011343596503138542, -0.02573722042143345, 0.022798608988523483, 0.0006032161181792617, 0.026127178221940994, -0.020013196393847466, 0.02291002683341503, -0.018940811976790428, -0.002766263671219349, -0.02572329342365265, 0.008008063770830631, -0.005285322200506926, 0.018230531364679337, -7.806774192431476e-06, -0.056098226457834244, -0.03158658742904663, -0.015222284942865372, 0.02226938121020794, 0.003563588485121727, 0.0012638813350349665, -0.01802162453532219, 0.001989829819649458, -0.015055160038173199, 0.03314641863107681, 0.0012081731110811234, -0.0014492854243144393, 0.007576324511319399, -0.022561850026249886, -0.004115448333323002, -0.019302915781736374, -0.005560381803661585, 0.03509620949625969, 0.0018018143018707633, -0.02818838506937027, 0.01242990791797638, -0.0054628923535346985, -0.012924318201839924, 0.011615173891186714, 0.020681696012616158, -0.023467108607292175, -0.004153748042881489, -0.008370167575776577, -0.014929816126823425, 0.02573722042143345, -0.019205426797270775, 0.04946894198656082, 0.004867509938776493, 0.0045262970961630344, 0.00494759064167738, -0.005570827051997185, -0.03256148472428322, 0.019302915781736374, 0.0012943468755111098, -0.003993586637079716, 0.014400587417185307, 0.006416896358132362, 0.017520250752568245, 0.0016460053157061338, 0.027547739446163177, -0.014400587417185307, 0.008196079172194004, -0.0046516405418515205, 0.0026513654738664627, 0.02919113263487816, -0.013864395208656788, 0.0035966651048511267, -0.021684443578124046, 0.005247022490948439, 0.014330952428281307, 0.0170745849609375, 0.037240978330373764, 0.024079900234937668, 0.0076529234647750854, -0.008899396285414696, 0.006281107198446989, -0.030472423881292343, 0.026726042851805687, -0.00043108625686727464, 0.008781015872955322, -0.009992671199142933, 0.027046365663409233, -0.014832327142357826, -0.02051457017660141, -0.006768554914742708, -0.0019167126156389713, 0.0061000557616353035, -0.02233901619911194, 0.008439802564680576, 0.0025521351490169764, 0.030333152040839195, 1.1907370208064094e-05, -0.006747663952410221, 0.023620305582880974, -0.01889903098344803, -0.017353126779198647, 0.027868062257766724, 0.038104455918073654, 0.013940994627773762, 0.005616089794784784, -0.011552502401173115, -0.010772586800158024, 0.01623896136879921, 0.024274878203868866, -0.00850943848490715, -0.008210006169974804, 0.019121862947940826, 0.04066703841090202, -0.003795125987380743, 0.010347811505198479, -0.015709731727838516, -0.006590984761714935, 0.05732380971312523, 0.029525382444262505, -0.02463698200881481, 0.009435588493943214, -0.002240516943857074, 0.006152282003313303, 0.016726408153772354, 0.011649992316961288, 0.014191681519150734, -0.027645228430628777, 0.02047278918325901, -0.012847719714045525, 0.021684443578124046, 0.023676015436649323, -0.011531611904501915, -0.010556717403233051, -0.004383544437587261, 0.02473447099328041, 0.009324171580374241, 0.028439071029424667, 0.025235846638679504, -0.015807220712304115, 0.02235294319689274, 0.004118930082768202, -0.02394062839448452, -0.012074767611920834, -0.014790545217692852, -0.00621147220954299, -0.010062306188046932, -0.011524648405611515, -0.020152466371655464, 0.005494228098541498, -0.0018383729038760066, -0.011190398596227169, 0.04166978597640991, 0.023272128775715828, -0.01797984354197979, 0.008850651793181896, 0.006970497313886881, -0.028829028829932213, -0.008321423083543777, 0.017659520730376244, 0.028773320838809013, 0.027812354266643524, -0.03765879198908806, 0.01635037735104561, -0.0027140371967107058, -0.04200403392314911, -0.0003272860776633024, 0.005581272300332785, -0.012144402600824833, -0.009748946875333786, -0.032784316688776016, -0.039803557097911835, -0.0038229799829423428, 0.0427560955286026, -0.008676563389599323, -0.027046365663409233, -0.012200111523270607, 0.009191864170134068, 0.001937603228725493, -0.019887851551175117, -0.018606562167406082, 0.04626571759581566, 0.0007625069702044129, 0.00047177940723486245, -0.007847902365028858, 0.01192853320389986, -0.01459556631743908, 0.019873924553394318, -0.01064724288880825, -0.024497712031006813, -0.019943561404943466, 0.021976912394165993, 0.03506835550069809, 0.0076459599658846855, 0.01459556631743908, 0.008683526888489723, -0.010730805806815624, -0.01533370092511177, -0.029525382444262505, -0.031029505655169487, 0.002003756817430258, 0.06244897097349167, 0.02054242417216301, 0.002999542048200965, 0.016656773164868355, 0.011622137390077114, -0.009672348387539387, -0.014386660419404507, -0.01866227015852928, 0.006862562615424395, -0.013007881119847298, -0.007632032968103886, 0.0012525656493380666, -0.024455931037664413, 0.017687374725937843, 0.012506506405770779, -0.00596078485250473, -0.012666667811572552, -0.007959319278597832, -0.0016094467137008905, 0.012193147093057632, 0.017548104748129845, -0.01320982351899147, 0.02402419224381447, 0.037046000361442566, 0.03144731745123863, -0.02834158204495907, 0.030444569885730743, 0.0006706753629259765, 0.0016764707397669554, -0.00724207516759634, -0.004341763444244862, 0.018091261386871338, 0.012367235496640205, 0.02321642078459263, -0.007687741424888372, 0.03927433118224144, 0.006420378107577562, 0.008648708462715149, 0.02827194705605507, 0.01320286002010107, 0.03757522627711296, 0.025862563401460648, 0.007444017566740513, -0.00245638657361269, -0.012262783013284206, -0.05311783403158188, -0.015514752827584743, 0.02907971665263176, -0.015904711559414864, -0.0008312718127854168, 0.014720910228788853, 0.004202492535114288, -0.03331354632973671, -0.03949716314673424, 0.034650545567274094, 0.005438519641757011, 0.0070470962673425674, 0.006994869560003281, -0.006667583715170622, -0.025152284651994705, -0.016921386122703552, -0.025207992643117905, 0.003969214390963316, -0.0172277819365263, -0.02050064317882061, -0.015835076570510864, -0.0340656079351902, -0.013432656414806843, 0.0022091809660196304, 0.029386112466454506, -0.0008991662762127817, 0.0024964269250631332, -0.04932967200875282, 0.010389592498540878, -0.007583288010209799, -0.007057541515678167, 0.019010446965694427, 0.01318196952342987, 0.010925784707069397, 0.011273961514234543, -0.014929816126823425, -0.0065387580543756485, -0.0031840757001191378, -0.03342496231198311, 0.003417354077100754, -0.011775335296988487, -0.018341947346925735, -0.04125197231769562, -0.019442185759544373, 0.04843834042549133, -0.02065384015440941, -0.016378231346607208, -0.0027262235525995493, 0.02055635116994381, -0.007109767757356167, 0.02974821627140045, 0.00939380656927824, 0.012590069323778152, 0.003380795707926154, 0.00365237332880497, 0.010577607899904251, -0.00854425597935915, 0.008210006169974804, -0.022464359179139137, 0.013913140632212162, -0.005351475439965725, -0.00621147220954299, 0.008168225176632404, -0.007806121371686459, -0.01456771232187748, -0.0037777170073240995, -0.012506506405770779, 0.015570461750030518, -0.0009200568892993033, -0.004888400435447693, 0.005476819351315498, 0.008850651793181896, -0.003279824275523424, -0.00031205336563289165, -0.012485615909099579, -0.003575774608179927, 0.012771121226251125, 0.011468940414488316, 0.01793806254863739, -0.012798975221812725, 0.01784057356417179, 0.005271395202726126, -0.007945392280817032, -0.04102914035320282, -0.006587503012269735, -0.0005488134920597076, 0.020096758380532265, -0.01327945850789547, -0.033007148653268814, -0.033759210258722305, 0.017269562929868698, -0.017562031745910645, -0.010814367793500423, -0.01870405115187168, -0.03609895706176758, -0.0032571929041296244, 0.006737218704074621, 0.003452171804383397, -0.006785963661968708, 0.023620305582880974, -0.029608944430947304, -0.0004804838390555233, 0.007109767757356167, 0.001812259666621685, 0.01373208872973919, 0.004453179892152548, 0.010716878809034824, 0.002398937474936247, -0.00981161929666996, -0.020876673981547356, -0.02061205916106701, -0.01626681536436081, -0.019080081954598427, 0.04180905595421791, 0.031057359650731087, 0.02655891701579094, 0.03075096569955349, 0.005511636845767498, 0.016406085342168808, 0.008662636391818523, 0.007130658719688654, -0.013564963825047016, 0.005027671344578266, -0.011865861713886261, -0.0013822613982483745, 0.004407916683703661, -0.024149535223841667, 0.020918454974889755, -0.014651275239884853, 0.02055635116994381, 0.002994319424033165, 0.003213670803233981, -0.006444750353693962, -0.018091261386871338, -0.028829028829932213, -0.018453365191817284, 0.002038574544712901, 0.0007342175813391805, -0.00010042721260106191, -0.05442697927355766, -0.01063331589102745, 0.0343998558819294, -0.0020786148961633444, 0.00468993978574872, -0.02465090900659561, 0.00860692746937275, -0.0004330447409301996, 0.013913140632212162, -0.0007111508748494089, 0.012311527505517006, -0.014024556614458561, 0.009094375185668468, -0.03662818670272827, -0.006618838757276535, 0.01630859635770321, 0.0003401250869501382, 0.024247024208307266, 0.016684627160429955, -0.015988273546099663, 0.012840756215155125, 0.018634416162967682, 0.0010645502479746938, -0.010312993079423904, 0.009164010174572468, -0.019525747746229172, -0.015305846929550171, -7.703409210080281e-05, -0.00727689266204834, -0.020946308970451355, 0.005518600344657898, 0.0013996702618896961, 0.00597819359973073, 0.0171999279409647, -0.013947958126664162, -0.03228294104337692, 0.002271852921694517, 0.015152649022638798, 0.016071835532784462, -0.0060687195509672165, 0.02057027816772461, 0.02058420516550541, -0.013084479607641697, -0.010159796103835106, 0.008746198378503323, 0.005337548442184925, -0.009017775766551495, 0.02639179304242134, 0.02646142803132534, -0.01621110737323761, -0.02817445807158947, 0.021740151569247246, 0.016406085342168808, -0.014943743124604225, -0.03609895706176758, 0.012833792716264725, 0.0339820459485054, -0.007388309109956026, -0.03245006874203682, -0.03175371512770653, -0.01866227015852928, 0.015305846929550171, -0.027185635641217232, 0.0018993038684129715, 0.007604178972542286, -0.014693056233227253, 0.01060546189546585, -0.008105553686618805, -0.011378413997590542, 0.036990292370319366, -0.004453179892152548, -0.0339820459485054, -0.005059007089585066, -0.0012055617989972234, -0.036405354738235474, -0.0024912043008953333, -0.005730988457798958, 0.01447022333741188, -0.025138355791568756, 0.015250138938426971, 0.03348067030310631, 0.011218252591788769, 0.029608944430947304, -0.008829760365188122, -0.013801723718643188, 0.02484588883817196, -0.002068169414997101, 0.0017730897525325418, 0.010375665500760078, -0.02658677101135254, -0.00599908409640193, 0.0035461795050650835, 0.013321240432560444, 0.005811068695038557, -0.006503940559923649, -0.009463442489504814, 0.014289171434938908, 0.01969287358224392, 0.0001010800406220369, -0.0027714865282177925, 0.0212109237909317, -0.023717796429991722, 0.021656589582562447, 0.0006780740804970264, 0.0012795493239536881, -0.0052888039499521255, -0.02807696722447872, 0.003575774608179927, -0.004850101191550493, 0.013989739120006561, 0.003152739955112338, 0.028661904856562614, -0.004160711541771889, 0.0030326189007610083, -0.01238812692463398, -0.005814550444483757, 0.00362800108268857, -0.016907459124922752, -0.004505406133830547, -0.004494960885494947, -0.005696170497685671, -0.014901962131261826, 0.007409200072288513, 0.008648708462715149, -0.030193882063031197, -0.029692508280277252, -0.02473447099328041, -0.0015528680523857474, -0.011601246893405914, 0.0012525656493380666, 0.0007738226559013128, 0.002990837674587965, -0.007659886963665485, -0.01456771232187748, -0.029358258470892906, 0.03556973114609718, -0.020319592207670212, 0.011663919314742088, 0.020096758380532265, -0.021071653813123703, 0.024079900234937668, -0.026934947818517685, 0.021976912394165993, -0.005180869251489639, -0.02807696722447872, -0.017534177750349045, 0.0021882904693484306, 0.023299984633922577, -0.016071835532784462, -0.0032658972777426243, -0.0065352763049304485, -0.004084112588316202, -0.03261719271540642, 0.00989518128335476, 0.005337548442184925, -0.017589885741472244, 0.010229431092739105, -0.007854865863919258, 0.01240901742130518, -0.0029525381978601217, -0.017311343923211098, -0.03267290070652962, -0.011072018183767796, 0.006817299406975508, -0.009456478990614414, -0.0029020525980740786, 0.0023519336245954037, 0.03236650303006172, 0.01973465457558632, -0.021127361804246902, -0.056766726076602936, 5.8550804169499315e-06, -0.0037115635350346565, -0.016754262149333954, 0.006026938557624817, 0.019066154956817627, 0.007722558919340372, -0.0030883271247148514, 0.01636430434882641, 0.0427560955286026, -0.003446949180215597, 0.01064724288880825, -0.01609968952834606, -0.01112772710621357, 0.010598498396575451, -0.013474437408149242, 0.0213641207665205, -0.0019671982154250145, -0.048326924443244934, -0.005093825049698353, 0.002407641848549247, 0.02225545421242714, -0.01611361652612686, 0.03492908552289009, -0.017701303586363792, -0.020054977387189865, -0.003701118053868413, -0.006960052065551281, -0.009909108281135559, 0.005908558145165443, -0.014804472215473652, -0.03855012357234955, 0.009547004476189613, 0.010013561695814133, 0.004115448333323002, 0.011260033585131168, 0.012130475603044033, 0.004710830748081207, -0.0013700752751901746, 0.014142937026917934, -0.02391277439892292, 0.0010941452346742153, 0.008237860165536404, -0.013871358707547188, 0.017520250752568245, 0.017353126779198647, -0.00116900319699198, 0.021879423409700394, -0.007764339912682772, 0.0011341855861246586, 0.0007411811384372413, 0.015584388747811317, -0.01778486557304859, -0.012986990623176098, 0.0073465281166136265, -0.01199816819280386, -0.010897930711507797, -0.0010784772457554936, -0.013328203931450844, 0.006389042362570763, 0.007437054067850113, -0.006054792553186417, -0.020862746983766556, -0.026085397228598595, 0.002708814572542906, 0.009129192680120468, -0.0025973981246352196, -0.03077881969511509, -0.02821623906493187, 0.00856514647603035, 0.0037428992800414562, -0.02742239646613598, 0.0017609036294743419, -0.006556166801601648, 0.015083014033734798, 0.00490580964833498, -0.01789628155529499, 0.023578524589538574, 0.01967894658446312, -0.006486531812697649, -0.026893166825175285, -0.009129192680120468, 0.18561995029449463, -0.009087411686778069, 0.001233415910974145, 0.010842221789062023, 0.018286239355802536, -0.015904711559414864, 0.02572329342365265, 0.005515118595212698, -0.02395455539226532, 0.014985524117946625, 0.002976910676807165, 0.006336815655231476, -0.016531428322196007, -0.00016766884073149413, 0.01199816819280386, 0.00362103758379817, -0.04442734643816948, -0.004049294628202915, -0.005024189595133066, -0.003882169956341386, -0.020082831382751465, -0.0044845156371593475, -0.01459556631743908, -0.012165293097496033, 0.001693009166046977, -0.01449807733297348, -0.01322375051677227, -0.009143119677901268, 0.010737769305706024, 0.026001835241913795, -0.007931465283036232, 0.0036628188099712133, 0.002527762670069933, 0.006357706151902676, -0.02476232498884201, -0.026099324226379395, -0.0023571562487632036, -0.0023902328684926033, 0.029664654284715652, 0.00491973664611578, -0.003941359929740429, -0.00858603697270155, -0.016670700162649155, -0.030110320076346397, 0.02891259267926216, 0.0170188769698143, -0.011336633004248142, -0.00726296566426754, -0.01618325151503086, -0.012966100126504898, -0.04980319365859032, 0.0011341855861246586, 0.0170049499720335, 0.018481219187378883, -0.025834709405899048, 0.008404985070228577, 0.025013012811541557, 0.0172417089343071, 0.00494759064167738, 0.009776800870895386, 0.029413966462016106, -0.0032397841569036245, 0.005403702147305012, 0.00809162575751543, -0.010229431092739105, 0.009115265682339668, -0.03849441558122635, 0.01781271956861019, 0.010772586800158024, -0.0055917175486683846, -0.013418729417026043, -0.00853729248046875, -0.03158658742904663, 0.001820964040234685, -0.023689942434430122, -0.044733740389347076, 0.04205974191427231, 0.024205243214964867, 0.032115817070007324, 0.020848819985985756, -0.021196996793150902, 0.0171581469476223, -0.011434121988713741, -0.0022561848163604736, -0.01885724999010563, -0.046599969267845154, 0.023620305582880974, -0.0024407184682786465, -0.0003975742438342422, -0.005375848151743412, -0.02740846946835518, 0.01877368614077568, -0.010396555997431278, -0.004366135690361261, 0.0017878873040899634, -0.015667950734496117, 0.019094008952379227, 0.006009529810398817, -0.008418912068009377, 0.008725307881832123, -0.024999085813760757, 0.08166832476854324, -0.020291736349463463, -0.022603631019592285, 0.0035078800283372402, -0.015737585723400116, -0.02661462500691414, 0.006622320506721735, 0.0036593370605260134, -0.0342605859041214, 0.0009714129264466465, -0.031140923500061035, -0.014017593115568161, -0.02059813216328621, 0.012039950117468834, 0.04370313882827759, 0.02396848239004612, -0.015389409847557545, 0.0044845156371593475, -0.02065384015440941, -0.02297966182231903, -0.021127361804246902, 0.02038922719657421, 0.003948323428630829, -0.014637348242104053, 0.0010854408610612154, 0.0015354591887444258, -0.02295180782675743, -0.015166576020419598, -0.0028829029761254787, 0.028425144031643867, 0.0012107844231650233, 0.002096023643389344, 0.0014249130617827177, -0.005838923156261444, 0.011343596503138542, 0.005065970588475466, -0.013551036827266216, -0.0032397841569036245, 0.02310500480234623, -0.02818838506937027, -0.012785048224031925, -0.0006763332057744265, 0.013620671816170216, -0.0035183255095034838, -0.05882793292403221, -0.006967015564441681, 0.002038574544712901, -0.008808869868516922, -0.011058091185986996, -0.011392340995371342, -0.001819223165512085, -0.008335350081324577, -0.03075096569955349, 0.02974821627140045, -0.003871724708005786, 0.02229723520576954, -0.014985524117946625, 0.0037881622556596994, -0.002050760667771101, -0.014177754521369934, 0.017325272783637047, 0.018578708171844482, -0.012095658108592033, -0.012645777314901352, -0.0018853767542168498, -0.17770938575267792, 0.01789628155529499, -0.002294484293088317, -0.01629466935992241, 0.01244383491575718, -0.018606562167406082, 0.0017138997791334987, 0.0049928538501262665, -9.79246906354092e-05, -0.002701851073652506, 0.022617558017373085, 0.0030674366280436516, 0.001697361352853477, -0.017729157581925392, -0.00725600216537714, -0.005675280001014471, -0.012283673509955406, 0.011301815509796143, 0.029553236439824104, 0.02378743141889572, 0.013509255833923817, -0.033814918249845505, 0.004244273994117975, -0.024581274017691612, -0.0017669966910034418, 0.004442734643816948, -0.012130475603044033, 0.019414331763982773, -0.013404802419245243, -0.011747481301426888, -0.012868610210716724, 0.005501191597431898, 0.010431373491883278, 0.004564596340060234, -0.006723291706293821, 0.02038922719657421, -0.018383728340268135, -0.008648708462715149, -0.011211289092898369, 0.041446954011917114, 0.008906359784305096, 0.04584790766239166, -0.022018693387508392, -0.020723477005958557, -0.002573025645688176, 0.004279091488569975, 0.020862746983766556, -0.005236577242612839, 0.008001100271940231, -0.025402970612049103, -0.003217152552679181, 0.002111691515892744, 0.02655891701579094, 0.003208448179066181, -0.0048292106948792934, 0.024358440190553665, -0.0013996702618896961, -0.009943925775587559, -0.007527580019086599, -0.005212204996496439, -0.0212248507887125, -0.025918273255228996, -0.014929816126823425, 0.01796591654419899, -0.0029560199473053217, -0.027728790417313576, -0.022422578185796738, 0.015083014033734798, -0.029608944430947304, 0.016071835532784462, -0.05069452524185181, 0.013551036827266216, 0.0038229799829423428, 0.00038799940375611186, 0.02974821627140045, 0.004369617439806461, -0.014129010029137135, 0.013871358707547188, 0.018383728340268135, -0.013906177133321762, 0.01371119823306799, 0.015291919931769371, -0.03311856463551521, -0.011204325594007969, 0.014860181137919426, -0.005922485608607531, -0.011629100888967514, -0.0008591259829699993, -0.010918821208178997, 0.006921752355992794, 0.009170973673462868, -0.028550488874316216, -0.012597032822668552, -0.0024372367188334465, -8.391602023039013e-06, 0.02144768461585045, 2.359713107580319e-05, -0.0038403887301683426, -0.00702620530501008, -0.01326553151011467, 0.019873924553394318, 0.010222467593848705, -0.014888035133481026, 0.009164010174572468, 0.012882537208497524, -0.005556900054216385, 0.0024302732199430466, 0.007708631921559572, 0.03855012357234955, -0.005038116592913866, -0.04587576165795326, 0.0171581469476223, 0.006409932859241962, 0.022408651188015938, 0.010514935478568077, 0.037213124334812164, -0.024372367188334465, -0.009547004476189613, 0.017269562929868698, -0.012026023119688034, 0.05378633365035057, 0.004763056989759207, 0.015654023736715317, 0.03559758514165878, -0.0213362667709589, -0.00620450871065259, -0.07492762058973312, -0.024372367188334465, 0.019066154956817627, 0.014943743124604225, 0.006765073165297508, 0.003795125987380743, -0.01060546189546585, 0.010800440795719624, 0.012332418002188206, 0.031252339482307434, -0.012214038521051407, -0.03579256311058998, -0.010758659802377224, -0.011831044219434261, 0.016601065173745155, -0.004132857080549002, -0.026726042851805687, -0.027157781645655632, 0.02552831545472145, 0.018648343160748482, -0.0063751148991286755, -0.027798427268862724, 0.018467292189598083, -0.008906359784305096, 0.004627268295735121, 0.0045193335972726345, -0.030973797664046288, 0.021935131400823593, 0.005919003859162331, 0.01609968952834606, 0.027673082426190376, -0.011294852010905743, 0.028522634878754616, -0.008286604657769203, 0.028634050861001015, -0.02648928202688694, 0.01444236934185028, -0.009233646094799042, 0.03258933871984482, -0.04178120195865631, 0.015542606823146343, 0.006448232103139162, 0.027492031455039978, -0.007527580019086599, 0.011336633004248142, -0.0035374751314520836, -0.040611330419778824, 0.020723477005958557, 0.0011829303111881018, -0.024302732199430466, -0.02919113263487816, -0.026141105219721794, -0.004978926386684179, -0.0171024389564991, 0.024985158815979958, -0.01067509688436985, -0.0007333471439778805, 0.010368702001869678, -0.03841085359454155, -0.024483785033226013, -0.013913140632212162, -0.021113434806466103, -0.04010995477437973, 0.037185270339250565, 0.01891295798122883, 0.00979072879999876, -0.01960931159555912, 0.01328642200678587, 0.009470405988395214, -0.025904346257448196, -0.01799377053976059, 0.01069598738104105, -0.027157781645655632, 0.003854315960779786, -0.0024877223186194897, -0.013432656414806843, -0.010201577097177505, -0.02483196184039116, 0.014240426011383533, -0.009950889274477959, -0.001984607195481658, -0.0018697087652981281, -0.00364540982991457, -0.02573722042143345, 0.019943561404943466, 0.010563680902123451, -0.006016493309289217, 0.019456112757325172, 0.025180138647556305, -0.032840024679899216, 0.03317427635192871, 0.011510721407830715, -0.0026043616235256195, -0.005842404905706644, -0.006336815655231476, 0.010863112285733223, -0.0073395646177232265, 0.0026496245991438627, -0.023648159578442574, 0.0015528680523857474, -0.048104092478752136, 0.0213641207665205, -0.06957963109016418, 0.0212248507887125, 0.0006167079554870725, -0.020960235968232155, 0.014901962131261826, 0.0054315561428666115, 0.0212109237909317, 0.007736485917121172, -8.503127173753455e-05, -0.005692688748240471, -0.02974821627140045, 0.021628735587000847, 0.004745648242533207, -0.009073484688997269, -0.014066338539123535, -0.00491973664611578, 0.0344555638730526, -0.0010427891975268722, 0.013683343306183815, 0.023648159578442574, -0.011670882813632488, 0.017534177750349045, 0.016559282317757607, -0.0021465092431753874, -0.006886934861540794, 0.027979478240013123, 0.0213501937687397, -0.002111691515892744, -0.02300751581788063, -0.017520250752568245, -0.008335350081324577, -0.018188750371336937, -0.006639729253947735, 0.02474839799106121, 0.009177937172353268, 0.00044610138866119087, -0.004512369632720947, 0.007214220706373453, 0.020305665209889412, 0.042143307626247406, -0.015807220712304115, -0.042282577604055405, -0.02309107780456543, -0.02641964703798294, -0.00702272355556488, -0.0004909291164949536, -0.010501008480787277, 0.026739969849586487, -0.006385560613125563, -0.022826462984085083, 0.025082647800445557, 0.004613341297954321, -0.0299989040941, -0.055234748870134354, 4.700385397882201e-05, 0.007116731256246567, -0.004306945484131575, 0.02477625384926796, -0.008042881265282631, -0.002929906826466322, 0.02916327863931656, -0.014372733421623707, 0.0019724208395928144, -0.015459044836461544, 0.021183069795370102, -0.03529118746519089, -0.02483196184039116, -0.0005640462040901184, 0.003941359929740429, -0.007889683358371258, -0.013063589110970497, -0.017367053776979446, -0.00468645803630352, 0.013975812122225761, 0.004000550135970116, 0.0007464037626050413, -0.014943743124604225, 0.027881989255547523, 0.009533077478408813, 0.029553236439824104, 0.02910757064819336, -0.0013979293871670961, -0.01784057356417179, 0.006333333905786276, 0.03180942311882973, 0.026907093822956085, -0.02487374283373356, 0.024985158815979958, -0.0008508567698299885, 0.018536927178502083, -0.00804984476417303, 0.01194246020168066, -0.009665384888648987, 0.012012096121907234, -0.024233097210526466, 0.015500825829803944, 0.0017095474759116769, 0.003694154554978013, 0.04183690994977951, 0.004536742344498634, 0.025040866807103157, 0.0012516952119767666, 0.016392158344388008, -0.005264431703835726, -0.04760271683335304, -0.0005675280117429793, -0.013418729417026043, -0.04517940804362297, 0.012241892516613007, 0.007541507016867399, -0.017520250752568245, 0.029330404475331306, -0.005191314499825239, -0.00361755583435297, -0.030082466080784798, 0.011072018183767796, -0.0018401137785986066, 0.015222284942865372, -0.031113069504499435, 0.027617374435067177, 0.005567345302551985, -0.012269746512174606, 0.01888510398566723, -0.014156864024698734, 0.019400404766201973, -0.0052957674488425255, 0.016865678131580353, -0.04348030313849449, -0.004547187592834234, -0.00988821778446436, -0.005069452337920666, 0.013780833221971989, -0.0013683344004675746, -0.019038300961256027, -0.0035061391536146402, -0.02641964703798294, -0.003330310108140111, -0.014031520113348961, -0.028035186231136322, 0.07615320384502411, 0.02745025046169758, -0.020068904384970665, -0.008446766063570976, -0.024414150044322014, -0.006563130300492048, 0.022756827995181084, 0.007388309109956026, -0.011455013416707516, -0.011649992316961288, 0.03150302544236183, 0.003412131452932954, -0.015166576020419598, -0.022770754992961884, 0.012966100126504898, 0.010556717403233051, 0.007033169269561768, 0.03356423228979111, -0.010772586800158024, 0.015654023736715317, -8.280076872324571e-05, 0.015793293714523315, -0.003847352461889386, 9.384450095240027e-05, -0.010779550299048424, 0.005797141697257757, 0.015445117838680744, -0.004543705843389034, 0.019302915781736374, -0.03512406349182129, 0.0010802181204780936, -0.00364540982991457, -0.03785376995801926, -0.018383728340268135, 0.01867619715631008, -0.00988821778446436, 0.002976910676807165, -0.003868242958560586, 0.0212248507887125, 0.015152649022638798, -0.00860692746937275, 0.04799267277121544, -0.008008063770830631, -0.011218252591788769, -0.025235846638679504, -0.02292395383119583, -0.021559100598096848, 0.006890416610985994, -0.03069525584578514] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2023_context_information_sharing_for_the_internet_of_things_a_survey.json b/database/embeddings/publications_txt/2023_context_information_sharing_for_the_internet_of_things_a_survey.json new file mode 100644 index 0000000000000000000000000000000000000000..c4d4626e4fd4c49d9fd34aeb7947ee54af22e358 --- /dev/null +++ b/database/embeddings/publications_txt/2023_context_information_sharing_for_the_internet_of_things_a_survey.json @@ -0,0 +1 @@ +[-0.0018170417752116919, 0.02665226347744465, 0.016567246988415718, -0.019766632467508316, -0.01630295068025589, 0.01890418864786625, -0.023258134722709656, 0.0045521678403019905, -0.02634623646736145, -0.03861517831683159, 0.014035560190677643, 0.021588889881968498, -0.008297533728182316, 0.016497695818543434, -0.001627512974664569, 0.02239569090306759, 0.03268936276435852, -0.014139887876808643, -0.0021421965211629868, -6.933448457857594e-05, 0.025692448019981384, -0.00931994616985321, -0.02163062058389187, 0.02119939960539341, -0.004614764358848333, 0.012679299339652061, 0.00897914171218872, -0.02814067341387272, 0.0007381188333965838, -0.014438961632549763, 0.007727209012955427, -0.013138341717422009, -0.021727994084358215, -0.028961384668946266, -0.007838492281734943, -0.0009285170235671103, 0.006628289818763733, -0.0076367915607988834, 0.026026297360658646, -0.019126754254102707, -0.0019717945251613855, 0.034720275551080704, 0.01025889627635479, -0.011552560143172741, -0.0004360030870884657, 0.004301781300455332, 0.03736324608325958, -0.016108205541968346, -0.023425057530403137, 0.010182389058172703, -0.009883316233754158, 0.03380219265818596, -0.022326139733195305, -0.006784781813621521, -0.01681763492524624, -0.01630295068025589, -0.00028690131148323417, 0.02715303748846054, 0.00014334198203869164, -0.028029389679431915, 0.03836479410529137, -0.018653802573680878, -0.038976848125457764, -0.01407033670693636, 0.014285947196185589, -0.010996145196259022, -0.0334683433175087, 0.03619477525353432, -0.007254256401211023, 0.01727667637169361, 0.01902938261628151, 0.022117484360933304, 0.002978557487949729, -0.021811455488204956, 0.013527831993997097, -0.013659981079399586, -0.01882072724401951, 0.0035384497605264187, -0.012317630462348461, 0.011350859887897968, -0.01242891326546669, -0.00528941722586751, -0.0220062006264925, 0.018278222531080246, 0.01630295068025589, 0.021171579137444496, 0.005254641175270081, 0.015064927749335766, -0.002875968348234892, -0.006701319478452206, 0.03600003197789192, 0.01036322396248579, 0.008680068887770176, -0.0008024543058127165, -0.0100224195048213, 0.02754252776503563, -0.005352013744413853, 0.03307885304093361, 0.008680068887770176, -0.039310697466135025, 0.022020110860466957, 0.007118630222976208, -0.021380234509706497, -0.017763538286089897, -0.002693394897505641, -0.020921193063259125, -0.0036479937843978405, 0.01110742799937725, 0.014146843925118446, 0.013736487366259098, -0.025010840967297554, 0.025136033073067665, -0.012672344222664833, 0.007755029946565628, -0.003901858115568757, -0.02103247493505478, -0.004736479837447405, -0.002199576934799552, 6.911713717272505e-05, -0.016915006563067436, 0.02873881906270981, -0.006916929967701435, 0.0006207501282915473, -0.03839261457324028, 0.007024735677987337, 0.02932305447757244, -0.008047147653996944, -0.026624443009495735, -0.017680076882243156, -0.02659662254154682, 0.009834629483520985, 0.017221035435795784, 0.003929678816348314, 0.02506648190319538, 0.010704027488827705, 0.03547143563628197, -0.020017018541693687, 0.01530140358954668, -0.025511613115668297, -0.04192584753036499, -0.0069830045104026794, 0.050550274550914764, -0.022673899307847023, -0.010551013983786106, -0.01121871080249548, -0.0007981072994880378, 0.010015464387834072, -0.0017779187764972448, 0.015120569616556168, 0.013639114797115326, 0.004555645398795605, 0.005981457885354757, -0.005438953638076782, 0.011580380611121655, -0.011510828509926796, 0.005195522215217352, -0.010008509270846844, 0.019001562148332596, 0.03115922212600708, -0.01791655272245407, 0.010551013983786106, 0.024996930733323097, -0.01698455773293972, -0.0349150225520134, -0.01194205041974783, 0.021867096424102783, 0.055947497487068176, 0.0030811463948339224, 0.00027016541571356356, -3.588983599911444e-05, -0.03588874638080597, 0.0036723369266837835, -0.01393818762153387, -0.027445154264569283, -0.0002886401198338717, 0.05235862359404564, 0.031020119786262512, 0.00637442572042346, -0.017387958243489265, -0.004844285547733307, -0.005247686058282852, 0.002851625205948949, 0.014591975137591362, 0.021741904318332672, -0.003971409983932972, 0.021644530817866325, 0.016038652509450912, -0.01634468138217926, 0.00542852096259594, -0.010557969100773335, 0.05814533680677414, 0.015510059893131256, -0.01319398358464241, 0.014591975137591362, -0.6089402437210083, -0.005626743659377098, 0.003995752893388271, -0.019377142190933228, -0.010975279845297337, 0.025525523349642754, 0.013430459424853325, 0.0071916598826646805, -0.031187042593955994, 0.011114383116364479, -0.022103574126958847, 0.008749620988965034, 0.01886245794594288, -0.018333863466978073, -0.023105120286345482, -0.01306878961622715, -0.0017979149706661701, -0.012561061419546604, 0.004180065356194973, 0.005818011239171028, 0.009006963111460209, 0.028293687850236893, 0.0062700980342924595, -0.014063381589949131, -0.00561978854238987, 0.009911136701703072, 0.025845462456345558, -0.024190127849578857, 0.0234528798609972, -0.01754097267985344, -0.032856285572052, 0.02140805497765541, 0.04142507538199425, -0.00023951914045028389, 0.04306649789214134, -0.013333086855709553, -0.01525967288762331, 0.03499848395586014, 0.030741911381483078, 0.041230328381061554, -0.04128596931695938, -0.036111313849687576, -0.0016596807399764657, 0.016789812594652176, -0.010884862393140793, -0.004433929454535246, 0.013708666898310184, -0.0025786343030631542, -0.004806031938642263, -0.025469882413744926, -0.009173886850476265, -0.012011602520942688, -0.013799084350466728, -0.0027038275729864836, 0.03146525099873543, -0.005498072598129511, 0.020823819562792778, -0.013666936196386814, 0.01882072724401951, 0.015231852419674397, -0.008262758143246174, 0.008019326254725456, -0.01754097267985344, -0.023689355701208115, 0.017735717818140984, 0.010502327233552933, 0.013207893818616867, 0.009417318738996983, 0.013653025031089783, -0.028279775753617287, -0.0014223350444808602, 0.02094901353120804, -0.009681615978479385, -0.022242676466703415, 0.019418872892856598, 0.023230312392115593, 0.023355506360530853, 0.013145296834409237, 0.0006237930501811206, 0.005383312236517668, -0.002955953124910593, -0.006016233935952187, 0.019015472382307053, -0.019098933786153793, 0.02545597217977047, -0.004687793552875519, -0.021505428478121758, 0.002924654632806778, 0.012178526259958744, 0.02060125395655632, 0.0076854778453707695, 0.02111593820154667, -0.02297992631793022, 0.024273591116070747, -0.008610517717897892, 0.023605892434716225, -0.00897914171218872, 0.015607432462275028, -0.009166931733489037, -0.0016449008835479617, -0.012971417047083378, 0.001511013600975275, 0.003100273199379444, -0.01578826643526554, 0.0252055861055851, 0.023216402158141136, -0.012345450930297375, 0.0010563185205683112, 0.005411132704466581, -0.014355499297380447, -0.009292125701904297, 0.005595445167273283, -0.028850100934505463, 0.003041154006496072, 0.019182397052645683, -0.03524887189269066, 0.02805721014738083, 0.005404177587479353, 0.0010180650278925896, 0.023605892434716225, -0.011086562648415565, 0.012588882818818092, -0.004566078074276447, 0.0157048050314188, -0.0010484938975423574, 0.026360146701335907, 0.016915006563067436, -0.02647142857313156, -0.024162307381629944, 0.006596991792321205, 0.016650710254907608, -0.010641430504620075, 0.028279775753617287, -0.01477281004190445, 0.03132614865899086, -0.008061057887971401, 0.023146850988268852, -0.015106658451259136, 0.022757360711693764, -0.018932009115815163, -0.011928140185773373, -0.029378695413470268, -0.0034167340490967035, -0.020795999094843864, -0.03282846510410309, -0.040924299508333206, -0.011538649909198284, 0.003710590535774827, -0.004642585292458534, -0.003209817223250866, -0.009139111265540123, 0.015037107281386852, -0.003606262616813183, 0.007028213236480951, -0.008005416020751, -0.023146850988268852, 0.0016136026242747903, -0.016525516286492348, -0.04253790155053139, 0.0038636045064777136, -0.003727978328242898, 0.04045134782791138, -0.009132156148552895, -0.028293687850236893, -0.01259583793580532, 0.0070490785874426365, -0.022451331838965416, 0.0037905750796198845, 0.011872498318552971, -0.036027852445840836, -0.01259583793580532, -0.01758270338177681, -0.015315314754843712, 0.004468705505132675, -0.03157653287053108, 0.024440515786409378, -0.015398776158690453, 0.0061762030236423016, -0.0178748220205307, 0.0003166781971231103, -0.018932009115815163, 0.010773579590022564, -0.00778980553150177, -0.017763538286089897, 0.023146850988268852, 0.013924277387559414, 0.023299865424633026, 0.004242661874741316, 0.001987443771213293, -0.0030307213310152292, -0.008506190031766891, -0.008986096829175949, -0.015412687323987484, 0.02382845990359783, -0.009556422010064125, 0.015009285882115364, -0.0030498479027301073, -0.004399153869599104, -0.01215070579200983, 0.02890574373304844, 0.017429690808057785, 0.039644546806812286, 0.013889501802623272, -0.010244985111057758, -0.005543281324207783, -0.027681630104780197, 0.015190120786428452, -0.006464843172580004, 0.03012985549867153, 0.01754097267985344, 0.03419168293476105, -0.03363526985049248, -0.012957506813108921, 0.0017101058037951589, 0.011427367106080055, 0.01493973471224308, -0.019641438499093056, 0.008054102770984173, -0.03680683299899101, 0.0008289709221571684, -0.01274885144084692, 0.0010015463922172785, 0.01715148240327835, -0.010585789568722248, -0.02128286100924015, -0.0022934717126190662, 0.0411190465092659, 0.020698625594377518, 0.014717168174684048, -0.018751174211502075, -0.025720268487930298, 0.018278222531080246, 0.027083484455943108, -0.013340041972696781, -0.009799853898584843, -0.021171579137444496, 0.0479351244866848, -0.002625581808388233, 0.02597065642476082, -0.006033621728420258, 0.0016092555597424507, 0.03613913431763649, 0.04125814884901047, -0.03410822153091431, 0.0015588304959237576, -0.020058749243617058, 0.005706727970391512, 0.010161523707211018, 0.009681615978479385, 0.00024690901045687497, -0.009744212031364441, 0.02868317812681198, -0.02452397719025612, -0.00101371796336025, 0.03366309031844139, -0.014411140233278275, -0.036111313849687576, -0.0020465627312660217, 0.014098157174885273, 0.004249616991728544, 0.024718722328543663, -0.002502127317711711, 0.008506190031766891, 0.024190127849578857, 0.022061841562390327, -0.014647617004811764, -0.03355180472135544, -0.021783635020256042, -0.006308351643383503, -0.03775273635983467, 0.009479915723204613, -0.021950559690594673, -0.008088878355920315, -0.0057936678640544415, 0.023230312392115593, 0.01762443594634533, 0.024621350690722466, 0.006499619223177433, 0.00358191947452724, 0.014285947196185589, -0.02107420563697815, -0.005964070092886686, 0.009466004557907581, 0.01334699708968401, 0.004746912978589535, -0.0033958684653043747, 0.004983389284461737, -0.0006359646213240921, -0.04248226061463356, -0.0007202962297014892, 0.021338503807783127, 0.0008946104790084064, -0.010370179079473019, -0.029211770743131638, -0.024621350690722466, -0.015343135222792625, 0.027820734307169914, 0.0060510095208883286, -0.023786727339029312, 0.017596615478396416, 0.00074898632010445, 0.0034636815544217825, 0.007462912239134312, 0.0062874858267605305, 0.07021953165531158, 0.0005177264683879912, 0.024593528360128403, -0.014884092845022678, 0.01160124596208334, -0.007024735677987337, 0.009020873345434666, -0.003665381809696555, -0.02316076122224331, 0.0002542989095672965, 0.011253487318754196, -0.004746912978589535, 0.02163062058389187, -0.014522423036396503, 0.005581534933298826, -0.01719321310520172, -0.013138341717422009, -0.039644546806812286, -0.022451331838965416, 0.013875591568648815, 0.012303720228374004, 0.033301420509815216, -0.009716391563415527, 0.021894918754696846, 0.0045695556327700615, -0.016358591616153717, -0.03903248906135559, 0.02460744045674801, 0.007622881326824427, -0.01669244095683098, -0.014098157174885273, 0.014244216494262218, 0.021088115870952606, -0.017179302871227264, 0.0254142414778471, -0.000508597819134593, -0.00354366609826684, -0.00661785714328289, 0.01340959407389164, -0.022103574126958847, 0.013277445919811726, -0.035137586295604706, 0.003171563846990466, 0.025817641988396645, 0.03090883605182171, -0.02072644792497158, 0.00656569330021739, 0.02213139459490776, 0.002201315714046359, -0.018166938796639442, 0.010251940228044987, 0.006927363108843565, 0.033996935933828354, -0.00561978854238987, -0.02225658670067787, 0.04017313942313194, 0.04362291097640991, 0.02272954024374485, 0.024273591116070747, 0.023258134722709656, 0.01727667637169361, 0.004649540409445763, 0.013437414541840553, 0.004190498031675816, 0.0006989959510974586, -0.05614224076271057, -0.0065726484172046185, 0.028029389679431915, 0.015245762653648853, -0.03018549643456936, 0.011253487318754196, 0.013750397600233555, -0.03355180472135544, -0.023466790094971657, 0.027765093371272087, 0.010439730249345303, -0.003091579070314765, -0.010641430504620075, -0.01818085089325905, -0.015996921807527542, -0.019140664488077164, -0.009166931733489037, 7.014954462647438e-05, 0.0014597191475331783, -0.01219939161092043, 0.0031976457685232162, -0.03218859061598778, -0.0120881088078022, -0.02745906449854374, 0.017568793147802353, -0.0016118638450279832, -0.0016240354161709547, -0.05461210012435913, 0.012686255387961864, 0.01890418864786625, -0.010126747190952301, 0.0077619850635528564, -0.009737256914377213, 0.0005790190189145505, 0.007949775084853172, -0.03524887189269066, -0.01530140358954668, 0.0012927947100251913, -0.042287517338991165, 0.0254142414778471, -0.008603562600910664, -0.01940496265888214, -0.017888732254505157, -0.011364770121872425, 0.033523984253406525, -0.02473263256251812, -0.009396453388035297, 0.007080377079546452, -0.007755029946565628, 0.024843916296958923, 0.03772491589188576, 0.01749924197793007, 0.011483008041977882, 0.005578057374805212, 0.015468328259885311, -0.009827674366533756, -0.012874044477939606, -0.017248855903744698, -0.025275137275457382, 0.01493973471224308, 0.02153324894607067, -0.00373493367806077, 0.0018257356714457273, -0.021686263382434845, 0.00424613943323493, 0.006903019733726978, -0.014591975137591362, 0.002571679186075926, -0.025915013626217842, 0.0025334255769848824, 0.023633714765310287, -0.0021613233257085085, -0.004270482808351517, 0.009299080818891525, -0.020336957648396492, -0.018292132765054703, -0.018932009115815163, 0.016414232552051544, 0.018932009115815163, 0.023898011073470116, 0.032967571169137955, -0.009452094323933125, -0.024231860414147377, -0.02553943358361721, 0.004273960366845131, -0.0050459858030080795, 0.01121871080249548, -0.002884662477299571, -0.02235396020114422, -0.01987791433930397, 0.00987636111676693, -0.014911913312971592, 0.001321484916843474, -0.019085023552179337, -0.027514707297086716, -0.01894591934978962, -0.010975279845297337, -0.014285947196185589, 0.010029374621808529, 0.018653802573680878, -0.025734178721904755, -0.00975116714835167, 0.020921193063259125, 0.02446833625435829, 0.03268936276435852, -0.00670479703694582, 0.023898011073470116, -0.004844285547733307, -0.00476777832955122, -0.020323047414422035, -0.03235551342368126, -0.03817004710435867, -0.01740187034010887, 0.04281610995531082, 0.027806824073195457, 0.039783649146556854, 0.014953644946217537, -0.0060510095208883286, 0.027083484455943108, 0.01749924197793007, 0.014619795605540276, 0.0002697307209018618, 0.008200161159038544, -0.016928916797041893, 0.011371725238859653, 0.01155951526015997, 0.010766624473035336, 0.018486877903342247, -0.016024742275476456, -0.008401861414313316, -0.004757345654070377, -0.0018083477625623345, -0.003898380324244499, -0.0024256203323602676, -0.01872335374355316, 0.012095063924789429, -0.00048338525812141597, -0.0030081169679760933, 0.021004654467105865, -0.040506988763809204, -0.00963988434523344, 0.028571894392371178, 0.0027959838043898344, -0.012477599084377289, -0.0016683746362105012, 0.016233397647738457, -0.02588719315826893, 0.030547166243195534, -0.0066039469093084335, -0.00034884593333117664, -0.009208663366734982, -0.003891425207257271, -0.03115922212600708, -0.012867089360952377, 0.031771279871463776, -0.009417318738996983, 0.015329224988818169, 0.02060125395655632, 0.00840881746262312, 0.01630295068025589, 0.020406508818268776, 0.024871736764907837, -0.0008572263759560883, 0.001005893456749618, 0.005039030686020851, -0.013819949701428413, -0.0243848729878664, -0.02051779255270958, -0.020100479945540428, 0.00806801300495863, -0.010126747190952301, -0.009132156148552895, 0.022673899307847023, -0.024718722328543663, -0.02898920513689518, 0.00911129079759121, 0.00949382595717907, 0.030324600636959076, -0.0030359376687556505, 0.02473263256251812, 0.028710998594760895, -0.021588889881968498, -0.017721807584166527, 0.019098933786153793, 0.007741119246929884, -0.005738026462495327, 0.015510059893131256, 0.002790767466649413, -0.008221027441322803, -0.01791655272245407, 0.012143750675022602, 0.009250394068658352, -0.03410822153091431, -0.01660897769033909, 0.02239569090306759, 0.03588874638080597, -0.009159976616501808, -0.023647624999284744, -0.029823826625943184, -0.003943589050322771, 0.006590036675333977, -0.021046385169029236, -0.012435868382453918, 0.0067639159969985485, 0.007198614999651909, 0.00048773226444609463, -0.00018279091455042362, -0.00420440873131156, 0.044207148253917694, 0.001169340219348669, -0.010717937722802162, 0.007170794531702995, -0.015551790595054626, -0.01128130778670311, 0.009632929228246212, 0.010975279845297337, 0.005602400284260511, -0.021992290392518044, 0.018208671361207962, 0.02277127094566822, 0.020281314849853516, -0.0005955375963822007, -0.0058632199652493, 0.01013370230793953, 0.030574986711144447, 0.01110742799937725, -0.010599699802696705, 0.01791655272245407, -0.01863989233970642, 0.022952105849981308, -0.011629067361354828, 0.017777448520064354, 0.00401314115151763, -0.006402246654033661, -0.016581157222390175, 0.009653794579207897, 0.004152244422584772, 0.007755029946565628, -0.001321484916843474, 0.003592352382838726, -0.03263372182846069, 0.005372879561036825, 0.012157660908997059, -0.02770945243537426, -0.008805262856185436, -0.021686263382434845, -0.003971409983932972, 0.010140657424926758, 0.02405102550983429, 0.021853186190128326, 0.027208678424358368, 0.027055663987994194, 0.02805721014738083, -0.014689347706735134, 5.406568379839882e-05, -0.010557969100773335, -0.01574653573334217, -0.02405102550983429, -0.0015153606655076146, 0.005988413002341986, -0.006207501515746117, 0.0343029648065567, 0.009083469398319721, -0.03282846510410309, -0.0178748220205307, 0.019349321722984314, 0.00872875563800335, 0.0005259857862256467, -0.010557969100773335, 0.0002024610439548269, 0.0024621349293738604, -0.015162300318479538, -0.012115930207073689, -0.02281300164759159, 0.04459663853049278, -0.022159215062856674, -0.001978749642148614, 0.011914229951798916, -0.004465227946639061, 0.03758581355214119, -0.009417318738996983, 0.013388728722929955, 0.013138341717422009, -0.04200930893421173, -0.006708274595439434, 0.02264607697725296, 0.05803405120968819, -0.02055952325463295, -0.01345132477581501, 0.0032254664693027735, -0.023675445467233658, -0.022075753659009933, 0.014647617004811764, -0.0032063396647572517, -0.01281144842505455, 0.0010293672094121575, -0.007268167100846767, 0.008506190031766891, -0.004249616991728544, -0.012227213010191917, -0.025803731754422188, -0.019864004105329514, 0.00722643593326211, -0.014160754159092903, -0.004757345654070377, 0.004753868095576763, 0.02665226347744465, 0.011719484813511372, -0.03012985549867153, -0.039477623999118805, -0.037780556827783585, -0.01582999713718891, -0.02017003297805786, -0.013061834499239922, -0.0009911137167364359, -0.0065552606247365475, -0.007588105276226997, -0.005998845677822828, 0.015996921807527542, -0.01432767789810896, 0.010272806510329247, -0.0077619850635528564, -0.003967932425439358, -0.0020204808097332716, 0.022367870435118675, 0.017721807584166527, 0.004785166122019291, -0.05655955150723457, -0.023091210052371025, 0.015343135222792625, -0.019098933786153793, 0.006068397779017687, 0.015176210552453995, -0.021867096424102783, 0.000690736691467464, -0.01221330277621746, -0.014842362143099308, -0.00998068880289793, -0.02439878322184086, 0.005640653893351555, -0.032411154359579086, -0.013868636451661587, -0.0027038275729864836, 0.0032237276900559664, 0.029601261019706726, -0.015718715265393257, 0.012095063924789429, -0.005922338925302029, 0.016038652509450912, -0.008207116276025772, -0.008700935170054436, -5.7271590776508674e-05, 0.004089647904038429, 0.02694438211619854, 0.0026290593668818474, 0.007671567611396313, 0.024357052519917488, 0.011914229951798916, 0.014731079339981079, -0.019015472382307053, 0.028933564200997353, -0.016122115775942802, -0.0024603961501270533, 0.013013148680329323, -0.019251948222517967, -0.006113606505095959, -0.02979600615799427, 0.014167709276080132, -0.01477281004190445, -0.0039053356740623713, -0.02481609582901001, -0.021825365722179413, -0.01911284402012825, -0.0027246931567788124, 0.02642969787120819, -0.02272954024374485, -0.01445287186652422, -0.009778988547623158, 0.008255803026258945, -0.013966009020805359, -0.015037107281386852, -0.007014302536845207, -0.01733231730759144, -0.027445154264569283, 0.007028213236480951, -0.01291577611118555, 0.015690894797444344, -0.022061841562390327, 0.0004872975405305624, -0.028877923265099525, -0.005870175082236528, 0.16336335241794586, -0.02597065642476082, 0.006447455380111933, 0.03307885304093361, 0.0009493825491517782, -0.011357815004885197, 0.014689347706735134, 0.0022291364148259163, 0.0016961954534053802, 0.002079600002616644, -0.0036688593681901693, -0.010884862393140793, 0.0031315714586526155, -0.008325355127453804, 0.014758899807929993, 0.003995752893388271, -0.04392893984913826, -0.01498146541416645, -0.03396911546587944, -0.007323808502405882, -0.013221804052591324, -0.010780534707009792, -0.013395683839917183, -0.025984566658735275, 0.011955960653722286, -0.005602400284260511, 0.005449386313557625, -0.02000310830771923, 0.026972202584147453, 0.027514707297086716, -0.00610665138810873, 0.01557961106300354, 0.0071916598826646805, 0.002143935300409794, -0.028571894392371178, -0.015037107281386852, 0.017095841467380524, 0.011142204515635967, 0.030964476987719536, 0.0026342757046222687, 0.007184704765677452, -0.031687814742326736, 0.0059362491592764854, -0.05196913331747055, 0.008784396573901176, 0.01596910133957863, 0.00046599729103036225, -0.0016901096096262336, 0.0001156299258582294, -0.002858580555766821, -0.025942834094166756, 0.00219262158498168, 0.017680076882243156, 0.01940496265888214, 0.003870559623464942, -0.0048721060156822205, 0.008311444893479347, 0.025553343817591667, -0.006030144169926643, 0.0010632737539708614, 0.0071916598826646805, 0.029295234009623528, -0.008972186595201492, 0.0020917714573442936, -0.0039992304518818855, 0.018403416499495506, -0.04103558510541916, -0.009758122265338898, 0.02272954024374485, -0.015760445967316628, -0.004614764358848333, -0.0028411925304681063, -0.019530154764652252, 0.0023247702047228813, -0.028293687850236893, -0.021296773105859756, 0.010251940228044987, 0.016887186095118523, 0.029183950275182724, 0.040284425020217896, -0.01210897509008646, 0.013548697344958782, -0.016024742275476456, 0.01596910133957863, -0.01498146541416645, -0.04342816770076752, 0.04136943072080612, -0.011030920781195164, -0.01291577611118555, -0.003042892785742879, -0.024078845977783203, 0.006694364361464977, -0.007247301284223795, 0.005129448138177395, -0.00043969802209176123, -0.011531694792211056, 0.004496526438742876, 0.010217164643108845, -0.0010258895345032215, 0.02400929294526577, -0.03085319511592388, 0.07305724918842316, 0.02136632427573204, 0.0014040777459740639, 0.012345450930297375, -0.013917322270572186, -0.006169247906655073, 0.0018605116056278348, 0.015106658451259136, -0.0138964569196105, -0.008763531222939491, -0.024231860414147377, -0.010989190079271793, -0.012415003031492233, -0.018111297860741615, 0.014244216494262218, -0.004830374848097563, -0.004948613233864307, 0.009194753132760525, -0.015357045456767082, -0.01204637810587883, -0.024162307381629944, 0.002051779069006443, 0.01783309131860733, 0.0008198422729037702, 0.006485708523541689, -0.012449778616428375, 0.0002723389188759029, -0.02923959121108055, -0.024037115275859833, 0.045820750296115875, 0.011615156196057796, -0.004086170345544815, 0.012874044477939606, 0.001193683361634612, 0.004416541662067175, 0.010509282350540161, -0.0014858010690659285, 0.020448239520192146, 0.010064151138067245, -0.02243742160499096, -0.031103581190109253, -0.006464843172580004, 0.0035036737099289894, -0.015621342696249485, -0.04281610995531082, 0.0038879476487636566, -0.016122115775942802, -0.02745906449854374, -0.019655348733067513, 0.0037940526381134987, -0.021867096424102783, 0.011156114749610424, -0.01530140358954668, 0.04551472142338753, -0.025901103392243385, 0.0028690132312476635, -0.035221051424741745, -0.017596615478396416, -0.010794444940984249, -0.045180872082710266, -0.002029174705967307, 0.010112836956977844, 0.00834622047841549, -0.015676984563469887, -0.00038166571175679564, -0.17805269360542297, 0.024885646998882294, 0.014258126728236675, -0.01783309131860733, -0.01727667637169361, 0.007838492281734943, 0.015051017515361309, 0.006520484574139118, -0.020921193063259125, 0.002458657370880246, 0.03477591648697853, 0.014925824478268623, -0.010203254409134388, -0.006753483321517706, -0.02008656971156597, 0.004190498031675816, -0.008471413515508175, 0.00450000399723649, 0.008589651435613632, 0.018653802573680878, 0.02882228046655655, -0.027779003605246544, 0.01434158906340599, -0.003068974707275629, 0.007094287313520908, 0.016803722828626633, -0.00840881746262312, 0.024788275361061096, -0.016539426520466805, -0.013736487366259098, -0.004513914231210947, -0.005588490050286055, 0.032411154359579086, -0.0006120561738498509, 0.02464917115867138, 0.011538649909198284, -0.035137586295604706, -0.008589651435613632, -0.018709443509578705, 0.05886867269873619, 0.0024273591116070747, 0.031854741275310516, -0.0032637198455631733, -0.008777441456913948, 0.0036445162259042263, 0.0020448239520192146, -0.00605448754504323, 0.007588105276226997, 0.015593521296977997, -0.03744670748710632, -0.00893741101026535, -0.00975116714835167, 0.033774372190237045, -0.0023195536341518164, -0.011044831946492195, 0.04072955623269081, -0.0017179303104057908, -0.011427367106080055, 0.023230312392115593, 0.007803716231137514, -0.014091202057898045, -0.019043292850255966, 0.003874037181958556, -0.0014562415890395641, -0.0003618868940975517, -0.022632166743278503, -0.01975272223353386, 0.01160124596208334, -0.034163862466812134, 0.011128293350338936, -0.004701704252511263, 0.006656110752373934, -0.0073655396699905396, -0.009146066382527351, 0.014119022525846958, 0.02132459357380867, -0.010502327233552933, 0.02157497964799404, 0.025386421009898186, -3.4531400160631165e-05, 0.0033176227007061243, 0.03107576072216034, -0.025873282924294472, 0.004510436672717333, 0.005494595039635897, -0.02890574373304844, 0.014369409531354904, -0.001437984174117446, 0.013562608510255814, -0.0009902442106977105, 0.004159200005233288, -0.021338503807783127, -0.0060440544039011, -0.025915013626217842, 0.00970248132944107, 0.007462912239134312, -0.009890271350741386, 0.01685936562716961, 0.0028238045051693916, -0.0007033429574221373, -0.0017683554906398058, 0.002011786913499236, -0.012171571142971516, 0.006377903278917074, 0.012421958148479462, 0.0030081169679760933, -0.01733231730759144, -0.004395675845444202, 0.01432767789810896, -0.016108205541968346, -0.02119939960539341, 0.018111297860741615, -0.0022552183363586664, 0.019307589158415794, -0.012171571142971516, 0.025998476892709732, -0.032077305018901825, -0.022465243935585022, 0.03663990646600723, -0.023995382711291313, 0.042037129402160645, 0.014856272377073765, 0.010335402563214302, 0.021686263382434845, -0.031047940254211426, -0.04170328006148338, -0.05611442029476166, -0.0176661666482687, 0.007059511262923479, 0.037557993084192276, -0.023049479350447655, -0.01232458557933569, -0.00401314115151763, 0.014272036962211132, 0.0003151567652821541, 0.008151475340127945, -0.018486877903342247, -0.016122115775942802, -0.0025942835491150618, -0.01902938261628151, 0.010439730249345303, -0.027306050062179565, -0.019516244530677795, -0.031687814742326736, 0.00020778611360583454, 0.02336941659450531, 0.003654948901385069, -0.029183950275182724, 0.009987643919885159, -0.0064300671219825745, -0.035443615168333054, 0.006527439691126347, -0.039950575679540634, 0.019613618031144142, 0.00865920353680849, 0.0009406885947100818, 0.007379449903964996, -0.015899550169706345, 0.004534779582172632, -0.012415003031492233, 0.005153791047632694, 0.0026760068722069263, 0.004322646651417017, -0.012484554201364517, 0.034831561148166656, -0.006016233935952187, 0.014438961632549763, 0.01991964504122734, 0.035137586295604706, -0.023105120286345482, 0.007622881326824427, -0.01847296766936779, -0.018500788137316704, 0.04184238612651825, 0.014285947196185589, -0.029128309339284897, -0.007198614999651909, -0.018250402063131332, 0.011642977595329285, -0.02516385354101658, 0.013931232504546642, -0.005358968861401081, -0.009187798015773296, -0.000944166153203696, -0.03953326493501663, -0.00013388728257268667, -0.02630450390279293, -0.02316076122224331, -0.010738803073763847, 0.03992275521159172, 0.027737272903323174, 0.003041154006496072, -0.012143750675022602, -0.013187028467655182, 0.022451331838965416, -0.0254142414778471, -0.014223350211977959, 0.0020935102365911007, -0.01210897509008646, -0.017721807584166527, -0.002764685545116663, -0.02297992631793022, 0.00014432005991693586, -0.024454426020383835, 0.013340041972696781, -0.018709443509578705, 0.008005416020751, 0.006530917249619961, -0.01727667637169361, -0.023105120286345482, 0.016108205541968346, 0.013207893818616867, -0.01062056515365839, 0.01509274821728468, 0.016247309744358063, -0.025762001052498817, 0.018959831446409225, 0.021561069414019585, 0.02932305447757244, 0.003164608497172594, -0.013020103797316551, -0.005807578098028898, -0.011517783626914024, -0.005550236441195011, -0.0014345066156238317, 0.013527831993997097, -0.04593203216791153, 0.009820719249546528, -0.076451376080513, 0.016998467966914177, 0.011316083371639252, -0.02809894271194935, -0.01958579756319523, -0.007532463874667883, 0.007727209012955427, 0.0008989574853330851, -0.0013866897206753492, 0.016539426520466805, -0.01449460256844759, 0.010057195089757442, 0.0033680477645248175, 0.023522431030869484, -0.009139111265540123, 0.0018379072425886989, 0.037557993084192276, 0.0020152644719928503, 0.007657657377421856, 0.02341114729642868, -0.016761992126703262, 0.02281300164759159, 0.01715148240327835, 0.01395905390381813, -0.014146843925118446, 0.01634468138217926, 0.008394906297326088, 0.012568016536533833, -0.029935110360383987, -0.0017109751934185624, 0.0039783651009202, -0.016066474840044975, -0.00838795118033886, 0.027306050062179565, 0.009577288292348385, -0.0007168186130002141, 0.0031576533801853657, 0.006777826230973005, 0.022145304828882217, 0.032884109765291214, -0.03460899367928505, -0.0314096100628376, 0.016650710254907608, 0.003018549643456936, -0.015398776158690453, 0.0018605116056278348, -0.009076514281332493, 0.01477281004190445, 0.01762443594634533, -0.009660749696195126, 0.02409275621175766, -0.0014962338609620929, -0.0071916598826646805, -0.01927976869046688, 0.036584265530109406, -0.008464458398520947, 0.024412695318460464, 0.0254142414778471, -0.010286716744303703, -0.013910367153584957, 0.031187042593955994, 0.011851632967591286, 0.022034021094441414, -0.0198361836373806, 0.006833468098193407, 0.002023958368226886, -0.023508520796895027, -0.010015464387834072, -0.010912682861089706, -0.011190890334546566, -0.016247309744358063, -0.014299857430160046, 0.014146843925118446, 0.04253790155053139, 0.01774962805211544, -0.002359546022489667, -0.011462142691016197, 0.011844677850604057, -0.0002414752816548571, 0.0140007846057415, 0.037057217210531235, 0.006958661135286093, -0.013395683839917183, -0.0038114406634122133, 0.03647298365831375, 0.019182397052645683, -0.006388335954397917, 0.012136795558035374, 0.0008872206090018153, 0.004826897289603949, -0.028571894392371178, 0.00834622047841549, 0.011121338233351707, -0.012477599084377289, -0.017304496839642525, 0.005950159393250942, -0.013103566132485867, 0.01036322396248579, 0.019460603594779968, 0.019085023552179337, 0.005091194529086351, 0.0016840238822624087, 0.016525516286492348, -0.02163062058389187, -0.05355491489171982, 0.006517007015645504, -0.02533077821135521, -0.014466782100498676, 0.0030481091234833, 0.01762443594634533, -0.02843279018998146, 0.022757360711693764, -0.004326124209910631, 0.004148766864091158, -0.03410822153091431, 0.01361824944615364, -0.013103566132485867, 0.020100479945540428, -0.030714090913534164, 0.032021664083004, -0.0015231851721182466, -0.02865535579621792, 0.02638796716928482, -0.018528608605265617, -0.004082692787051201, -0.002227397635579109, 0.02469090186059475, -0.04314995929598808, 0.006767393555492163, -0.013214848935604095, 0.0053659239783883095, 0.01754097267985344, -0.002048301510512829, -0.009765077382326126, -0.01774962805211544, -0.00044382765190675855, -0.014925824478268623, -0.00897914171218872, 0.00321329478174448, 0.08557657897472382, 0.017360137775540352, -0.012185481376945972, 0.006816079840064049, -0.015357045456767082, -0.003874037181958556, 0.016525516286492348, 0.012248078361153603, -0.007977595552802086, -0.012734941206872463, -0.0027977225836366415, -0.0037418887950479984, -0.005167701281607151, -0.020239584147930145, -0.00915302149951458, 0.0005516330129466951, -0.011837722733616829, 0.0299629308283329, -0.0048373304307460785, 0.007205570116639137, 0.027514707297086716, 0.018125208094716072, -0.0064126793295145035, -0.006075352896004915, -0.011086562648415565, -0.0001334525877609849, 0.024913467466831207, -0.014244216494262218, -0.0007172533078119159, -0.05736635625362396, 0.006075352896004915, 0.018069567158818245, -0.03613913431763649, -0.014397229999303818, 0.018834637477993965, 0.009890271350741386, 0.02043432928621769, 0.001274537411518395, 0.02157497964799404, -0.013430459424853325, 0.01166384294629097, 0.02519167587161064, -0.016873275861144066, -0.030574986711144447, -0.021616710349917412, -0.006134471856057644, -0.01843123696744442, 0.020253494381904602, -0.04885321110486984] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2023_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json b/database/embeddings/publications_txt/2023_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json new file mode 100644 index 0000000000000000000000000000000000000000..8f8e5f4078814e4890aeb28477b9e108c4ec266c --- /dev/null +++ b/database/embeddings/publications_txt/2023_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.json @@ -0,0 +1 @@ +[-0.01782042160630226, 0.0004972981405444443, 0.0180261991918087, -0.011194352991878986, 0.02122262679040432, 0.0031295486260205507, 0.004393371753394604, 0.018657254055142403, -0.015062988735735416, -0.02414468117058277, -0.013910628855228424, 0.021304938942193985, -0.01102972961962223, 0.032238636165857315, -0.0025087834801524878, 0.0038652068469673395, 0.044914595782756805, -0.018067356199026108, -0.016832685098052025, -0.006982751656323671, -0.020426949486136436, 0.02831512689590454, -0.022594483569264412, -0.02256704680621624, -0.023129507899284363, 0.032540448009967804, 0.017971325665712357, -0.037753503769636154, 0.014143845066428185, -0.004540846683084965, -0.00187086989171803, -0.0024436202365905046, 0.014253593981266022, -0.01057701651006937, -0.008183126337826252, -0.016626905649900436, 0.004554565064609051, -0.01570776104927063, 0.02720392309129238, -0.018588662147521973, 0.023691968992352486, 0.01362253911793232, -0.009705888107419014, -0.01594097726047039, 0.0036079837009310722, 0.013478494249284267, 0.027999600395560265, -0.024734580889344215, -0.028534624725580215, 0.02784869633615017, 0.005998444277793169, 0.039701540023088455, -0.04796011745929718, 0.00982249528169632, -0.025804629549384117, -0.007497197948396206, 0.016064444556832314, 0.0009757332154549658, 0.0021641042549163103, -0.02340387925505638, 0.023787999525666237, -0.024638550356030464, -0.057892363518476486, -0.012909173965454102, -0.0029855037573724985, 0.004921536892652512, -0.022224081680178642, 0.024981515482068062, -0.016201630234718323, 0.015858666971325874, 0.01675037294626236, 0.012868017889559269, 0.02488548494875431, -0.008663276210427284, 0.012147793546319008, -0.021922273561358452, -0.026860957965254784, 0.01849263161420822, 0.016572032123804092, 0.02963211014866829, -0.0014473090413957834, -0.005453131161630154, 0.006046459544450045, -0.0013126955600455403, 0.02247101627290249, 0.01136583462357521, -0.0051993378438055515, 0.008553528226912022, -0.01229183841496706, -0.02757432498037815, 0.00703762611374259, 0.0014901795657351613, 0.019192278385162354, 0.009472671896219254, -0.02808191068470478, 0.027299953624606133, -0.03056497313082218, 0.022484734654426575, 0.01927459053695202, -0.022800263017416, 0.030318038538098335, 0.00502785574644804, -0.024967797100543976, -0.01528248656541109, -0.0013684272998943925, -0.0165171567350626, 0.010659328661859035, 0.004352216143161058, 0.01681896671652794, -0.003748598974198103, -0.022992322221398354, 0.018725847825407982, -0.023527346551418304, -0.03265019506216049, 0.011036588810384274, 0.003731450764462352, -0.010899403132498264, -0.007126796990633011, -0.009705888107419014, -0.00827229768037796, 0.02875412069261074, 0.013478494249284267, -0.005398257169872522, 0.00458200229331851, 0.017312834039330482, 0.004293912090361118, -0.02247101627290249, -0.015611731447279453, -0.004780921619385481, -0.020605290308594704, 0.0030746744014322758, 0.01853378675878048, 0.003954377491027117, 0.04447560012340546, 0.0002151028747903183, 0.029302863404154778, -0.020811069756746292, -0.016023289412260056, -0.03934485837817192, -0.035668279975652695, 0.00827229768037796, 0.0436524860560894, -0.0174911767244339, -0.0022224083077162504, 0.003535961266607046, 0.017600923776626587, 0.01860238052904606, 0.022827699780464172, 0.02606528252363205, 0.022827699780464172, -0.0006036170525476336, -0.007744132541120052, -0.0012312416220083833, 0.019480368122458458, 0.00908169336616993, 0.011948874220252037, 0.020975692197680473, 0.033912304788827896, 0.0205092616379261, -0.03232095018029213, 0.01057701651006937, 0.026655180379748344, 0.0012269545113667846, -0.01128352340310812, -0.008306593634188175, 0.016805248335003853, 0.027862414717674255, 0.013931207358837128, 0.012607364915311337, -0.007689258083701134, -0.04485972225666046, 0.0323483869433403, -0.00837518647313118, -0.008450638502836227, -0.019082529470324516, 0.033747680485248566, 0.020961973816156387, 0.002503638854250312, -0.002417897805571556, -0.006224800832569599, -0.0031844228506088257, 0.010933700017631054, 0.028397439047694206, 0.03317150101065636, 0.023650813847780228, 0.006135629955679178, 0.04302143305540085, -0.016764091327786446, 0.008052799850702286, -0.019617553800344467, 0.017614642158150673, 0.017408864572644234, 0.0037451693788170815, -0.00032260073930956423, -0.6093239784240723, -0.03961922973394394, 0.006804410368204117, -0.009760761633515358, -0.013636257499456406, 0.006557476241141558, 0.028836432844400406, -0.011228648945689201, 0.0017542620189487934, 0.0494965985417366, -0.009843073785305023, -0.00390979228541255, 0.002887758892029524, -0.014596558175981045, -0.005717213731259108, -0.023115789517760277, 0.0022995751351118088, -0.020756196230649948, 0.0369303897023201, 0.02542050927877426, -0.009074833244085312, 0.038658928126096725, -0.016626905649900436, 0.0032084304839372635, 0.006430579349398613, 0.006049889139831066, 0.002846603048965335, -0.03177220746874809, 0.02671005390584469, 0.015680324286222458, -0.019219715148210526, 0.024775736033916473, 0.040113095194101334, -0.015131581574678421, 0.04853629693388939, -0.011626487597823143, -0.01721680536866188, 0.017395146191120148, 0.028342563658952713, 0.03473541885614395, -0.042500127106904984, -0.03706757351756096, -0.007949911057949066, -0.010885684750974178, -0.006958744488656521, -0.0003965524083469063, -0.0007742417510598898, -0.016133038327097893, -0.009630436077713966, -0.006187074817717075, -0.01953524351119995, 0.01584494672715664, -0.022649357095360756, -0.00725712301209569, 0.03040034882724285, -0.006663795094937086, 0.004070985596626997, -0.026394527405500412, 0.033720243722200394, -0.006526609417051077, 0.01225754152983427, 0.001876014401204884, -0.01069362461566925, -0.025653725489974022, -0.005405116360634565, 0.02233383059501648, 0.0013204122660681605, 0.01451424602419138, 0.007408027537167072, -0.004324778914451599, 0.005744650959968567, 0.020262327045202255, -0.0017242527101188898, -0.02199086733162403, 0.007730413693934679, 0.018012480810284615, 0.013883192092180252, -0.006897010840475559, -0.01980961486697197, -0.004053837154060602, -0.010625031776726246, -0.0026734061539173126, -0.017244242131710052, -0.009404079057276249, 0.0033730531577020884, 0.002333871554583311, -0.024679705500602722, 0.011544176377356052, -0.0014567405451089144, 0.004091563168913126, 0.0061390595510602, 0.02381543628871441, -0.00029709277441725135, 0.021634183824062347, 0.0060018738731741905, 0.01846519485116005, 0.010014555417001247, -0.012483898550271988, 0.010048852302134037, 0.0022224083077162504, 0.010967995971441269, -0.01555685792118311, 0.0259692519903183, -0.01862981729209423, 0.010007696226239204, 0.010316364467144012, 0.010892543941736221, 0.0015047555789351463, 0.04527127742767334, -0.008738728240132332, 0.0030472371727228165, -0.007277701050043106, -0.004942114464938641, 0.0003609698615036905, 0.03155270963907242, -0.032403260469436646, 0.021044285967946053, 0.0014936092775315046, 0.0035102388355880976, 0.0006229088176041842, 0.01658575050532818, 0.008478076197206974, 0.013924348168075085, -0.014308467507362366, 0.010350660420954227, 0.01600957103073597, 0.0071062189526855946, -0.031662456691265106, -0.03311662748456001, -0.0024230421986430883, 0.021496998146176338, 0.0007682399009354413, 0.015021833591163158, -0.008704432286322117, 0.01284744031727314, 0.006073896773159504, 0.018890470266342163, -0.009239456616342068, 0.011160056106746197, -0.021195190027356148, -0.021716495975852013, -0.013876332901418209, 0.010103726759552956, 0.0013401327887549996, -0.021881118416786194, -0.013430478982627392, -0.020138859748840332, 0.016572032123804092, 0.007353153079748154, 0.011797969229519367, -0.011441286653280258, -0.004496261011809111, -0.005480568390339613, 0.016338815912604332, -0.006375704891979694, -0.010775935836136341, -0.028946181759238243, -0.028068192303180695, -0.011653924360871315, -0.003151841228827834, -0.001822854857891798, 0.04285680875182152, -0.01721680536866188, -0.03769863024353981, -0.006739247124642134, 0.002356164390221238, 0.0017062471015378833, 0.011317819356918335, 0.007366871926933527, -0.037314508110284805, 0.00948639027774334, -0.017669517546892166, -0.024624831974506378, 0.024734580889344215, -0.009678450413048267, 0.017107056453824043, -0.023349005728960037, 0.0018571512773633003, -0.01862981729209423, -0.009726465679705143, -0.010556438937783241, -0.010103726759552956, -0.01856122352182865, -0.00725712301209569, 0.03067472018301487, 0.02293744869530201, 0.02142840437591076, -0.01371856965124607, 0.01474746223539114, -0.0028791846707463264, 0.007874459028244019, 0.02831512689590454, 0.0031775636598467827, 0.023527346551418304, -0.006972462870180607, -0.00413614884018898, 0.0067632547579705715, -0.0013229845790192485, -0.006684373132884502, 0.021414685994386673, 0.03528416156768799, 0.025804629549384117, -0.004125859588384628, -0.014267312362790108, 0.009308049455285072, -0.018643535673618317, 0.015543138608336449, -0.011235508136451244, 0.013293293304741383, 0.011557894758880138, 0.02293744869530201, -0.008615261875092983, -0.0221692081540823, -0.007078781723976135, -0.01587238535284996, 0.011688221246004105, -0.022457297891378403, 0.01637997105717659, -0.029686983674764633, 0.010110585950314999, 0.003115830011665821, -0.02011142298579216, -0.004444816615432501, -0.015200174413621426, -0.02646312117576599, -0.0025276464875787497, 0.016873840242624283, 0.02266307733952999, 0.018369164317846298, -0.008478076197206974, -0.027629198506474495, 0.021675338968634605, 0.01862981729209423, -0.0013041214551776648, -0.012991485185921192, 0.0010246055899187922, 0.010590735822916031, -0.0004514266620390117, 0.03547621890902519, -0.00048400828382000327, -0.008731869049370289, 0.02492664009332657, 0.01057701651006937, -0.008436920121312141, 0.011016011238098145, -0.02522844821214676, 0.022978603839874268, 0.021030567586421967, 0.00038133334601297975, 0.006996470503509045, -0.006890151649713516, 0.010858247987926006, -0.01897278055548668, -0.004636876285076141, 0.036107275635004044, -0.02858949825167656, -0.010151741094887257, -0.015337360091507435, 0.031168589368462563, 0.03292456641793251, 0.017696954309940338, -0.0067701139487326145, -0.013780303299427032, -0.012017467059195042, 0.006890151649713516, -0.01825941540300846, -0.026106437668204308, -0.012216386385262012, -0.007380590308457613, -0.001055472414009273, -0.01306693721562624, 0.0014250164385885, 0.0154196722432971, -0.001961755333468318, 0.03160758316516876, 0.02210061438381672, 0.007744132541120052, -0.005905844271183014, 0.018753284588456154, 0.006043029949069023, -0.03081190586090088, -0.016626905649900436, 0.00952068716287613, 0.020797351375222206, 0.011523597873747349, -0.0010400390019640326, 0.011770532466471195, -0.019631272181868553, -0.03481772914528847, -0.016133038327097893, 0.010906262323260307, 0.017916452139616013, -0.009753902442753315, -0.012305556796491146, -0.018712129443883896, -0.0045271278358995914, 0.018081074580550194, -0.006890151649713516, -0.024268148466944695, -0.0017208229983225465, 0.020824788138270378, 0.007517775986343622, 0.000463001721072942, -0.019494086503982544, 0.01496695913374424, 0.0011960878036916256, 0.014143845066428185, -0.002587665105238557, 0.002964925719425082, -0.013649976812303066, 0.01772439107298851, -0.0050450037233531475, -0.02414468117058277, -0.012182089500129223, 0.01832800917327404, 0.01399294100701809, 0.01437706034630537, -0.010378098115324974, -0.0009345775470137596, -0.025585131719708443, -0.010103726759552956, -0.04617670550942421, -0.04019540920853615, 0.004396801348775625, 0.07797634601593018, 0.013629398308694363, 0.018053637817502022, 0.03802787512540817, 0.03130577504634857, -0.011667643673717976, -0.0484265498816967, -0.009369783103466034, 0.0023184381425380707, -0.008519231341779232, -0.002726565580815077, 0.019027655944228172, -0.0034570794086903334, 0.005034714937210083, 0.010076289065182209, -0.012833721935749054, -0.008361468091607094, -0.013327590189874172, 0.021277500316500664, 0.0027145619969815016, 0.0198782067745924, -0.008752447552978992, -0.00279172882437706, 0.025406790897250175, 0.012422164902091026, -0.018945343792438507, 0.006746106315404177, 0.02858949825167656, -0.007867599837481976, -0.007867599837481976, 0.0179301705211401, 0.014047815464437008, 0.0064340089447796345, 0.014761180616915226, -0.00220697489567101, 0.017916452139616013, 0.029604673385620117, 0.02905593067407608, 0.0135196503251791, 0.036875516176223755, 0.024432772770524025, 0.02620246820151806, -0.002743713790550828, -0.017985044047236443, -0.0014241589233279228, -0.04768574610352516, 0.005748080555349588, 0.004612869117408991, -0.015927258878946304, -0.03040034882724285, 0.02145584300160408, 0.0018640105845406651, -0.03325381129980087, -0.03484516590833664, 0.021003128960728645, -0.0032067156862467527, -0.0022704233415424824, 0.0053090862929821014, -0.020166296511888504, -0.027793820947408676, -0.019027655944228172, -0.024021215736865997, 0.011852843686938286, -0.003151841228827834, -0.005233634263277054, -0.006488883402198553, 0.005768658593297005, -0.002724850783124566, -0.006190504413098097, -0.005020996555685997, 0.01819082349538803, -0.02697070688009262, -0.03437873348593712, 0.012415305711328983, 0.003937229514122009, -0.0027111321687698364, 0.02377428114414215, -0.011784250847995281, 0.0005358816124498844, -0.0018382882699370384, -0.03199170529842377, -0.026175029575824738, -0.0006867859046906233, -0.051033079624176025, 0.020056547597050667, -0.027450857684016228, -0.0027780102100223303, -0.019398057833313942, -0.018753284588456154, 0.01897278055548668, -0.015378516167402267, 0.00938350148499012, 0.01138641219586134, 0.00429734168574214, -0.01247703842818737, 0.019055092707276344, -0.004557994659990072, 0.03511953726410866, 0.013121811673045158, 0.004966122098267078, 0.0062453788705170155, -0.0022772825323045254, -0.02492664009332657, -0.023870309814810753, -0.0016779524739831686, -0.014308467507362366, -0.0042493268847465515, 0.003043807577341795, -0.019933082163333893, -0.008395764045417309, 0.0179301705211401, -0.03690295293927193, 0.007394308689981699, 0.029522361233830452, 0.01742258295416832, 0.02740970067679882, 0.01049470528960228, 0.006794121582061052, 0.00418759323656559, -0.03676576539874077, -0.01298462599515915, 0.005628042854368687, -0.001852006884291768, 0.019864488393068314, -0.0046814619563519955, 0.01654459536075592, -0.014774898998439312, -0.034488484263420105, -0.035174410790205, -0.003974955528974533, 0.00187086989171803, 0.02801331877708435, -0.011153196915984154, -0.03185451775789261, -0.04153982922434807, -0.00991852581501007, -0.024089807644486427, -0.010090007446706295, -0.02277282439172268, -0.03843943029642105, -0.011942015029489994, -0.01765579916536808, 0.014980677515268326, -0.002784869633615017, 0.013684272766113281, -0.03649139404296875, 0.016270224004983902, 0.03457079455256462, 0.01957639865577221, 0.020673884078860283, -0.0013469919795170426, -0.010117445141077042, 0.00040212555904872715, 0.011105181649327278, -0.02256704680621624, -0.03053753450512886, -0.020591571927070618, 0.005720643326640129, 0.027793820947408676, 0.014980677515268326, 0.04916735365986824, -0.01540595293045044, 0.004448246210813522, 0.02993391826748848, 0.01570776104927063, 0.001352993887849152, 0.0065883430652320385, 0.010419253259897232, -0.005209626629948616, 0.010769076645374298, 0.009760761633515358, -0.008032222278416157, 0.022525891661643982, 0.005285078659653664, 0.009863651357591152, -0.010371237993240356, -0.012696536257863045, -0.026120156049728394, -0.015159019269049168, -0.01846519485116005, 0.016572032123804092, 0.005816673394292593, -0.00952068716287613, 0.006848995573818684, -0.04831680282950401, -0.010213474743068218, 0.00968530960381031, 0.024679705500602722, -0.015035551972687244, 0.01960383541882038, -0.005099878180772066, -0.021236345171928406, -0.000804679817520082, 0.0015459113055840135, 0.01600957103073597, -0.006344838533550501, 0.0015673465095460415, -0.02891874499619007, -0.01061131339520216, 0.03533903509378433, 0.0028363142628222704, 0.01971358433365822, -0.009705888107419014, 0.005624613258987665, -0.014185001142323017, 0.028699247166514397, 0.010501564480364323, -0.016791528090834618, 0.004966122098267078, -0.011427568271756172, -0.013080655597150326, -0.01920599676668644, -0.011509879492223263, -0.0075520724058151245, -0.018149666488170624, 0.013944925740361214, 0.011043448001146317, 0.015090426430106163, -0.005336523521691561, -0.016160475090146065, 0.023691968992352486, 0.008731869049370289, 0.017504895105957985, -0.0050312853418290615, 0.02891874499619007, 0.03201914206147194, -0.0203172005712986, 0.000711222062818706, 0.0060910447500646114, -0.0021863970905542374, -0.0007708120974712074, 0.022004585713148117, 0.010323223657906055, -0.02061901055276394, -0.027834977954626083, 0.011413849890232086, 0.0270393006503582, -0.020673884078860283, -0.031196026131510735, 0.03544878214597702, 0.026257341727614403, -0.0203172005712986, -0.02444649115204811, -0.022896291688084602, -0.012456460855901241, 0.01451424602419138, -0.0232392568141222, -0.019987955689430237, 0.011297241784632206, -0.005929851438850164, 0.008334031328558922, 0.006965603679418564, 0.005929851438850164, 0.03629933297634125, 0.008114533498883247, -0.02902849204838276, 0.0028311696369200945, 0.011770532466471195, 0.002645969158038497, -0.0023904608096927404, -0.0019686147570610046, 0.012182089500129223, -0.015543138608336449, 0.020632728934288025, 0.0395643524825573, -0.011009152047336102, 0.014061533845961094, 0.007154233753681183, -0.010700483806431293, 0.03638164699077606, -0.003957807086408138, -0.017477456480264664, 0.007071922533214092, -0.011057167313992977, 0.0116196284070611, -0.012401586398482323, 0.010789655148983002, -0.02727251499891281, -0.01906881108880043, -0.019548961892724037, 0.02236126735806465, 0.03443361073732376, 0.0015956411371007562, 0.018300572410225868, 0.01765579916536808, -0.013197263702750206, -0.0012895455583930016, -0.010583876632153988, -0.012525053694844246, -0.008642698638141155, -0.006516320630908012, -0.01340304221957922, 0.0003941945033147931, 0.020399512723088264, 0.02112659625709057, -0.005312515888363123, 0.015255048871040344, 0.02398005872964859, -0.03511953726410866, 0.002699128584936261, -0.006111622788012028, -0.012161511927843094, -0.011262945830821991, -0.006385994143784046, -0.01209291908890009, 0.0007875316077843308, 0.025269605219364166, -0.004122429993003607, -0.01437706034630537, -0.03468054160475731, -0.014390779659152031, 0.03871380165219307, 0.009239456616342068, -0.003940659109503031, 0.029577234759926796, -0.012634802609682083, 0.002978644333779812, -0.027533167973160744, -0.02690211497247219, 0.03651883080601692, 0.01340304221957922, -0.009006240405142307, 0.02687467820942402, -0.0009054255788214505, 0.03399461507797241, -0.015611731447279453, 0.00011189208453288302, 0.001371856895275414, -0.03679320216178894, -0.028671810403466225, 0.002261849120259285, 0.03306175395846367, 0.0019566109403967857, -0.01990564353764057, 0.007311997469514608, -0.010858247987926006, -0.018506349995732307, 0.001489322166889906, -0.0035462502855807543, -0.010961136780679226, 0.011310960166156292, -0.011557894758880138, -0.006903870031237602, -0.009115989319980145, -0.011797969229519367, -0.012134074233472347, 0.0021383820567280054, 0.025543976575136185, -0.010467268526554108, -0.009321767836809158, -0.0015287630958482623, 0.03330868482589722, 0.015378516167402267, -0.016229066997766495, -0.04367992654442787, -0.0031792784575372934, -0.042527563869953156, -0.002201830269768834, -0.004945544060319662, 0.011928295716643333, -0.00807337835431099, -0.027066737413406372, 0.006523179821670055, -0.0036662877537310123, -0.006852425169199705, 0.0034982352517545223, -0.0029100514948368073, -0.0015776355285197496, 0.0008372614393010736, -0.010981714352965355, -0.014857210218906403, 0.0007489481358788908, -0.038960736244916916, 0.002412753412500024, 0.016626905649900436, 0.009863651357591152, 0.00019227432494517416, 0.022621920332312584, -0.005504576023668051, -0.007606946863234043, 0.0018417179817333817, -0.01916484162211418, -0.007517775986343622, -0.019754739478230476, 0.00714737456291914, -0.03832968324422836, 0.0008865625713951886, 0.027354827150702477, -0.008663276210427284, 0.0009388645994476974, -0.005593746434897184, 0.0015150444814935327, -0.009150286205112934, 0.01825941540300846, -0.020125141367316246, -0.02273166924715042, 0.004393371753394604, 0.006554046645760536, 0.01644856482744217, 0.010542720556259155, 0.033281248062849045, 0.03009854070842266, 0.014308467507362366, 0.01900021918118, -0.01978217624127865, 0.019315745681524277, 0.016530876979231834, -0.01259364653378725, 0.03495491296052933, 0.01577635481953621, 0.004883810877799988, -0.022951167076826096, 0.014857210218906403, -0.0013469919795170426, 0.00793619267642498, -0.015666605904698372, -0.02270423248410225, -0.02963211014866829, 0.0024041791912168264, 0.02808191068470478, -0.018794439733028412, -0.012470179237425327, -0.006217941641807556, -0.0075520724058151245, -0.02629849687218666, -0.01707961969077587, 0.010775935836136341, -0.02794472500681877, 0.007154233753681183, 0.008841617964208126, -0.00452369824051857, 0.024391615763306618, 0.02004282921552658, 0.00648202421143651, -0.015200174413621426, -0.00770983612164855, 0.1885480135679245, -0.01920599676668644, 0.011523597873747349, 0.018451476469635963, 0.003837769851088524, 0.0048563736490905285, 0.024528801441192627, 0.024734580889344215, -0.010535861365497112, -0.012655380181968212, -0.004376223776489496, -0.007058204151690006, -0.007469761185348034, -0.0005307371611706913, 0.002635680139064789, 0.010426112450659275, -0.03273250535130501, -0.03295200318098068, -0.014322186820209026, 0.004760343581438065, -0.010625031776726246, -0.005171900615096092, 0.0017165360040962696, -0.011653924360871315, 0.01994680054485798, -0.017011025920510292, -0.0099391033872962, 0.014404498040676117, 0.005600606091320515, 0.010666187852621078, -0.02233383059501648, 0.016023289412260056, 0.011434427462518215, -0.0023595939856022596, -0.020907100290060043, -0.013114952482283115, 0.02404865249991417, 0.0038171918131411076, 0.0213872492313385, -0.007071922533214092, 0.024432772770524025, -0.01108460407704115, -0.008587824180722237, -0.01721680536866188, 0.001040896400809288, 0.010961136780679226, 0.000402339908760041, -0.004239038098603487, -0.0005808956921100616, -0.0018314289627596736, -0.042500127106904984, 0.010515283793210983, 0.014198719523847103, 0.03490003943443298, -0.015652887523174286, 0.008642698638141155, 0.01765579916536808, 0.029412612318992615, 0.02078363299369812, 0.005706924945116043, 0.011139478534460068, 0.013581383973360062, 0.006855855230242014, 0.009335486218333244, -0.02199086733162403, 0.022484734654426575, -0.0044242385774850845, 0.00017737681628204882, 0.00896508526057005, -0.0009422942530363798, -0.0023441605735570192, -0.020673884078860283, -0.018821876496076584, -0.015529420226812363, -0.013896910473704338, -0.01661318726837635, 0.039399731904268265, 0.019919361919164658, 0.04112827032804489, 0.04395429790019989, -0.015337360091507435, 0.03333612531423569, -0.013293293304741383, -0.013348167762160301, -0.01284744031727314, -0.03885098919272423, 0.04260987788438797, -0.014047815464437008, -0.028027037158608437, -0.005590316839516163, -0.005435983184725046, 0.014953240752220154, -0.0002071718336082995, -0.017971325665712357, 0.01295032911002636, -0.0056383321061730385, -0.0033061751164495945, -0.016133038327097893, -0.010974855162203312, 0.01927459053695202, -0.013156107626855373, 0.07918357849121094, 0.018547505140304565, 0.007065063342452049, 0.023129507899284363, -0.0032513008918613195, -0.006842136383056641, 0.013677413575351238, 0.024912921711802483, -0.028397439047694206, -0.015131581574678421, -0.016421128064393997, -0.012751409783959389, -0.005892125423997641, 0.0035325316712260246, 0.018039919435977936, 0.015076708048582077, -0.016736654564738274, 0.01496695913374424, -0.01504927035421133, -0.00547370919957757, -0.04203369468450546, -0.02525588683784008, 0.02478945441544056, 0.005274789873510599, 0.0007570935413241386, -0.005946999881416559, -0.009157145395874977, -0.02963211014866829, -0.005165041424334049, 0.031525272876024246, -0.003139837644994259, -0.004921536892652512, -0.005408545956015587, 0.00823800079524517, -0.0010511854197829962, 0.03764375299215317, -0.016229066997766495, 0.02680608443915844, 0.000853980949614197, -0.011269805021584034, -0.025132419541478157, 0.003813762217760086, 0.0001439377956558019, -0.03336356207728386, -0.03199170529842377, 0.005141033791005611, -0.0006730672903358936, 0.0019017367158085108, -0.01883559487760067, 0.005960718262940645, -0.024130962789058685, -0.0005393112660385668, -0.01647600159049034, 0.007243404630571604, -0.020029110834002495, -0.0004917249898426235, -0.01913740485906601, 0.021743932738900185, -0.0009208589908666909, -0.03945460543036461, 0.0069244480691850185, 0.006351697724312544, -0.01980961486697197, -0.014925803057849407, -0.018135948106646538, -0.17439045011997223, 0.026421964168548584, 0.015351079404354095, -0.0011146337492391467, 0.011427568271756172, 0.019864488393068314, 0.004595720674842596, -0.0013881477061659098, -0.006859284825623035, 0.008217423222959042, 0.025434227660298347, 0.02115403302013874, -0.01108460407704115, -0.025804629549384117, 0.005504576023668051, -0.014733743853867054, -0.009541264735162258, 0.014939522370696068, 0.016860121861100197, 0.02616131119430065, 0.023362724110484123, -0.05322805047035217, -0.009891088120639324, -0.015474545769393444, -0.016352534294128418, 0.02515985630452633, 0.00491810729727149, 0.02979673258960247, -0.01661318726837635, -0.01600957103073597, 0.006581483408808708, 0.007888177409768105, 0.020975692197680473, 0.020797351375222206, 0.001852006884291768, 0.03177220746874809, 0.004561424255371094, -0.009095411747694016, -0.016530876979231834, 0.02902849204838276, 0.02768407203257084, 0.03646395727992058, -0.018821876496076584, -0.007778428960591555, -0.025104982778429985, 0.013416760601103306, -0.007476620376110077, 0.0016976729966700077, -0.004393371753394604, -0.02011142298579216, 0.006039600353688002, 0.014445653185248375, 0.03336356207728386, 0.003830910427495837, 0.018684690818190575, 0.026614025235176086, 0.016764091327786446, 0.0008925644215196371, -0.011077744886279106, -0.007229686249047518, -0.02889130637049675, -0.02242986112833023, 0.006989610847085714, 0.001925744116306305, -0.008004785515367985, -0.023595938459038734, -0.029577234759926796, 0.016119318082928658, -0.03218376263976097, 0.010302645154297352, -0.014020377770066261, 0.02256704680621624, 0.001894877408631146, -0.006152778398245573, 0.01195573341101408, 0.006821558810770512, -0.0033781977836042643, 0.013156107626855373, 0.006708380300551653, -0.0012698250357061625, 0.00474319513887167, 0.03668345510959625, -0.010762217454612255, -0.012456460855901241, 0.03723219782114029, -0.002669976558536291, 0.019521523267030716, -0.0006014734972268343, 0.009897947311401367, -0.01091312151402235, 0.005542302038520575, 0.005648620892316103, 0.006804410368204117, -0.020166296511888504, -0.013457916676998138, -0.010858247987926006, 0.024007495492696762, -0.001007457380183041, -0.0035153834614902735, -0.020907100290060043, 0.0015047555789351463, -0.015927258878946304, -0.009849932976067066, 0.003837769851088524, 0.010741639882326126, 6.0929738538106903e-05, -0.03989360108971596, 0.004232178442180157, 0.036573704332113266, -0.001827999367378652, -0.028671810403466225, 0.012634802609682083, 0.02485804818570614, 0.04115570709109306, -0.0072091082111001015, 0.03725963458418846, -0.03756144270300865, 0.0016127893468365073, 0.007689258083701134, -0.011825406923890114, 0.029247989878058434, 0.025982970371842384, 0.003724591573700309, 0.011153196915984154, -0.026106437668204308, -0.04793268069624901, -0.0938350111246109, -0.010700483806431293, 0.00340563477948308, 0.03542134538292885, -0.024158401414752007, 0.022512171417474747, -0.004897529259324074, 0.016956152394413948, -0.02105800434947014, 0.022388705983757973, -0.0026871247682720423, -0.0026013837195932865, -0.009808776900172234, -0.013060078024864197, 0.001726824906654656, -0.01370485033839941, -0.006101333536207676, -0.03037291206419468, 0.02805447392165661, 0.023321567103266716, -0.008951366879045963, -0.046999819576740265, -0.02307463437318802, -0.025886939838528633, 0.007627524435520172, 0.009356064721941948, -0.027190204709768295, 0.02757432498037815, -0.013005203567445278, 0.007078781723976135, -0.0008188271312974393, -0.0032821677159518003, 0.029686983674764633, -0.017093338072299957, -0.007696117274463177, -0.02444649115204811, -0.001973759150132537, -0.022224081680178642, 0.029412612318992615, -0.03665601834654808, 0.018437758088111877, 0.005614324472844601, 0.01742258295416832, 0.008059659041464329, -0.01192143652588129, -0.018081074580550194, -0.028534624725580215, 0.024844329804182053, -0.008958226069808006, -0.017573487013578415, -0.01017231959849596, -0.03114115260541439, 0.004369364120066166, -0.018876751884818077, 0.0341043621301651, -0.023184381425380707, 0.009102270938456059, 0.004983270540833473, -0.028123067691922188, -0.0010511854197829962, -0.020083986222743988, -0.005634902510792017, -0.02815050445497036, 0.026421964168548584, 0.023623377084732056, -0.005494287237524986, -0.015694042667746544, -0.027464576065540314, 0.01846519485116005, -0.026312215253710747, -0.008100815117359161, 0.010837669484317303, -0.024871766567230225, -0.007360012270510197, -0.02159302867949009, -0.0034673684276640415, -0.011276664212346077, -0.04156726598739624, 0.016352534294128418, 0.005158182233572006, -0.00904739648103714, -0.01974102109670639, 0.002592809498310089, -0.02425443008542061, 0.01237414963543415, -0.004650595132261515, -0.0279172882437706, 0.016805248335003853, 0.012792565859854221, -0.017093338072299957, 0.01577635481953621, 0.014720024541020393, 0.006238519214093685, -0.0012038045097142458, -0.021469561383128166, 0.0022532748989760876, -0.014212437905371189, -0.018945343792438507, -0.0070993597619235516, 0.03468054160475731, -0.04768574610352516, -0.01136583462357521, -0.06447727233171463, 0.020591571927070618, 0.0039132218807935715, -0.02358222007751465, -0.009232597425580025, -0.0036354209296405315, 0.023719405755400658, -0.015790073201060295, -0.011208071373403072, 0.007853880524635315, -0.04480484873056412, 0.016805248335003853, 0.005885266233235598, 0.014143845066428185, -0.023225538432598114, -0.017408864572644234, 0.02778010256588459, -0.03355561941862106, 0.021853681653738022, 0.03155270963907242, 0.001383860711939633, 0.023115789517760277, 0.023211820051074028, 0.004568283446133137, -0.01795760728418827, 0.019425494596362114, 0.0030352333560585976, 0.0013512790901586413, -0.02768407203257084, -0.010508423671126366, 0.0006156208110041916, -0.025104982778429985, -0.0082585783675313, 0.014582838863134384, -0.0018057066481560469, -0.013746006414294243, 0.035229284316301346, 0.018369164317846298, 0.002056070603430271, 0.037479132413864136, -0.0241172444075346, -0.02778010256588459, -0.0071199373342096806, -0.009280611760914326, 0.01971358433365822, -0.004564853850752115, -0.019013937562704086, 0.0019960517529398203, 0.014102688990533352, -0.007826443761587143, 0.020756196230649948, 0.002167533850297332, -0.03531159833073616, -0.02609271928668022, 0.02815050445497036, -0.005765228532254696, 0.01094741839915514, 0.004427668172866106, -0.0005688919336535037, -0.004547705873847008, 0.018945343792438507, -0.009575561620295048, 0.016832685098052025, -0.008066519163548946, 0.0004415664589032531, -0.0017156786052510142, -0.027999600395560265, -0.00859468337148428, -0.01661318726837635, -0.008875913918018341, -0.013972362503409386, -0.008985662832856178, -0.008244859986007214, 0.01661318726837635, 5.0721195293590426e-05, -0.006663795094937086, 0.002467627637088299, 0.03490003943443298, -0.0021555302664637566, 0.013876332901418209, 0.018876751884818077, -0.010350660420954227, -0.034927476197481155, -0.001810851157642901, 0.010755358263850212, 0.02559885010123253, -0.015968414023518562, 0.004959262907505035, -0.0005680345348082483, 0.004132719244807959, -0.00904739648103714, 0.018643535673618317, 0.0004012681602034718, 0.006958744488656521, 0.0014567405451089144, 0.014541683718562126, -0.01937061920762062, 0.011647065170109272, 0.040442343801259995, 0.03514697402715683, 0.02233383059501648, 0.00010133521573152393, -0.0033661939669400454, -0.031497836112976074, -0.030757032334804535, -0.0005037286900915205, -0.01832800917327404, -0.022210363298654556, 0.011406990699470043, -0.0038206216413527727, -0.001287830644287169, 0.01013802271336317, -0.005278219468891621, 0.0025722316931933165, -0.004804928787052631, 0.02061901055276394, -0.01150302030146122, 0.0015081851743161678, -0.03783581405878067, 0.03588777780532837, 0.004046977963298559, -0.007291419431567192, 0.016421128064393997, -0.02425443008542061, 0.024569958448410034, 0.011996888555586338, 0.010659328661859035, -0.03898817300796509, 0.007785288151353598, -0.010817091912031174, -0.0038480586372315884, -0.0032530156895518303, -0.02310207113623619, -0.018753284588456154, -0.01600957103073597, -0.027299953624606133, -0.004050407558679581, -0.014843491837382317, -0.0012501046294346452, 0.07506801187992096, 0.024693423882126808, 0.001191800693050027, -0.002736854599788785, -0.025351915508508682, 0.006224800832569599, 0.004509979858994484, 0.021236345171928406, -0.005007277708500624, -0.02166162058711052, 0.009932244196534157, -0.00983621459454298, -0.0025087834801524878, -0.02606528252363205, -0.03248557075858116, -0.0011575042735785246, -0.0018622957868501544, 0.03555853292346001, -0.0038000436034053564, 0.01832800917327404, 0.006667224690318108, 0.01997423730790615, 0.005706924945116043, -0.009184582158923149, -0.036436520516872406, -0.004750054795295, 0.017683235928416252, -0.011708798818290234, -0.0004612868942786008, -0.05084101855754852, -0.002321867970749736, 0.005466850008815527, -0.031196026131510735, -0.025297041982412338, 0.01304635964334011, -0.0013427049852907658, -0.0020046259742230177, -0.01083081029355526, 0.013711710460484028, -0.010288926772773266, 0.018286852166056633, 0.025667443871498108, -0.02240242436528206, -0.03330868482589722, -0.006235089618712664, -0.010220333933830261, -0.02233383059501648, 0.010384957306087017, -0.045051783323287964] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2023_search_and_rescue_on_the_line.json b/database/embeddings/publications_txt/2023_search_and_rescue_on_the_line.json new file mode 100644 index 0000000000000000000000000000000000000000..359f59f29a5221ade0740d726583b35a23c93761 --- /dev/null +++ b/database/embeddings/publications_txt/2023_search_and_rescue_on_the_line.json @@ -0,0 +1 @@ +[-0.0029383620712906122, 0.015511449426412582, 0.017288215458393097, -0.006775683257728815, 0.0009342122939415276, 0.0112740034237504, -0.011901511810719967, 0.005510089918971062, -0.01868424564599991, -0.039314474910497665, 0.006543011404573917, 0.03567633405327797, 0.013318694196641445, 0.02175833284854889, -0.00726217869669199, -0.022703120484948158, 0.03415339067578316, -0.02074303850531578, -0.020587923005223274, -0.01627292111515999, -0.0044842190109193325, 0.009363275021314621, 0.00283612753264606, -0.0020993335638195276, -0.027991116046905518, 0.01141501683741808, 0.013967354781925678, -0.035704534500837326, -0.008087106049060822, -0.019459817558526993, 0.010843913070857525, -0.02141990140080452, -0.005844996310770512, -0.0343790128827095, -0.01833171211183071, 0.006768632214516401, 0.012529020197689533, -0.021659623831510544, 0.01157718151807785, -0.026891212910413742, 0.005503039341419935, 0.011125939898192883, -0.0006706939311698079, -0.008347979746758938, -0.011259902268648148, 0.010188202373683453, 0.028752585873007774, -0.02456449531018734, -0.016977986320853233, 0.036522410809993744, -0.0006949305534362793, 0.018289409577846527, -0.02783600054681301, -0.011563080362975597, -0.007988396100699902, -0.005598222836852074, -0.021363496780395508, 0.0050130183808505535, 0.006218681111931801, -0.023450491949915886, 0.007269229274243116, -0.02543877623975277, -0.024451684206724167, 0.009680554270744324, 0.005855571944266558, -0.016836972907185555, -0.006983677390962839, 0.028935903683304787, -0.0007874704315327108, -0.03012041375041008, 0.008587702177464962, 0.03779153153300285, 0.021391699090600014, -0.002354919910430908, 0.025875918567180634, -0.021983953192830086, -0.01686517521739006, -0.005573545582592487, 0.01329049188643694, 0.001443622400984168, 0.01472177542746067, -0.021730130538344383, -0.009017792530357838, 0.000932449649553746, 0.02409915253520012, 0.02631305903196335, 0.004797973204404116, 0.018374016508460045, -0.02871028333902359, -0.005929604172706604, -0.008742816746234894, 0.029330739751458168, 0.009328021667897701, -0.011337459087371826, -0.018458625301718712, 0.013036668300628662, -0.007600610144436359, 0.048959773033857346, -0.002867855364456773, -0.04582928121089935, 0.01298731379210949, -0.008058902807533741, -0.015525550581514835, -0.02102506533265114, 0.0001980794477276504, -0.025128547102212906, -0.0003869048960041255, 0.013939152471721172, 0.010625342838466167, -0.0032433029264211655, -0.025664398446679115, 0.030543453991413116, 0.011161193251609802, 0.003691019956022501, 0.007410242222249508, -0.03333551436662674, 0.011245801113545895, 0.010568937286734581, 0.006356169003993273, -0.017443329095840454, 0.015525550581514835, -0.00946903508156538, 0.0018120192689821124, -0.021377597004175186, 0.029217930510640144, 0.03767871856689453, -0.016019096598029137, -0.014115419238805771, 0.019389310851693153, -0.020362302660942078, 0.008827424608170986, 0.001951269805431366, 0.017147202044725418, 0.014651268720626831, 0.02008027583360672, 0.017584342509508133, -0.005510089918971062, -0.017372822389006615, -0.019248299300670624, -0.04833931475877762, 0.016695959493517876, 0.037171073257923126, -0.04492679610848427, -0.02228008210659027, -0.010554836131632328, 0.0013704717857763171, 0.00977221317589283, -0.015412740409374237, 0.012000220827758312, 0.026073336601257324, 0.00019466428784653544, -0.012874502688646317, -0.024917028844356537, 0.039258066564798355, 0.005510089918971062, 0.004974239971488714, -0.022463398054242134, 0.04884696379303932, 0.011485523544251919, -0.022985147312283516, 0.00664524594321847, 0.02041870728135109, -0.012105980888009071, -0.02188524417579174, 0.019516224041581154, 0.015102511271834373, 0.02228008210659027, 0.017711255699396133, -0.010286911390721798, -0.000524392758961767, -0.000541578745469451, 0.030910087749361992, -0.005189284682273865, 0.006416099611669779, 0.002716266317293048, 0.03085368312895298, 0.05657448619604111, 0.013678277842700481, -0.005982483737170696, -0.011527827009558678, -0.004156363196671009, 0.010653545148670673, 0.011654739268124104, 0.008622955530881882, -0.011281054466962814, 0.0209545586258173, 0.015878083184361458, -0.0022033308632671833, -0.0014577236725017428, -0.03184077516198158, 0.00783328153192997, 0.025481080636382103, -0.006969576235860586, 0.016851074993610382, -0.6015058159828186, -0.03161515295505524, -0.0036081746220588684, -0.0258336141705513, 0.0015449755592271686, 0.02041870728135109, 0.01284630037844181, -0.0034583481028676033, -0.01007539127022028, 0.03079727664589882, -0.00045961482101120055, 0.01673826389014721, -0.01486278884112835, -0.01030806265771389, -0.0035182787105441093, -0.021871143952012062, -0.0011148854391649365, -0.0038954890333116055, 0.030007604509592056, -0.007159944158047438, -0.003884912934154272, 0.020785342901945114, 0.00884152576327324, 0.0126136289909482, 0.006197528913617134, -0.005192810203880072, 0.012867452576756477, -0.04365767911076546, 0.020362302660942078, 0.024479886516928673, -0.018571434542536736, 0.011936765164136887, 0.006659347098320723, -0.004177515394985676, 0.0579846166074276, -0.018571434542536736, 5.8388268371345475e-05, 0.03051525168120861, 0.04817010089755058, 0.033899568021297455, -0.0040153502486646175, -0.021123774349689484, 0.015849880874156952, -0.008143510669469833, -0.004297376610338688, -0.0023355307057499886, 0.023803023621439934, 0.0007760131265968084, 0.008030700497329235, -0.028216736391186714, -0.02122248336672783, 0.011520775966346264, -0.012521970085799694, -0.0034883134067058563, 0.018754752352833748, -0.02149040810763836, 0.010167050175368786, -0.03807355836033821, 0.008637056685984135, -0.0006407286273315549, -0.005238639656454325, 0.025325966998934746, -0.0035376681480556726, -0.028935903683304787, -0.01673826389014721, 0.03982212021946907, -0.01673826389014721, -0.0051469807513058186, 0.013008465059101582, 0.011605384759604931, 0.03347652778029442, 0.016315223649144173, -0.0020253018010407686, -0.007798028644174337, -0.009024843573570251, 0.03184077516198158, 0.02228008210659027, 0.013910950161516666, -0.008383233100175858, 0.012818098068237305, 0.015483246184885502, -0.014207077212631702, -0.004727466497570276, -0.015878083184361458, 0.016428034752607346, 0.005488937720656395, -0.03914525732398033, -0.0031216791830956936, 0.010103593580424786, -0.023929934948682785, 0.00378267839550972, 0.02161731943488121, -0.02577720768749714, 0.0030970019288361073, -0.013579568825662136, 0.02013668231666088, -0.017993280664086342, 0.02000976912677288, 0.02108146995306015, -0.030966492369771004, -0.006997779011726379, -0.00786853488534689, -0.018374016508460045, -0.010223454795777798, 0.029330739751458168, 0.012493767775595188, -0.01740102656185627, 0.004177515394985676, 0.03790434077382088, -0.02383122593164444, 0.014059013687074184, 0.00443486450240016, -0.024113252758979797, -0.006278611719608307, 0.03299708291888237, -0.032292015850543976, 0.007981345988810062, -0.003347300225868821, 0.00812940951436758, 0.006803885567933321, 0.007061234675347805, -0.002883719513192773, 0.012169437482953072, -0.007741623092442751, -0.009285717271268368, 0.007089437451213598, 0.02054562047123909, -0.019911060109734535, -0.0037685770075768232, -0.007805079221725464, 0.013311644084751606, -0.006303288973867893, 0.01097082532942295, 0.003576446557417512, 0.00756535679101944, -0.0005856453208252788, 0.011732296086847782, -0.005450159311294556, 0.00030890697962604463, -0.029415348544716835, -0.03635319694876671, -0.01003308780491352, 0.02215316891670227, -0.011739347130060196, -0.027962911874055862, -0.01422822941094637, -0.02308385632932186, 0.001775003387592733, -0.0025258983951061964, -0.007276279851794243, -0.020573822781443596, 0.014947396703064442, -0.016710061579942703, 0.01927650161087513, 0.0043009016662836075, -0.0025117972400039434, -0.006260985042899847, -0.01549734827131033, -0.029753779992461205, -0.008446688763797283, -0.001783816609531641, 0.015610158443450928, -0.04377048835158348, -0.015440942719578743, -0.004653434734791517, -0.0016049061669036746, 0.006426675245165825, 0.016977986320853233, -0.003980096895247698, -0.04205013066530228, 0.002303802641108632, 0.0005314433947205544, -0.007558306213468313, 0.022533904761075974, -0.011499624699354172, 0.033307310193777084, -0.023535098880529404, -0.01441859733313322, -0.019093183800578117, -0.017147202044725418, 0.002346106804907322, 0.01647033914923668, -0.02195575088262558, -0.012839249335229397, -0.00312872976064682, 0.02068663202226162, 0.03567633405327797, -0.006112921051681042, -0.0017635460244491696, 0.01913548819720745, 0.01415067259222269, 0.0014894516207277775, 0.004068230278789997, 0.03325090557336807, -0.029358943924307823, 0.009349173866212368, -0.005714558996260166, -0.0032626923639327288, 0.00469926418736577, 0.05175183713436127, 0.027878304943442345, 0.014270532876253128, 0.0020270643290132284, 0.009109451435506344, -0.008263371884822845, -0.0030229699332267046, 0.010759305208921432, -0.014580762013792992, 0.022787729278206825, 0.006553587503731251, 0.0406964011490345, -0.017415126785635948, -0.013445606455206871, -0.020390504971146584, 0.012655932456254959, 0.022971047088503838, -0.007558306213468313, 0.005425482057034969, -0.027074528858065605, 0.0007367938524112105, -0.013713531196117401, -0.007995447143912315, 0.02978198230266571, -0.012120082043111324, -0.016117805615067482, 0.008291575126349926, 0.042529571801424026, 0.0037685770075768232, 0.007431394420564175, -0.003248590975999832, -0.00913765374571085, 0.014890991151332855, 0.02263261377811432, -0.0010346841299906373, 0.002952463459223509, 0.009229312650859356, 0.021377597004175186, -0.018247105181217194, 0.03556352108716965, -0.0009562455816194415, 0.011570131406188011, 0.041739899665117264, 7.970549631863832e-05, -0.0037474250420928, 0.02101096324622631, -0.006123497150838375, 0.025622094050049782, 0.02055972069501877, -0.003356113564223051, 0.020446909591555595, 0.0062081050127744675, 0.012303399853408337, -0.011901511810719967, 0.0041634137742221355, 0.01251491904258728, 0.009088299237191677, 0.011802802793681622, 0.0008046564180403948, 0.010216404683887959, 0.013896848075091839, 0.020291795954108238, 0.01820480078458786, 0.018726550042629242, 0.016357528045773506, 0.0081646628677845, -0.02617204561829567, -0.0071282158605754375, -0.01993926241993904, -0.01355136651545763, -0.011125939898192883, -0.008947285823523998, -0.022731324657797813, -0.002793823601678014, -0.006102344952523708, 0.01412246935069561, 0.017880471423268318, 0.007360887713730335, -0.016695959493517876, 0.01285335049033165, 0.008016599342226982, -0.04154248163104057, -0.014806383289396763, 0.018359916284680367, 0.045349836349487305, 0.01090736873447895, -0.018049687147140503, -0.010470228269696236, 0.009349173866212368, -0.019770046696066856, -0.01954442635178566, 0.007854433730244637, 0.010357418097555637, -0.013283440843224525, -0.010089492425322533, -0.035986561328172684, 0.006768632214516401, 0.029866591095924377, -0.01006834115833044, -0.010364468209445477, -0.016949784010648727, 0.003063511336222291, 0.0027920608408749104, 0.011654739268124104, 0.01104133203625679, 0.05648987740278244, -0.024818317964673042, 0.03313809633255005, 0.006458403542637825, 0.006937848404049873, -0.003525329288095236, -0.00567225506529212, -0.010265759192407131, -0.025072142481803894, 0.0008518077083863318, 0.002681012963876128, -0.022731324657797813, 0.021067367866635323, -0.006595891434699297, 0.0037544758524745703, 0.007642914075404406, -0.002041165716946125, -0.03105110116302967, -0.01171819493174553, 0.003544718725606799, 0.062271419912576675, 0.03347652778029442, 0.006691075395792723, 0.02442348189651966, 0.0047556692734360695, 0.0031005272176116705, -0.045349836349487305, -0.007255127653479576, 0.007071810774505138, 0.001542331650853157, -0.017513835802674294, 0.028061622753739357, 0.012063677422702312, 0.017584342509508133, 0.013678277842700481, -0.0030881885904818773, 0.006490131374448538, -0.014207077212631702, 0.01627292111515999, -0.015567854978144169, 0.006225731689482927, 0.007572407368570566, 0.01131630688905716, 0.027145035564899445, 0.0018296459456905723, -0.024014543741941452, 0.02890770137310028, 0.01747153326869011, 0.007085911929607391, 0.003245065687224269, -0.00019323211745359004, 0.03846839442849159, 0.021899346262216568, -0.013762885704636574, -0.02402864582836628, 0.02363380789756775, 0.035986561328172684, 0.0032221509609371424, 0.017302315682172775, 0.007283330429345369, 0.01786636933684349, 0.02617204561829567, 0.016498541459441185, -0.010054239071905613, -0.015299929305911064, -0.04258598014712334, 0.00906714703887701, 0.04283980280160904, -0.02109557017683983, -0.006433726288378239, 0.03378675505518913, -0.005065898410975933, -0.03059985861182213, -0.021532712504267693, 0.021800637245178223, -0.007614711299538612, -0.002587591763585806, -0.008693462237715721, 0.00019576594058889896, -0.04123225063085556, -0.010787507519125938, -0.013840443454682827, 0.002312615979462862, -0.007981345988810062, -0.015483246184885502, -0.007762775290757418, -0.01907908171415329, -0.003486550645902753, -0.036635223776102066, 0.031417734920978546, 0.013769936747848988, -0.015173017978668213, -0.05180824175477028, -0.008827424608170986, -0.0033790282905101776, -0.010575988329946995, 0.016695959493517876, -0.014404496178030968, 0.014432698488235474, 0.0016736501129344106, -0.008742816746234894, -0.024282468482851982, -0.00033622828777879477, -0.04503960907459259, -0.002049979055300355, -0.00015654665185138583, -0.01161243487149477, -0.02711683325469494, -0.029612766578793526, 0.03502767160534859, -0.008298625238239765, 0.007170519791543484, -0.0019671337213367224, 0.019036779180169106, 0.011097736656665802, 0.021800637245178223, 0.02013668231666088, 0.008890880271792412, 0.015680665150284767, 0.013382150791585445, 0.0018331712344661355, -0.025340067222714424, -0.018557334318757057, -0.023337680846452713, 0.016103705391287804, 0.0017432753229513764, -0.01190856285393238, 0.013410353101789951, 0.0012691186275333166, 0.007100013550370932, 0.01752793788909912, -0.017979180440306664, 0.026059234514832497, -0.009828618727624416, -0.005651102866977453, -0.008524246513843536, 0.00537260202690959, 0.025043940171599388, 0.015144814737141132, -0.011386813595890999, 0.004318528342992067, -0.004970714449882507, 0.02610153891146183, 0.01606140099465847, -0.007614711299538612, 0.014242330566048622, 0.00019301178690511733, -0.03505587577819824, -0.030092211440205574, -0.00533734867349267, 0.00501654390245676, 0.032686855643987656, -0.0005160201108083129, -0.034830253571271896, -0.025043940171599388, -0.010138846933841705, 0.008263371884822845, -0.009483136236667633, -0.03305348753929138, -0.02830134518444538, 0.013234086334705353, 0.011767549440264702, 0.007124690804630518, -0.0024166132789105177, 0.017781760543584824, -0.02222367562353611, 0.015596057288348675, 0.009144704788923264, 0.0029031087178736925, 0.026482274755835533, -0.00598953478038311, 0.00729743205010891, -0.011668840423226357, -0.006472504697740078, -0.028160331770777702, -0.052908144891262054, -0.0406964011490345, 0.007360887713730335, 0.026806604117155075, 0.024183759465813637, 0.013565467670559883, 0.030628060922026634, 0.018853461369872093, 0.020461011677980423, 0.008277473039925098, 0.008792171254754066, -0.001452435739338398, -0.000614288670476526, -0.033166300505399704, 0.014905092306435108, 0.017231810837984085, -0.0032521162647753954, 0.01439039409160614, -0.006285662297159433, 0.02361970767378807, 0.031107505783438683, 0.0030793752521276474, -0.0028026369400322437, -0.009997834451496601, -0.03347652778029442, -0.006035363767296076, -0.007149368058890104, -0.0035129906609654427, 0.004776821471750736, -0.02944355085492134, -0.01228224765509367, 0.0448421910405159, 0.0065994164906442165, -0.006260985042899847, -0.0009641775977797806, 0.01479228213429451, 0.0005508327158167958, 0.030430642887949944, 0.008651157841086388, 0.011478472501039505, 0.004057654179632664, -0.004963663872331381, -0.027793696150183678, -0.0040294514037668705, -0.00469926418736577, 0.008101207204163074, 0.00011600537254707888, 0.02006617560982704, 0.01879705674946308, -0.0033243854995816946, 0.02497343346476555, 0.038383785635232925, -0.0072057731449604034, 0.009913226589560509, -0.0030353085603564978, -0.013678277842700481, -0.02408505044877529, -0.04597029462456703, -0.017147202044725418, 0.006768632214516401, 0.013741733506321907, 0.004202192649245262, 0.01747153326869011, 0.0014207077911123633, -0.03085368312895298, 0.00947608519345522, 0.019107285887002945, 0.023662010207772255, 0.006035363767296076, 0.04049898311495781, 0.039117053151130676, -0.02027769386768341, -0.012634780257940292, 0.0307126697152853, 0.021532712504267693, 0.00251708528958261, 0.01579347625374794, 0.00220861891284585, -0.02550928294658661, -0.027610380202531815, 0.0019107285188511014, 0.01761254481971264, 0.015455043874680996, -0.02329537644982338, -0.0009729909361340106, 0.02744116447865963, -0.0001494960015406832, -0.015553752891719341, -0.036973655223846436, -0.022703120484948158, 0.010484329424798489, -0.02422606386244297, 0.00812940951436758, -0.0008971963543444872, 0.011429117992520332, -0.008178764022886753, 0.013015516102313995, -0.033307310193777084, 0.02088405191898346, 0.017950978130102158, -0.01137976348400116, 0.014651268720626831, 0.010540734976530075, -0.009483136236667633, -0.008982539176940918, 0.0021240110509097576, 0.02890770137310028, -0.022251879796385765, 0.009976682253181934, 0.024606799706816673, 0.01506020687520504, 0.012373906560242176, -0.010822760872542858, 0.002698639640584588, 0.03539430722594261, -0.017993280664086342, -0.010999027639627457, -0.018557334318757057, -0.013882746919989586, -0.0043855095282197, -0.007004829589277506, -0.011563080362975597, -0.006694600451737642, 0.013995558023452759, 0.0034795000683516264, 0.02684890851378441, 0.02415555715560913, -0.019036779180169106, -0.0017415126785635948, 0.0023355307057499886, -0.020305898040533066, 0.0037791531067341566, 0.024733711034059525, -0.03970931097865105, -0.010575988329946995, -0.006648770999163389, -0.009574794210493565, 0.016695959493517876, 0.027864202857017517, 0.024663204327225685, -0.003983622416853905, 0.007649964652955532, 0.035760942846536636, -0.02596052549779415, -0.015610158443450928, 0.0016207701992243528, -0.02483242005109787, -0.03133312612771988, 0.00846784096211195, -0.0025682025589048862, -0.02101096324622631, 0.000360905600246042, -0.019925162196159363, -0.04137326404452324, -0.018218902871012688, -0.02456449531018734, 0.011140041053295135, -0.023394085466861725, -0.012275196611881256, 0.014679471962153912, 0.004723941441625357, -0.014510255306959152, -0.0175420381128788, -0.020700734108686447, 0.029415348544716835, -0.006899069529026747, 0.021137874573469162, 0.016301123425364494, -0.017175404354929924, 0.04151427745819092, -0.01995336450636387, -0.004611130803823471, 0.0050553223118186, -0.04295261204242706, -0.026679692789912224, 0.016484439373016357, 0.016357528045773506, -0.005273892544209957, -0.028964105993509293, 0.022265980020165443, -0.01620241440832615, -0.03339191898703575, 0.0065253847278654575, 0.001159833394922316, -0.003842609003186226, 0.016216514632105827, -0.0029753779526799917, 0.007516002282500267, -0.0033296735491603613, -0.0009677028865553439, -0.0355917252600193, -0.0237607192248106, 0.0009782789275050163, -0.02724374458193779, -0.012973211705684662, -0.00039175222627818584, 0.013445606455206871, 0.01639983244240284, -0.00970170646905899, -0.03649421036243439, -0.008651157841086388, -0.031417734920978546, -0.009356223978102207, -0.014778180979192257, -0.002381359925493598, -0.0010338028660044074, -0.00729743205010891, -0.010794558562338352, 0.04010414704680443, -0.01659725047647953, 0.01813429407775402, 0.027060428634285927, -0.005887300241738558, 0.003347300225868821, 0.016117805615067482, 0.015328132547438145, -0.016103705391287804, -0.04780346527695656, -0.0144961541518569, 0.0056017483584582806, 0.01981235109269619, 0.014665369875729084, 0.029556361958384514, -0.04157068580389023, -0.01130925677716732, 0.012218791991472244, -0.007047133520245552, 0.0030018179677426815, -0.00781212979927659, 0.004315003287047148, -0.053782425820827484, -0.013459707610309124, 0.01995336450636387, 0.00469926418736577, 0.00629271287471056, 0.021518610417842865, -0.0004552081518340856, 0.007558306213468313, 0.039258066564798355, -0.03561992943286896, -0.012557223439216614, 0.021786535158753395, -0.014376292936503887, 0.019234197214245796, -0.009222261607646942, 0.018035585060715675, 0.02696171961724758, 0.024211961776018143, -0.004533573519438505, -0.03305348753929138, 0.0021081469021737576, -0.029217930510640144, 0.010724051855504513, 0.010561887174844742, 0.0019618459045886993, 0.0336175411939621, -0.03621218353509903, -0.002913684817031026, -0.01625881902873516, -0.006299763452261686, -0.006666397675871849, -0.007974294945597649, -0.02054562047123909, 0.027610380202531815, 0.016428034752607346, -0.022928742691874504, -0.023323578760027885, -0.009116501547396183, -0.02228008210659027, 0.002437765244394541, -0.004508896265178919, -0.007847383618354797, -0.019050879403948784, 0.003084663301706314, -0.0016190075548365712, -0.010773406364023685, 0.0042409710586071014, -0.0003880065632984042, -0.004582928027957678, -0.02033410035073757, 0.010216404683887959, 0.1793687641620636, -0.0027709088753908873, 0.007995447143912315, 0.02542467601597309, -0.001220645266585052, 0.005866148043423891, 0.02109557017683983, 0.015384537167847157, -0.006183427758514881, 0.009595946408808231, -0.009292768314480782, 0.0056757801212370396, -0.017386924475431442, -0.0012056626146659255, 0.012338653206825256, 0.009264566004276276, -0.04066820070147514, -0.03660701960325241, -0.009412629529833794, 0.004159888718277216, 0.007188146468251944, -0.020164884626865387, -0.02596052549779415, -0.01542684156447649, 0.00984271988272667, -0.01104838214814663, 0.0058731986209750175, -0.013494960963726044, 0.031953584402799606, 0.001864899299107492, -0.0010382095351815224, -0.0033931294456124306, 0.01639983244240284, 0.008347979746758938, -0.01600499451160431, -0.003003580728545785, -0.009454932995140553, -0.006758056581020355, 0.007889687083661556, 0.007713420782238245, -0.018317611888051033, -0.024804217740893364, 0.022068561986088753, -0.007156418636441231, -0.01573706977069378, 0.015370436012744904, -0.004184565972536802, -0.00980746652930975, 0.004159888718277216, -0.0050271195359528065, -0.027864202857017517, 0.009602997452020645, 0.016625452786684036, 0.013840443454682827, -0.0036381399258971214, -0.004787397105246782, 0.0005997466505505145, 0.018049687147140503, 0.024663204327225685, -0.0021081469021737576, -0.015567854978144169, 0.03251763805747032, 0.005323247518390417, 0.016977986320853233, -0.017838167026638985, 0.0511595793068409, -0.011471421457827091, -0.006377320736646652, 0.0007116758497431874, -0.010597140528261662, -0.0016992087475955486, -0.0012620679335668683, -0.02851286344230175, 0.0024765438865870237, -0.02242109552025795, -0.025523385033011436, -0.006669923197478056, 0.01198611967265606, 0.048226505517959595, 0.025720803067088127, -0.0075230528600513935, -0.004632283002138138, -0.02844235673546791, -0.004921359941363335, -0.003511228132992983, -0.029810184612870216, 0.021871143952012062, 0.0054677859880030155, 0.0003668545978143811, -0.0026228451170027256, -0.03127672150731087, 0.004547674674540758, -0.011400915682315826, 0.004678111989051104, 0.0064654541201889515, -0.01258542574942112, 0.009849769994616508, 0.0006949305534362793, -0.011598333716392517, 0.020052073523402214, -0.011358611285686493, 0.0672350823879242, 0.01759844459593296, -0.010575988329946995, 0.0025981678627431393, -0.007417292799800634, -0.013798139058053493, 0.025607991963624954, 0.03480205312371254, -0.021123774349689484, -0.006335016805678606, -0.018021482974290848, 0.0019142538076266646, -0.009426730684936047, -0.01974184438586235, 0.039793919771909714, 0.009412629529833794, -0.021575015038251877, 0.018374016508460045, 3.7484165659407154e-05, -0.01254312228411436, -0.012973211705684662, -0.013643024489283562, 0.01833171211183071, -0.02408505044877529, -0.026129741221666336, -0.012261095456779003, 0.007798028644174337, -0.023464592173695564, -0.039314474910497665, 0.031417734920978546, 0.006793309934437275, 0.027342455461621284, 0.002062317682430148, 0.01881115697324276, 0.013403302058577538, 0.013544315472245216, -0.02342228777706623, 0.009525439701974392, 0.006458403542637825, -0.013960304670035839, -0.010434974916279316, -0.005457209888845682, 0.019995668902993202, -0.018388118594884872, -0.02831544540822506, 0.005139930173754692, 0.0032644548919051886, -0.01606140099465847, -0.0033913669176399708, 0.0009659402421675622, -0.005242164712399244, 0.000928042980376631, -0.03846839442849159, 0.031699761748313904, -0.04224754869937897, -0.010717001743614674, -0.031361330300569534, 0.002041165716946125, 0.0053443992510437965, -0.016103705391287804, 0.029217930510640144, 0.010533683933317661, -0.016033198684453964, -0.012747591361403465, -0.017386924475431442, -0.1808352917432785, 0.0258336141705513, 0.023112058639526367, -0.03124851919710636, 0.016822872683405876, 0.0010434974683448672, 0.003846134291961789, 0.020164884626865387, -0.016949784010648727, -0.015271726995706558, 0.00753010343760252, 0.001224170671775937, -0.027257846668362617, -0.031022898852825165, -0.0038708115462213755, -0.0032767937518656254, 0.0037756278179585934, 0.011901511810719967, 0.016977986320853233, 0.023478694260120392, 0.02343638986349106, -0.040188755840063095, 0.0014806382823735476, -0.0050870501436293125, 0.014185925014317036, 0.006758056581020355, -0.009024843573570251, 0.029556361958384514, -0.01539863832294941, -0.01063944399356842, 0.011231699027121067, 0.005612324457615614, 0.02342228777706623, 0.007163469213992357, 0.005608798936009407, 0.020503316074609756, -0.02649637497961521, 0.0175420381128788, -0.005732185672968626, 0.05657448619604111, 0.005125829018652439, 0.03491486236453056, 0.012402108870446682, -0.0215609148144722, -0.030346035957336426, 0.016822872683405876, 0.034294404089450836, -0.010152949020266533, 0.02101096324622631, -0.02040460705757141, -0.01761254481971264, -0.03646600618958473, 0.01700618863105774, 0.0018701872322708368, 0.022167271003127098, 0.02992299571633339, 0.006490131374448538, -0.009602997452020645, 0.007025981321930885, 0.002411325229331851, -0.026425868272781372, -0.007607660721987486, 0.013459707610309124, 0.006472504697740078, -0.03855300322175026, -0.02356330119073391, -0.008919083513319492, -0.0021733655594289303, -0.03308169171214104, 0.003484788117930293, 0.004050603602081537, -0.008982539176940918, -0.024141455069184303, -0.00468516256660223, 0.006398472934961319, 0.00561937503516674, -0.006969576235860586, 0.01620241440832615, -0.010653545148670673, 0.009081248193979263, 0.007241026498377323, 0.04182450845837593, -0.00032433029264211655, 0.011090686544775963, 0.026947617530822754, -0.02134939469397068, -0.00906714703887701, -0.005848521366715431, -0.013170630671083927, 0.006987202912569046, 0.024000441655516624, -0.035704534500837326, -0.001998861785978079, -0.0050764745101332664, 0.010152949020266533, 0.02201215736567974, -0.0008095037774182856, 0.012825148180127144, -0.009377376176416874, -0.020658429712057114, 0.00836208090186119, 0.0037474250420928, 0.00984271988272667, 0.030684467405080795, 0.008778070099651814, 0.007649964652955532, -0.0037615264300256968, 0.009306869469583035, 0.037847936153411865, 0.0008782476652413607, -0.021701928228139877, 0.015539651736617088, 0.01130925677716732, 0.024522190913558006, -0.0022632614709436893, 0.024536292999982834, -0.00595780648291111, -0.02335178107023239, 0.00729743205010891, -0.02283003367483616, 0.01734462007880211, -0.0231543630361557, -0.01100607868283987, 0.011400915682315826, -0.01592038758099079, -0.04329104349017143, -0.09075608104467392, -0.020432809367775917, 0.0036592918913811445, 0.023112058639526367, -0.02275952696800232, 0.009264566004276276, -0.00939852837473154, -0.007174045313149691, -0.0021292988676577806, 0.024818317964673042, 0.016357528045773506, -0.006352643482387066, -0.017880471423268318, -0.016103705391287804, 0.004050603602081537, -0.012775793671607971, -0.016216514632105827, -0.012930908240377903, -0.01070995070040226, 0.016583150252699852, 0.0032027617562562227, -0.006260985042899847, 0.009461984038352966, -0.006571214180439711, -0.026877110823988914, -0.010209353640675545, -0.03124851919710636, 0.01298731379210949, 0.020573822781443596, 0.011231699027121067, 0.025650296360254288, -0.011027229949831963, -0.004727466497570276, -0.02738475799560547, -0.0003056019777432084, 0.0015960928285494447, -0.008890880271792412, -0.022971047088503838, 0.024465786293148994, -0.04712660238146782, 0.018035585060715675, 0.026270754635334015, 0.017386924475431442, -0.005809742957353592, -0.025805411860346794, 0.006631144788116217, -0.016357528045773506, 0.025819512084126472, -0.0037897289730608463, -0.013847493566572666, -0.015567854978144169, -0.02443758398294449, -0.038327381014823914, -0.013798139058053493, 0.022040359675884247, -0.018627841025590897, -0.005051796790212393, -0.00933507177978754, -0.04030156508088112, -0.00282731419429183, -0.01647033914923668, -0.012832199223339558, -0.019502121955156326, 0.028132127597928047, 0.017048493027687073, -0.0006940492312423885, -0.029697375372052193, -0.0033878416288644075, 0.008058902807533741, -0.005534767173230648, -0.0188816636800766, 0.02109557017683983, -0.020390504971146584, 0.004177515394985676, -0.02751167118549347, -0.008827424608170986, 0.0018243580125272274, -0.018585536628961563, 0.01686517521739006, -0.0033843161072582006, -0.008037750609219074, -0.01833171211183071, 0.0033702149521559477, -0.04585748538374901, -6.131456757429987e-06, 0.010470228269696236, -0.0027268421836197376, -0.013502011075615883, 0.021067367866635323, -0.023845328018069267, 0.007727521937340498, 0.023915834724903107, 0.008651157841086388, -0.006042414344847202, 0.01618831232190132, 0.014538458548486233, -0.007181095890700817, -0.0175420381128788, -0.02343638986349106, 0.01707669533789158, -0.056179650127887726, -0.015243524685502052, -0.07738803327083588, 0.02543877623975277, 0.012782844714820385, -0.014397445134818554, -0.011936765164136887, 0.006835613865405321, -0.00809415616095066, -0.0019283551955595613, 0.0005124947638250887, 0.010322164744138718, -0.03226381540298462, 0.024113252758979797, 0.01513071358203888, -0.0024465785827487707, -0.011563080362975597, -0.0024765438865870237, 0.014848687686026096, -0.03392776846885681, 0.01679466851055622, -0.005869673565030098, -0.01599089428782463, 0.03017682023346424, -0.00039131156518124044, 0.021645521745085716, -0.030769074335694313, -0.01680877059698105, -0.015553752891719341, -0.0149897001683712, -0.03567633405327797, -0.0058026923798024654, 0.0012885078322142363, -0.02094045653939247, -0.007424343843013048, 0.022844133898615837, -0.02008027583360672, 0.0028220261447131634, 0.019558526575565338, 0.02041870728135109, 0.017485633492469788, 0.030881885439157486, -0.012155335396528244, -0.0225480068475008, -0.0038884382229298353, -0.00026924704434350133, -0.019488021731376648, -0.001478875637985766, -0.006236307788640261, 0.011076584458351135, -0.0031428311485797167, -0.0012435599928721786, 0.04526522755622864, 0.009793365374207497, -0.01034331601113081, -0.014129520393908024, 0.009786314330995083, -0.005883774720132351, 0.004988341126590967, 0.020644329488277435, 0.011429117992520332, -0.011330408975481987, 0.02684890851378441, -0.008672310039401054, 0.01881115697324276, -0.000644694606307894, 0.008919083513319492, -0.010124745778739452, -0.025819512084126472, 0.01666775718331337, -0.008658208884298801, -0.020108478143811226, -0.02690531313419342, -0.0077204713597893715, 0.022139068692922592, 0.02885129489004612, 0.013170630671083927, 0.010082442313432693, -0.012437362223863602, -0.0003428382915444672, -0.009095349349081516, 0.00311110308393836, 0.005097626242786646, -0.0028907700907438993, 0.003934267442673445, -0.002273837337270379, 0.034576430916786194, -0.0023831226862967014, 0.009292768314480782, 0.03587375208735466, -0.018909865990281105, 0.011619485914707184, -0.010265759192407131, 0.014242330566048622, 0.008347979746758938, 0.005531241651624441, -0.016385730355978012, 0.036973655223846436, -0.006712227128446102, -0.008559499867260456, 0.01907908171415329, 0.014439749531447887, 0.015187119133770466, 0.005961332004517317, 0.010632392950356007, -0.04864954575896263, -0.044334542006254196, 0.02424016408622265, -0.023662010207772255, -0.04010414704680443, -0.0005525953602045774, 0.0035094653721898794, 0.0017344621010124683, 0.008143510669469833, 0.0029806660022586584, 0.003930742386728525, -0.016244716942310333, 0.03739669546484947, -0.01745743118226528, 0.007727521937340498, -0.019629033282399178, 0.017429228872060776, 0.0041634137742221355, -0.002797348890453577, 0.025481080636382103, -0.009490186348557472, 0.03260224685072899, 0.037706922739744186, 0.02576310746371746, -0.04738042503595352, 0.023210769519209862, -0.024804217740893364, 0.0038778623566031456, -0.011245801113545895, -0.006074142642319202, -0.002996529918164015, -0.024141455069184303, 0.000283789006061852, 3.596937676775269e-05, -0.019629033282399178, -0.016879277303814888, 0.07473698258399963, 0.004325578920543194, -0.005682831164449453, -0.01868424564599991, -0.035845547914505005, -0.008700513280928135, 0.0039554196409881115, 0.02758217789232731, 0.01459486410021782, -0.012867452576756477, -0.0009994308929890394, -0.00843258760869503, -0.007025981321930885, -0.020996861159801483, -0.016625452786684036, -0.026792503893375397, -0.010801609605550766, 0.02308385632932186, -0.01090736873447895, -0.012825148180127144, 0.014820484444499016, 0.006123497150838375, 0.008827424608170986, 0.02342228777706623, -0.004445440135896206, -0.014679471962153912, 0.002889007329940796, -0.0196149330586195, -0.007311533205211163, -0.05209026858210564, 0.016019096598029137, 0.02542467601597309, -0.020376404747366905, -0.04111944139003754, 0.013466758653521538, -0.010547785088419914, 0.008601803332567215, 0.009306869469583035, 0.0026457596104592085, 0.014510255306959152, 0.026002829894423485, 0.019445717334747314, -0.010167050175368786, -0.03767871856689453, -0.029161524027585983, -0.0009765162249095738, -0.019050879403948784, -0.022336486726999283, -0.03065626509487629] \ No newline at end of file diff --git a/database/embeddings/publications_txt/2023_solving_math_word_problems_concerning_systems_of_equations_with_gpt3.json b/database/embeddings/publications_txt/2023_solving_math_word_problems_concerning_systems_of_equations_with_gpt3.json new file mode 100644 index 0000000000000000000000000000000000000000..3bcf7abc9706d36d1c91e6290d806fdd384ec29c --- /dev/null +++ b/database/embeddings/publications_txt/2023_solving_math_word_problems_concerning_systems_of_equations_with_gpt3.json @@ -0,0 +1 @@ +[0.008968718349933624, 0.004022631328552961, -0.007968307472765446, 0.0013082296354696155, 0.004844647366553545, 0.02605265937745571, -0.022218916565179825, -0.009437442757189274, -0.02622056007385254, -0.024289697408676147, 0.023338256403803825, 0.03025018610060215, -0.01852509193122387, 0.01415966171771288, -0.005162959918379784, 0.017573650926351547, 0.025395045056939125, -0.019896283745765686, -0.016216451302170753, 0.012711514718830585, 0.025339078158140182, -0.000474408152513206, -0.019840316846966743, -0.001222530147060752, -0.004277980886399746, 0.02080574817955494, 0.014355546794831753, -0.02626253478229046, 0.00022561714285984635, 0.001695626531727612, 0.013390115462243557, -0.022162949666380882, -0.017251841723918915, -0.01519505213946104, 0.0009461928275413811, -0.0008530601626262069, 0.007590530440211296, -0.013124271295964718, 0.018902868032455444, 0.00352942175231874, 0.009052669629454613, 0.024639490991830826, 0.015740731731057167, -0.0276197362691164, -0.008458019234240055, 0.01923867128789425, 0.02332426607608795, -0.03159339725971222, -0.025926733389496803, 0.040520139038562775, -0.0035066851414740086, 0.034979403018951416, -0.03159339725971222, -0.00847900751978159, -0.009640322998166084, -0.02130945213139057, 0.0038897094782441854, 0.03167734667658806, -0.030949775129556656, -0.014691349118947983, 0.026836197823286057, -0.03243290260434151, -0.02202303148806095, 0.00872386246919632, 0.0008565580938011408, -0.013935794122517109, -0.026654304936528206, 0.019000811502337456, 0.001086984877474606, 0.003588886698707938, 0.004568309988826513, 0.010353903286159039, 0.004855141043663025, -0.04530532285571098, 0.03083784133195877, -0.03467158228158951, -0.0019081264035776258, 0.002306891605257988, -0.010556783527135849, 0.02823537401854992, 0.00028945456142537296, 0.0016239187680184841, -0.01163414865732193, 0.017909454181790352, 0.008940734900534153, 0.006572629790753126, 0.00785637367516756, 0.007667485158890486, -0.013222213834524155, -0.005442794878035784, 0.016580237075686455, 0.0009453183156438172, 0.007380653638392687, 0.012277769856154919, -0.020344020798802376, 0.02493331767618656, -0.014607397839426994, 0.03299257159233093, 0.014012748375535011, -0.044913552701473236, 0.010822626762092113, 0.0005850304733030498, -0.01830122247338295, -0.029466647654771805, 0.008814808912575245, -0.011487235315144062, 0.0027039076667279005, 0.026682287454605103, 0.0034384753089398146, 0.025451013818383217, -0.03727405145764351, 0.02399587072432041, 0.0033073024824261665, 0.0037602856755256653, -0.0035521583631634712, -0.019322622567415237, 0.006932917516678572, -0.005159461870789528, -0.03128557652235031, -0.0068804481998085976, 0.029970351606607437, -0.004110079724341631, 0.009675302542746067, -0.028207389637827873, 0.01727982424199581, 0.014285587705671787, -0.012494642287492752, -0.03875717893242836, -0.01159217394888401, -0.017335791140794754, 0.015181060880422592, 0.014033735729753971, 0.008220159448683262, 0.01616048440337181, -0.009633326902985573, 0.028095455840229988, -0.0358748733997345, 0.008199172094464302, -0.032852653414011, -0.03749791905283928, -0.00387571775354445, 0.04684441536664963, -0.030949775129556656, -0.011424272321164608, -0.008541969582438469, 0.016230441629886627, 0.005068515427410603, -0.0001238489494426176, 0.020553896203637123, 0.017377767711877823, 0.003910697065293789, 0.018287232145667076, -0.0029715001583099365, 0.020931674167513847, 0.006170366425067186, 0.022848544642329216, -0.0009068410145118833, 0.024135787039995193, 0.00183466961607337, -0.018679000437259674, 0.000850436685141176, 0.007506579626351595, -0.0043024662882089615, -0.01396377757191658, 0.012179828248918056, 0.02286253683269024, 0.053728360682725906, 0.0181193295866251, 0.002126747742295265, -0.010801639407873154, -0.04149956256151199, 0.01565678045153618, -0.029970351606607437, -0.02371603436768055, 0.007205756846815348, 0.03254483640193939, 0.06005263701081276, -0.0060234530828893185, -0.0028001011814922094, -0.00872386246919632, -0.0008071496849879622, 0.0026706773787736893, 0.012795465067029, 0.04116376116871834, -0.008486002683639526, 0.0033370349556207657, 0.03713413327932358, -0.015992581844329834, 0.004617281258106232, -0.013690938241779804, 0.03288063779473305, 0.02829134091734886, 0.005666662938892841, 0.008178183808922768, -0.6102646589279175, -0.02013414353132248, -0.006960900966078043, -0.020064184442162514, -0.011291351169347763, 0.026164593175053596, 0.003167384769767523, 0.009724273346364498, -0.03688228130340576, 0.03562302142381668, -0.008045262657105923, 0.010255960747599602, -0.010556783527135849, -0.0218411386013031, 0.023198340088129044, -0.018007395789027214, 0.012781473807990551, -0.020469946786761284, 0.00067947490606457, 0.02345019206404686, -0.006618103012442589, 0.016048548743128777, 0.005288885440677404, 0.012011926621198654, -0.0058135767467319965, 0.027269942685961723, 0.014089703559875488, -0.024989284574985504, 0.006278802640736103, -0.02062385529279709, -0.027717677876353264, 0.014369538053870201, 0.02381397783756256, -0.01331316027790308, 0.03481150045990944, -0.0039666639640927315, -0.03906499594449997, 0.013879826292395592, -0.006271807011216879, 0.03727405145764351, -0.03898104652762413, -0.03187322989106178, -0.01123538427054882, 0.017125915735960007, -0.004344441927969456, 0.00984320417046547, 0.019098753109574318, 0.0011114705121144652, -0.017923446372151375, -0.037749771028757095, 0.0009252051822841167, 0.016762129962444305, -0.009759252890944481, -0.01937858946621418, 0.0039246887899935246, 0.0009348245221190155, 0.008206167258322239, -0.02214895747601986, -0.01651027798652649, -0.007821394130587578, 0.010172010399401188, 0.004851642996072769, -0.01241768803447485, -0.02398187853395939, -0.011424272321164608, 0.008534974418580532, 0.012529621832072735, 0.028529200702905655, 0.010234973393380642, -0.008423039689660072, 0.0030047306790947914, 0.012410691939294338, -0.016888055950403214, -0.006974892690777779, 0.024233730509877205, 0.011830033734440804, 0.029830433428287506, 0.021953072398900986, -0.03234894946217537, 0.0076255095191299915, -0.00832509808242321, -0.0021879617124795914, 0.01634237729012966, -0.0173637755215168, 0.03735800087451935, 0.002474792767316103, -0.009479418396949768, 0.00973126944154501, 0.01740575022995472, 0.019182704389095306, 0.02367405965924263, 0.020441962406039238, -3.784880755119957e-05, -0.015404928475618362, -0.005096498876810074, 0.001593311782926321, -0.019126737490296364, -0.010556783527135849, 0.015782706439495087, -0.012116865254938602, 0.00036793958861380816, -0.015852665528655052, 0.02560492232441902, 0.006173864472657442, 0.019700398668646812, 0.028767060488462448, -0.02318434789776802, 0.004054112825542688, 0.014733323827385902, -0.003956170286983252, -0.018357189372181892, -0.0023611097130924463, -0.023744018748402596, 0.0016755133401602507, 0.01732180081307888, -0.03556705638766289, 0.02568887360394001, -0.008094233460724354, 0.005243412218987942, 0.020777765661478043, 0.0276197362691164, 0.007667485158890486, -0.0032023643143475056, -0.004358433652669191, -0.0005124482559040189, 0.032237015664577484, 0.03763783723115921, -0.03973660245537758, -0.020735789090394974, 0.017881469801068306, 0.005666662938892841, -0.009346496313810349, 0.01768558658659458, -0.008486002683639526, 0.03433578088879585, -0.018860893324017525, 0.016272418200969696, -0.02196706458926201, 0.016216451302170753, -0.003963166382163763, -0.03290862217545509, 0.007048349361866713, 0.005061519332230091, 0.002104011131450534, -0.028767060488462448, -0.014551430940628052, -0.01452344749122858, -0.0003653161402326077, 0.002385595114901662, 0.016804104670882225, -0.019546490162611008, 0.024625498801469803, 0.0001987267314689234, 0.02263866923749447, -0.01346706971526146, -0.028487224131822586, 0.015964599326252937, -0.029382698237895966, -0.032600801438093185, -0.018860893324017525, 0.006562135647982359, 0.015866655856370926, -0.01628641039133072, -0.015041142702102661, -0.0051734535954892635, 0.001735852798447013, -0.01793743669986725, 0.015740731731057167, -0.036630429327487946, -0.03478351607918739, 0.0011053491616621614, -0.010004108771681786, -0.009563368745148182, -0.0006619851919822395, -0.01768558658659458, 0.01362797524780035, -0.003952672239392996, 0.0181193295866251, -0.013704929500818253, -0.007527567446231842, -0.013236206024885178, 0.02196706458926201, -0.030949775129556656, -0.011976947076618671, 0.019938258454203606, 0.014747316017746925, 0.03145347908139229, 0.0021669738925993443, 0.01385184284299612, -0.007422629278153181, -0.011011515744030476, 0.01553085446357727, -0.009465426206588745, 0.014103694818913937, -0.015069126151502132, 0.012585588730871677, -0.010969540104269981, -0.002913784235715866, -0.0022894018329679966, 0.049698732793331146, 0.011473244056105614, 0.02505924366414547, -0.00798929575830698, -0.010165014304220676, 0.003662343369796872, -0.012837440706789494, 0.012361721135675907, -0.015041142702102661, 0.010416866280138493, 0.0038897094782441854, 0.034391749650239944, -0.011011515744030476, -0.021043607965111732, -0.00399464787915349, -0.00031984291854314506, 0.02157529443502426, -0.005124482326209545, -0.0008902257541194558, -0.0332164391875267, -0.004113577771931887, -0.012830444611608982, -0.009451434016227722, 0.03190121427178383, -0.01120740082114935, -0.032824669033288956, 0.001769083202816546, 0.027395866811275482, 0.020819740369915962, 0.0242617130279541, -0.016748137772083282, -0.021323444321751595, 0.0016562746604904532, 0.013746905140578747, 0.008059253916144371, -0.0028613151516765356, -0.012634560465812683, 0.04541725665330887, -0.0055407374165952206, 0.030585989356040955, -0.01937858946621418, 0.010906577110290527, 0.026416445150971413, 0.03025018610060215, -0.03800162300467491, -0.003256582422181964, -0.026374468579888344, -0.007041353732347488, 0.019798342138528824, -0.0002514144580345601, 0.021995047107338905, -0.02770368568599224, 0.019182704389095306, -0.01713990792632103, -0.011347318068146706, 0.04169544577598572, 0.009451434016227722, -0.015908632427453995, -0.003725306363776326, 0.00032028014538809657, 0.03833742439746857, 0.0005277517484501004, 0.014915216714143753, -0.007814398035407066, 0.016006574034690857, 0.007492587901651859, -0.01143126841634512, -0.006530654150992632, -0.023254306986927986, 0.0036903268191963434, -0.014579414390027523, -0.0010598759399726987, -0.01351604051887989, -0.0023960890248417854, -0.011823037639260292, 0.01907077059149742, 0.006037444807589054, -0.0007030859705992043, -0.006639090366661549, -0.005404317751526833, 0.0242617130279541, -0.0259547159075737, -0.007422629278153181, 0.006859460845589638, 0.025898749008774757, 0.014887233264744282, -0.01588064804673195, 0.021897105500102043, 0.008737854659557343, -0.034615617245435715, 0.00850699096918106, 0.018175296485424042, 0.00935349240899086, -0.008087237365543842, -0.018329206854104996, -0.03570697456598282, -0.021505337208509445, 0.008954727090895176, 0.019658423960208893, -0.031201627105474472, -0.017083939164876938, -0.010815630666911602, 0.01758764311671257, -0.005589708220213652, -0.013369127176702023, 0.050678156316280365, -0.01452344749122858, 0.01928064599633217, -0.00657962542027235, 0.007954316213726997, -0.019588464871048927, 0.02491932548582554, -0.0013703181175515056, -0.02630450949072838, -0.006443205755203962, 0.011529210954904556, 0.0036798331420868635, 0.011809046380221844, -0.015516863204538822, 0.009164603427052498, 0.0032058621291071177, -0.020917681977152824, -0.036630429327487946, -0.01264155562967062, 0.020707806572318077, 0.047012317925691605, 0.021813154220581055, 0.003092179074883461, 0.014208633452653885, -0.008989706635475159, 0.012942378409206867, -0.014439497143030167, -0.01982632465660572, 0.023422207683324814, 0.010283944196999073, -0.012578592635691166, 0.0027039076667279005, -0.008583945222198963, -0.01830122247338295, 0.03982055187225342, 0.004442384000867605, -0.003984153736382723, -0.016720153391361237, 0.02385595254600048, -0.01212386041879654, 0.015041142702102661, -0.008618924766778946, 0.0011578182457014918, -0.011305342428386211, 0.009752257727086544, -0.032376933842897415, 0.02671027183532715, 0.04147157818078995, -0.011557194404304028, -0.018804926425218582, -0.003494442207738757, 0.002647940767928958, 0.01893085241317749, -0.004145059268921614, -0.020553896203637123, 0.0366024449467659, 0.03489544987678528, 0.01624443382024765, 0.04079997539520264, 0.006929419469088316, 0.0069678970612585545, 0.024135787039995193, 4.07728657592088e-05, -0.02286253683269024, -0.0029382698703557253, -0.045221369713544846, -0.004204524215310812, 0.027311917394399643, 0.008003287017345428, -0.012914394959807396, 0.008604932576417923, 0.022037023678421974, -0.041723430156707764, -0.027465825900435448, 0.014397521503269672, 0.013606986962258816, -0.01275349035859108, -0.0238979272544384, -0.003739298088476062, -0.039848536252975464, -0.015223035588860512, -0.010843615047633648, -0.004995058756321669, 0.002313887467607856, -0.012886411510407925, 0.005956992041319609, -0.021281467750668526, -0.022484758868813515, -0.020707806572318077, 0.044102031737565994, -0.002504525240510702, -0.02161727100610733, -0.04953083395957947, -0.010927565395832062, -0.00176471087615937, -0.003700820729136467, 0.023100396618247032, -0.01022797729820013, -0.00957736000418663, -0.009633326902985573, -0.008150200359523296, -0.04905511438846588, -0.015600813552737236, -0.03290862217545509, 0.03150944411754608, 0.0005360593204386532, -0.0005671035614795983, -0.011983943171799183, 0.0003578829928301275, 0.025143194943666458, -0.027004098519682884, -0.01571274735033512, 0.004033125005662441, -0.006796497851610184, 0.017209865152835846, 0.009297525510191917, 0.01329217292368412, 0.011732091195881367, 0.011200404725968838, 0.020330028608441353, -0.0061493790708482265, -0.019518505781888962, -0.023744018748402596, -0.03724606707692146, 0.0004988937289454043, 0.016300400719046593, 0.00834608543664217, 0.011109458282589912, -0.01579669862985611, -0.016636203974485397, 0.021141551434993744, -0.019224679097533226, 0.01583867333829403, 0.009724273346364498, 0.009332504123449326, 0.0031026729848235846, 0.025842782109975815, -0.0073526701889932156, 0.01565678045153618, -0.02228887565433979, -0.03344030678272247, -0.007569542620331049, 0.026920147240161896, 0.023660067468881607, -0.0007297577685676515, 0.029074879363179207, 0.000782664108555764, -0.020344020798802376, -0.018804926425218582, 0.013655958697199821, -0.003595882561057806, 0.014621390029788017, 0.0023646075278520584, -0.0048691327683627605, -0.017881469801068306, -0.016272418200969696, -0.03039010427892208, -0.01956048235297203, -0.001934360945597291, -0.03517528623342514, 0.014019744470715523, 0.0019203692208975554, -0.00013237517850939184, 0.013236206024885178, 0.007842381484806538, -0.025143194943666458, -0.0061178975738584995, 0.0016781367594376206, 0.018776943907141685, 0.020931674167513847, 0.004225511569529772, 0.02259669452905655, -0.012354725040495396, -0.000576285645365715, -0.02290451154112816, -0.047544002532958984, -0.021225500851869583, 0.015237027779221535, 0.024051837623119354, 0.018497107550501823, 0.049167048186063766, -0.004120573401451111, 0.014040731824934483, 0.02613660879433155, 0.007303698919713497, 0.007632505614310503, -0.010654726065695286, 0.00501254852861166, -0.021869122982025146, 0.01553085446357727, 0.010234973393380642, -0.024191753938794136, 0.04026828706264496, -0.010339911095798016, 0.03646253049373627, 0.010682709515094757, -0.010808635503053665, 0.0009977874578908086, -0.00036466025630943477, -0.043514374643564224, -0.01190698891878128, 0.01143126841634512, -0.008451023139059544, 0.007968307472765446, -0.0366024449467659, -0.011578181758522987, 0.010906577110290527, -0.0007188267190940678, -0.023841960355639458, -0.002826335607096553, 0.016790112480521202, -0.024485580623149872, 0.02174319699406624, -0.0033562735188752413, 0.013816864229738712, -0.016944022849202156, 0.0030729405116289854, -0.04063207283616066, 0.009178594686090946, 0.017293816432356834, 0.009766248986124992, 0.04001643508672714, 0.014509456232190132, 0.014817275106906891, -0.007821394130587578, 0.016860071569681168, -0.005243412218987942, -0.017615627497434616, -0.0012050403747707605, -0.023030437529087067, -0.007870365865528584, -0.010591763071715832, -0.005418309476226568, -0.005565222818404436, 0.00311666470952332, -0.009948141872882843, 0.0038547301664948463, 0.0276197362691164, -0.016146492213010788, -0.01933661289513111, 0.005708638578653336, 0.004771190229803324, 0.028529200702905655, 0.013362132012844086, 0.012606576085090637, 0.05714235082268715, 0.001698249951004982, 0.00493559380993247, 0.027941545471549034, 0.01308929268270731, 0.02680821344256401, -0.010039088316261768, 0.0008180807926692069, -0.0051839472725987434, -0.02080574817955494, -0.0048796264454722404, 0.015474887564778328, -0.033804092556238174, -0.026430435478687286, 0.010297936387360096, 0.009465426206588745, -0.0021984553895890713, -0.015125093050301075, -0.022386817261576653, -0.00196934025734663, 0.019840316846966743, -0.017335791140794754, 0.014565423130989075, -0.020777765661478043, -0.00528188981115818, 0.005946498364210129, 0.008968718349933624, 0.0046067871153354645, 0.014985175803303719, 0.00866090040653944, 0.001531223300844431, 0.023114388808608055, 0.004788680002093315, -0.019882291555404663, 0.006565633695572615, -0.006660078186541796, 0.03937281668186188, -0.007772423326969147, 0.006485180929303169, 0.02198105677962303, -0.0032006152905523777, -0.005565222818404436, -0.014607397839426994, -0.0037777754478156567, 0.02994236722588539, -0.00984320417046547, 0.0006912804092280567, -0.003386006224900484, -0.0047432067804038525, 0.004995058756321669, 0.002849072217941284, -0.004925099667161703, -0.008395056240260601, -0.017349783331155777, -0.0005627311184071004, 0.010829622857272625, 0.013306164182722569, -0.018762951716780663, 0.004239503759890795, -0.005960490088909864, -0.03464360162615776, -0.008101229555904865, -0.002441562246531248, -0.01628641039133072, -0.023660067468881607, -0.02603866718709469, -0.006604111287742853, -0.016048548743128777, 0.020246077328920364, -0.00400514155626297, -0.0006318154628388584, 0.02143537811934948, 0.03352425992488861, -0.0043024662882089615, -0.012928387150168419, -0.025576937943696976, -0.023548133671283722, -0.02023208700120449, -0.025744840502738953, -0.016370359808206558, 0.0036973226815462112, 0.014229620806872845, -0.005607197992503643, 0.0036133723333477974, -0.012900403700768948, -0.002027056412771344, 0.004809667821973562, -0.003324792254716158, -0.003016973379999399, -0.0026864181272685528, 0.012431679293513298, -0.002133743604645133, -0.014215628616511822, -0.005082507152110338, 0.045529190450906754, -0.0023103894200176, 0.003844236256554723, 0.028263356536626816, -0.009339500218629837, 0.03601479157805443, -0.002612961223348975, 0.001156069221906364, -0.004473865497857332, -0.03959668427705765, -0.004218515940010548, 0.017839495092630386, 0.027465825900435448, -0.017839495092630386, -0.0310057420283556, -0.003949174657464027, -0.0006969645619392395, -0.02721397392451763, 0.021785171702504158, -0.005236416589468718, -0.006261312868446112, 0.0058240704238414764, -0.006173864472657442, 0.01125637162476778, -0.015209044329822063, -0.02782961167395115, -0.0231423731893301, -0.0056946468539536, 0.003291561733931303, -0.02827734872698784, -0.004529832396656275, 0.006163370795547962, 0.032516852021217346, 0.011270362883806229, -0.029410680755972862, -0.03190121427178383, -0.015279002487659454, -0.014971183612942696, 0.004012137185782194, -0.020078176632523537, 0.014439497143030167, 0.00562818581238389, 0.012221802957355976, -0.011865013279020786, 0.02442961372435093, -0.02273661084473133, 0.013026329688727856, -0.010060075670480728, 0.002945265732705593, 0.0029662533197551966, -0.005159461870789528, -0.006219337694346905, 0.006520160473883152, -0.033860061317682266, -0.006509666796773672, 0.006093411706387997, 0.0036413557827472687, 0.016146492213010788, 0.0031831255182623863, -0.013592995703220367, -0.008611928671598434, -0.0077304476872086525, -0.0075625465251505375, -0.008395056240260601, -0.0036553475074470043, 0.008849788457155228, -0.04855141043663025, -0.005663165356963873, -0.0018259247299283743, -0.013998757116496563, 0.00054524140432477, -0.017825502902269363, 0.009115632623434067, -0.013418098911643028, 0.026528378948569298, -0.024779409170150757, -0.02479339949786663, -0.0018224267987534404, 0.011165425181388855, 0.06503370404243469, -0.00401563523337245, 0.012389704585075378, 0.003326541045680642, 0.0235341414809227, 0.01161316130310297, -0.02554895542562008, 0.019756365567445755, -0.030306154862046242, -0.0155028710141778, 0.02988640032708645, -0.013795875944197178, -0.016454311087727547, -0.018469125032424927, 0.013341143727302551, -0.024093812331557274, -0.03450368344783783, -0.010962544940412045, -0.023394223302602768, -0.03316047415137291, 0.021897105500102043, 0.014285587705671787, -0.029522614553570747, -0.026794221252202988, -0.0051104906015098095, -0.01634237729012966, 0.006813987623900175, -0.011697111651301384, -0.023772001266479492, -0.015362953767180443, -0.018776943907141685, 0.002814092906191945, 0.0006348761380650103, -0.0013370875967666507, 0.0006414348026737571, 0.0023663565516471863, -0.027423851191997528, -0.0006650458672083914, 0.15592418611049652, -0.02416377142071724, 0.015237027779221535, 0.017797520384192467, 0.0048061697743833065, -0.006436210125684738, 0.02174319699406624, -0.0002520703128539026, -0.004802671726793051, -0.006226333789527416, 0.0023191343061625957, 0.008381064981222153, -0.008241146802902222, -0.0021512331441044807, 0.004180038347840309, -0.01870698481798172, -0.04012836888432503, -0.033944010734558105, -0.02470945008099079, 0.004802671726793051, 0.004173042718321085, 0.0036868290044367313, -0.010521803982555866, -0.01677612215280533, 0.00817118864506483, -0.014103694818913937, 0.0034069938119500875, -0.000979423290118575, 0.00814320519566536, 0.018203280866146088, 0.0052469102665781975, 0.023100396618247032, 0.010109047405421734, 0.024289697408676147, -0.03164936229586601, -0.025129202753305435, -0.011753079481422901, 0.010332915000617504, 0.03853330761194229, 0.010521803982555866, 0.00537983188405633, -0.02587076649069786, 0.020427970215678215, -0.04692836478352547, -0.008045262657105923, 0.024541549384593964, 0.0011744333896785975, -0.010885589756071568, -0.012116865254938602, 0.02501726895570755, -0.017377767711877823, -0.004827157594263554, 0.036490511149168015, 0.027004098519682884, -0.011375301517546177, -0.013103283941745758, -0.003503187093883753, 0.015027151443064213, 0.0055407374165952206, -0.0030694424640387297, -0.007111312355846167, 0.020693814381957054, -0.0048796264454722404, 0.007891353219747543, 0.013886822387576103, 0.01718188263475895, -0.026234552264213562, 0.00039592309622094035, 0.009654315188527107, -0.011473244056105614, -0.0068489667028188705, -0.009836208075284958, -0.013026329688727856, 0.004991560708731413, -0.039400797337293625, -0.037749771028757095, 0.02336624078452587, 0.028011504560709, 0.01157118659466505, 0.028361300006508827, -0.016370359808206558, 0.003767281537875533, 0.003053701715543866, -0.007541559170931578, -0.032069116830825806, -0.046788446605205536, 0.027773644775152206, 0.010325919836759567, -0.01907077059149742, -0.00427448283880949, -0.02005019411444664, 0.021771179512143135, -0.013655958697199821, -0.021225500851869583, -0.007373658008873463, -0.008339089341461658, 0.0022859040182083845, 0.0017437231726944447, 0.010514807887375355, 0.006152876652777195, -0.01161316130310297, 0.06749625504016876, 0.013858838938176632, -0.0009007196058519185, 0.013075300492346287, 4.011700002592988e-05, -0.012900403700768948, -0.002789607271552086, 0.023100396618247032, -0.014789290726184845, -0.0028927966486662626, -0.0156707726418972, -0.0022299368865787983, 0.008968718349933624, -0.011578181758522987, 0.007366661913692951, 0.012998346239328384, -0.008227155543863773, 0.015824681147933006, -0.01385184284299612, -0.011487235315144062, -0.021995047107338905, -0.010353903286159039, 0.013124271295964718, 0.009563368745148182, -0.000611702271271497, -0.026290519163012505, -0.008828801102936268, -0.01821727305650711, -0.017237849533557892, 0.03377611190080643, -0.005729625932872295, 0.008513986133038998, -0.0019885790534317493, 0.0011263367487117648, -0.0016003076452761889, 0.013732912950217724, 0.005785593297332525, 0.006894439924508333, 0.014621390029788017, -0.01683208905160427, -0.009451434016227722, -0.017489701509475708, -0.011438264511525631, 0.008360076695680618, -0.03523125499486923, 0.01092056930065155, -0.014705340377986431, -0.01565678045153618, -0.0156707726418972, 0.00021009503689128906, -0.00883579719811678, -0.0072897071950137615, -0.009906166233122349, 0.027409859001636505, -0.024177763611078262, -0.013019333593547344, -0.04541725665330887, 0.007471600081771612, 0.015516863204538822, -0.032852653414011, 0.015292994678020477, 0.0020218093413859606, -0.009640322998166084, -0.0138098681345582, 0.0021477353293448687, -0.1793184131383896, 0.012886411510407925, 0.007513575721532106, -0.0251991618424654, -0.00251676794141531, -0.004204524215310812, 0.03665841370820999, -0.005026540253311396, -0.01960245706140995, 0.01602056622505188, 0.01646830327808857, 0.005362342111766338, 0.009157607331871986, -0.0052469102665781975, -0.009115632623434067, 0.017307808622717857, -0.0012277769856154919, 0.005484770052134991, 0.012984354048967361, 0.009815219789743423, 0.017601635307073593, -0.03271273523569107, 0.015474887564778328, -0.02035801112651825, -0.018063362687826157, 0.029186813160777092, 0.0008731732959859073, 0.018539082258939743, -0.01280246116220951, -0.0119489636272192, -0.00046347707393579185, 0.013585999608039856, 0.01929463818669319, 0.0038652238436043262, 0.023702042177319527, 0.01767159439623356, -0.025003276765346527, -0.01897282712161541, -0.02833331562578678, 0.0414435938000679, 0.004236005712300539, 0.02237282507121563, -0.0024153278209269047, -0.030362121760845184, -0.026472412049770355, 0.024177763611078262, 0.009948141872882843, 0.007758431602269411, 0.018553074449300766, -0.0276477187871933, 0.012018922716379166, -0.029074879363179207, 0.024401631206274033, 0.010955548845231533, 0.019588464871048927, 0.022120973095297813, -0.010724684223532677, -0.005295881535857916, 0.0018469124333932996, 0.016216451302170753, -0.016678178682923317, -0.022624677047133446, 0.030585989356040955, 0.0071532875299453735, -0.011081474833190441, -0.004368927329778671, -0.02304442971944809, 0.0025202659890055656, -0.03181726485490799, 0.020959658548235893, 0.0029784960206598043, -0.012382708489894867, 0.0034367262851446867, -0.02747981809079647, 0.02035801112651825, 0.014103694818913937, -0.015027151443064213, 0.00834608543664217, 0.03699421510100365, -0.00816419254988432, -0.011739087291061878, 0.024051837623119354, -0.00903867743909359, -0.0013475815067067742, 0.02170122042298317, -0.024485580623149872, 0.019546490162611008, 0.0032688251230865717, 0.007226744666695595, -0.006607608869671822, 0.02403784543275833, -0.02402385324239731, -0.002037550089880824, -0.0027231464628130198, 0.013844847679138184, -0.006460695527493954, -0.014579414390027523, 0.003637857735157013, 0.00817118864506483, -0.019938258454203606, 0.01190698891878128, -0.002369854599237442, -0.018161306157708168, -0.014075711369514465, 0.01673414558172226, 0.00798929575830698, -0.020246077328920364, 0.009360487572848797, 0.021183526143431664, -0.008003287017345428, -0.02027406170964241, 0.011375301517546177, 0.0052154287695884705, 0.022834554314613342, -0.00425349548459053, 0.0350913368165493, -0.024499572813510895, -0.026822205632925034, 0.027171999216079712, 0.01919669657945633, 0.01646830327808857, 0.02322632260620594, 0.014306575059890747, 0.04354235902428627, -0.006834974978119135, -0.04712425172328949, -0.06895139813423157, -0.0209036897867918, 0.01378188468515873, 0.03198516368865967, -0.018595051020383835, -0.0007909717387519777, -0.005065017379820347, 0.023744018748402596, -0.027088049799203873, 0.028934961184859276, -0.003186623565852642, -0.01463538222014904, 0.0028665619902312756, -0.01297735795378685, 0.008912751451134682, -0.03856129199266434, -0.021715212613344193, -0.038869112730026245, -0.007807402405887842, 0.018776943907141685, 0.00733867846429348, -0.010318923741579056, 0.024149779230356216, -0.022540725767612457, -0.022890521213412285, -0.003914195112884045, -0.036714378744363785, 0.012431679293513298, 0.012494642287492752, 0.013453078456223011, 0.003365018405020237, -0.019126737490296364, 0.007604522164911032, -0.03777775540947914, 0.004771190229803324, -0.01429957989603281, -0.016720153391361237, -0.005684152711182833, 0.03942878171801567, -0.028711093589663506, 0.022624677047133446, 0.009598348289728165, 0.037078164517879486, -0.005232918541878462, -0.02438763901591301, -0.013250197283923626, -0.011690116487443447, 0.036098744720220566, 0.01937858946621418, -0.01687406376004219, -0.03495141863822937, -0.023058421909809113, -0.0009313265909440815, -0.007205756846815348, 0.02542302943766117, 0.01020698994398117, -0.012368716299533844, 0.015055134892463684, -0.0041030836291611195, -0.021589286625385284, -0.029550598934292793, -0.020288053900003433, 0.0035678991116583347, 0.016454311087727547, 0.018692992627620697, 0.030110269784927368, -0.005925510544329882, -0.018846901133656502, 0.027941545471549034, -0.015460895374417305, -0.011046495288610458, 0.005208433140069246, -0.022792577743530273, 0.010116043500602245, -0.022974470630288124, -0.0046382686123251915, 0.003384257201105356, -0.03187322989106178, 0.019546490162611008, 0.0018609041580930352, -0.00013652897905558348, -0.005663165356963873, -0.00656913174316287, 6.121395563241094e-05, 0.0045333304442465305, -0.0007559923105873168, -0.016580237075686455, 0.011494231410324574, 0.03419586271047592, -0.02412179484963417, 0.006009461358189583, 0.021141551434993744, 0.029606565833091736, -0.014733323827385902, -0.013599991798400879, 0.004536828491836786, 0.003732302226126194, -0.03257282078266144, -0.024681465700268745, 0.01228476595133543, -0.056274861097335815, -0.006740530952811241, -0.08411846309900284, 0.03391603007912636, 0.015362953767180443, -0.02994236722588539, 0.001731480355374515, -0.0015102357137948275, 0.036322612315416336, -0.02196706458926201, 0.0060549345798790455, -0.017237849533557892, -0.01727982424199581, -0.009801228530704975, -0.016985997557640076, -0.007212752476334572, -0.014369538053870201, -0.00503353588283062, 0.03240491822361946, 0.003081685397773981, 0.018539082258939743, 0.0205399040132761, -0.012851431965827942, 0.018637025728821754, 0.019252663478255272, 0.032292984426021576, -0.010542791336774826, 0.004652260337024927, 0.004344441927969456, -0.006523658521473408, -0.024779409170150757, 0.007667485158890486, 0.005768103525042534, -0.020973648875951767, -0.0005649173399433494, 0.012193819507956505, -0.0006147630047053099, -0.004019133280962706, 0.026150600984692574, 0.01781151071190834, 0.007247732020914555, 0.04239503666758537, -0.022988462820649147, -0.012732502073049545, 0.009514397010207176, -0.014971183612942696, 0.010220981203019619, 0.006292794365435839, -0.0024975293781608343, 0.028305331245064735, 0.015684762969613075, -0.006198349874466658, 0.00014713211567141116, 0.00039155068225227296, -0.026458419859409332, -0.0025290108751505613, 0.035958826541900635, 0.011291351169347763, 0.010794643312692642, -0.0006912804092280567, 0.012046906165778637, -0.0022281878627836704, 0.03069792315363884, -0.008569953963160515, 0.010374890640377998, -0.025297103449702263, 0.008234151639044285, -0.006338267587125301, -0.004662754479795694, 0.0014700093306601048, -0.02536706253886223, -0.008968718349933624, -0.0059744818136096, 0.004403906874358654, 0.011375301517546177, 0.05079009011387825, 0.01789546199142933, 0.0006602362263947725, 0.0001170716859633103, 0.012809457257390022, -0.0070168678648769855, 0.020889699459075928, 0.03276870399713516, -0.0010992276947945356, -0.019084760919213295, -0.009087648242712021, 0.024989284574985504, 0.004963577259331942, -0.0003296808572486043, -0.0012006679316982627, -0.005775099154561758, 0.005348350387066603, 0.011011515744030476, 0.0030834341887384653, 0.002104011131450534, 0.00866090040653944, 0.008388061076402664, 0.019882291555404663, -0.003303804434835911, 0.001154320314526558, 0.03307652100920677, 0.02693413943052292, 0.029466647654771805, -0.00014177589036989957, 0.010850610211491585, -0.027199983596801758, -0.04972671717405319, 0.008961723186075687, -0.02143537811934948, -0.021085582673549652, 0.004435388371348381, 0.0007844130741432309, 0.006352259311825037, 0.03419586271047592, -0.008136209100484848, -0.00031000495073385537, -0.014425504952669144, 0.03181726485490799, -0.006520160473883152, -0.003627364058047533, -0.03495141863822937, 0.04077199101448059, -0.0023908421862870455, -0.0009689294383861125, 0.013040320947766304, -0.010633737780153751, 0.04225511848926544, -0.0184831153601408, 0.023562125861644745, -0.037693802267313004, 0.03232096880674362, -0.015209044329822063, -0.011228388175368309, 0.0011779313208535314, 0.0033492776565253735, 0.007429624907672405, -0.013942789286375046, 0.018986819311976433, -0.02188311330974102, 0.003868721891194582, 0.012088881805539131, 0.08826002478599548, 0.0321250818669796, -0.013537028804421425, 0.006082918029278517, -0.007268719840794802, -0.009941145777702332, 0.02393990196287632, 0.02049792930483818, -0.005635181441903114, -0.021533319726586342, -0.0022666652221232653, 0.0026951630134135485, -0.02116953395307064, -0.027185991406440735, -0.010158018209040165, -0.010500816628336906, 0.005684152711182833, 0.04015635326504707, -0.0058870334178209305, 0.014285587705671787, 0.03853330761194229, 0.03346829116344452, -0.0042604911141097546, 0.014019744470715523, -0.009773245081305504, -0.011683120392262936, 0.021491345018148422, -0.0027686196845024824, 0.016580237075686455, -0.04273083806037903, -0.0055512310937047005, 0.0070168678648769855, -0.024093812331557274, -0.030446071177721024, 0.007716455962508917, -0.019140729680657387, 0.008444027975201607, -0.010416866280138493, 0.03839339315891266, -0.0039176931604743, 0.005873041693121195, 0.01793743669986725, -0.0032390926498919725, -0.02107159234583378, -0.028473233804106712, -0.02296048030257225, -0.03218105062842369, -0.019882291555404663, -0.054623834788799286] \ No newline at end of file diff --git a/database/original_documents/data0.json b/database/original_documents/data0.json new file mode 100644 index 0000000000000000000000000000000000000000..a7f2f6565e1afb457d0b366163fa1afdfbbb26df --- /dev/null +++ b/database/original_documents/data0.json @@ -0,0 +1,222 @@ +{ + "Q/A":[ + { + "dataset": "data0.json", + "question": "Who contribute to the publication of \"Search and Rescue on the Line\"", + "answer": [ + "J Coleman", + "L Cheng", + "B Krishnamachari" + ] + }, + { + "dataset": "data0.json", + "question": "Which year is \"Search and Rescue on the Line\" published>", + "answer": [ + "2023" + ] + }, + { + "dataset": "data0.json", + "question": "Give me the link to \"Search and Rescue on the Line\"", + "answer": [ + "/static/public/papers/search_and_rescue.pdf" + ] + }, + { + "dataset": "data0.json", + "question": "What is the venue of the publication of \"Search and Rescue on the Line\"", + "answer": [ + "SIROCCO 2023 \u2013 30th International Colloquium on Structural Information and Communication Complexity." + ] + }, + { + "dataset": "data0.json", + "question": "What publications does J Coleman contribute to", + "answer": [ + "Search and Rescue on the Line", + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", + "\u201cMulti-objective network synthesis for dispersed computing in tactical environments\u201d" + ] + }, + { + "dataset": "data0.json", + "question": "What publications does L Cheng contribute to", + "answer": [ + "Search and Rescue on the Line" + ] + }, + { + "dataset": "data0.json", + "question": "What publications does B Krishnamachari contribute to", + "answer": [ + "Search and Rescue on the Line", + "Solving Math Word Problems Concerning Systems of Equations with GPT-3", + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", + "Characterizing ML training performance at the tactical edge", + "Optimal Trading on a Dynamic Curve Automated Market Maker", + "Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract)", + "\u201cMulti-objective network synthesis for dispersed computing in tactical environments\u201d", + "\u201cIntelligent Communication over Realistic Wireless Networks in Multi-Agent Cooperative Games\u201d", + "DEFER: Distributed Edge Inference for Deep Neural Networks", + "Network Synthesis for Tactical Environments: Scenario, Challenges, and Opportunities", + "Neural Networks for DDoS Attack Detection using an Enhanced Urban IoT Dataset", + "Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs Using Reinforcement Learning", + "\u201cLearning Practical Communication Strategies in Cooperative Multi-Agent Reinforcement Learning\u201d", + "GCNScheduler: Scheduling distributed computing applications using graph convolutional networks", + "\u201cRevealing a Hidden, Stable Spectral Structure of Urban Vehicular Traffic\u201d", + "\u201cDataset: Large-scale Urban IoT Activity Data for DDoS Attack Emulation\u201d", + "Jupiter: a networked computing architecture\u201d", + "Course Scheduling to Minimize Student Wait Times For University Buildings During Epidemics", + "\u201cSimulation-Based Analysis of COVID-19 Spread Through Classroom Transmission on a University Campus,\u201d", + "A Decentralized Review System for Data Marketplaces", + "DAISIM: A Computational Simulator for the MakerDAO Stablecoin", + "Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges", + "Simulating the MakerDAO Stablecoin", + "Dynamic Automated Market Makers for Decentralized Cryptocurrency Exchange", + "CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics", + "Large-scale Urban IoT Activity Data for DDoS Attack Emulation", + "TEAM: Trilateration for Exploration and Mapping with Robotic Networks" + ] + }, + { + "dataset": "data0.json", + "question": "Who contribute to the publication of \"Solving Math Word Problems Concerning Systems of Equations with GPT-3\"", + "answer": [ + "M Zong", + "B Krishnamachari" + ] + }, + { + "dataset": "data0.json", + "question": "What is the venue of the publication of \"Solving Math Word Problems Concerning Systems of Equations with GPT-3\"", + "answer": [ + "Thirteenth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-23) to be held February 11-12, 2023." + ] + }, + { + "dataset": "data0.json", + "question": "Give me the link to \"Solving Math Word Problems Concerning Systems of Equations with GPT-3\"", + "answer": [ + "/static/public/papers/Solving_Math_Word_Problems_with_GPT3-2022.pdf" + ] + }, + { + "dataset": "data0.json", + "question": "Which year is \"Solving Math Word Problems Concerning Systems of Equations with GPT-3\" published", + "answer": [ + "2023" + ] + }, + { + "dataset": "data0.json", + "question": "Who contribute to the publication of \"Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things\"", + "answer": [ + "J Coleman", + "M Kiamari", + "L Clark", + "D DSouza", + "B Krishnamachari" + ] + }, + { + "dataset": "data0.json", + "question": "In what venue is \"Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things\" published", + "answer": [ + "IEEE MILCOM 2022." + ] + }, + { + "dataset": "data0.json", + "question": "Give me the link to \"Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things\"", + "answer": [ + "/static/public/papers/edge_gcn_scheduler.pdf" + ] + }, + { + "dataset": "data0.json", + "question": "In what year is \"Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things\" published", + "answer": [ + "2022" + ] + }, + { + "dataset": "data0.json", + "question": "What publications does M Kiamari contribute to", + "answer": [ + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", + "GCNScheduler: Scheduling distributed computing applications using graph convolutional networks", + "Distributed Consensus for Mobile Devices using Online Brokers" + ] + }, + { + "dataset": "data0.json", + "question": "What publications does L Clark contribute to", + "answer": [ + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", + "TEAM: Trilateration for Exploration and Mapping with Robotic Networks", + "A Queue-Stabilizing Framework for Networked Multi-Robot Exploration" + ] + }, + { + "dataset": "data0.json", + "question": "What publications does D DSouza contribute to", + "answer": [ + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things" + ] + }, + { + "dataset": "data0.json", + "question": "Who contribute to the publication of \"Characterizing ML training performance at the tactical edge\"", + "answer": [ + "A Alshabanah", + "K Balasubramanian", + "B Krishnamachari", + "M Annavaram" + ] + }, + { + "dataset": "data0.json", + "question": "What is the venue of the publication of \"Characterizing ML training performance at the tactical edge\"", + "answer": [ + "Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, vol. 12113, pp. 500-513. SPIE, 2022." + ] + }, + { + "dataset": "data0.json", + "question": "Give me the link to \"Characterizing ML training performance at the tactical edge\"", + "answer": [ + "https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12113/121131N/Characterizing-ML-training-performance-at-the-tactical-edge/10.1117/12.2617773.short?SSO=1" + ] + }, + { + "dataset": "data0.json", + "question": "Which year is \"Characterizing ML training performance at the tactical edge\" published", + "answer": [ + "2022" + ] + }, + { + "dataset": "data0.json", + "question": "A Alshabanah contributes to which publications", + "answer": [ + "Characterizing ML training performance at the tactical edge" + ] + }, + { + "dataset": "data0.json", + "question": "K Balasubramanian contributes to which publications", + "answer": [ + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things" + ] + }, + { + "dataset": "data0.json", + "question": "M Annavaram contributes to which publications", + "answer": [ + "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", + "Jupiter: a networked computing architecture\u201d" + ] + } + ] +} \ No newline at end of file diff --git a/database/original_documents/data1.json b/database/original_documents/data1.json new file mode 100644 index 0000000000000000000000000000000000000000..117b18897cb23449e5f12dddd6f26ac9633f71d7 --- /dev/null +++ b/database/original_documents/data1.json @@ -0,0 +1,101 @@ +{ + "Q/A":[ + { + "dataset": "data1.json", + "question": "Who is the director of the lab", + "answer": [ + "Bhaskar Krishnamachari" + ] + }, + { + "dataset": "data1.json", + "question": "Who are the current phd working at the lab", + "answer": [ + "Jason A. Tran", + "Martin Martinez", + "Diyi Hu", + "Lillian Clark", + "Mehrdad Kiamari", + "Sulyab Thottungal Valapu", + "Sampad Mohanty", + "Arvin Hekmati", + "Elizabeth Ondula", + "Jared Coleman", + "Tamoghna Sarkar", + "Yousef AlSaqabi", + "Narjes Nourzad" + ] + }, + { + "dataset": "data1.json", + "question": "Who is Bhaskar Krishnamachari", + "answer": [ + "Director of the lab", + "Profesor", + "http://ceng.usc.edu/~bkrishna", + "http://www.linkedin.com/pub/bhaskar-krishnamachari/0/484/7a9", + "http://academicsfreedom.blogspot.com/" + ] + }, + { + "dataset": "data1.json", + "question": "Who published \"Search and Rescue on the Line\"", + "answer": [ + "J Coleman", + "L Cheng", + "B Krishnamachari" + ] + }, + { + "dataset": "data1.json", + "question": "Give me the link to \"Search and Rescue on the Line\"", + "answer": [ + "/static/public/papers/search_and_rescue.pdf" + ] + }, + { + "dataset": "data1.json", + "question": "Which year is \"Search and Rescue on the Line\" published>", + "answer": [ + "Bhaskar Krishnamachari" + ] + }, + { + "dataset": "data1.json", + "question": "Give me the link to \"RouteSwarm Video\"", + "answer": [ + "http://anrg.usc.edu/www/download_files/RouteSwarm5.avi" + ] + }, + { + "dataset": "data1.json", + "question": "What is depicted in \"RouteSwarm Video\"", + "answer": [ + "July 2013. Simulation video showing automated network reconfiguration using robotic nodes in response to dynamic flow\u00a0activation/deactivation. This is described in the following paper: \u201cRouteSwarm: Wireless Network Optimization through Mobility\u201d, by \u00a0Ryan Williams, Andrea Gasparri, and Bhaskar Krishnamachari, currently in submission." + ] + }, + { + "dataset": "data1.json", + "question": "Who contributed to \"Time stamped packet exchange data with CC2420-equipped motes.\"", + "answer": [ + "Maulik Desai", + "Xiaofan Qiu", + "Bhaskar Krishnamachari" + ] + }, + { + "dataset": "data1.json", + "question": "Give me the files about \"Sequence-Based Localization in Wireless Sensor Networks.\"", + "answer": [ + "http://anrg.usc.edu/www/download_files/SBL.zip" + ] + }, + { + "dataset": "data1.json", + "question": "Give me the photo of the director", + "answer": [ + "/static/public/members/bhaskar_krishnamachari.png" + ] + } + ] +} \ No newline at end of file diff --git a/database/original_documents/downloads.json b/database/original_documents/downloads.json new file mode 100644 index 0000000000000000000000000000000000000000..bb7171ba62c5f265c66c4cda1dd814595c88c32f --- /dev/null +++ b/database/original_documents/downloads.json @@ -0,0 +1,675 @@ +{ + "Video Demos": [ + [ + { + "link": "https://youtu.be/it0E_B7iWnM", + "title": "Renee Video", + "content": "Emulation video showing demonstrating how\u00a0the Renee emulator can be used for realistic robotic network emulation, 2017." + }, + { + "link": "http://anrg.usc.edu/www/download_files/LA_Sumo.mp4", + "title": "SUMO Video", + "content": "Simulation of urban mobility based on LA Open Street Map and given Origin Destination Matrix." + }, + { + "link": "http://anrg.usc.edu/www/download_files/RouteSwarm5.avi", + "title": "RouteSwarm Video", + "content": "July 2013. Simulation video showing automated network reconfiguration using robotic nodes in response to dynamic flow\u00a0activation/deactivation. This is described in the following paper: \u201cRouteSwarm: Wireless Network Optimization through Mobility\u201d, by \u00a0Ryan Williams, Andrea Gasparri, and Bhaskar Krishnamachari, currently in submission." + }, + { + "link": "http://www.youtube.com/watch?feature=player_embedded&v=gZQv8DFR6vo", + "title": "Coded Vehicular Storage Video", + "content": "Simulation video showing that the use of erasure code can significantly speed up the dissemination of large-files in a vehicular network. This is described in the following paper: \u201c,\u201d by Maheswaran Sathiamoorthy, Alex Dimakis, Bhaskar Krishnamachari, and Fan Bai, IEEE INFOCOM Mini-conference, 2012." + } + ] + ], + "Code and Datasets": [ + [ + { + "title": "D-MAC Protocol for Adaptive Energy-Efficient and Low-Latency Data Gathering in Wireless Sensor Networks", + "links": [ + { + "type": "NS-2 code", + "url": "http://http://anrg.usc.edu/www/download_files/ns2-dmac.tar.gz" + }, + { + "type": "Important README file", + "url": "http://anrg.usc.edu/www/download_files/dmac_readme.txt" + }, + { + "type": "IEEE WMAN ’04 Paper", + "url": "http://anrg.usc.edu/www/download_files/DMAC.pdf" + } + ], + "contributors": "Gang Lu, Bhaskar Krishnamachari" + }, + { + "title": "Evaluation of IEEE 802.15.4 MAC Protocol for Low Rate Low Power Wireless Personal Area Networks", + "links": [ + { + "type": "NS-2 code", + "url": "http://anrg.usc.edu/www/download_files/ns-pan.tar.gz" + }, + { + "type": "Important README", + "url": "http://anrg.usc.edu/www/download_files/README_ns_pan.txt" + }, + { + "type": "IEEE EWCN’04 Paper", + "url": "http://anrg.usc.edu/www/download_files/LuKrishnamachariRaghavendra_802154_EWCN.pdf" + }, + { + "type": "PowerPoint Slides", + "url": "http://anrg.usc.edu/www/download_files/802_15_4MAC.ppt" + } + ], + "contributors": "Gang Lu, Bhaskar Krishnamachari" + }, + { + "title": "Realistic Wireless Link Quality Model and Generator. (Version 1.1, Updated on December 2005)", + "links": [ + { + "type": "Tutorial", + "url": "http://anrg.usc.edu/www/download_files/LinkModellingTutorial.pdf" + }, + { + "type": "JAVA code", + "url": "http://anrg.usc.edu/www/download_files/LinkLayerModelJAVA.zip" + }, + { + "type": "MATLAB code", + "url": "http://anrg.usc.edu/www/download_files/LinkLayerModelMATLAB.zip" + } + ], + "contributors": "Marco Zuniga, Bhaskar Krishnamachari, Rahul Urgaonkar" + }, + { + "title": "Experimental Data on Concurrent Packet Transmissions in Low Power Wireless Networks", + "links": [ + { + "type": "Zipped Excel Files with Readme.txt", + "url": "http://anrg.usc.edu/www/download_files/ConcurrentTransmissionsExperimentalData.zip" + }, + { + "type": "Corresponding Technical Report", + "url": "http://anrg.usc.edu/www/download_files/SonKrishnamachariHeidemann_ConcurrentPacketTransmmissions.pdf" + } + ], + "contributors": "Dongjin Son, Bhaskar Krishnamachari, John Heidemann" + }, + { + "title": "Integrating a Structural Simulator with TOSSIM (TinyOS simulator)", + "links": [ + { + "type": "Tutorial Website with Code", + "url": "http://ceng.usc.edu/~anrg/projects/shm/install.html" + } + ], + "contributors": "Avinash Sridharan, Bhaskar Krishnamachari" + }, + { + "title": "Measurement of pairwise PRR values from two real 100-node rectangular grid deployments at an indoor basketball court at USC consisting of 59 Moteiv Tmote Sky nodes interspersed with 41 Crossbow MicaZ nodes", + "links": [ + { + "type": "Deployment 1 Data", + "url": "http://anrg.usc.edu/www/download_files/PRRMatrixAndLocations_Sensys06Deployment1.mat.gz" + }, + { + "type": "Deployment 2 Data", + "url": "http://anrg.usc.edu/www/download_files/PRRMatrixAndLocations_Sensys06Deployment2.mat.gz" + } + ], + "contributors": "Marco Zuniga, Avinash Sridharan, Shyam Kapadia, Sundeep Pattem, Bhaskar Krishnamachari" + }, + { + "title": "Raw experimental data giving measurements of link quality (radio signal strength and LQI) over a long period of time from two deployments of MicaZ motes in dynamic settings", + "links": [ + { + "type": "Deployment 1 Data", + "url": "http://anrg.usc.edu/www/download_files/RawData_MicaZ_sensys06.zip" + }, + { + "type": "Deployment 2 Data", + "url": "http://anrg.usc.edu/www/download_files/RawData_MicaZ_Mobility_sensys06.zip" + } + ], + "contributors": "Marco Zuniga, Avinash Sridharan, Shyam Kapadia, Sundeep Pattem, Bhaskar Krishnamachari" + }, + { + "title": "Recordings of experimental data from the RitmNet testbed at the University of Delaware", + "links": [ + { + "type": "Data", + "url": "http://anrg.usc.edu/www/download_files/RITMNet_1_12_2009_largescale_real_indoors.zip" + } + ], + "contributors": "Sundeep Pattem, Bhaskar Krishnamachari" + }, + { + "title": "Time stamped packet exchange data with CC2420-equipped motes.", + "description": "Useful for evaluating time synchronization techniques. Collected by (Data may be used freely, with a suitable acknowledgement: “This data was obtained from experiments conducted by the University of Southern California’s Autonomous Networks Research Group, http://ceng.usc.edu/~anrg“.)", + "date": "August 2006", + "links": [ + { + "type": "Data in Excel Format", + "url": "http://anrg.usc.edu/www/download_files/TimeStampData.xls" + }, + { + "type": "Matlab Code to Retrieve Data", + "url": "http://anrg.usc.edu/www/download_files/TimeStampExtract.m" + }, + { + "type": "Readme", + "url": "http://anrg.usc.edu/www/download_files/README_TimeStampData.txt" + } + ], + "contributors": "Maulik Desai, Xiaofan Qiu, Bhaskar Krishnamachari" + }, + { + "title": "Sequence-Based Localization in Wireless Sensor Networks.", + "description": "(Data may be used freely, with a suitable acknowledgement: “This data was obtained from experiments conducted by the University of Southern California’s Autonomous Networks Research Group, http://anrg.usc.edu“.)", + "date": "November 2005", + "links": [ + { + "type": "C++ code", + "url": "http://anrg.usc.edu/www/download_files/SBL.zip" + } + ], + "contributors": "Kiran Yedavalli, Bhaskar Krishnamachari" + }, + { + "title": "Data from human contact trace collection experiment", + "description": "(Data may be used freely, with a suitable acknowledgement: “This data was obtained from experiments conducted by the University of Southern California’s Autonomous Networks Research Group, http://anrg.usc.edu“.)", + "date": "November 2008", + "links": [ + { + "type": "Data", + "url": "http://anrg.usc.edu/www/download_files/contact_result.tar" + } + ], + "contributors": "Yi Wang, Bhaskar Krishnamachari" + }, + { + "title": "Packet Broadcast Test Application under TinyOS 2.x (beta2)", + "description": "The source code of packet broadcast system. The code was used to evaluate how the packet broadcast performs; which node gets the packets when and on which route.", + "date": "November 2008", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/FloodApp.tgz" + } + ], + "contributors": "Joon Ahn, Bhaskar Krishnamachari" + }, + { + "title": "TDMA Scheduling for Aggregated Convergecast", + "description": "The source code contains a TDMA scheduling algorithm using multiple frequency channels for aggregated convergecast on three different routing tree topologies. Among other things, it contains the code to generate connected graphs and routing trees. It outputs the average schedule length of the algorithm, and average maximum degree and average radius of the trees.", + "date": "January 2009", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/aggregated_convergecast.zip" + } + ], + "contributors": "Amitabha Ghosh, Bhaskar Krishnamachari" + }, + { + "title": "Human motion traces classified by Nokia N95 accelerometer", + "description": "(Data may be used freely, with a suitable acknowledgment: “This data was obtained from experiments conducted by the University of Southern California’s Autonomous Networks Research Group, http://anrg.usc.edu“.)", + "date": "March 2010", + "links": [ + { + "type": "Data", + "url": "http://anrg.usc.edu/www/download_files/Human_Motion_Traces.rar" + } + ], + "contributors": "Yi Wang, Bhaskar Krishnamachari" + }, + { + "title": "The Backpressure Collection Protocol (BCP)", + "description": "The Backpressure Collection Protocol, described in our IPSN 2010 paper, is available through TinyOS Contrib.", + "date": "April 2010", + "links": [ + { + "type": "Code", + "url": "http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x-contrib/usc/bcp/src/" + } + ], + "contributors": "Scott Moeller, Avinash Sridharan, Bhaskar Krishnamachari, Omprakash Gnawali" + }, + { + "title": "Resources for Energy Efficient Mobile Sensing Research (conducted by Yi Wang)", + "description": "", + "date": "April 2011", + "links": [ + { + "type": "Matlab-Code", + "url": "http://anrg.usc.edu/www/download_files/EnergyEfficientMobileSensing_MatlabCode_YiWang_2011.rar" + }, + { + "type": "Symbian-Code-Carbide", + "url": "http://anrg.usc.edu/www/download_files/EnergyEfficientMobileSensing_SymbianCode_YiWang_2011.rar" + }, + { + "type": "J2ME-Code (EEMSS)", + "url": "http://anrg.usc.edu/www/download_files/EnergyEfficientMobileSensing_J2MECode_YiWang_2011.rar" + } + ], + "contributors": "Yi Wang" + }, + { + "title": "Matlab Code to Estimate 2-State Markov Transition Matrix from a Subsampled Sequence", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "July 2011", + "links": [ + { + "type": "Report (pdf)", + "url": "http://anrg.usc.edu/www/download_files/Transition_Matrix_MLE.pdf" + }, + { + "type": "Code+Report (zip)", + "url": "http://anrg.usc.edu/www/download_files/Transition_Matrix_MLE.zip" + } + ], + "contributors": "Samantha Massengill, Bhaskar Krishnamachari" + }, + { + "title": "Normalized cellular traffic trace during one week", + "description": "(Data may be used freely, with a suitable acknowledgment: 'This data was obtained from experiments conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "October 2011", + "links": [ + { + "type": "Data (zip)", + "url": "http://anrg.usc.edu/www/download_files/NormalizedTrafficTrace.zip" + } + ], + "contributors": "Kyuho Son, Eunsung Oh, Bhaskar Krishnamachari" + }, + { + "title": "Backpressure with Adaptive Redundancy (BWAR)", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "October 2011", + "links": [ + { + "type": "Code (zip)", + "url": "http://anrg.usc.edu/www/download_files/BWAR.zip" + }, + { + "type": "Code for BWAR on Random Walk (zip)", + "url": "http://anrg.usc.edu/www/download_files/BWAR-RandomWalk.zip" + }, + { + "type": "Code for BWAR on Beijing trace (zip)", + "url": "http://anrg.usc.edu/www/download_files/BWAR-BeijingRealTraces.zip" + }, + { + "type": "Paper (arXiv)", + "url": "http://arxiv.org/abs/1108.4063" + } + ], + "contributors": "Majed Alresaini, Bhaskar Krishnamachari" + }, + { + "title": "(Re)Enabling Support for the CC2420 chip on the TinyOS simulator", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "January 2012", + "links": [ + { + "type": "Code (tar.gz)", + "url": "http://anrg.usc.edu/www/download_files/EE652tinyos.tar.gz" + }, + { + "type": "Report (pdf)", + "url": "http://anrg.usc.edu/www/download_files/Report_TOSSIM_CC2420.pdf" + } + ], + "contributors": "Srikanth Nori, Mo Zhu, Bhaskar Krishnamachari" + }, + { + "title": "TinyOS code with BLIP working on Tossim", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "November 2012", + "links": [ + { + "type": "Code (tar.gz)", + "url": "http://anrg.usc.edu/www/download_files/tinyos-2.1.2-tossimblip.tar.bz2" + } + ], + "contributors": "Srikanth Nori, Bhaskar Krishnamachari" + }, + { + "title": "Coded Storage Content Access Simulator for Vehicular Networks", + "description": "This is a Java-based simulator for evaluating the performance of coded storage in content downloads in vehicular networks. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "June 2012", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/netcoding.zip" + }, + { + "type": "Beijing Trace (.sql)", + "url": "http://anrg.usc.edu/www/download_files/beijing_trace09.sql" + } + ], + "contributors": "Maheswaran Sathiamoorthy, Bhaskar Krishnamachari" + }, + { + "title": "Matlab Code for Online Learning for Combinatorial Network Optimization", + "description": "This is the Matlab simulation codes for the paper titled 'Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards and Individual Observations', published at IEEE/ACM Transactions on Networking, vol. 20, no. 5, 2012. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "June 2012", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/TON2012.zip" + } + ], + "contributors": "Yi Gai, Bhaskar Krishnamachari" + }, + { + "title": "GEopt code for WiOpt paper", + "description": "The simulation codes are for the paper titled 'Online Learning to Optimize Transmission over an Unknown Gilbert-Elliott Channel', published at '10th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2012'. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/GEopt_code_Wiopt.zip" + } + ], + "contributors": "Yanting Wu, Bhaskar Krishnamachari" + }, + { + "title": "RateGame code for GameNet paper", + "description": "The simulation codes are for the paper titled 'A Competitive Rate Allocation Game.', published at '3rd International Conference on Game Theory for Networks, 2012'. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/RateGame_code_GameNet.zip" + } + ], + "contributors": "Yanting Wu, George Rabanca, Bhaskar Krishnamachari, Amotz Bar-Noy" + }, + { + "title": "Code walkthrough of the BLIP stack on TinyOS", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "November 2012", + "links": [ + { + "type": "BLIP Packet's path (.pdf)", + "url": "http://anrg.usc.edu/www/download_files/BLIP-packet-path.pdf" + }, + { + "type": "BLIP (.pdf)", + "url": "http://anrg.usc.edu/www/download_files/BLIP.pdf" + } + ], + "contributors": "Srikanth Nori, Bhaskar Krishnamachari" + }, + { + "title": "Vehicle-trace Datasets", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "May 2013", + "links": [ + { + "type": "Beijing Taxis Full Dataset (mysql)", + "url": "http://anrg.usc.edu/www/download_files/beijing_trace09.sql" + }, + { + "type": "Beijing Taxis Full Dataset (mongodb)", + "url": "http://anrg.usc.edu/www/download_files/beijingfull_mongodb.zip" + }, + { + "type": "Beijing Taxis Dataset consisting of Well Connected Nodes (mongodb)", + "url": "http://anrg.usc.edu/www/download_files/beijingWC_NID_mongodb.zip" + }, + { + "type": "Chicago Bus Dataset (mysql)", + "url": "http://anrg.usc.edu/www/download_files/chicagobus_mysql.sql" + }, + { + "type": "Chicago Bus Dataset [mongodb)", + "url": "http://anrg.usc.edu/www/download_files/chicagobus_mongodb.zip" + } + ], + "contributors": "Maheswaran Sathiamoorthy, Bhaskar Krishnamachari" + }, + { + "title": "ROBO BCP on Contiki", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "date": "Summer 2013", + "links": [ + { + "type": "Code for message ferrying", + "url": "http://anrg.usc.edu/www/download_files/BCP_project.zip" + } + ], + "contributors": "Vignesh Babu, Bhaskar Krishnamachari" + }, + { + "title": "BCP on Contiki", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/BCP_project.zip" + } + ], + "contributors": "Nicolas Tisa-Leonard, Juan Gutierrez, He Ren, Pradipta Ghosh, Bhaskar Krishnamachari" + }, + { + "title": "Simulation code for Efficient Scheduling for Energy-Delay Tradeoff on a Time-Slotted Channel", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/schedule_codes_YW.zip" + } + ], + "contributors": "Yanting Wu, Rajgopal Kannan, Bhaskar Krishnamachari" + }, + { + "title": "Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing", + "description": "This is a Java-based simulation code for the Hermes algorithm presented in the Infocom 2015 paper. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/Hermes.zip" + } + ], + "contributors": "Yi-Hsuan Kao, Bhaskar Krishnamachari, Moo-Ryong Ra, Fan Bai" + }, + { + "title": "Optimizing Mobile Computational Offloading with Delay Constraints", + "description": "This is a C++ simulation code for the DTP and PTP algorithms presented in the Globecom 2014 paper. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/DTP.zip" + } + ], + "contributors": "Yi-Hsuan Kao, Bhaskar Krishnamachari" + }, + { + "title": "RiverSwarm: Topology-Aware Distributed Planning for Obstacle Encirclement in Connected Robotic Swarms", + "description": "This is simulation code used in the RSN 2014 paper. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code (.zip)", + "url": "http://anrg.usc.edu/www/download_files/RIVERSWARM.zip" + } + ], + "contributors": "Pradipta Ghosh, Jie Gao, Andrea Gasparri, Bhaskar Krishnamachari" + }, + { + "title": "Multichannel Collection Protocol (MCC) on TinyOS", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "https://drive.google.com/file/d/0B8_1hUbax2b4ekJabjRnVlNtamc/view?usp=sharing" + } + ], + "contributors": "Ying Chen, Bhaskar Krishnamachari" + }, + { + "title": "Packet Reception Ratio (PRR) from 55-node network running on Tutornet", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Data", + "url": "http://anrg.usc.edu/www/download_files/Tutornet_PRR.tar.gz" + } + ], + "contributors": "Pedro Henrique Gomes, Bhaskar Krishnamachari" + }, + { + "title": "Zombie Tag for Contiki", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/zombie-tag.zip" + } + ], + "contributors": "Spencer Congero" + }, + { + "title": "ALABAMO: A LoAd BAlancing MOdel for RPL", + "description": "(Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/ALABAMO-RPL.zip" + } + ], + "contributors": "Tarcisio Bruno Oliveira, Pedro Henrique Gomes, Danielo G. Gomes, Bhaskar Krishnamachari" + }, + { + "title": "The Optimism Principle: A Unified Framework for Optimal Robotic Network Deployment in An Unknown Obstructed Environment", + "description": "This is simulation code used in the IROS 2015 paper. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/LEONA_ETX_FI.zip" + } + ], + "contributors": "Shangxing Wang, Bhaskar Krishnamachari, Nora Ayanian" + }, + { + "title": "Robotic Message Ferrying for Wireless Networks Using Coarse-Grained Backpressure Control", + "description": "This is simulation code used in the TMC 2016 paper. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/CBGP_FI.zip" + } + ], + "contributors": "Shangxing Wang, Andrea Gasparri, Bhaskar Krishnamachari" + }, + { + "title": "Waterfilling Algorithm Illustration", + "description": "An illustration of the waterfilling algorithm for power allocation over parallel channels using rate-adaptive radios. (Code may be used freely, with a suitable acknowledgment: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "http://anrg.usc.edu/www/download_files/Waterfilling.zip" + } + ], + "contributors": "Shangxing Wang, Bhaskar Krishnamachari" + }, + { + "title": "MERLIN", + "description": "Code repository for the MERLIN paper. (Code may be used freely, with a suitable acknowledgement: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "https://github.com/ANRGUSC/merlin" + } + ], + "contributors": "Various" + }, + { + "title": "A Unifying Bayesian Optimization Framework for Radio Frequency Localization", + "description": "Code for the paper. (Code may be used freely, with a suitable acknowledgement: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "https://github.com/ANRGUSC/Lczn.jl" + }, + { + "type": "Data", + "url": "http://anrg.usc.edu/www/download_files/nachi_lczn_data.zip" + } + ], + "contributors": "Nachikethas A. Jagadeesan and Bhaskar Krishnamachari" + }, + { + "title": "Renee: Robotic Wireless Network Emulator", + "description": "Code for the robotic wireless network emulator. (Code may be used freely, with a suitable acknowledgement: 'This code was obtained from research conducted by the University of Southern California's Autonomous Networks Research Group, http://anrg.usc.edu'.)", + "links": [ + { + "type": "Code", + "url": "https://github.com/ANRGUSC/Renee" + }, + { + "type": "Project Page", + "url": "https://anrgusc.github.io/Renee/" + } + ], + "contributors": "Jake Goodman, Jessica Koe, Jun Shin, Davina Zahabian, Vidhi Goel, Pradipta Ghosh, and Bhaskar Krishnamachari" + } + ] + ], + "Course Materials": [ + { + "title": "Lecture Notes and Tutorials from EE 652 Wireless Sensor Networks class offered in Fall 2007 at USC by Prof. Bhaskar Krishnamachari.", + "links": [ + { + "type": "Lecture Notes and Tutorials", + "url": "http://anrg.usc.edu/www/download_files/652ClassMaterials.zip" + } + ], + "contributors": "Bhaskar Krishnamachari, Amitabha Ghosh, Avinash Sridharan, and Kiran Yedavalli." + }, + { + "title": "Reading list on wireless sensor networks from EE/CS 652 at USC, Fall 2011.", + "links": [ + { + "type": "Reading List", + "url": "http://anrg.usc.edu/~ee652/readinglist.html" + } + ] + }, + { + "title": "Final Projects from Wireless and Mobile Networks Design and Laboratory, EE 579 offered in Spring 2012 at USC.", + "description": "Instructor: Bhaskar Krishnamachari, TA: Maheswaran Sathiamoorthy.", + "links": [ + { + "type": "Final Projects", + "url": "http://anrg.usc.edu/ee579_2012/" + } + ] + }, + { + "title": "Video-taped lectures and lecture notes on wireless networks by Bhaskar Krishnamachari from EE 597, USC, Fall 2012.", + "links": [ + { + "type": "Video-taped Lectures", + "url": "http://anrg.usc.edu/~ee597/" + }, + { + "type": "Lecture Notes", + "url": "http://anrg.usc.edu/~ee597/" + } + ] + }, + { + "title": "Final Projects from Wireless and Mobile Networks Design and Laboratory, EE 579 offered in Spring 2016 at USC.", + "description": "Instructor: Bhaskar Krishnamachari, TA: Pradipta Ghosh.", + "links": [ + { + "type": "Final Projects", + "url": "http://anrg.usc.edu/ee579/" + } + ] + } + ] +} \ No newline at end of file diff --git a/database/original_documents/members.json b/database/original_documents/members.json new file mode 100644 index 0000000000000000000000000000000000000000..cece040d78fd3c68907c88df3c92ae36973ecdbf --- /dev/null +++ b/database/original_documents/members.json @@ -0,0 +1,797 @@ +{ + "director": [ + { + "name": "Bhaskar Krishnamachari", + "photo": "/static/public/members/bhaskar_krishnamachari.png", + "links": { + "Homepage": "http://ceng.usc.edu/~bkrishna", + "LinkedIn": "http://www.linkedin.com/pub/bhaskar-krishnamachari/0/484/7a9", + "Blog": "http://academicsfreedom.blogspot.com/" + }, + "description": "Professor" + } + ], + "current_phd": [ + { + "name": "Jason A. Tran", + "photo": "/static/public/members/jason_a._tran.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~jasontra/" + }, + "description": "Ph.D. Candidate (EE)" + }, + { + "name": "Martin Martinez", + "photo": "/static/public/members/martin_martinez.jpg", + "links": { + "Homepage": "https://sites.google.com/a/usc.edu/martin-martinez/" + }, + "description": "Ph.D. Student (EE)" + }, + { + "name": "Diyi Hu", + "photo": "/static/public/members/diyi_hu.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2018/08/DSC_0587.jpg", + "Homepage": "https://sites.google.com/a/usc.edu/diyi_hu/" + }, + "description": "Ph.D. Student\u00a0(EE)" + }, + { + "name": "Lillian Clark", + "photo": "/static/public/members/lillian_clark.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2018/10/IMG_7611b-1.jpg", + "Homepage": "https://lillyclark.github.io/" + }, + "description": "Ph.D. Student\u00a0(EE)" + }, + { + "name": "Mehrdad Kiamari", + "photo": "/static/public/members/mehrdad_kiamari.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2019/02/mehrdad.jpg" + }, + "description": "Ph.D. Student\u00a0(EE)" + }, + { + "name": "Sulyab Thottungal Valapu", + "photo": "/static/public/members/sulyab_thottungal_valapu.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2022/03/IMG_0568.jpg", + "Homepage": "https://sulyabtv.github.io/" + }, + "description": "Ph.D. Student (CS)" + }, + { + "name": "Sampad Mohanty", + "photo": "/static/public/members/sampad_mohanty.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2020/08/sampad.jpg", + "Homepage": "http://sampy.in" + }, + "description": "Ph.D. Student (CS)" + }, + { + "name": "Arvin Hekmati", + "photo": "/static/public/members/arvin_hekmati.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2020/03/Arvin-Picture-Low.jpg", + "Homepage": "https://urldefense.com/v3/__http://arvinhekmati.net__;!!LIr3w8kk_Xxm!5dB_GSXDINWes9BOuvuw2yKITDj4v3YBmJe1F9dltkrmf-2Su1RBEzVXCEhEwg$" + }, + "description": "Ph.D. Student (CS)" + }, + { + "name": "Elizabeth Ondula", + "photo": "/static/public/members/elizabeth_ondula.png", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2021/01/anrg_web.png", + "Homepage": "https://eondula.github.io" + }, + "description": "Ph.D. Student (CS)" + }, + { + "name": "Jared Coleman", + "photo": "/static/public/members/jared_coleman.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2021/01/jared_profile_resized.jpg", + "Homepage": "https://jaredraycoleman.com/", + "LinkedIn": "https://www.linkedin.com/in/jaredraycoleman/", + "Github": "https://github.com/jaredraycoleman" + }, + "description": "Ph.D. Student (CS)" + }, + { + "name": "Tamoghna Sarkar", + "photo": "/static/public/members/tamoghna_sarkar.png", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2021/09/tamoghna.png", + "Homepage": "https://tamoghna-sarkar.github.io/" + }, + "description": "Ph.D. Student (CE)" + }, + { + "name": "Yousef AlSaqabi", + "photo": "/static/public/members/yousef_alsaqabi.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2021/08/yosef.jpg" + }, + "description": "Ph.D. Student (EE)" + }, + { + "name": "Narjes Nourzad", + "photo": "/static/public/members/narjes_nourzad.png", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2022/10/Temp-135x164-1.png", + "Homepage": "https://narjesnourzad.wixsite.com/webpage" + }, + "description": "Ph.D. Student (EE)" + } + ], + "graduated": [ + { + "name": "Pedro Henrique Gomes", + "photo": "/static/public/members/pedro_henrique_gomes.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~pdasilva/" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Kwame-Lante Wright", + "photo": "/static/public/members/kwame-lante_wright.jpg", + "links": { + "Homepage": "http://www.kwamewright.com/" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Nachikethas A. Jagadeesan", + "photo": "/static/public/members/nachikethas_a._jagadeesan.jpg", + "links": { + "Homepage": "http://www.nachikethas.com" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Pradipta Ghosh", + "photo": "/static/public/members/pradipta_ghosh.jpg", + "links": { + "Homepage": "http://www.pradiptaghosh.com" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Shangxing Wang", + "photo": "/static/public/members/shangxing_wang.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~shangxiw/" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Pranav Krishna Sakulkar", + "photo": "/static/public/members/pranav_krishna_sakulkar.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~sakulkar/" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Keyvan Rezaei Moghadam", + "photo": "/static/public/members/keyvan_rezaei_moghadam.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~rezaeimo/", + "LinkedIn": "http://www.linkedin.com/in/keyvanrm" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Yi-Hsuan(Griffey) Kao", + "photo": "/static/public/members/yi-hsuan(griffey)_kao.jpg", + "links": { + "Homepage": "https://www.linkedin.com/in/yi-hsuan-griffey-kao-29077749?trk=hp-identity-name", + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll40/id/217987/rec/1" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Parisa Mansourifard", + "photo": "/static/public/members/parisa_mansourifard.JPG", + "links": { + "Homepage": "http://www-scf.usc.edu/~parisama/" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Yanting Wu", + "photo": "/static/public/members/yanting_wu.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~yantingw/", + "Thesis": "http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll3/id/585285" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Suvil Deora", + "photo": "/static/public/members/suvil_deora.jpg", + "links": { + "Homepage": "http://www.suvildeora.com/", + "Thesis": "http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll40/id/211641" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Maheswaran Sathiamoorthy", + "photo": "/static/public/members/maheswaran_sathiamoorthy.jpg", + "links": { + "Homepage": "http://smahesh.com", + "LinkedIn": "http://www.linkedin.com/in/smaheswaran", + "Thesis": "http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll3/id/351705" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Yi Gai", + "photo": "/static/public/members/yi_gai.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~ygai/", + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/120026/rec/1" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Ying Chen", + "photo": "/static/public/members/ying_chen.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/102974/rec/20" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Majed Alresaini", + "photo": "/static/public/members/majed_alresaini.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/61078/rec/1" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Marjan Baghaie", + "photo": "/static/public/members/marjan_baghaie.jpg", + "links": { + "Thesis": "http://anrg.usc.edu/www/thesis/MarjanThesis.pdf" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Joon Ahn", + "photo": "/static/public/members/joon_ahn.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/636656/rec/17" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Yi Wang", + "photo": "/static/public/members/yi_wang.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/445526/rec/14" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Scott Moeller", + "photo": "/static/public/members/scott_moeller.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/422505/rec/13" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Hua Liu", + "photo": "/static/public/members/hua_liu.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/410924/rec/6" + }, + "description": "Ph.D. in Computer Science" + }, + { + "name": "Amitabha Ghosh", + "photo": "/static/public/members/amitabha_ghosh.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/392230/rec/12", + "Homepage": "http://anrg.usc.edu/~amitabhag/#page=intro" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Sundeep Pattem", + "photo": "/static/public/members/sundeep_pattem.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/382429/rec/11" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Pai-Han Huang", + "photo": "/static/public/members/pai-han_huang.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/370515/rec/10" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Avinash Sridharan", + "photo": "/static/public/members/avinash_sridharan.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/182703/rec/8" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Dongjin Son", + "photo": "/static/public/members/dongjin_son.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/599225/rec/5" + }, + "description": "Ph.D. in Electrical Engineering." + }, + { + "name": "Kiran Yedavalli", + "photo": "/static/public/members/kiran_yedavalli.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/399972/rec/4" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Shyam Kapadia", + "photo": "/static/public/members/shyam_kapadia.jpg", + "links": { + "Thesis": "http://anrg.usc.edu/www/thesis/ShyamThesis.pdf" + }, + "description": "Ph.D. in Computer Science" + }, + { + "name": "Marco Zuniga", + "photo": "/static/public/members/marco_zuniga.jpg", + "links": { + "Thesis": "http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/149231/rec/3" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Gang Lu", + "photo": "/static/public/members/gang_lu.jpg", + "links": { + "Thesis": "http://anrg.usc.edu/www/thesis/GangLuThesis.pdf" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Narayanan Sadagopan", + "photo": "/static/public/members/narayanan_sadagopan.jpg", + "links": { + "Thesis": "http://anrg.usc.edu/www/thesis/NaraThesis.pdf" + }, + "description": "Ph.D. in Computer Science" + }, + { + "name": "Yang Yu", + "photo": "/static/public/members/yang_yu.jpg", + "links": { + "Thesis": "http://anrg.usc.edu/www/thesis/YangThesis.pdf" + }, + "description": "(Advisor: Prof. Viktor Prasanna)" + } + ], + "former_postdoc": [ + { + "name": "Erick Moen", + "photo": "/static/public/members/erick_moen.jpg", + "links": { + "Homepage": "http://www-scf.usc.edu/~emoen/index.html" + }, + "description": "" + }, + { + "name": "Quynh Nguyen", + "photo": "/static/public/members/quynh_nguyen.png", + "links": { + "Homepage": "http://quynhquynhnguyen.wix.com/quynh" + }, + "description": "Ph.D. in Electrical Engineering" + }, + { + "name": "Gowri S. Ramachandran", + "photo": "/static/public/members/gowri_s._ramachandran.png", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2017/11/gowri.png", + "Homepage": "http://gowrisankar.net/" + }, + "description": "" + }, + { + "name": "Rohit Kumar", + "photo": "/static/public/members/rohit_kumar.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2019/12/rohit1.jpg", + "Homepage": "https://sites.google.com/nitdelhi.ac.in/rohit-kumar/" + }, + "description": "" + }, + { + "name": "Anusha Avyukt", + "photo": "/static/public/members/anusha_avyukt.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2021/03/anush.jpg" + }, + "description": "" + }, + { + "name": "Eugenio Grippo", + "photo": "/static/public/members/eugenio_grippo.jpg", + "links": { + "": "https://anrg.usc.edu/www/wp-content/uploads/2021/03/Eugenio.jpg" + }, + "description": "" + } + ], + "former_visiting": [ + { + "name": "Martin Fleischmann", + "photo": "/static/public/members/martin_fleischmann.jpg", + "links": {}, + "description": "Doctoral (Visited during 2019)" + }, + { + "name": "Corey E Baker", + "photo": "/static/public/members/corey_e_baker.jpg", + "links": { + "Homepage": "https://www.cs.uky.edu/~baker/" + }, + "description": "" + }, + { + "name": "Zhiyuan Jiang", + "photo": "/static/public/members/zhiyuan_jiang.jpg", + "links": { + "Homepage": "https://www.researchgate.net/profile/Zhiyuan_Jiang3" + }, + "description": "" + }, + { + "name": "Hyuk Lim", + "photo": "/static/public/members/hyuk_lim.jpg", + "links": { + "Homepage": "http://wits.gist.ac.kr/" + }, + "description": "Gwangju Institute of Science and Technology" + }, + { + "name": "Junhua Tang", + "photo": "/static/public/members/junhua_tang.jpg", + "links": {}, + "description": "Shangai Jiaotong University" + }, + { + "name": "Kyuho Son", + "photo": "/static/public/members/kyuho_son.jpg", + "links": { + "Homepage": "http://anrg.usc.edu/~kyuho" + }, + "description": "Post Doctoral" + }, + { + "name": "Eunsung Oh", + "photo": "/static/public/members/eunsung_oh.jpg", + "links": {}, + "description": "Post Doctoral" + }, + { + "name": "Bram Dil", + "photo": "/static/public/members/bram_dil.JPG", + "links": {}, + "description": "Doctoral" + }, + { + "name": "Chen Avin", + "photo": "/static/public/members/chen_avin.jpg", + "links": {}, + "description": "Post Doctoral" + }, + { + "name": "Changmian Wang", + "photo": "/static/public/members/changmian_wang.jpg", + "links": {}, + "description": "Doctoral (Visited during Aug 2009 \u2013 Dec 2009)" + }, + { + "name": "Ozlem Durmaz Incel", + "photo": "/static/public/members/ozlem_durmaz_incel.jpg", + "links": {}, + "description": "Doctoral (Visited during Oct \u2013 Nov 2007, July 2008)" + }, + { + "name": "Andrea Gasparri", + "photo": "/static/public/members/andrea_gasparri.jpg", + "links": {}, + "description": "Doctoral (Visited during April \u2013 Oct 2007)" + }, + { + "name": "Revathi Venkataraman", + "photo": "/static/public/members/revathi_venkataraman.jpg", + "links": {}, + "description": "(Visited during Sept 2010 \u2013 Jan 2011)" + }, + { + "name": "Pushpalatha Marudappa", + "photo": "/static/public/members/pushpalatha_marudappa.jpg", + "links": {}, + "description": "(Visited during Sept 2010 \u2013 Jan 2011)" + } + ], + "ms": [ + { + "name": "Mingyu Zong, 2022" + }, + { + "name": "Xiangchen Zhao,\u00a02018-2021" + }, + { + "name": "Chandrasekar Balachandran, 2020-2021" + }, + { + "name": "Shreyas Bhat, 2020-2021" + }, + { + "name": "Sukruth Babu, 2019-2020" + }, + { + "name": "Charles Andre, 2020" + }, + { + "name": "Belal Wang, 2020" + }, + { + "name": "Zhiwei Deng, 2020" + }, + { + "name": "Kurian Karyakulam Sajan, 2019-2020" + }, + { + "name": "Yaashia Gautam, 2020" + }, + { + "name": "Meiyu Zhong, 2020" + }, + { + "name": "Pavas Navaney, 2019" + }, + { + "name": "Yi Lucy Wang, 2019" + }, + { + "name": "Siying Chen, 2019" + }, + { + "name": "Licheng Zheng, 2018" + }, + { + "name": "Yutong Gu, 2018-2019" + }, + { + "name": "Rahul Radhakrishnan, 2018-2019" + }, + { + "name": "Sharon L.G Contreras, 2018-2019" + }, + { + "name": "Jeff Froelicher (M.S. in Electrical Engineering Mobile Networks), Summer 2018" + }, + { + "name": "Palash Shah, 2018" + }, + { + "name": "Uday Chadha, 2018" + }, + { + "name": "Dheeraj Kota (M.S. in Electrical Engineering)" + }, + { + "name": "Jung-Hyun Jun (Peter) (M.S. in Electrical Engineering), Graduated Spring 2006" + }, + { + "name": "Divya Devaguptapu (M.S. in Electrical Engineering), Graduated Fall 2003" + } + ], + "bs": [ + { + "name": "Shuangge Wang, 2021-2022" + }, + { + "name": "Lorand Cheng, 2021" + }, + { + "name": "Emily Zhou, 2022" + }, + { + "name": "Victor Hui, 2022" + }, + { + "name": "Angelica Escobar, 2021" + }, + { + "name": "Fayez Loan, 2021" + }, + { + "name": "Radhika Bhuckory, 2020-2021" + }, + { + "name": "Joshua Solomon, 2020-2021" + }, + { + "name": "David Karapetyan, 2020" + }, + { + "name": "Cooper Simpson, 2020" + }, + { + "name": "Nina Tanaka, 2020" + }, + { + "name": "Jacob Donenfeld, 2019" + }, + { + "name": "David Chen, 2018" + }, + { + "name": "Daniel D\u2019Souza, 2018, 2021" + }, + { + "name": "Angela Zhang, 2018" + }, + { + "name": "Richard Kim, 2018" + }, + { + "name": "Kai Yang (East Los Angeles College), Summer 2018" + }, + { + "name": "Daniel Koo (University of Southern California), Summer 2018" + }, + { + "name": "Kegan Strawn (Colorado State University), Summer 2018" + }, + { + "name": "Alex Jong (California State University, Long Beach), Summer 2018" + }, + { + "name": "Devan Tormey (University of Southern California), Spring 2018" + }, + { + "name": "David Chen (University of Southern California), Fall 2017" + }, + { + "name": "Jayashree Mohan, 2017" + }, + { + "name": "Jenny Xie, 2017" + }, + { + "name": "Hanpeng Liu, 2017" + }, + { + "name": "Amber Bhargava, 2016" + }, + { + "name": "Alex Jones, 2016" + }, + { + "name": "Timothy Ferrell, 2016" + }, + { + "name": "Spencer Congero, 2016" + }, + { + "name": "Leo Linksy, 2016" + }, + { + "name": "Raktim Pal (NIT Trichy, India), Summer 2014." + }, + { + "name": "Avi Gadish (The Cooper Union for the Advancement of Science and Art, New York), Summer 2014." + }, + { + "name": "He Ren (Beijing Jiaotong University, China), Summer 2014." + }, + { + "name": "Zilong Chen (Tsinghua University, China), Summer 2014." + }, + { + "name": "Yizhen Zhang (Tsinghua University, China), Summer 2014." + }, + { + "name": "Bingjie Leng (Tsinghua University, China), Summer 2013." + }, + { + "name": "Yuyang Bai (University of Illinois, Chicago), Summer 2013." + }, + { + "name": "Vignesh Babu (IIT Guwahati, India), Summer 2013." + }, + { + "name": "Carlos Alberto Marin Ceballos (UNAM, Mexico), Summer 2012." + }, + { + "name": "Amulya Yadav (Indian Institute of Technology Patna), Summer 2011." + }, + { + "name": "Samantha Massengill (The Cooper Union for the Advancement in Science and Art, New York), Summer 2011." + }, + { + "name": "Ruian Duan (Tsinghua University), Summer 2011." + }, + { + "name": "Zhuo Chen (Tsinghua University), Summer 2011." + }, + { + "name": "Juan Carlos Hern\u00e1ndez Ram\u00edrez (UNAM, Mexico), Summer 2011." + }, + { + "name": "Jonathan Ligo (The Cooper Union for the Advancement in Science and Art, New York), Summer 2010." + }, + { + "name": "Samiur Rahman (The Cooper Union for the Advancement in Science and Art, New York), Summer 2010." + }, + { + "name": "Paul Martin (University of Pennsylvania), Summer 2010" + }, + { + "name": "Perpetue Cadet (Johnson C. Smith University), Summer 2010" + }, + { + "name": "Jamie Williams (University of Southern California), Summer 2010" + }, + { + "name": "Wenhan Dai (Tsinghua University), Summer 2010" + }, + { + "name": "Zhou Zhang, (Department of Computer Science and Technology, Tsinghua University, Beijing), Summer 2009." + }, + { + "name": "Brian Cheung, (The Cooper Union for the Advancement in Science and Art, New York), Summer 2009." + }, + { + "name": "Chi Wang, (Department of Computer Science and Technology, Tsinghua University, Beijing), Summer 2008." + }, + { + "name": "He Zhang, (School of Software, Tsinghua University, Beijing), Summer 2008." + }, + { + "name": "Dae Yon Jung, (The Cooper Union for the Advancement in Science and Art, New York), Summer 2008." + }, + { + "name": "Carl Mackey, (U. Penn), Summer 2007." + }, + { + "name": "Yuankai Ge, (Tsinghua University, China), Summer 2007." + }, + { + "name": "Dong Li, (Tsinghua University, China), Summer 2007." + }, + { + "name": "Maheswaran Sathiamoorthy (Indian Institute of Technology, Kharagpur), Summer 2007." + }, + { + "name": "G. Sreechakra (Indian Institute of Technology, Kharagpur), Summer 2006." + }, + { + "name": "Maulik Desai (The Cooper Union, New York), Summer 2006." + }, + { + "name": "Xiaofan Qiu (Texas A&M University, College Station, Texas), Summer 2006." + } + ] +} \ No newline at end of file diff --git a/database/original_documents/publications.json b/database/original_documents/publications.json new file mode 100644 index 0000000000000000000000000000000000000000..e55484f50a92de85ac650dd8bdf7048cfa1ea88b --- /dev/null +++ b/database/original_documents/publications.json @@ -0,0 +1,5910 @@ +[ + { + "title": "Search and Rescue on the Line", + "authors": [ + "J Coleman", + "L Cheng", + "B Krishnamachari" + ], + "venue": "SIROCCO 2023 \u2013 30th International Colloquium on Structural Information and Communication Complexity.", + "links": { + "pdf": "/static/public/papers/search_and_rescue.pdf" + }, + "type": "Conference Papers", + "year": 2023 + }, + { + "title": "Solving Math Word Problems Concerning Systems of Equations with GPT-3", + "authors": [ + "M Zong", + "B Krishnamachari" + ], + "venue": "Thirteenth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-23) to be held February 11-12, 2023.", + "links": { + "pdf": "/static/public/papers/Solving_Math_Word_Problems_with_GPT3-2022.pdf" + }, + "type": "Conference Papers", + "year": 2023 + }, + { + "title": "Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", + "authors": [ + "J Coleman", + "M Kiamari", + "L Clark", + "D DSouza", + "B Krishnamachari" + ], + "venue": "IEEE MILCOM 2022.", + "links": { + "pdf": "/static/public/papers/edge_gcn_scheduler.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "Characterizing ML training performance at the tactical edge", + "authors": [ + "A Alshabanah", + "K Balasubramanian", + "B Krishnamachari", + "M Annavaram" + ], + "venue": "Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, vol. 12113, pp. 500-513. SPIE, 2022.", + "links": { + "pdf": "https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12113/121131N/Characterizing-ML-training-performance-at-the-tactical-edge/10.1117/12.2617773.short?SSO=1" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "Optimal Trading on a Dynamic Curve Automated Market Maker", + "authors": [ + "S Wang", + "B Krishnamachari" + ], + "venue": "IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2022", + "links": { + "pdf": "/static/public/papers/Optimal%20Trading%20on%20a%20Dynamic%20Curve%20Automated.pdf", + "code": "https://github.com/ANRGUSC/Optimal_Trading_Dynamic_AMM" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract)", + "authors": [ + "E Ondula", + "B Krishnamachari" + ], + "venue": "AAAI 2022.", + "links": { + "pdf": "/static/public/papers/SA-00287-OndulaE.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "\u201cMulti-objective network synthesis for dispersed computing in tactical environments\u201d", + "authors": [ + "J Coleman", + "E Grippo", + "B Krishnamachari", + "G Verma" + ], + "venue": "Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI, 12122, p. 1212219, International Society for Optics and Photonics, 2022.", + "links": { + "pdf": "/static/public/papers/iobt.pdf", + "code": "https://github.com/ANRGUSC/NSDC" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "\u201cIntelligent Communication over Realistic Wireless Networks in Multi-Agent Cooperative Games\u201d", + "authors": [ + "D Hu", + "C Zhang", + "V Prasanna", + "B Krishnamachari" + ], + "venue": "21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 9\u201313, 2022", + "links": { + "pdf": "/static/public/papers/IntCom.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "DEFER: Distributed Edge Inference for Deep Neural Networks", + "authors": [ + "A Parthasarathy", + "B Krishnamachari" + ], + "venue": "Workshop on Machine Intelligence in Networked Data and Systems (MINDS), organized in conjunction with 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), 2022.", + "links": { + "pdf": "https://arxiv.org/abs/2201.06769", + "code": "https://github.com/ANRGUSC/DEFER" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "Network Synthesis for Tactical Environments: Scenario, Challenges, and Opportunities", + "authors": [ + "T Anevlavis", + "J Bunton", + "J Coleman", + "M Gokce Dogan", + "E Grippo", + "A Souza", + "C Fragouli", + "B Krishnamachari", + "M Maness", + "K Olson", + "P Shenoy", + "P Tabuada", + "G Verma" + ], + "venue": "Proc. SPIE 12113, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, 121130N, 6 June 2022.", + "links": { + "pdf": "/static/public/papers/iobt_network_synthesis.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "Neural Networks for DDoS Attack Detection using an Enhanced Urban IoT Dataset", + "authors": [ + "A Hekmati", + "E Grippo", + "B Krishnamachari" + ], + "venue": "International Conference on Computer Communications and Networks (ICCCN), pp. 1-8, doi: 10.1109/ICCCN54977.2022.9868942, July 2022", + "links": { + "pdf": "/static/public/papers/Neural_Networks_for_DDoS_Attack_Detection_using_an_Enhanced_Urban_IoT_Dataset.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs Using Reinforcement Learning", + "authors": [ + "Y AlSaqabi", + "B Krishnamachari" + ], + "venue": "19th International Conference on Mobile Ad-Hoc and Smart Systems (MASS), October 20-22, 2022", + "links": { + "pdf": "/static/public/papers/RL_Routing.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "\u201cLearning Practical Communication Strategies in Cooperative Multi-Agent Reinforcement Learning\u201d", + "authors": [ + "D Hu", + "C Zhang", + "V Prasanna", + "B Krishnamachari" + ], + "venue": "Asian Conference on Machine Learning (ACML), PMLR, 2022", + "links": { + "pdf": "/static/public/papers/hu22.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "GCNScheduler: Scheduling distributed computing applications using graph convolutional networks", + "authors": [ + "M Kiamari", + "B Krishnamachari" + ], + "venue": "Proceedings of the 1st International Workshop on Graph Neural Networking, 13-17, Dec. 2022", + "links": { + "pdf": "/static/public/papers/Mehrdad_GCNScheduler_GNNet.pdf" + }, + "type": "Conference Papers", + "year": 2022 + }, + { + "title": "\u201cRevealing a Hidden, Stable Spectral Structure of Urban Vehicular Traffic\u201d", + "authors": [ + "F Bai", + "B Krishnamachari" + ], + "venue": "VNC 2021: 44-51", + "links": { + "pdf": "/static/public/papers/Revealing.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "\u201cDataset: Large-scale Urban IoT Activity Data for DDoS Attack Emulation\u201d", + "authors": [ + "A Hekmati", + "E Grippo", + "B Krishnamachari" + ], + "venue": "CoRR abs/2110.01842 (2021)", + "links": { + "pdf": "/static/public/papers/DATASET.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "Jupiter: a networked computing architecture\u201d", + "authors": [ + "P Ghosh", + "Q Nguyen", + "P Sakulkar", + "J Tran", + "A Knezevic", + "J Wang", + "Z Lin", + "B Krishnamachari", + "M Annavaram", + "S Avestimehr" + ], + "venue": "UCC Companion 2021: 28:1-28:8", + "links": { + "pdf": "/static/public/papers/JUPITER.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "https://anrg.usc.edu/www/papers/scheduling.pdf", + "authors": [ + "A Hekmati", + "B Krishnamachari", + "M Mataric", + "Course Scheduling to Minimize Student Wait Times For University Buildings During Epidemics" + ], + "venue": "IEEE BigData 2021: 4365-4370", + "links": { + "pdf": "/static/public/papers/scheduling.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "\u201cTactical Jupiter: Dynamic Scheduling of Dispersed Computations in Tactical MANETs\u201d", + "authors": [ + "Alexander Poylisher", + "Andrzej Cichocki", + "K Guo", + "J Hunziker", + "Latha A Kant", + "Bhaskar Krishnamachari", + "Salman Avestimehr", + "Murali Annavaram" + ], + "venue": "IEEE MILCOM 2021: 102-107", + "links": { + "pdf": "/static/public/papers/Tactical_Jupiter.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "\u201cSimulation-Based Analysis of COVID-19 Spread Through Classroom Transmission on a University Campus,\u201d", + "authors": [ + "A Hekmati", + "M Luhar", + "B Krishnamachari", + "M Mataric" + ], + "venue": "IEEE ICC Workshop on Communication, IoT, and AI Technologies to Counter COVID-19 (COVI-COM), 2021", + "links": { + "pdf": "http://anrg.usc.edu/www/papers/SpreadClassroom" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "A Decentralized Review System for Data Marketplaces", + "authors": [ + "A Avyukt", + "G Ramachandran", + "B Krishnamachari" + ], + "venue": "IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021", + "links": { + "pdf": "/static/public/papers/ReviewPaper.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "DAISIM: A Computational Simulator for the MakerDAO Stablecoin", + "authors": [ + "S Bhat", + "A Kahya", + "B Krishnamachari", + "R Kumar" + ], + "venue": "Fourth International Symposium on Foundations and Applications of Blockchain, UC Davis, May 7, 2021", + "links": { + "pdf": "/static/public/papers/DAISIM.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges", + "authors": [ + "B Krishnamachari", + "Q Feng", + "E Grippo" + ], + "venue": "Fourth International Symposium on Foundations and Applications of Blockchain, UC Davis, May 7, 2021", + "links": { + "pdf": "/static/public/papers/Dynamiccurves.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "Simulating the MakerDAO Stablecoin", + "authors": [ + "S Bhat", + "A Kahya", + "R Kumar", + "B Krishnamachari" + ], + "venue": "Short paper, IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021", + "links": { + "pdf": "/static/public/papers/makerdao.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "Dynamic Automated Market Makers for Decentralized Cryptocurrency Exchange", + "authors": [ + "B Krishnamachari", + "Q Feng", + "E Grippo" + ], + "venue": "Short paper, IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021", + "links": { + "pdf": "/static/public/papers/dynamicautomation.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics", + "authors": [ + "A Hekmati", + "G Ramachandran", + "B Krishnamachari" + ], + "venue": "IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021", + "links": { + "pdf": "/static/public/papers/CONTAIN.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "Large-scale Urban IoT Activity Data for DDoS Attack Emulation", + "authors": [ + "A Hekmati", + "E Grippo", + "B Krishnamachari" + ], + "venue": ", Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys \u201921). Association for Computing Machinery, New York, NY, USA, 560\u2013564, November 2021", + "links": { + "pdf": "/static/public/papers/Dataset_Large_scale_Urban_IoT_Activity_Data_for_DDoS_Attack_Emulation.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "TEAM: Trilateration for Exploration and Mapping with Robotic Networks", + "authors": [ + "L Clark", + "C Andre", + "J Galante", + "B Krishnamachari", + "K Psounis" + ], + "venue": "18th International Conference on Ubiquitous Robots (UR) (pp. 539-546), July 2021", + "links": { + "pdf": "/static/public/papers/TEAM.pdf" + }, + "type": "Conference Papers", + "year": 2021 + }, + { + "title": "Blockchain Technology as a Means for Brand Trust Repair \u2013 Empirical Evidence from a Digital Transgression", + "authors": [ + "Martin Fleischmann", + "Bjoern S Ivens", + "Bhaskar Krishnamachari" + ], + "venue": "Proceedings of the 53rd Hawaii International Conference on System Sciences, Wailea, USA, 2020.", + "links": { + "pdf": "/static/public/papers/blockchain_brandtrust.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "\u201cDifferential Pricing of 5G Network Slices for Heterogeneous Customers,\u201d", + "authors": [ + "Siying Chen", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE 10th Annual Computing and Communications Workshop and Conference (CCWC), Las Vegas, Nevada, January 2020.", + "links": { + "pdf": "/static/public/papers/Differential_Pricing_of_5G_Network_Slices_for_Heterogeneous_Customers.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "MABSTA: Collaborative Computing over Heterogeneous Devices in Dynamic Environments", + "authors": [ + "Yi-Hsuan Kao", + "Kwame Wright", + "Po-Han Huang", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "IEEE International Conference on Computer Communications (INFOCOM), 2020.", + "links": { + "pdf": "/static/public/papers/Infocom_2020.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Fast and accurate streaming CNN inference via communication compression on the edge", + "authors": [ + "Diyi Hu", + "Bhaskar Krishnamachari" + ], + "venue": "5th ACM/IEEE conference on internet of things design and implementation (IoTDI), April, 2020", + "links": { + "pdf": "/static/public/papers/CNN_inferene_edge_compression.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Distributed Consensus for Mobile Devices using Online Brokers", + "authors": [ + "M Kiamari", + "B Krishnamachari", + "M Naveed", + "S Yun" + ], + "venue": "International Conference on Blockchain and Cryptocurrency, 2020", + "links": { + "pdf": null + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Demo Abstract: The Intelligent IoT Integrator Data Marketplace \u2014 Version 1", + "authors": [ + "Xiangchen Zhao", + "Kurian Karyakulam Sajan", + "Gowri Sankar Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "5th ACM/IEEE Conference on Internet of Things Design and Implementation (IoTDI), April, 2020. (poster)", + "links": { + "pdf": "/static/public/papers/iotdi_2020_i3_demo.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Mobile Encounter-based Social Sybil Control", + "authors": [ + "Martin Martinez", + "Arvin Hekmati", + "Bhaskar Krishnamachari", + "Seokgu Yun" + ], + "venue": "2nd International Workshop on Blockchain Applications and Theory (BAT 2020), Paris, France, April 2020", + "links": { + "pdf": "/static/public/papers/Encounter_based_Social_Sybil_Control.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Enhancing the Reliability of IoT Data Marketplaces through Security Validation of IoT Devices", + "authors": [ + "Yoonjong Na", + "Yejin Joo", + "Heejo Lee", + "Xiangchen Zhao", + "Kurian Karyakulam Sajan", + "Gowri Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "2nd International Workshop on IoT Applications and Industry 4.0, Co-located with IEEE DCOSS-2020. Los Angeles, CA, USA.", + "links": { + "pdf": "/static/public/papers/Enhancing_the_reliability_of_marketplace.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "ParkingJSON: An Open Standard Format for Parking Data in Smart Cities", + "authors": [ + "Gowri Ramachandran", + "Jeremy Stout", + "Joyce J Edson", + "Bhaskar Krishnamachari" + ], + "venue": "Invited Paper at the International Workshop on Very Large Internet of Things (VLIoT 2020) held in conjunction with the 2020 VLDB Conference, Tokyo, Japan, 2020.", + "links": { + "pdf": "/static/public/papers/Very_Large_IoT_2020_Parking_Paper.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "EDISON: A Blockchain-based Secure and Auditable Orchestration Framework for Multi-domain Software Defined Networks", + "authors": [ + "Chandrasekar Balachandran", + "Puneet A Chandrashekhar", + "Gowri Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "In Third IEEE International Conference on Blockchain, November, 2020.", + "links": { + "pdf": "/static/public/papers/EDISON_SDN_Blockchain.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "WhistleBlower: Towards A Decentralized and Open Platform for Spotting Fake News", + "authors": [ + "Gowri Ramachandran", + "Daniel Nemeth", + "David Neville", + "Dimitrii Zhelezov", + "Ahmet Yal\u00e7in", + "Oliver Fohrmann", + "Bhaskar Krishnamachari" + ], + "venue": "In Third IEEE International Conference on Blockchain, November, 2020.", + "links": { + "pdf": "/static/public/papers/WhistleBlower_Camera_Ready.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Inter-Mobile-Device Distance Estimation using Network Localization Algorithms for Digital Contact Logging Applications", + "authors": [ + "Lillian Clark", + "Alan Papalia", + "J\u00f4nata Tyska Carvalho", + "Luca Mastrostefano", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), December 2020.", + "links": { + "pdf": "/static/public/papers/Inter_Mobile_Device_Distance_Estimation.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Poster: Centralized vs. Decentralized Contact Tracing: Do GDP and Democracy Index Influence Privacy Choices?", + "authors": [ + "Nina Tanaka", + "Gowri Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), December 2020.", + "links": { + "pdf": "/static/public/papers/ACM_CHASE_Camera_Ready.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "\u201cCOVID-19 Risk Estimation using a Time-varying SIR-model", + "authors": [ + "Mehrdad Kiamari", + "Gowri Ramachandran", + "Quynh Nguyen", + "Eva Pereira", + "Jeanne Holm", + "Bhaskar Krishnamachari" + ], + "venue": "1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19, November 3, 2020.", + "links": { + "pdf": "/static/public/papers/ACM_SigSpatial_Covid19_Workshop_final.pdf" + }, + "type": "Conference Papers", + "year": 2020 + }, + { + "title": "Throughput Optimized Scheduler for Dispersed Computing Systems", + "authors": [ + "Diyi Hu", + "Bhaskar Krishnamachari" + ], + "venue": "In 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile-Cloud), San Francisco, USA, 2019.", + "links": { + "pdf": "/static/public/papers/ThroughputSchedulerDipersed.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Trinity: A Byzantine Fault-Tolerant Distributed Publish-Subscribe System with Immutable Blockchain-based Persistence", + "authors": [ + "Gowri S Ramachandran", + "Kwame-Lante Wright", + "Licheng Zheng", + "Pavas Navaney", + "Muhammad Naveed", + "Jagjit Dhaliwal", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019.", + "links": { + "pdf": "/static/public/papers/Trinity.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Solving the Buyer and Seller\u2019s Dilemma: A Dual-Deposit Escrow Smart Contract for Provably Cheat-Proof Delivery and Payment for a Digital Good without a Trusted Mediator", + "authors": [ + "Aditya Asgaonkar", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019.", + "links": { + "pdf": "/static/public/papers/Dual_Deposit_ICBC_2019.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Enhancing Engagement in Token-Curated Registries with an Inflationary Mechanism", + "authors": [ + "Yi Lucy Wang", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019.", + "links": { + "pdf": "/static/public/papers/EnhancingEngagement_ICBC.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "SDPP: Streaming Data Payment Protocol for Data Economy", + "authors": [ + "Rahul Radhakrishnan", + "Gowri S Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "In the Demo Session of IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019.", + "links": { + "pdf": "/static/public/papers/SDPP_ICBC_2019.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "PayFlow: Micropayments for Bandwidth Reservations in Software Defined Networks", + "authors": [ + "David Chen", + "Zhiyue Zhang", + "Ambrish Krishnan", + "Bhaskar Krishnamachari" + ], + "venue": "In 1st International IEEE Workshop on the Economics of Fog, Edge and Cloud Computing (ECOFEC 2019) in conjunction with IEEE INFOCOM, Paris, France, April 29 \u2013 May 2, 2019.", + "links": { + "pdf": "/static/public/papers/Payflow.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "VESPER: A Real-time Processing Framework for Vehicle Perception Augmentation", + "authors": [ + "Kwame-Lante Wright", + "Pranav Sakulkar", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "In 3rd Workshop on Integrating Edge Computing, Caching, and Offloading in Next Generation Networks (IECCO 2019) in conjunction with IEEE INFOCOM. Paris, France, April, 2019.", + "links": { + "pdf": "/static/public/papers/VESPER_IEECO_2019.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "AsTAR: Sustainable Battery Free Energy Harvesting for Heterogeneous Platforms and Dynamic Environments", + "authors": [ + "Yang", + "Fan", + "Ashok Samraj Thangarajan", + "Gowri Sankar Ramachandran", + "Bhaskar Krishnamachari", + "Wouter Joosen", + "Christophe Huygens", + "Danny Hughes" + ], + "venue": "In Proceedings of the 2019 International Conference on Embedded Wireless Systems and Networks, EWSN 2019. ACM, 2019.", + "links": { + "pdf": "/static/public/papers/AsTAR-yang.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Publish-Pay-Subscribe Protocol for Payment-driven Edge Computing", + "authors": [ + "Gowri S Ramachandran", + "Sharon LG Contreras", + "Bhaskar Krishnamachari" + ], + "venue": "2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge) and will be co-located with the 2019 USENIX Annual Technical Conference, July 2019.", + "links": { + "pdf": "/static/public/papers/hotegde_pspp_camera_ready.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Demo: An Immersive Visualization of Micro-climatic Data using USC AiR", + "authors": [ + "Gowri Sankar Ramachandran", + "Biayna Bogosian", + "Kunal Vasudeva", + "Sushanth Ikshwaku Sriramaraju", + "Jay Patel", + "Shubhesh Amidwar", + "Lavanya Malladi", + "Rohan Doddaiah Shylaja", + "Nishant Revur Bharath Kumar", + "Bhaskar Krishnamachari" + ], + "venue": "17th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), June 2019.", + "links": { + "pdf": "/static/public/papers/USCAir_MobiSys_Demo.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Video: Micropayments for Trusted Vehicular Services using MOTIVE", + "authors": [ + "Gowri Sankar Ramachandran", + "Xiang Ji", + "Pavas Navaney", + "Licheng Zheng", + "Martin Martinez", + "Bhaskar Krishnamachari" + ], + "venue": "17th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), June 2019.", + "links": { + "pdf": "/static/public/papers/MobiSys_MOTIVE_Video.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions", + "authors": [ + "Gowri Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "Invited Paper at the International Workshop on Very Large Internet of Things (VLIoT 2019) held in conjunction with the 2019 VLDB Conference, Los Angeles, USA, August 2019.", + "links": { + "pdf": "/static/public/papers/Towards_a_large_scale_IoT.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "A Crowd-Based Image Learning Framework Using Edge Computing for Smart City", + "authors": [ + "Giorgos Constantinou", + "Abdullah Alfarrarjeh", + "Seon Ho Kim", + "Gowri Sankar Ramachandran", + "Bhaskar Krishnamachari", + "Cyrus Shahabi" + ], + "venue": "5th IEEE International Conference on Multimedia Big Data, Singapore, September 2019. (Winner of Best Student Paper Award)", + "links": { + "pdf": "/static/public/papers/BigMM19__Crowd_learning_Framework_using_Edge_Computing_for_Smart_City__Camera_Ready_.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Information Autonomy: Self-Adaptive Information Management for Edge-Assisted Autonomous UAV Systems", + "authors": [ + "Davide Callegaro", + "Sabur Baidya", + "Gowri Sankar Ramachandran", + "Bhaskar Krishnamachari", + "Marco Levorato" + ], + "venue": "Proceedings of the 2019 IEEE Military Communications Conference (MILCOM), 2019.", + "links": { + "pdf": "/static/public/papers/SEAMS2019.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "BlendSM-DDM: BLockchain-ENabled Secure Microservices for Decentralized Data Marketplaces", + "authors": [ + "Ronghua Xu", + "Gowri Ramachandran", + "Yu Chen", + "Bhaskar Krishnamachari" + ], + "venue": "Proceedings of the 2nd International Workshop on BLockchain Enabled Sustainable Smart Cities (BLESS 2019), Morocco, October, 2019, held in conjunction with the 5th IEEE Annual International Smart Cities Conference (ISC2 2019), 2019.", + "links": { + "pdf": "/static/public/papers/BlendSM-DDM.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Enhancing Support for Machine Learning and Edge Computing on an IoT Data Marketplace", + "authors": [ + "Kurian Karyakulam Sajan", + "Gowri Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "Proceedings of the The Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeIoT 2019) co-located with ACM SenSys 2019, New York, NY, USA, 2019.", + "links": { + "pdf": "/static/public/papers/AIChallenge_Paper-Final.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "An Evaluation of Consensus Latency in Partitioning Networks", + "authors": [ + "Jason A Tran", + "Gowri Ramachandran", + "Claudiu B Danilov", + "Bhaskar Krishnamachari" + ], + "venue": "Proceedings of the 2019 IEEE Military Communications Conference (MILCOM), 2019.", + "links": { + "pdf": "/static/public/papers/MilCom_Consensus_Latency.pdf", + "code": "https://github.com/ANRGUSC/swarmdag/tree/master/simulations" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "Container Orchestration for Dispersed Computing", + "authors": [ + "Pradipta Ghosh", + "Quynh Nguyen", + "Bhaskar Krishnamachari" + ], + "venue": "In 5th International Workshop on Container Technologies and Container Clouds (WOC \u201919), December 9\u201313, 2019, Davis, CA, USA. ACM, New York, NY, USA", + "links": { + "pdf": "/static/public/papers/Jupiter__Camera_Ready.pdf" + }, + "type": "Conference Papers", + "year": 2019 + }, + { + "title": "A Heuristic Policy for Outpatient Surgery Appointment Sequencing: Newsvendor Ordering", + "authors": [ + "F Mansourifard", + "P Mansourifard", + "M Ziyadi", + "B Krishnamachari" + ], + "venue": "2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France, 2018.", + "links": { + "pdf": "/static/public/papers/Heuristic_IEOM2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "Percentile Policies for Inventory Problems with Partially Observed Markovian Demands", + "authors": [ + "F Mansourifard", + "P Mansourifard", + "B Krishnamachari" + ], + "venue": "2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France, 2018.", + "links": { + "pdf": "/static/public/papers/Inventory_IEOM2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "A Game Theoretic Approach to Newsvendor Problems with Censored Markovian Demand", + "authors": [ + "P Mansourifard", + "F Mansourifard", + "B Krishnamachari" + ], + "venue": "2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France, 2018.", + "links": { + "pdf": "/static/public/papers/Game_IEOM2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "Decentralized status update for age-of-information optimization in wireless multiaccess channels", + "authors": [ + "Z Jiang", + "B Krishnamachari", + "X Zheng", + "S Zhou", + "Z Niu" + ], + "venue": "IEEE International Symposium on Information Theory (ISIT), 2018.", + "links": { + "pdf": "/static/public/papers/zhiyuan_isit_final.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "End-to-End Network Performance Monitoring for Dispersed Computing", + "authors": [ + "Quynh Nguyen", + "Pradipta Ghosh", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Computing, Networking and Communications, March 2018.", + "links": { + "pdf": "/static/public/papers/DispersedNetworkProfiler_ICNC2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "SmartEdge: A Smart Contract for Edge Computing", + "authors": [ + "Kwame-Lante Wright", + "Martin Martinez", + "Uday Chadha", + "Bhaskar Krishnamachari" + ], + "venue": "1\u200bst\u200b International Workshop on Blockchain for the Internet of Things at the IEEE International Conference on Blockchain, July 2018.", + "links": { + "pdf": "/static/public/papers/SmartEdge_BIoT2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "FWB: Funneling Wider Bandwidth Algorithm for High Performance Data Collection in Wireless Sensor Networks", + "authors": [ + "Rodrigo C Tavares", + "Marcos Carvalho", + "Marcos A M Vieira", + "Luiz F M Vieira", + "Bhaskar Krishnamachari" + ], + "venue": "21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Montreal, 2018", + "links": { + "pdf": "/static/public/papers/fwbFunnelingWider_2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "Streaming Data Payment Protocol (SDPP) for the Internet of Things", + "authors": [ + "Rahul Radhakrishnan", + "Bhaskar Krishnamachari" + ], + "venue": "the 1st International Workshop on Blockchain for the Internet of Things (BIoT), held in conjunction with IEEE Blockchain, Halifax, Canada, 2018.", + "links": { + "pdf": "/static/public/papers/streamingDataPaymentProtocol_2018.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "Intelligent Robotic IoT System (IRIS) Testbed", + "authors": [ + "Jason A Tran", + "Pradipta Ghosh", + "Yutong Gu", + "Richard Kim", + "Daniel DSouza", + "Nora Ayanian", + "Bhaskar Krishnamachari" + ], + "venue": "In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct, 2018", + "links": { + "pdf": "/static/public/papers/Intelligent_Robotic_Iot_System_Testbed__IRIS_-4.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "I3: An IoT Marketplace for Smart Communities", + "authors": [ + "Bhaskar Krishnamachari", + "Jerry Power", + "Seon Ho Kim", + "Cyrus Shahabi" + ], + "venue": "In Proceedings of the 16th ACM International Conference on Mobile Mobile Systems, Applications, and Services (MobiSys) (ACM IoT Day Vision Paper), Munich, Germany, June 10-15, 2018.", + "links": { + "pdf": "/static/public/papers/i3-iot-marketplace.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "Towards a Decentralized Data Marketplace for Smart Cities", + "authors": [ + "Gowri S Ramachandran", + "Rahul Radhakrishnan", + "Bhaskar Krishnamachari" + ], + "venue": "Invited paper at The 1st International Workshop on BLockchain Enabled Sustainable Smart Cities (BLESS 2018), Kansas City, MO, USA, Sept. 19, 2018, held in conjunction with the 4th IEEE Annual International Smart Cities Conference (ISC2 2018).", + "links": { + "pdf": "/static/public/papers/decentralized-data-marketplace-smart-cities.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "SwarmDAG: A Partition Tolerant Distributed Ledger Protocol for Swarm Robotics (Supported by Boeing Research and Technology)", + "authors": [ + "Jason A Tran", + "Gowri S Ramachandran", + "Palash M Shah", + "Claudiu B Danilov", + "Rodolfo A Santiago", + "Bhaskar Krishnamachari" + ], + "venue": "Symposium on Blockchain for Robotic Systems, MIT, Boston, USA, Dec. 5, 2018.", + "links": { + "pdf": "/static/public/papers/SwarmDAG_A_Partition_Tolerant_Distributed_Ledger_Protocol_for_Swarm_Robotics.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels?", + "authors": [ + "Zhiyuan Jiang", + "Bhaskar Krishnamachari", + "Sheng Zhou", + "Zhisheng Niu" + ], + "venue": "International Teletraffic Congress, 2018.", + "links": { + "pdf": "/static/public/papers/Decentralized_status_update_AoI.pdf" + }, + "type": "Conference Papers", + "year": 2018 + }, + { + "title": "A Study of Contact Durations for Vehicle to Vehicle Communications", + "authors": [ + "Quynh Nguyen", + "Bhaskar Krishnamachari" + ], + "venue": "International Symposium on Sensor Networks, Systems and Security, 2017", + "links": { + "pdf": "/static/public/papers/ContactDuration_ISSNSS.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "ARREST: A RSSI Based Approach for Mobile Sensing and Tracking of a Moving Object", + "authors": [ + "Pradipta Ghosh", + "Jason A Tran", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicles (WiUAV) in conjuction with IEEE GLOBECOM 2017", + "links": { + "pdf": "/static/public/papers/arrest_wiuav.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "miniRadar: A Low Power IEEE 802.15.4 Transceiver Based Implementation of Bistatic Radar", + "authors": [ + "Pradipta Ghosh", + "Jenny Xie", + "Bhaskar Krishnamachari" + ], + "venue": "ACM HotWireless 2017", + "links": { + "pdf": "/static/public/papers/miniradar.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "DEMO: CIRCE \u2013 A runtime scheduler for DAG-based dispersed computing", + "authors": [ + "Aleksandra Knezevic", + "Quynh Nguyen", + "Jason A Tran", + "Pradipta Ghosh", + "Pranav Sakulkar", + "Bhaskar Krishnamachari", + "Murali Annavaram" + ], + "venue": "The Second ACM/IEEE Symposium on Edge Computing (SEC) 2017. (poster)", + "links": { + "pdf": "/static/public/papers/CIRCE__A_runtime_scheduler_for_DAG_based_dispersed_computing.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "Computing Inter-Encounter Time Distributions for Multiple Random Walkers on Graphs", + "authors": [ + "Quynh Nguyen", + "Bhaskar Krishnamachari" + ], + "venue": "Information Theory and Applications Workshop, 2017", + "links": { + "pdf": "/static/public/papers/EncounterDistribution_ITA2017.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "A Reinforcement Learning Approach to Optimize Downloads Over Mobile Networks", + "authors": [ + "Jayashree Mohan", + "Angad Vittal", + "K Chandrasekaran", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Communication Systems and Networks (COMSNETS), 2017.", + "links": { + "pdf": "/static/public/papers/comsnets_2017.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "Interference Power Bound Analysis of a Network of Wireless Robots", + "authors": [ + "Pradipta Ghosh", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Communication Systems and Networks (COMSNETS), 2017 (Invited Paper)", + "links": { + "pdf": "/static/public/papers/comsnets2017_pradipta.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "LOCO: A Location Based Communication Scheme", + "authors": [ + "Pradipta Ghosh", + "Nachikethas A Jagadeesan", + "Pranav Sakulkar", + "Bhaskar Krishnamachari" + ], + "venue": "\u200bWorkshop on New Wireless Communication Paradigms for the Internet of Things (MadCom), International Conference on Embedded Wireless Systems and Networks (EWSN), 2017.", + "links": { + "pdf": "/static/public/papers/madcom2017.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "Deep Reinforcement Learning for Dynamic Multichannel Access", + "authors": [ + "Shangxing Wang", + "Hanpeng Liu", + "Pedro Henrique Gomes", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Computing, Networking and Communications (ICNC), 2017 (Invited Paper).", + "links": { + "pdf": "/static/public/papers/DQNChannelAccess_ICNC2017_FI.pdf" + }, + "type": "Conference Papers", + "year": 2017 + }, + { + "title": "Insights into Frequency Diversity from Measurements on an Indoor Low Power Wireless Network Testbed", + "authors": [ + "Pedro Henrique Gomes", + "Ying Chen", + "Thomas Watteyne", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Low-Layer Implementation and Protocol Design for IoT Applications (IoT-LINK), IEEE Global Communications Conference (GLOBECOM), 2016.", + "links": { + "pdf": "/static/public/papers/Pedro-Tutornet-IOTLink2016.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "Optimal Operation of a Green Server with Bursty Traffic", + "authors": [ + "Bingjie Leng", + "Bhaskar Krishnamachari", + "Xueying Guo", + "Zhisheng Niu" + ], + "venue": "IEEE Global Communications Conference (GLOBECOM), 2016.", + "links": { + "pdf": "/static/public/papers/OptimalGreenServerOperation_Globecom2016_Bingjie.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "Online Learning of Power Allocation Policies in Energy Harvesting Communications", + "authors": [ + "Pranav Sakulkar", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Signal Processing and Communications (SPCOM), 2016.", + "links": { + "pdf": "/static/public/papers/UCLP_SPCOM_2016.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "Restless Poachers: Handling Exploration-Exploitation Tradeoffs in Security Domains", + "authors": [ + "Yundi Qian", + "Chao Zhang", + "Bhaskar Krishnamachari", + "Milind Tambe" + ], + "venue": "Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016).", + "links": { + "pdf": "/static/public/papers/aamas2016_EvE_Yundi.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "Optimizing Downloads over Random Duration Links in Mobile Networks", + "authors": [ + "Amber Bhargava", + "Spencer Congero", + "Timothy Ferrell", + "Alex Jones", + "Leo Linsky", + "Jayashree Mohan", + "Bhaskar Krishnamachari" + ], + "venue": "25th International Conference on Computer Communication and Networks, August 2016.", + "links": { + "pdf": "/static/public/papers/Merlin_ICCCN2016_PID1178168.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "Reliability through Timeslotted Channel Hopping and Flooding-based Routing", + "authors": [ + "Pedro Henrique Gomes", + "Thomas Watteyne", + "Pradipta Ghosh", + "Bhaskar Krishnamachari" + ], + "venue": "ACM International Conference on Embedded Wireless Systems and Networks (Dependability Competition), EWSN 2016.", + "links": { + "pdf": "/static/public/papers/Gomes_EWSN_2016.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "CASPaR: Congestion Avoidance Shortest Path Routing for Delay Tolerant Networks", + "authors": [ + "Michael Stewart", + "Rajgopal Kannan", + "Amit Dvir", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Computing, Networking and Communications (ICNC), 2016.", + "links": { + "pdf": "/static/public/papers/1570187523.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "Energy Efficient Data Collection via Supervised In-Network Classification of Sensor Data", + "authors": [ + "Lorenzo A Rossi", + "Bhaskar Krishnamachari", + "C-C Jay Kuo" + ], + "venue": "IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2016.", + "links": { + "pdf": "/static/public/papers/DCOSS2016_LARossi_cr.pdf" + }, + "type": "Conference Papers", + "year": 2016 + }, + { + "title": "An Algorithmic Approach for Environmentally-Friendly Traffic Control in Smart Cities", + "authors": [ + "Keyvan R Moghdam", + "Kai Huang", + "Bhaskar Krishnamachari" + ], + "venue": "ACM UrbanGIS on Smart Cities and Urban Analytics , SigSpatial, 2015.", + "links": { + "pdf": "/static/public/papers/SigSpatial_Workshop_4Approx.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "\u200bTraffic Matrix Estimation from Road Sensor Data: A Case Study", + "authors": [ + "Keyvan R Moghdam", + "Quynh Nguyen", + "Bhaskar Krishnamachari", + "Ugur Demiryurek" + ], + "venue": "\u200bACM International Conference on Advances in Geographic Information Systems, SigSpatial 2015.", + "links": { + "pdf": "/static/public/papers/LATrafficODEstimation_SigSpatial2015.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "\u200bThe Optimism Principle: A Unified Framework for Optimal Robotic Network Deployment in An Unknown Obstructed Environment", + "authors": [ + "Shangxing Wang", + "Bhaskar Krishnamachari", + "Nora Ayanian" + ], + "venue": "\u200bIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015.", + "links": { + "pdf": "/static/public/papers/IROS15_1267_FI.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "A Tale of Two Cities \u2013 Characterizing Social Community Structures of Fleet Vehicles for Modeling V2V Information Dissemination", + "authors": [ + "Fan Bai", + "Keyvan Rezaei Moghadam", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Sensing, Communication and Networking (SECON), 2015.", + "links": { + "pdf": "/static/public/papers/tale_Secon_2015.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing", + "authors": [ + "Yi-Hsuan Kao", + "Bhaskar Krishnamachari", + "Moo-Ryong Ra", + "Fan Bai" + ], + "venue": "International Conference on Computer Communication (INFOCOM), 2015.", + "links": { + "pdf": "/static/public/papers/1570003575_Kao_v2.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "Optimal Control for Epidemic Routing of Two Files with Different Priorities in Delay Tolerant Networks", + "authors": [ + "Shangxing Wang", + "Arman MHR Khouzani", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "American Control Conferece (ACC), 2015.", + "links": { + "pdf": "/static/public/papers/Shangxing_2015ACC.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "Sequence-Based Tracking of Continuous Markovian Random Processes with Asymmetric Cost and Observation", + "authors": [ + "P Mansourifard", + "B Krishnamachari", + "T Javidi" + ], + "venue": "American Control Conferece (ACC), 2015.", + "links": { + "pdf": "/static/public/papers/Mansourifard_ACC2015.pdf" + }, + "type": "Conference Papers", + "year": 2015 + }, + { + "title": "Distributed Hole Detection Algorithms for Wireless Sensor Networks", + "authors": [ + "Pradipta Ghosh", + "Jie Gao", + "Andrea Gasparri", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014 [An error in two of the illustrative figures of this paper is corrected here].", + "links": { + "pdf": "/static/public/papers/MASS2014_HoleDetection.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination", + "authors": [ + "Richard Kershaw", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Cellular Offloading to Opportunistic Networks (CARTOON), IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014.", + "links": { + "pdf": "/static/public/papers/SeedSelection.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Multi-Channel Data Collection for Throughput Maximization in Wireless Sensor Networks", + "authors": [ + "Ying Chen", + "Pedro Henrique Gomes", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014.", + "links": { + "pdf": "/static/public/papers/pedro_MCC_final.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Area-Based Dissemination in Vehicular Networks", + "authors": [ + "Quynh Nguyen", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Cellular Offloading to Opportunistic Networks (CARTOON), IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014.", + "links": { + "pdf": "/static/public/papers/finalCARTOON.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Throughput-Optimal Robotic Message Ferrying for Wireless Networks using Backpressure Control", + "authors": [ + "Andrea Gasparri", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014.", + "links": { + "pdf": "/static/public/papers/camera_ready_fgbp.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Route Swarm: Wireless Network Optimization through Mobility", + "authors": [ + "Ryan Williams", + "Andrea Gasparri", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.", + "links": { + "pdf": "/static/public/papers/route_swarm_camera_ready.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Optimizing Mobile Computational Offloading with Delay Constraints", + "authors": [ + "Yi-Hsuan Kao", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Global Communications Conference (GLOBECOM), 2014.", + "links": { + "pdf": "/static/public/papers/Yi_Hsuan_Globecom_2014.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Dirichlet\u2019s Principle on Multiclass Multihop Wireless Networks: Minimum Cost Routing Subject to Stability", + "authors": [ + "Reza Banirazi", + "Edmond Jonckheere", + "Bhaskar Krishnamachari" + ], + "venue": "The 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2014.", + "links": { + "pdf": "/static/public/papers/DirichletRouting_MSWiM14.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "RiverSwarm: Topology-Aware Distributed Planning for Obstacle Encirclement in Connected Robotic Swarms", + "authors": [ + "Pradipta Ghosh", + "Jie Gao", + "Andrea Gasparri", + "Bhaskar Krishnamachari" + ], + "venue": "International Workshop on Robotic Sensor Networks (RSN), 2014.", + "links": { + "pdf": "/static/public/papers/RiverSwarm.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Harnessing Non-Uniform Transmit Power Levels for Improved Sequence Based Localization", + "authors": [ + "Suvil Deora", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2014.", + "links": { + "pdf": "/static/public/papers/Suvil1.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Helper Node Allocation Strategies for Content Dissemination in Intermittently Connected Mobile Networks", + "authors": [ + "Maheswaran Sathiamoorthy", + "Keyvan Rezaei Moghadam", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "IEEE International Conference on Sensing, Communication, and Networking (SECON), 2014.", + "links": { + "pdf": "/static/public/papers/HelperAllocationGame_corrected.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Online Learning for Multi-Channel Opportunistic Access over Unknown Markovian Channels", + "authors": [ + "Wenhan Dai", + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Sensing, Communication, and Networking (SECON), 2014.", + "links": { + "pdf": "/static/public/papers/Yi_Online_Learning_MultiChannel_Opportunistic_Access.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Heat-Diffusion: Pareto optimal dynamic routing for time-varying wireless networks", + "authors": [ + "Reza Banirazi", + "Edmond A Jonckheere", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Computer Communications (INFOCOM), 2014.", + "links": { + "pdf": "/static/public/papers/1569807599Final.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Microeconomic Analysis of Base-Station Sharing in Green Cellular Networks", + "authors": [ + "Bingjie Leng", + "Parisa Mansourifard", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Computer Communications (INFOCOM), 2014.", + "links": { + "pdf": "/static/public/papers/MABSGCN.pdf" + }, + "type": "Conference Papers", + "year": 2014 + }, + { + "title": "Evaluation of An Environment-Aware Sequence-Based Localization Algorithm For Building Fire Emergency Scenarios", + "authors": [ + "Nan Li", + "Burcin Becerik-Gerber", + "Bhaskar Krishnamachari", + "Lucio Soibelman" + ], + "venue": "Proc. 30th International Conference on Applications of IT in the AEC Industry (CIB W78 2013), Oct 9-12, 2013, Beijing, China.", + "links": { + "pdf": "/static/public/papers/NanLi_92.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Short Paper: Dynamic Online Storage Allocation for Multi-Content Dissemination in Two-Tier Hybrid Mobile Vehicular Networks", + "authors": [ + "Keyvan Rezaei Moghadam", + "Maheswaran Sathiamoorthy", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "IEEE Vehicular Networking Conference, 2013.", + "links": { + "pdf": "/static/public/papers/ShortPaper_DynamicOnlineStorage_acked.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Online Learning for Personalized Room-Level Thermal Control: A Multi-Armed Bandit Framework", + "authors": [ + "Parisa Mansourifard", + "Farrokh Jazizadeh", + "Bhaskar Krishnamachari", + "Burcin Becerik-Gerber" + ], + "venue": "BuildSys 2013 Workshop, Rome, Italy.", + "links": { + "pdf": "/static/public/papers/OLPRTC.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Optimal Power Allocation Policy over Two Identical Gilbert-Elliott Channels", + "authors": [ + "Wei Jiang", + "Junhua Tang", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE ICC 2013.", + "links": { + "pdf": "/static/public/papers/ICCfull.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Bayesian Congestion Control over a Markovian Network Bandwidth Process", + "authors": [ + "Parisa Mansourifard", + "Bhaskar Krishnamachari", + "Tara Javidi" + ], + "venue": "Asilomar conference 2013 (invited).", + "links": { + "pdf": "/static/public/papers/BCCMNBP-long.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Power Allocation over Two identical Gilbert-Elliot Channels", + "authors": [ + "Junhua Tang", + "Parisa Mansourifard", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE ICC 2013 \u2013 Wireless Communications Symposium.", + "links": { + "pdf": "/static/public/papers/TangMansourifardKrishnamachari_ICC2013.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "An Environment-Aware Sequence-Based Localization Algorithm for Supporting Building Emergency Response Operations", + "authors": [ + "Nan Li", + "Burcin Becerik-Gerber", + "Bhaskar Krishnamachari", + "Lucio Soibelman" + ], + "venue": "2013 ASCE International Workshop on Computing in Civil Engineering (IWCCE) Technical Committee.", + "links": { + "pdf": "/static/public/papers/NanLi_SeqLocal.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Robotic Message Ferrying for Wireless Networks using Coarse-Grained Backpressure Control", + "authors": [ + "Shangxing Wang", + "Andrea Gasparri", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE GLOBECOM 2013 Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicles. (Revision Notes)", + "links": { + "pdf": "/static/public/papers/WIUAV_2013_final.pdf" + }, + "type": "Conference Papers", + "year": 2013 + }, + { + "title": "Heat diffusion algorithm for resource allocation and routing in multihop wireless networks", + "authors": [ + "Reza Banirazi", + "Edmond A Jonckheere", + "Bhaskar Krishnamachari" + ], + "venue": "GLOBECOM 2012: 5693-5698.", + "links": { + "pdf": "/static/public/papers/p5915-banirazi.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Funding Games: the Truth but not the Whole Truth", + "authors": [ + "Amotz Bar-Noy", + "Yi Gai", + "Matthew P Johnson", + "Bhaskar Krishnamachari", + "George Rabanca" + ], + "venue": "WINE 2012, Liverpool, UK, December, 2012.", + "links": { + "pdf": "http://arxiv.org/abs/1107.2432" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandits", + "authors": [ + "Parisa Mansourifard", + "Tara Javidi", + "Bhaskar Krishnamachari" + ], + "venue": "51st IEEE Conference on Decision and Control (CDC) 2012", + "links": { + "pdf": "/static/public/papers/parisa_CDC2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Online Learning to Optimize Transmission over an Unknown Gilbert-Elliott Channel", + "authors": [ + "Yanting Wu", + "Bhaskar Krishnamachari" + ], + "venue": "10th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2012.", + "links": { + "pdf": "/static/public/papers/YW-wiopt2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "A Competitive Rate Allocation Game", + "authors": [ + "Yanting Wu", + "George Rabanca", + "Bhaskar Krishnamachari", + "Amotz Bar-Noy" + ], + "venue": "3rd International Conference on Game Theory for Networks, 2012.", + "links": { + "pdf": "/static/public/papers/YW-gameNets2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Semi-Markov State Estimation and Policy Optimization for Energy Efficient Mobile Sensing", + "authors": [ + "Yi Wang", + "Bhaskar Krishnamachari", + "Murali Annavaram" + ], + "venue": "the 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, June, 2012.", + "links": { + "pdf": "/static/public/papers/WangKrishnamachariAnnavaram_SECON2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Online Learning for Combinatorial Network Optimization with Restless Markovian Rewards", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari", + "Mingyan Liu" + ], + "venue": "the 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, June, 2012.", + "links": { + "pdf": "/static/public/papers/SECON2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Minimum Latency Data Diffusion in Intermittently Connected Mobile Networks", + "authors": [ + "Maheswaran Sathiamoorthy", + "Wei Gao", + "Bhaskar Krishnamachari", + "Guohong Cao" + ], + "venue": "2012 IEEE 75th Vehicular Technology Conference: VTC2012-Spring, 6-9 May 2012, Yokohama, Japan", + "links": { + "pdf": "/static/public/papers/VTCMahesh2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "RISA: Distributed Road Information Sharing Architecture", + "authors": [ + "Joon Ahn", + "Yi Wang", + "Bo Yu", + "Fan Bai", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL, USA, March, 2012.", + "links": { + "pdf": "/static/public/papers/JoonInfocom2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Efficient Online Learning for Opportunistic Spectrum Access", + "authors": [ + "Wenhan Dai", + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Computer Communications (IEEE INFOCOM Mini-conference 2012), Orlando, FL, USA, March, 2012.", + "links": { + "pdf": "/static/public/papers/WenhanDaiInfocom2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Backpressure with Adaptive Redundancy (BWAR)", + "authors": [ + "Majed Alresaini", + "Maheswaran Sathiamoorthy", + "Bhaskar Krishnamachari", + "Michael J Neely" + ], + "venue": "IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL, USA, March, 2012.", + "links": { + "pdf": "/static/public/papers/BWARInfocomCamera.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Distributed Storage Codes Reduce Latency in Vehicular Networks", + "authors": [ + "Maheswaran Sathiamoorthy", + "Alexandros G Dimakis", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "IEEE International Conference on Computer Communications (IEEE INFOCOM Mini-conference 2012), Orlando, FL, USA, March, 2012.", + "links": { + "pdf": "/static/public/papers/VANETCodingMiniCamera.pdf", + "code": "http://anrg.usc.edu/www/papers/VANETCodingMiniCamera.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "SpeedBalance: Speed-Scaling-Aware Optimal Load Balancing for Green Cellular Networks", + "authors": [ + "Kyuho Son", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Computer Communications (IEEE INFOCOM Mini-conference 2012), Orlando, FL, USA, March, 2012.", + "links": { + "pdf": "/static/public/papers/SpeedBalanceCamera.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "Online Learning Algorithms for Stochastic Water-Filling", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "Information Theory and Applications Workshop (ITA 2012), San Diego, USA, February, 2012.", + "links": { + "pdf": "/static/public/papers/ITA2012.pdf" + }, + "type": "Conference Papers", + "year": 2012 + }, + { + "title": "LIFO-Backpressure achieves near optimal utility-delay tradeoff", + "authors": [ + "Longbo Huang", + "Scott Moeller", + "Michael J Neely", + "Bhaskar Krishnamachari" + ], + "venue": "\u201cWiOpt 2011: 70-77\u201d", + "links": { + "pdf": "/static/public/papers/qla-lifo-wiopt11-ea-v13.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "On Hardness of Multiflow Transmission in Delay Constrained Cooperative Wireless Networks", + "authors": [ + "Marjan Baghaie", + "Dorit S Hochbaum", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Global Communications Conference (GLOBECOM 2011), Houston, USA, December, 2011.", + "links": { + "pdf": "/static/public/papers/MarjanGlobecom.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "On a Restless Multi-Armed Bandit Problem with Non-Identical Arms", + "authors": [ + "Naumaan Nayyar", + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "In Proceedings of the Allerton Conference on Communication, Control, and Computing, 2011", + "links": { + "pdf": "/static/public/papers/Allerton2011.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "Decentralized Online Learning Algorithms for Opportunistic Spectrum Access", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "the IEEE Global Communications Conference (GLOBECOM 2011), Houston, USA, December, 2011.", + "links": { + "pdf": "/static/public/papers/Globecom2011DecentralizedMAB.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari", + "Mingyan Liu" + ], + "venue": "the IEEE Global Communications Conference (GLOBECOM 2011), Houston, USA, December, 2011.", + "links": { + "pdf": "/static/public/papers/Globecom2011RestedMAB.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "The Non-Bayesian Restless Multi-Armed Bandit: a Case of Near-Logarithmic Regret", + "authors": [ + "Wenhan Dai", + "Yi Gai", + "Bhaskar Krishnamachari", + "Qing Zhao" + ], + "venue": "International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2011.", + "links": { + "pdf": "/static/public/papers/ICASSP2011.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "A Packet Dropping-Based Incentive Mechanism for M/M/1 Queues with Selfish Users", + "authors": [ + "Yi Gai", + "Hua Liu", + "Bhaskar Krishnamachari" + ], + "venue": "the 30th IEEE International Conference on Computer Communications (IEEE INFOCOM 2011), China, April, 2011.(Acceptance rate: 15.9% = 291/1823 )", + "links": { + "pdf": "/static/public/papers/GaiLiuKrishnamachari_Infocom2011.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "Delay Constrained Minimum Energy Broadcast in Cooperative Wireless Networks", + "authors": [ + "Marjan Baghaie", + "Bhaskar Krishnamachari" + ], + "venue": "the 30th IEEE International Conference on Computer Communications (IEEE INFOCOM 2011), China, April, 2011.(Acceptance rate: 15.9% = 291/1823 )", + "links": { + "pdf": "/static/public/papers/infocom11.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "Energy-Aware Hierarchical Cell Configuration: from Deployment to Operation", + "authors": [ + "Kyuho Son", + "Eunsung Oh", + "Bhaskar Krishnamachari" + ], + "venue": "in Proc. IEEE INFOCOM 2011 Workshop on Green Communications and Networking, Shanghai, China, Apr. 2011, pp. 289-294.", + "links": { + "pdf": "/static/public/papers/INFOCOM-GCN2011.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "The Saturation Throughput Region of p-Persistent CSMA", + "authors": [ + "Yi Gai", + "Shankar Ganesan", + "Bhaskar Krishnamachari" + ], + "venue": "Information Theory and Applications Workshop (ITA), UCSD, San Diego, CA, February 2011.", + "links": { + "pdf": "/static/public/papers/CSMARegion_ITA11.pdf" + }, + "type": "Conference Papers", + "year": 2011 + }, + { + "title": "Energy Routing on the Future Grid: A Stochastic Network Optimization Approach", + "authors": [ + "M Baghaie", + "S Moeller", + "B Krishnamachari" + ], + "venue": "IEEE International Conference on Power Systems (POWERCON 2010)", + "links": { + "pdf": "/static/public/papers/powerCon10.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Energy Savings through Dynamic Base Station Switching in Cellular Wireless Access Networks", + "authors": [ + "Eunsung Oh", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE GLOBECOM, December 2010", + "links": { + "pdf": "/static/public/papers/oh2010energy.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Link Scheduling in a Single Broadcast Domain Underwater Networks", + "authors": [ + "Pai-Han Huang", + "Ying Chen", + "Anil Kumar", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE SUTC, June 2010", + "links": { + "pdf": "/static/public/papers/Underwater_SUTC.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Subcarrier Allocation in Multiuser OFDM Systems: Complexity and Approximability", + "authors": [ + "Pai-Han Huang", + "Yi Gai", + "Ashwin Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE WCNC, April 2010", + "links": { + "pdf": "/static/public/papers/Subcarrier_WCNC.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "The \u03ba-factor: Inferring Protocol Performance Using Inter-Link Reception Correlation", + "authors": [ + "Kannan Srinivasan", + "Mayank Jain", + "Jung Il Choi", + "Tahir Azim", + "Edward S Kim", + "Philip Levis", + "Bhaskar Krishnamachari" + ], + "venue": "16th Annual International Conference on Mobile Computing and Networking (Mobicom), September 2010", + "links": { + "pdf": "http://anrg.usc.edu/www/papers/TheKappaFactor_Srinivasan.PDF" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Channel Selection in Multi-channel Cognitive Radio Networks with Perfect Sensing", + "authors": [ + "Xin Liu", + "Bhaskar Krishnamachari", + "Hua Liu" + ], + "venue": "DySPAN, April, 2010", + "links": { + "pdf": "/static/public/papers/Dyspan10_Cognitive.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Markov-optimal Policy for User State Estimation in Mobile Devices", + "authors": [ + "Yi Wang", + "Bhaskar Krishnamachari", + "Qing Zhao", + "Murali Annavaram" + ], + "venue": "IPSN, April, 2010", + "links": { + "pdf": "/static/public/papers/IPSN10_Wang_Krishnamachari_Zhao_Annavaram.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Routing Without Routes: The Backpressure Collection Protocol", + "authors": [ + "Scott Moeller", + "Avinash Sridharan", + "Bhaskar Krishnamachari", + "Omprakash Gnawali" + ], + "venue": "IPSN, April, 2010, Winner of IP Track Best Paper Award", + "links": { + "pdf": "/static/public/papers/IPSN10_Moeller_Sridharan_Krishnamachari_Gnawali.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Learning Multiuser Channel Allocations in Cognitive Radio Networks: A Combinatorial Multi-Armed Bandit Formulation", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari", + "Rahul Jain" + ], + "venue": "DySPAN, April, 2010", + "links": { + "pdf": "/static/public/papers/GaiKrishnamachariJain_DySPAN10.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Performance of Round Robin Policies for Dynamic Multichannel Access", + "authors": [ + "Changmian Wang", + "Bhaskar Krishnamachari", + "Qing Zhao", + "Geir E \u00d8ien" + ], + "venue": "Proc. of Information Theory and Applications Workshop (ITA), January 2010", + "links": { + "pdf": "/static/public/papers/WangEtal10ITA.pdf" + }, + "type": "Conference Papers", + "year": 2010 + }, + { + "title": "Token-based data collection protocols for multi-hop underwater acoustic sensor networks: short paper", + "authors": [ + "Ping Wang", + "Lin Zhang", + "Bhaskar Krishnamachari", + "Victor OK Li" + ], + "venue": "in Proceedings of the Fourth ACM International Workshop on UnderWater Networks (WUWNet \u201909), 2009.", + "links": { + "pdf": "/static/public/papers/token_WUWNet.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Explicit and Precise Rate Control for Wireless Sensor Networks", + "authors": [ + "Avinash Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "ACM Sensys, November, 2009", + "links": { + "pdf": "/static/public/papers/WRCP_sensys09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Spatio-temporal variations of vehicle traffic in VANETs: facts and implications", + "authors": [ + "Fan Bai", + "Bhaskar Krishnamachari" + ], + "venue": "Vehicular Ad Hoc Networks, 2009", + "links": { + "pdf": null + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Multi-Channel Scheduling Algorithms for Fast Aggregated Convergecast in Sensor Networks", + "authors": [ + "Amitabha Ghosh", + "Ozlem Durmaz Incel", + "VS Anil Kumar", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), October 2009, Macau, China", + "links": { + "pdf": "/static/public/papers/MASS-2009.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Bargaining to Improve Channel Sharing between Selfish Cognitive Radios", + "authors": [ + "Hua Liu", + "Allen B MacKenzie", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Globecom 2009", + "links": { + "pdf": "/static/public/papers/NashBargaining_CameraReady.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "The Tradeoff between Energy Efficiency and User State Estimation Accuracy in Mobile Sensing", + "authors": [ + "Yi Wang", + "Bhaskar Krishnamachari", + "Qing Zhao", + "Murali Annavaram" + ], + "venue": "The First Annual International Conference on Mobile Computing, Applications, and Services (MobiCASE), October 2009, San Diego, USA", + "links": { + "pdf": "/static/public/papers/MobiCASE2009_Wang_Krishnamachari_zhao_Annavaram.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Spatially-Localized Compressed Sensing and Routing in Multi-Hop Sensor Networks", + "authors": [ + "Sungwon Lee", + "Sundeep Pattem", + "Maheswaran Sathiamoorthy", + "Bhaskar Krishnamachari", + "Antonio Ortega" + ], + "venue": "3rd International Conference on Geosensor Networks (GSN), July 2009", + "links": { + "pdf": "/static/public/papers/LeePattemSathiamoorthyKrishnamachariOrtega_GSN09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Feasibility of the Receiver Capacity Model for Multi-Hop Wireless Networks", + "authors": [ + "Avinash Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "7t International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Seoul, Korea, June 2009", + "links": { + "pdf": "/static/public/papers/WiOpt09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "A Framework of Energy Efficient Mobile Sensing for Automatic Human State Recognition", + "authors": [ + "Yi Wang", + "Jialiu Lin", + "Murali Annavaram", + "Quinn A Jacobson", + "Jason Hong", + "Bhaskar Krishnamachari", + "Norman Sadeh" + ], + "venue": "The 7th Annual International Conference on Mobile Systems, Applications and Services (MobiSys\u201909), June 22-25, 2009, Krak\u00f3w, Poland.", + "links": { + "pdf": "/static/public/papers/WangLinAnnavaramJacobsonHongKrishnamachariSadeh_mobisys09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Fast Flooding using Cooperative Transmissions in Wireless Networks", + "authors": [ + "Marjan Baghaie A", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Communication (ICC), Dresden, Germany, June 14-18, 2009", + "links": { + "pdf": "/static/public/papers/BaghaieKrishnamachari_ICC2009.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "SenZip: An Architecture for Distributed En-Route Compression in Wireless Sensor Networks", + "authors": [ + "Sundeep Pattem", + "Godwin Shen", + "Ying Chen", + "Bhaskar Krishnamachari", + "Antonio Ortega" + ], + "venue": "Workshop on Sensor Networks for Earth and Space Science Applications (ESSA), April 2009", + "links": { + "pdf": "/static/public/papers/PattemShenChenKrishnamachariOrtega_ESSA09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Energy-Efficient Graph-Based Wavelets for Distributed Coding in Wireless Sensor Networks", + "authors": [ + "Godwin Shen", + "Sundeep Pattem", + "Antonio Ortega" + ], + "venue": "34th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), April 2009", + "links": { + "pdf": "/static/public/papers/ShenPattemOrtega_ICASSP09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Implementing Backpressure-based Rate Control in Wireless Networks", + "authors": [ + "Avinash Sridharan", + "Scott Moeller", + "Bhaskar Krishnamachari" + ], + "venue": "Information Theory and Applications (ITA) Workshop , San Diego, Feb 2009", + "links": { + "pdf": "/static/public/papers/brcp_ita.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Findings from an Empirical Study of Fine\u2010grained Human Social Contacts", + "authors": [ + "Yi Wang", + "Bhaskar Krishnamachari", + "Thomas Valente" + ], + "venue": "The Sixth International Conference on Wireless On-demand Network Systems and Services, February 2-4, 2009. Snowbird, Utah, USA", + "links": { + "pdf": "/static/public/papers/Wang_Krishnamachari_Valente_wons09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "Joint Rate-Routing Control for Fair and Efficient Data Gathering in Wireless Sensor Networks", + "authors": [ + "Ying Chen", + "Bhaskar Krishnamachari" + ], + "venue": "the International Conference on Sensor Networks and Applications (SNA-2009), November 4 \u2013 6, 2009 San Francisco, CA, USA", + "links": { + "pdf": "/static/public/papers/YingChen_JointRateRouting_SNA09.pdf" + }, + "type": "Conference Papers", + "year": 2009 + }, + { + "title": "A Negotiation Game for Multichannel Access in Cognitive Radio Networks", + "authors": [ + "Hua Liu", + "Longbo Huang Bhaksar Krishnamachari", + "Qing Zhao" + ], + "venue": "\u201cThe Fourth International Wireless Internet Conference (WICON 2008), Hawaii, USA\u201d", + "links": { + "pdf": "/static/public/papers/wicon_Liu.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "IEEE 802.11p Performance Evaluation and Protocol Enhancement", + "authors": [ + "Yi Wang", + "Akram Ahmed", + "Bhaskar Krishnamachari", + "Konstantinos Psounis" + ], + "venue": "2008 IEEE International Conference on Vehicular Electronics and Safety, September 22-24, 2008, Columbus Ohio, USA", + "links": { + "pdf": "/static/public/papers/Wang_Ahmed_Krishnamachari_Psounis_ICVES08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Game Theoretic Approach to Location Sharing with Privacy in a Community-based Mobile Safety Application", + "authors": [ + "Hua Liu", + "Bhaskar Krishnamachari", + "Murali Annavaram" + ], + "venue": "The 11-th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM), 2008", + "links": { + "pdf": "/static/public/papers/mswim8275-liu.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Energy Optimization for Upstream in 802.15.4 Beacon-enabled Star Formulation", + "authors": [ + "Hua Liu", + "Bhaskar Krishnamachari" + ], + "venue": "Advanced Signal Processing Algorithms, Architectures, and Implementations of SPIE, 2008", + "links": { + "pdf": "/static/public/papers/spie08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Infection Spread in Mobile Networks with Random and Adversarial Node Mobilities", + "authors": [ + "Yi Wang", + "Shyam Kapadia", + "Bhaskar Krishnamachari" + ], + "venue": "First ACM SIGMOBILE International Workshop on Mobility Models for Networking Research, May 27, 2008, Hong Kong", + "links": { + "pdf": "/static/public/papers/Wang_Kapadia_Krishnamachari_mobilitymodel08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Performance of a Propagation Delay Tolerant ALOHA Protocol for Underwater Wireless Networks", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "The 4th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS \u201908), Santorini Island, Greece, June 11-14, 2008.", + "links": { + "pdf": "/static/public/papers/Ahn08performance-dcoss.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Enhancing the Data Collection Rate of Tree-Based Aggregation in Wireless Sensor Networks", + "authors": [ + "Ozlem Durmaz-Incel", + "Bhaskar Krishnamachari" + ], + "venue": "The 5th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2008), San Francisco, CA, June 2008.", + "links": { + "pdf": "/static/public/papers/IncelKrishnamachari_SECON2008.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Optimality of Myopic Sensing in Multi-Channel Opportunistic Access", + "authors": [ + "Tara Javidi", + "Bhaskar Krishnamachari", + "Qing Zhao", + "Mingyan Liu" + ], + "venue": "IEEE International Conference on Communications (ICC), Beijing, China, May 2008.", + "links": { + "pdf": "/static/public/papers/ICC08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Cooperation and Learning in Multiuser Opportunistic Spectrum Access", + "authors": [ + "Hua Liu", + "Bhaskar Krishnamachari", + "Qing Zhao" + ], + "venue": "IEEE Workshop on Cognition in Wireless Networks (CogNet), in conjunction with IEEE ICC, Beijing, China, May 2008.", + "links": { + "pdf": "/static/public/papers/LiuKrishnamachariZhao_Cognet08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Making Distributed Rate Control using Lyapunov Drifts a Reality in Wireless Sensor Networks", + "authors": [ + "Avinash Sridharan", + "Scott Moeller", + "Bhaskar Krishnamachari" + ], + "venue": "Sixth Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt, April 2008.", + "links": { + "pdf": "/static/public/papers/SridharanMoellerKrishnamachari_Wiopt08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Enhancement of the IEEE 802.15.4 MAC Protocol forScalable Data Collection in Dense Sensor Networks", + "authors": [ + "Kiran Yedavalli", + "Bhaskar Krishnamachari" + ], + "venue": "Sixth Intl. Symposium on Modeling and Optimizationin Mobile, Ad Hoc, and Wireless Networks, WiOpt 2008.", + "links": { + "pdf": "/static/public/papers/YedavalliKrishnamachari_Wiopt08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Randomized Strategies for Multi-user Multi-channel OpportunitySensing", + "authors": [ + "Hua Liu", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Cognitive Radio Networks, IEEE CCNC, Las Vegas, Nevada, January 2008. (InvitedPaper).", + "links": { + "pdf": "/static/public/papers/LiuKrishnamachari_Crn08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "MIGM: Mobile Interaction Games with Motes", + "authors": [ + "Yi Wang", + "Shyam Kapadia", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE CCNC, Las Vegas, Nevada, January 2008.", + "links": { + "pdf": "/static/public/papers/WangKapadiaKrishnamachari_CCNC08.pdf" + }, + "type": "Conference Papers", + "year": 2008 + }, + { + "title": "Optimal location of feedback handler under receiver contention schemes for routing in wireless networks", + "authors": [ + "Pai-Han Huang", + "Bhaskar Krishnamachari" + ], + "venue": "Proceedings of the SPIE, Volume 6697, pp. 66970J-66970J-10 (2007).", + "links": { + "pdf": "/static/public/papers/Feedback_handler_SPIE_2007.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Optimal Sink Deployment for Distributed Sensing of Spatially Nonstationary Phenomena", + "authors": [ + "Lorenzo Rossi", + "Bhaskar Krishnamachari", + "C C Jay Kuo" + ], + "venue": "IEEE Globecom Ad-hoc and Sensor Networking Symposium, Washington DC, November 2007.", + "links": { + "pdf": "/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "The Impact of Capture on Multihop Wireless Networks in an Optimal Rate Control Framework", + "authors": [ + "Jung Hyun Jun", + "Affan Syed", + "Bhaskar Krishnamachari" + ], + "venue": "Third Annual International Wireless Internet Conference (WICON), Austin, Texas, October 2007.", + "links": { + "pdf": "/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Understanding Spatio-Temporal Uncertainty in Medium Access with ALOHA Protocols", + "authors": [ + "Affan Syed", + "Wei Ye", + "Bhaskar Krishnamachari", + "John Heidemann" + ], + "venue": "Second ACM International Workshop on Underwater Networks (WUWNet), Quebec, Canada, September, 2007.", + "links": { + "pdf": "/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Low-Complexity Approaches to Spectrum Opportunity Tracking", + "authors": [ + "Q Zhao", + "B Krishnamachari", + "K Liu" + ], + "venue": "2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), Orlando, Florida, August, 2007.", + "links": { + "pdf": "/static/public/papers/ZhaoKrishnamachariLiu_CrownCom2007.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Empirical Evaluation of Querying Mechanisms for Unstructured Wireless Sensor Networks", + "authors": [ + "Joon Ahn", + "Shyam Kapadia", + "Sundeep Pattem", + "Avinash Sridharan", + "Marco Zuniga", + "Jung-Hyun Jun", + "Chen Avin", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Wireless Sensor Network Deployments (WiDeploy), at the 3rd IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2007), Santa Fe, New Mexico, June 2007.", + "links": { + "pdf": "/static/public/papers/AhnKapadiaPattemEtAl_WiDeploy07.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Low-Impact of Localized Tree Construction on Sensor Network Lifetime", + "authors": [ + "Jae-Joon Lee", + "Bhaskar Krishnamachari", + "C-C Jay Kuo" + ], + "venue": "Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS), at the 3rd IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2007), Santa Fe, New Mexico, June 2007.", + "links": { + "pdf": "/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Structure and Optimality of Myopic Sensing for Opportunistic Spectrum Access", + "authors": [ + "Qing Zhao", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Workshop on Cognitive Radio Networks (CogNet), held in conjunction with IEEE ICC, Glasgow, Scotland, June 2007.", + "links": { + "pdf": "/static/public/papers/ZhaoKrishnamachari_Cognet07.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Efficient Distributed Topology Control in 3-Dimensional Wireless Networks", + "authors": [ + "Amitabha Ghosh", + "Yi Wang", + "Bhaskar Krishnamachari" + ], + "venue": "4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 91-100, San Diego, June 2007.", + "links": { + "pdf": "/static/public/papers/GhoshWangKrishnamachari_SECON2007.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Modeling Search Costs in Wireless Networks", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Spatial Stochastic Models in Wireless Networks (SpaSWiN), Limassol, Cyprus, April 2007.", + "links": { + "pdf": "/static/public/papers/AhnKrishnamachari_SpaSim2007.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Maximizing Network Utilization with Max-Min Fairness in Wireless Sensor Networks", + "authors": [ + "Avinash Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "5th International. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), April 2007.", + "links": { + "pdf": "/static/public/papers/SridharanKrishnamachari_WiOpt07.pdf" + }, + "type": "Conference Papers", + "year": 2007 + }, + { + "title": "Experimental Study of Concurrent Transmission in Wireless Sensor Networks", + "authors": [ + "Dongjin Son", + "Bhaskar Krishnamachari", + "John Heidemann" + ], + "venue": "4th ACM Conference on Embedded Networked Sensor Systems (Sensys), Colorado, November 2006.", + "links": { + "pdf": "/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "A Price-based Reliable Routing Game in Wireless Networks", + "authors": [ + "Hua Liu", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Game Theory for Networks (GameNets), Pisa, Italy, October 2006.", + "links": { + "pdf": "/static/public/papers/LiuKrishnamachari_Pricing_Gamenets06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "The Power of Choice in Random Walks: An Empirical Study", + "authors": [ + "Chen Avin", + "Bhaskar Krishnamachari" + ], + "venue": "9th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, (MSWiM), Malaga, Spain, October 2006. Winner of MSWiM 2006 Best Paper Award.", + "links": { + "pdf": "/static/public/papers/AvinKrishnamachari_PowerOfChoice.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "Comparative Analysis of Push-Pull Query Strategies for Wireless Sensor Networks", + "authors": [ + "Shyam Kapadia", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Distributed Computing in Sensor Systems (DCOSS), June 2006.", + "links": { + "pdf": "/static/public/papers/KapadiaKrishnamachari_DCOSS06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "Fundamental Scaling Laws for Energy-Efficient Storage and Querying in Wireless Sensor Networks", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "In Proceedings of the 7th ACM international Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc \u201906), Florence, Italy, May 22 \u2013 25, 2006 [Highly Competitive, Acceptance rate: only 31 papers from 318 submissions]. Winner of 2006 USC EE Department Best Student Paper Award.", + "links": { + "pdf": "/static/public/papers/AhnKrishnamachari_ScalingLaws.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "Analysis of existing approaches and a new hybrid strategy for synchronization in sensor networks", + "authors": [ + "Pai-Han Huang", + "Bhaskar Krishnamachari" + ], + "venue": "EmNets, Cambridge, MA, May 2006.", + "links": { + "pdf": "/static/public/papers/HuangKrishnamachari_HybridTimeSync_EmNets06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "Energy Efficient Data-Representation and Routing for Wireless Sensor Networks Based on a Distributed Wavelet Compression Algorithm", + "authors": [ + "Alexandre Ciancio", + "Sundeep Pattem", + "Antonio Ortega", + "Bhaskar Krishnamachari" + ], + "venue": "ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN), Nashville, Tennessee, April 2006. [Acceptance rate: only 41 papers from 165 submissions].", + "links": { + "pdf": "/static/public/papers/CiancioPattemOrtegaKrishnamachari_IPSN06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "Optimizing data replication for expanding ring-based queries in wireless sensor networks", + "authors": [ + "Bhaskar Krishnamachari", + "Joon Ahn" + ], + "venue": "Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th International Symposium on (WiOpt \u201906), Boston, MA, April 2006.", + "links": { + "pdf": "/static/public/papers/KrishnamachariAhn_WiOpt06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "An evaluation of availability latency in carrier-based vehicular ad-hoc networks", + "authors": [ + "Saharam Ghandeharizadeh", + "Shyam Kapadia", + "Bhaskar Krishnamachari" + ], + "venue": "ACM MobiDE, Chicago, June 2006.", + "links": { + "pdf": "/static/public/papers/GhandeharizadehKapadiaKrishnamachari_Mobide06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "Sensor Network Configuration and the Curse of Dimensionality", + "authors": [ + "Sameera Poduri", + "Sundeep Pattem", + "Bhaskar Krishnamachari" + ], + "venue": "EmNets, Cambridge, MA, May 2006.", + "links": { + "pdf": "/static/public/papers/PoduriPattemKrishnamachariSukhatme_EmNets2006.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "POSTER: Is Data-Centric Storage and Querying Scalable?", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "ACM Sensys, Oct. 2006", + "links": { + "pdf": "/static/public/papers/JAhn_Sensys06.pdf" + }, + "type": "Conference Papers", + "year": 2006 + }, + { + "title": "A Local Metric for Geographic Routing with Power Control in Wireless Networks", + "authors": [ + "Chih-Ping Li", + "Wei-Jen Hsu", + "Bhaskar Krishnamachari" + ], + "venue": "Second IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, September 2005. [Acceptance rate: only 55 papers from 202 submissions]", + "links": { + "pdf": "/static/public/papers/1.pdf" + }, + "type": "Conference Papers", + "year": 2005 + }, + { + "title": "Energy Efficient Joint Scheduling and Power Control in Wireless Sensor Networks", + "authors": [ + "Gang Lu", + "Bhaskar Krishnamachari" + ], + "venue": "Second IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, September 2005. [Acceptance rate: only 55 papers from 202 submissions]", + "links": { + "pdf": "/static/public/papers/LuKrishnamachari_SECON05.pdf" + }, + "type": "Conference Papers", + "year": 2005 + }, + { + "title": "Cooperative communication and routing over fading channels in wireless sensor networks", + "authors": [ + "Shiou-Hung Chen", + "Urbashi Mitra", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE International Conference on Wireless Networks,Communications, and Mobile Computing (WirelessCom), Maui, Hawaii, June 2005.", + "links": { + "pdf": "/static/public/papers/CooperativeCommRouting.pdf" + }, + "type": "Conference Papers", + "year": 2005 + }, + { + "title": "Ecolocation: A Sequence Based Technique for RF-only Localization in Wireless Sensor Networks", + "authors": [ + "Kiran Yedavalli", + "Bhaskar Krishnamachari", + "Sharmila Ravula", + "Bhaskar Srinivasan" + ], + "venue": "The Fourth International Conference on Information Processing in Sensor Networks (IPSN \u201905), Los Angeles, CA, April 2005.", + "links": { + "pdf": "/static/public/papers/ecolocationIPSN05.pdf" + }, + "type": "Conference Papers", + "year": 2005 + }, + { + "title": "Delay Efficient Sleep Scheduling in Wireless Sensor Networks", + "authors": [ + "Gang Lu", + "Narayanan Sadagopan", + "Bhaskar Krishnamachari", + "Ashish Goel" + ], + "venue": "IEEE INFOCOM 2005, Miami, FL, March 2005. [Please see correction to complexity proof].", + "links": { + "pdf": "/static/public/papers/LuSadagopanKrishnamachariGoel_Infocom05.pdf" + }, + "type": "Conference Papers", + "year": 2005 + }, + { + "title": "Comparison of ReplicationStrategies for Content Availability in C2P2 Networks", + "authors": [ + "Shahram Ghandeharizadeh", + "Shyam Kapadia", + "Bhaskar Krishnamachari" + ], + "venue": "6th International Conference on Mobile DataManagement (MDM\u201905), Ayia Napa, Cyprus, May 2005.", + "links": { + "pdf": "/static/public/papers/rep-avail.pdf" + }, + "type": "Conference Papers", + "year": 2005 + }, + { + "title": "Learning Enforced Time Domain Routing to Mobile Sinks in Wireless Sensor Fields", + "authors": [ + "Pritam Baruah", + "Rahul Urgaonkar", + "Bhaskar Krishnamachari" + ], + "venue": "First IEEE Workshop on Embedded Networked Sensors (EmNetS-I), held in conjunction with IEEE LCN, Tampa, FL, November 2004. [Highly Competitive, Acceptance rate: only 12 full papers from 56 submissions]", + "links": { + "pdf": "/static/public/papers/AnalyzingTransitionalRegion_ZunigaKrishnamachari_JournalVersion.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Energy Efficient Forwarding Strategies for Geographic Routing in Wireless Sensor Networks", + "authors": [ + "Karim Seada", + "Marco Zuniga", + "Ahmed Helmy", + "Bhaskar Krishnamachari" + ], + "venue": "2nd ACM Conference on Embedded Networked Sensor Systems (Sensys), November 2004. [Highly Competitive, Acceptance rate: only 21 from 145 submissions]", + "links": { + "pdf": "/static/public/papers/SeadaZunigaKrishnamachariHelmy_Sensys04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Analyzing the Transitional Region in Low Power Wireless Links", + "authors": [ + "Marco Zuniga", + "Bhaskar Krishnamachari" + ], + "venue": "First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004. [Highly Competitive, Acceptance rate: only 68 papers from 358 submissions]", + "links": { + "pdf": "/static/public/papers/chanelmodellingSECON04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Experimental study of the effects of Transmission Power Control and Blacklisting in Wireless Sensor Networks", + "authors": [ + "Dongjin Son", + "Bhaskar Krishnamachari", + "John Heidemann" + ], + "venue": "First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004.", + "links": { + "pdf": "/static/public/papers/secon-pcbl.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Distributed Parameter Estimation for Monitoring Diffusion Phenomena Using Physical Models", + "authors": [ + "Lorenzo Rossi", + "Bhaskar Krishnamachari", + "CC Jay Kuo" + ], + "venue": "First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004. [Highly Competitive, Acceptance rate: only 68 papers from 358 submissions].", + "links": { + "pdf": null + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Impact of Heterogeneous Deployment on Lifetime Sensing Coverage in Sensor Networks", + "authors": [ + "Jae-Joon Lee", + "Bhaskar Krishnamachari", + "CC Jay Kuo" + ], + "venue": "First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004.[Highly Competitive, Acceptance rate: only 68 papers from 358 submissions].", + "links": { + "pdf": "/static/public/papers/leeKrishnamachariKuo_Secon04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "PAVAN: A Policy Framework for Availability in Vehicular Ad-Hoc Networks", + "authors": [ + "Shyam Kapadia", + "Bhaskar Krishnamachari", + "Shahram Ghandeharizadeh" + ], + "venue": "First ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004), Held in conjunction with ACM MobiCom, Philadelphia, PA, October 2004. [Highly Competitive, Acceptance rate: only 9 full papers from 43 submissions]", + "links": { + "pdf": "/static/public/papers/GhandeharizadehKapadiaKrishnamachari_VANET04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Sharp thresholds for monotone properties in random geometric graphs", + "authors": [ + "Ashish Goel", + "Sanatan Rai", + "Bhaskar Krishnamachari" + ], + "venue": "ACM Symposium on Theory of Computing (STOC), June 2004. [Major conference in theoretical computer science].", + "links": { + "pdf": "/static/public/papers/GoelRaiKrishnamachari_STOC04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Performance Evaluation of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks", + "authors": [ + "Gang Lu", + "Bhaskar Krishnamachari", + "Cauligi Raghavendra" + ], + "venue": "Workshop on Energy-Efficient Wireless Communications and Networks (EWCN \u201904), held in conjunction with the IEEE International Performance Computing and Communications Conference (IPCCC), April 2004.", + "links": { + "pdf": "/static/public/papers/LuKrishnamachariRaghavendra_802154_EWCN.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "The Impact of Spatial Correlation on Routing with Compression in Wireless Sensor Networks", + "authors": [ + "Sundeep Pattem", + "Bhaskar Krishnamachari", + "Ramesh Govindan" + ], + "venue": "ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN), April 26-27, Berkeley, CA 2004. Winner of IPSN 2004 Best Student Paper Award [Highly Competitive, given to only 3 papers from 50 accepted papers from about 145 submissions].", + "links": { + "pdf": "/static/public/papers/PattemKrishnamachariGovindan_correlations.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Decentralized Utility-based Design of Sensor Networks", + "authors": [ + "Narayanan Sadagopan", + "Bhaskar Krishnamachari" + ], + "venue": "WiOpt\u201904: Second Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, University of Cambridge, UK, March, 2004.", + "links": { + "pdf": "/static/public/papers/2004_11.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Energy-Latency Tradeoffs for Data Gathering in Wireless Sensor Networks", + "authors": [ + "Yang Yu", + "Bhaskar Krishnamachari", + "Viktor K Prasanna" + ], + "venue": "IEEE Infocom, Hong Kong, March 2004. [Highly Competitive, Acceptance Rate: 261 of 1420 submissions].", + "links": { + "pdf": "http://anrg.usc.edu/www/papers/2004_12.ps" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Maximizing Data Extraction in Energy-Limited Sensor Networks", + "authors": [ + "Narayanan Sadagopan", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Infocom, Hong Kong, March 2004. [Highly Competitive, Acceptance Rate: 261 of 1420 submissions].", + "links": { + "pdf": "/static/public/papers/2004_13.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "ELECTION: Energy-efficient and Low-latEncy sCheduling Technique for wIreless sensOr Networks", + "authors": [ + "Shamim Begum", + "Shaocheng Wang", + "Bhaskar Krishnamachari", + "Ahmed Helmy" + ], + "venue": "The 29th Annual IEEE Conference on Local Computer Networks (LCN), Tampa, FL, November 2004.", + "links": { + "pdf": "/static/public/papers/2004_14.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "A Case for a Mobility Based Admission Control Policy", + "authors": [ + "Shahram Ghandeharizadeh", + "Touraj Helmi", + "Shyam Kapadia", + "Bhaskar Krishnamachari" + ], + "venue": "International Conference on Distributed Multimedia Systems, San Francisco, September 2004.", + "links": { + "pdf": "/static/public/papers/2004_15.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Hybrid Data and Decision Fusion Techniques for Model-Based Data Gathering in Wireless Sensor Networks", + "authors": [ + "Lorenzo Rossi", + "Bhaskar Krishnamachari", + "C-C Jay Kuo" + ], + "venue": "IEEE Vehicular Technology Conference (VTC Fall \u201904), September 2004.", + "links": { + "pdf": "/static/public/papers/VTC2004FallLR.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Node Aging Effect on Connectivity of Data Gathering Trees in Sensor Networks", + "authors": [ + "Jae-Joon Lee", + "Bhaskar Krishnamachari", + "C-C Jay Kuo" + ], + "venue": "IEEE Vehicular Technology Conference (VTC Fall \u201904), September 2004.", + "links": { + "pdf": "/static/public/papers/200417.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "C2P2: A Peer-to-Peer Network for On-Demand Automobile Information Services", + "authors": [ + "Shahram Ghandeharizadeh", + "Bhaskar Krishnamachari" + ], + "venue": "First International Workshop on Grid and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous Distributed Database Systems (GLOBE\u201904), Zaragoza, Spain, August 2004.", + "links": { + "pdf": "/static/public/papers/Ghandeharizadeh_S_C2P2.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Resource Allocation and Emergent Coodination in Wireless Sensor Networks", + "authors": [ + "Aram Galstyan", + "Bhaskar Krishnamachari", + "Kristina Lerman" + ], + "venue": "Workshop on Sensor Networks at the The Nineteenth National Conference on Artificial Intelligence (AAAI-04) , San Jose, California, July 2004.", + "links": { + "pdf": "/static/public/papers/GalstyanKrishnamachariLerman_EmergentCoordWSN_AAAI04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Networked Sensing for Structural Health Monitoring", + "authors": [ + "John Caffrey", + "Ramesh Govindan", + "Erik Johnson", + "Bhaskar Krishnamachari", + "Sami Masri", + "Gaurav S Sukhatme", + "Krishna K Chintalapudi", + "Karthik Dantu", + "Sumit Rangwala", + "Avinash Sridharan", + "Ning Xu", + "Marco Zuniga" + ], + "venue": "In 4th International Workshop on Structural Control, Columbia University, New York, June 2004.", + "links": { + "pdf": "/static/public/papers/421.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Distributed Online Localization in Sensor Networks Using a Moving Target", + "authors": [ + "Aram Galstyan", + "Bhaskar Krishnamachari", + "Kristina Lerman", + "Sundeep Pattem" + ], + "venue": "ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN), April 26-27, Berkeley, CA 2004.", + "links": { + "pdf": "/static/public/papers/GalstyanKrishnamachariLermanPattem_IPSN04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Application-Specific Modelling of Information Routing in Wireless Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "John Heidemann" + ], + "venue": "invited paper presented at the Workshop on Multihop Wireless Networks (MWN\u201904) held in conjunction with the IEEE International Performance Computing and Communications Conference (IPCCC), April 2004.", + "links": { + "pdf": "/static/public/papers/KrishnamachariHeidemann_ApplicationModeling.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "Max-Min Fair Collision-Free Scheduling for Wireless Sensor Networks", + "authors": [ + "Avinash Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Multihop Wireless Networks (MWN\u201904) held in conjunction with the IEEE International Performance Computing and Communications Conference (IPCCC), April 2004.", + "links": { + "pdf": "/static/public/papers/SridharanKrishnamachari_MWN_IPCCC04.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "The Effect of Mobility-induced Location Errors on Geographic Routing in Ad Hoc Networks: Analysis and Improvement using Mobility Prediction", + "authors": [ + "Dongjin Son", + "Ahmed Helmy", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, Georgia, March 2004.", + "links": { + "pdf": "/static/public/papers/prediction-wcnc-accepted.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Sensor Networks", + "authors": [ + "Gang Lu", + "Bhaskar Krishnamachari", + "Cauligi Raghavendra" + ], + "venue": "4th International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN 04), held in conjunction with the IEEE IPDPS Conference 18th International Parallel and Distributed Processing Symposium, April 2004.", + "links": { + "pdf": "/static/public/papers/DMAC.pdf" + }, + "type": "Conference Papers", + "year": 2004 + }, + { + "title": "PATHS: analysis of PATH duration Statistics and their impact on reactive MANET routing protocols", + "authors": [ + "Narayanan Sadagopan", + "Fan Bai", + "Bhaskar Krishnamachari", + "Ahmed Helmy" + ], + "venue": "The Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis, Maryland, June 2003. [Highly Competitive, Acceptance Rate: 29 of 189 submissions].", + "links": { + "pdf": "/static/public/papers/1PATH_Narayanan_fan_bhaskar_Helmy.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "Localized Topology Generation Mechanisms for Self-Configuring Sensor Networks", + "authors": [ + "Congzhou Zhou", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Globecom, San Francisco, December 2003.", + "links": { + "pdf": "/static/public/papers/1Zhou_Krishnamachari_Localized.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "Analysis of Energy-Efficient, Fair Routing in Wireless Sensor Networks through Non-linear Optimization", + "authors": [ + "Bhaskar Krishnamachari", + "Fernando Ordonez" + ], + "venue": "Workshop on Wireless Ad hoc, Sensor, and Wearable Networks, in IEEE Vehicular Technology Conference \u2013 Fall, Orlando, Florida, October 2003.", + "links": { + "pdf": "/static/public/papers/1Krishnamachari_Ordonez_Analysis_of_energy.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "Optimal Transmission Radius for Flooding in Large Scale Sensor Networks", + "authors": [ + "Marco Zuniga", + "Bhaskar Krishnamachari" + ], + "venue": "Workshop on Mobile and Wireless Networks, MWN 2003, held in conjunction with the 23rd IEEE International Conference on Distributed Computing Systems (ICDCS), Providence, Rhode Island, May 2003.", + "links": { + "pdf": "/static/public/papers/1Zuniga_Krishnamchari_Optimal.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "The ACQUIRE Mechanism for Efficient Querying in Sensor Networks", + "authors": [ + "Narayanan Sadagopan", + "Bhaskar Krishnamachari", + "Ahmed Helmy" + ], + "venue": "IEEE International Workshop on Sensor Network Protocols and Applications (SNPA\u201903), held in conjunction with the IEEE International Conference on Communications (ICC 2003), Anchorage, Alaska, May 2003.", + "links": { + "pdf": "/static/public/papers/1Sadagopan_Krishnamachari_Helmy_The_ACQUIRE.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "The Energy-Robustness Tradeoff for Routing in Wireless Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Yasser Mourtada", + "Stephen Wicker" + ], + "venue": "IEEE International Conference on Communications (ICC 2003), Anchorage, Alaska, May 2003.", + "links": { + "pdf": "/static/public/papers/1Krishnamchari_Mourtada_Wicker_The_energy_robustness.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "Efficient and Fault-tolerant Feature Extraction in Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "S Sitharama Iyengar" + ], + "venue": "2nd Workshop on Information Processing in Sensor Networks, IPSN \u201903, Palo Alto, California, April 2003.", + "links": { + "pdf": "/static/public/papers/1Krishnamachari_Iyengar_Efficient.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "Energy-Quality Tradeoffs for Target Tracking in Wireless Sensor Networks", + "authors": [ + "Sundeep Pattem", + "Sameera Poduri", + "Bhaskar Krishnamachari" + ], + "venue": "2nd Workshop on Information Processing in Sensor Networks, IPSN \u201903, Palo Alto, California, April 2003.", + "links": { + "pdf": "/static/public/papers/1PattemKrishnamachari_TrackingSANoise.pdf" + }, + "type": "Conference Papers", + "year": 2003 + }, + { + "title": "Communication and Computation in Distributed CSP Algorithms", + "authors": [ + "Cesar Fernandez", + "Ramon Bejar", + "Bhaskar Krishnamachari", + "Carla Gomes" + ], + "venue": "Principles and Practice of Constraint Programming \u2014 CP 2002, Lecture Notes in Computer Science, Springer-Verlag, September 2002.", + "links": { + "pdf": "/static/public/papers/CP2002_Cesar.pdf" + }, + "type": "Conference Papers", + "year": 2002 + }, + { + "title": "The Impact of Data Aggregation in Wireless Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Deborah Estrin", + "Stephen Wicker" + ], + "venue": "International Workshop on Distributed Event-Based Systems, (DEBS \u201902), held in conjunction with IEEE ICDCS, Vienna, Austria, July 2002.", + "links": { + "pdf": "/static/public/papers/DEBS02_aggregation.pdf" + }, + "type": "Conference Papers", + "year": 2002 + }, + { + "title": "Distributed Problem Solving and the Boundaries of Self-Configuration in Multi-hop Wireless Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Ramon Bejar", + "Stephen B Wicker" + ], + "venue": "Hawaii International Conference on System Sciences (HICSS-35), Big Island, Hawaii, January 2002.", + "links": { + "pdf": "/static/public/papers/Hawaii_DCSNew.pdf" + }, + "type": "Conference Papers", + "year": 2002 + }, + { + "title": "Phase Transition Phenomena in Wireless Ad-Hoc Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen B Wicker", + "Ramon Bejar" + ], + "venue": "Symposium on Ad-Hoc Wireless Networks, IEEE Globecom, San Antonio, Texas, November 2001.", + "links": { + "pdf": "/static/public/papers/phaseTransitionWirelessNetworks.pdf" + }, + "type": "Conference Papers", + "year": 2001 + }, + { + "title": "On the Performance of Sequential Paging for Mobile User Location", + "authors": [ + "Bhaskar Krishnamachari", + "Rung-Hung Gau", + "Stephen B Wicker", + "Zygmunt J Haas" + ], + "venue": "IEEE Vehicular Technology Conference (VTC Fall 2001), Atlantic City, New Jersey, October 2001.", + "links": { + "pdf": "/static/public/papers/VTC2001_perfPaging.pdf" + }, + "type": "Conference Papers", + "year": 2001 + }, + { + "title": "Distributed Constraint Satisfaction in a Wireless Sensor Tracking System", + "authors": [ + "Ramon Bejar", + "Bhaskar Krishnamachari", + "Carla Gomes", + "Bart Selman" + ], + "venue": "Workshop on Distributed Constraint Reasoning, International Joint Conference on Artificial Intelligence, Seattle, Washington, August 2001.", + "links": { + "pdf": "/static/public/papers/DistdConstraint.pdf" + }, + "type": "Conference Papers", + "year": 2001 + }, + { + "title": "Distributed Constraint Satisfaction and the Bounds on Resource Allocation in Wireless Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Ramon Bejar", + "Stephen B Wicker" + ], + "venue": "Sixth International Symposium on Communications Theory & Application (ISCTA \u201901), Ambleside, UK, July 2001.", + "links": { + "pdf": "/static/public/papers/2001_4.pdf" + }, + "type": "Conference Papers", + "year": 2001 + }, + { + "title": "Optimization of Fixed Network Design in Cellular Systems using Local Search Algorithms", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen B Wicker" + ], + "venue": "IEEE Vehicular Technology Conference (VTC Fall 2000), Boston, Massachusetts, September 2000.", + "links": { + "pdf": "/static/public/papers/VTC2000_networkTopology.pdf" + }, + "type": "Conference Papers", + "year": 2000 + }, + { + "title": "Analysis of Random Walk and Random Noise Algorithms for Satisfiability Testing", + "authors": [ + "Bhaskar Krishnamachari", + "Xi Xie", + "Bart Selman", + "Stephen B Wicker" + ], + "venue": "Principles and Practice of Constraint Programming \u2013 CP 2000, Lecture Notes in Computer Science, vol. 1894, Springer-Verlag, September 2000.", + "links": { + "pdf": "/static/public/papers/CP2000_randomwalkanalysis.pdf" + }, + "type": "Conference Papers", + "year": 2000 + }, + { + "title": "Improving Turbo Decoding via Cross Entropy Minimization", + "authors": [ + "M Eoin Buckley", + "Bhaskar Krishnamachari", + "Stephen B Wicker", + "Joachim Hagenauer" + ], + "venue": "IEEE International Symposium on Information Theory (ISIT 2000), Sorrento, Italy, June 2000.", + "links": { + "pdf": "/static/public/papers/BuckleyKrishnamachariWickerHagenauer_ISIT00.pdf" + }, + "type": "Conference Papers", + "year": 2000 + }, + { + "title": "Experimental Analysis of Local Search Algorithms for Optimal Base Station Location", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen B Wicker" + ], + "venue": "International Conference on Evolutionary Computing for Computer, Communication, Control and Power (ECCAP 2000), Chennai, India, January 2000.", + "links": { + "pdf": "/static/public/papers/experimental-analysis-of-local.pdf" + }, + "type": "Conference Papers", + "year": 2000 + }, + { + "title": "Ultra High Speed Digital Processing for Wireless Systems using Passive Microwave Logic", + "authors": [ + "Bhaskar Krishnamachari", + "Simon Lok", + "Christopher Gracia", + "Sajan Abraham" + ], + "venue": "1998 IEEE International Radio and Wireless Conference (RAWCON \u201998), Colorado Springs, Colorado, August 1998. [See EETimes article]. This work also received the First Prize at the IEEE Region I Annual Student Paper Contest.", + "links": { + "pdf": "/static/public/papers/RAWCON98_ghzdigital.pdf" + }, + "type": "Conference Papers", + "year": 1998 + }, + { + "title": "Bi-directional Buck-Boost Converter with Variable Output Voltage", + "authors": [ + "Bhaskar Krishnamachari", + "Dariusz Czarkowski" + ], + "venue": "1998 IEEE International Symposium on Circuits and Systems (ISCAS \u201998), Monterey, California, June 1998.", + "links": { + "pdf": "/static/public/papers/ISCAS98_buckboost.pdf" + }, + "type": "Conference Papers", + "year": 1998 + }, + { + "title": "A Queue-Stabilizing Framework for Networked Multi-Robot Exploration", + "authors": [ + "L Clark", + "J Galante", + "B Krishnamachari", + "K Psounis" + ], + "venue": "in IEEE Robotics and Automation Letters, 2021.", + "links": { + "pdf": "/static/public/papers/FINAL_Queue_stabilizing_distributed_online_controller.pdf" + }, + "type": "Journal Papers", + "year": 2021 + }, + { + "title": "Context information sharing for the Internet of Things: A survey", + "authors": [ + "E Matos", + "R Tiburski", + "C Moratelli", + "S Filhoa", + "L Amaral", + "G Ramachandran", + "B Krishnamachari", + "F Hessel" + ], + "venue": "Elsevier Comput. Networks 166 (2020).", + "links": { + "pdf": "/static/public/papers/computer_networks_journal2019.pdf" + }, + "type": "Journal Papers", + "year": 2021 + }, + { + "title": "A Survey of Blockchain-Based Strategies for Healthcare", + "authors": [ + "E Aguiar", + "B Fai\u00e7al", + "B Krishnamachari", + "J Ueyama" + ], + "venue": "ACM Comput. Surv. 53(2): 27:1-27:27 (2020).", + "links": { + "pdf": "/static/public/papers/HEALTHCARE-ACM.pdf" + }, + "type": "Journal Papers", + "year": 2021 + }, + { + "title": "Control, intervention, and behavioral economics over human social networks against COVID-19\u2033", + "authors": [ + "M Nagahara", + "B Krishnamachari", + "M Ogura", + "A Ortega", + "Y Tanaka", + "Y Ushifusa", + "TW Valente" + ], + "venue": "Adv. Robotics 35(11): 733-739 (2021).", + "links": { + "pdf": "/static/public/papers/contr.pdf" + }, + "type": "Journal Papers", + "year": 2021 + }, + { + "title": "SENATE: A Permissionless Byzantine Consensus Protocol in Wireless Networks for Real-Time Internet-of-Things Applications", + "authors": [ + "Zhou Sheng", + "Zhiyuan Jiang", + "Zixu Cao", + "Bhaskar Krishnamachari", + "Zhisheng Niu" + ], + "venue": "in IEEE Internet of Things Journal, 2020.", + "links": { + "pdf": "/static/public/papers/senate.pdf" + }, + "type": "Journal Papers", + "year": 2020 + }, + { + "title": "Timely Status Update in Wireless Uplinks: Analytical Solutions with Asymptotic Optimality", + "authors": [ + "Z Jiang", + "B Krishnamachari", + "X Zheng", + "S Zhou", + "Z Niu" + ], + "venue": "in IEEE Internet of Things Journal, 2019.", + "links": { + "pdf": "/static/public/papers/Timely_status_update_IOTJ.pdf" + }, + "type": "Journal Papers", + "year": 2019 + }, + { + "title": "ARREST: A RSSI Based Approach for Mobile Sensing and Tracking of a Moving Object", + "authors": [ + "Pradipta Ghosh", + "Jason A Tran", + "Bhaskar Krishnamachari" + ], + "venue": "in IEEE Transactions on Mobile Computing, 2019.", + "links": { + "pdf": "/static/public/papers/ARREST-FINAL.pdf" + }, + "type": "Journal Papers", + "year": 2019 + }, + { + "title": "FWB: Funneling Wider Bandwidth Algorithm for High Performance Data Collection in Wireless Sensor Networks", + "authors": [ + "Rodrigo C Tavares", + "Marcos Carvalho", + "Eduardo C\u00e2mara J\u00fanior", + "Erik de Britto e Silva", + "Marcos Vieira", + "Luiz Filipe Menezes Vieira", + "Bhaskar Krishnamachari" + ], + "venue": "Elsevier Computer Communications, 2019.", + "links": { + "pdf": null + }, + "type": "Journal Papers", + "year": 2019 + }, + { + "title": "Context Information Sharing for the Internet of Things: A Survey", + "authors": [ + "Everton de Matos", + "Ram\u00e3o Tiago Tiburski", + "Carlos Roberto Moratelli", + "Sergio Johann Filho", + "Leonardo Albernaz Amaral", + "Gowri Ramachandran", + "Bhaskar Krishnamachari", + "Fabiano Hessel" + ], + "venue": "in Elsevier Computer Networks, 2019.", + "links": { + "pdf": "/static/public/papers/computer_networks_journal2019.pdf" + }, + "type": "Journal Papers", + "year": 2019 + }, + { + "title": "TAMU\u2010RPL: Thompson sampling\u2010based multichannel RPL", + "authors": [ + "Gomes", + "Pedro Henrique", + "Bhaskar Krishnamachari" + ], + "venue": "in Transactions on Emerging Telecommunications Technologies.", + "links": { + "pdf": "/static/public/papers/TAMU_RPL.pdf" + }, + "type": "Journal Papers", + "year": 2019 + }, + { + "title": "Closed-Form Whittle\u2019s Index-Enabled Random Access for Timely Status Update", + "authors": [ + "Jingzhou Sun", + "Zhiyuan Jiang", + "Bhaskar Krishnamachari", + "Sheng Zhou", + "Zhisheng Niu" + ], + "venue": "in IEEE Transactions on Communications, 2019", + "links": { + "pdf": "/static/public/papers/TCOM2019_zhiyuan.pdf" + }, + "type": "Journal Papers", + "year": 2019 + }, + { + "title": "Moving Beyond Testbeds? Lessons (We) Learned about Connectivity", + "authors": [ + "Keoma Brun", + "Pedro Henrique Gomes", + "Thomas Watteyne", + "Pascale Minet" + ], + "venue": "IEEE Pervasive Computing.", + "links": { + "pdf": "https://anrg.usc.edu/www/brun18moving_3_r2_rc5_manuscript/" + }, + "type": "Journal Papers", + "year": 2018 + }, + { + "title": "Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks", + "authors": [ + "Shangxing Wang", + "Hanpeng Liu", + "Pedro Henrique Gomes and Bhaskar Krishnamachari" + ], + "venue": "in IEEE Transactions on Cognitive Communications and Networking.", + "links": { + "pdf": "/static/public/papers/DQN_ChannelAccess_TCCN2018_FI.pdf" + }, + "type": "Journal Papers", + "year": 2018 + }, + { + "title": "Distributionally Robust Radio Frequency Localization", + "authors": [ + "N A Jagadeesan", + "B Krishnamachari" + ], + "venue": "IEEE Transactions on Signal and Information Processing over Networks, 2018.", + "links": { + "pdf": "/static/public/papers/Nachi_RLczn_CR.pdf" + }, + "type": "Journal Papers", + "year": 2018 + }, + { + "title": "DeepNap: Data-Driven Base Station Sleeping Operations through Deep Reinforcement Learning", + "authors": [ + "Jingchu Liu", + "Bhaskar Krishnamachari", + "Sheng Zhou", + "Zhisheng Niu" + ], + "venue": "IEEE Internet of Things Journal, SI on AI Powered Network Management, accepted 2018.", + "links": { + "pdf": "/static/public/papers/deepnap_IoTJ-Final.pdf" + }, + "type": "Journal Papers", + "year": 2018 + }, + { + "title": "\u201cOptimal Sleeping Mechanism for Multiple Servers with MMPP-Based Bursty Traffic Arrival\u201d", + "authors": [ + "Zhiyuan Jiang", + "Bhaskar Krishnamachari", + "Sheng Zhou", + "Zhisheng Niu" + ], + "venue": "in IEEE Wireless Communications Letters.", + "links": { + "pdf": "/static/public/papers/zhiyuan_wcl_final.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "\u201cOnline Learning Schemes for Power Allocation in Energy Harvesting Communications\u201d", + "authors": [ + "Pranav Sakulkar", + "Bhaskar Krishnamachari" + ], + "venue": "in IEEE Transactions on Information Theory.", + "links": { + "pdf": "/static/public/papers/Online_Learning_over_MDPs.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "\u201cA Unifying Bayesian Optimization Framework for Radio Frequency Localization\u201d", + "authors": [ + "Nachikethas A Jagadeesan", + "Bhaskar Krishnamachari" + ], + "venue": "in IEEE Transactions on Cognitive Communications and Networking.", + "links": { + "pdf": "/static/public/papers/Nachikethas_Localization_TCCN_CR.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "\u201cA Wait-and-See Two-Threshold Optimal Sleeping Policy for a Single Server With Bursty Traffic\u201d", + "authors": [ + "Bingjie Leng", + "Xueying Guo", + "Xi Zheng", + "Bhaskar Krishnamachari", + "Zhisheng Niu" + ], + "venue": "in IEEE Transactions on Green Communications and Networking, vol. 1, no. 4, pp. 528-540, Dec. 2017.", + "links": { + "pdf": "/static/public/papers/wait-two-threshold_final_double.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "\u201cEmpirical evaluation of the heat-diffusion collection protocol for wireless sensor networks\u201d", + "authors": [ + "Pradipta Ghosh", + "He Ren", + "Reza", + "Banirazi", + "Bhaskar Krishnamachari", + "Edmond Jonckheere" + ], + "venue": "in Computer Network, Volume 127, 9 November 2017, Pages 217\u2013232", + "links": { + "pdf": "http://www.sciencedirect.com/science/article/pii/S1389128617303250" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "MABO-TSCH: Multi-Hop And Blacklist-based Optimized Time Synchronized Channel Hopping", + "authors": [ + "Pedro Henrique Gomes", + "Thomas Watteyne", + "Bhaskar Krishnamachari" + ], + "venue": "in Transactions on Emerging Telecommunications Technologies, 2017.", + "links": { + "pdf": "/static/public/papers/2017_Pedro_ETT_MABO_TSCH.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing", + "authors": [ + "Yi-Hsuan Kao", + "Bhaskar Krishnamachari", + "Moo-Ryong Ra", + "Fan Bai" + ], + "venue": "in IEEE Transactions on Mobile Computing, 2017.", + "links": { + "pdf": "/static/public/papers/Hermes_TMC_Kao.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "Teaching Communication Technologies and Standards for the Industrial IoT? Use 6TiSCH!", + "authors": [ + "Thomas Watteyne", + "Pere Tuset-Peir\u00f3", + "Xavier Vilajosana", + "Sofie Pollin", + "Bhaskar Krishnamachari" + ], + "venue": "in IEEE Communications Magazine, vol. 55, no. 5, pp. 132-137, May 2017.", + "links": { + "pdf": "/static/public/papers/1_commag_b_camera_ready.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "An adaptive approach for UAV-based pesticide spraying in dynamic environments", + "authors": [ + "Bruno Faical", + "Heitor Freitas", + "Pedro H Gomes", + "Leandro Y Mano", + "Gustavo Pessin", + "Andr\u00e9 CPLF de Carvalho", + "Bhaskar Krishnamachari", + "J\u00f3 Ueyama" + ], + "venue": "in Computers and Electronics in Agriculture, 2017.", + "links": { + "pdf": "/static/public/papers/Faical_CEA.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "Green Energy and Delay Aware Downlink Power Control and User Association for Off Grid Solar Powered Base Stations", + "authors": [ + "Vinay Chamola", + "Bhaskar Krishnamachari", + "Biplab Sikdar" + ], + "venue": "IEEE Systems Journal, 2017.", + "links": { + "pdf": "/static/public/papers/Chamola_ISJ_2017.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "Delay Aware Resource Management for Grid Energy Savings in Green Cellular Base stations with Hybrid Power Supplies", + "authors": [ + "Vinay Chamola", + "Biplab Sikdar", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Communications, 2017.", + "links": { + "pdf": "/static/public/papers/Chamola_TCOM_2017.pdf" + }, + "type": "Journal Papers", + "year": 2017 + }, + { + "title": "Ef\ufb01cient Mechanism Design for Competitive Carrier Selection and Rate Allocation", + "authors": [ + "Yanting Wu", + "Bhaskar Krishnamachari", + "George Rabanca", + "Amotz Bar-Noy" + ], + "venue": "IEEE Transactions on Vehicular Technology, 2016.", + "links": { + "pdf": "/static/public/papers/RateAuction.pdf" + }, + "type": "Journal Papers", + "year": 2016 + }, + { + "title": "Robotic Message Ferrying for Wireless Networks Using Coarse-Grained Backpressure Control", + "authors": [ + "Shangxing Wang", + "Andrea Gasparri", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Mobile Computing, 2016.", + "links": { + "pdf": "/static/public/papers/CBMF_Trans_Final.pdf" + }, + "type": "Journal Papers", + "year": 2016 + }, + { + "title": "Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition", + "authors": [ + "Leandro Y Mano", + "Bruno S Fai\u00e7al", + "Luis H V Nakamura", + "Pedro H Gomes", + "Giampaolo L Libralon", + "Rodolfo I Meneguete", + "Geraldo P R Filho", + "Gabriel T Giancristofaro", + "Gustavo Pessin", + "Bhaskar Krishnamachari", + "J\u00f3 Ueyama" + ], + "venue": "Computer Communications, vol. 89-90, no. 1, pp. 178-190, Sept 2016.", + "links": { + "pdf": "/static/public/papers/Mano_ComCom_2016.pdf" + }, + "type": "Journal Papers", + "year": 2016 + }, + { + "title": "An Energy and Delay Aware Downlink Power Control Strategy for Solar Powered Base Stations", + "authors": [ + "Vinay Chamola", + "Bhaskar Krishnamachari", + "Biplab Sikdar" + ], + "venue": "IEEE Communications Letters.", + "links": { + "pdf": "/static/public/papers/vinay_comms_letter.pdf" + }, + "type": "Journal Papers", + "year": 2016 + }, + { + "title": "A Packet Dropping Mechanism for Efficient Operation of M/M/1 Queues with Selfish Users", + "authors": [ + "Yi Gai", + "Hua Liu", + "Bhaskar Krishnamachari" + ], + "venue": "Computer Networks, vol. 98, no. 7, pp. 1\u201313, April 2016.", + "links": { + "pdf": "/static/public/papers/1-s2.0-S1389128615004855-main.pdf" + }, + "type": "Journal Papers", + "year": 2016 + }, + { + "title": "Fine-Tuning of UAV Control Rules for Spraying Pesticides on Crop Fields: An Approach for Dynamic Environments", + "authors": [ + "Bruno S Faical", + "Gustavo Pessin", + "Geraldo P R Filho", + "Andre C P L F Carvalho", + "Pedro H Gomes", + "Jo Ueyama" + ], + "venue": "International Journal on Artificial Intelligence Tools, vol. 25, no. 1, February 2016", + "links": { + "pdf": "/static/public/papers/2016_Faical_UAV_Control.pdf" + }, + "type": "Journal Papers", + "year": 2016 + }, + { + "title": "Comparative assessment of an indoor localization framework for building emergency response", + "authors": [ + "Nan Li", + "Burcin Becerik-Gerber", + "Lucio Soibelman", + "Bhaskar Krishnamachari" + ], + "venue": "Automation in Construction 57, 42\u201354, 2015", + "links": { + "pdf": "/static/public/papers/Li15.pdf" + }, + "type": "Journal Papers", + "year": 2015 + }, + { + "title": "Backpressure Delay Enhancement for Encounter-Based Mobile Networks While Sustaining Throughput Optimality", + "authors": [ + "Majed Alresaini", + "Kwame-Lante Wright", + "Bhaskar Krishnamachari", + "Michael J Neely" + ], + "venue": "IEEE/ACM Transactions on Networking, vol. PP, no. 99, pp. 1-13, March 2015.", + "links": { + "pdf": "/static/public/papers/bwar_journal.pdf" + }, + "type": "Journal Papers", + "year": 2015 + }, + { + "title": "A Privacy Mechanism For Mobile-Based Urban Traffic Monitoring", + "authors": [ + "Chi Wang", + "Hua Liu", + "Kwame-Lante Wright", + "Bhaskar Krishnamachari", + "Murali Annavaram" + ], + "venue": "Pervasive and Mobile Computing, 2015.", + "links": { + "pdf": "/static/public/papers/wang_privacymech.pdf" + }, + "type": "Journal Papers", + "year": 2015 + }, + { + "title": "Prefetching-Based Data Dissemination in Vehicular Cloud Systems", + "authors": [ + "Ryangsoo Kim", + "Hyuk Lim", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Vehicular Technology.", + "links": { + "pdf": "/static/public/papers/vcloud_camera_ready.pdf" + }, + "type": "Journal Papers", + "year": 2015 + }, + { + "title": "Software-Defined Networking Paradigms in Wireless Networks: A Survey", + "authors": [ + "Nachikethas A Jagadeesan", + "Bhaskar Krishnamachari" + ], + "venue": "ACM Comput. Surv. 47, 2, Article 27 (December 2014)", + "links": { + "pdf": "/static/public/papers/wirelessSDN.pdf" + }, + "type": "Journal Papers", + "year": 2014 + }, + { + "title": "Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor networks", + "authors": [ + "Jo Ueyama", + "Heitor Freitas", + "Bruno S Faical", + "Geraldo P R Filho", + "Pedro Fini", + "Gustavo Pessin", + "Pedro H Gomes", + "Leandro A Villas" + ], + "venue": "IEEE Communications Magazine, vol. 52, no. 12, December 2014", + "links": { + "pdf": "/static/public/papers/Pedro-UAV-Comm-Magazine.pdf" + }, + "type": "Journal Papers", + "year": 2014 + }, + { + "title": "Distributed Stochastic Online Learning Policies for Opportunistic Spectrum Access", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Signal Processing.", + "links": { + "pdf": "/static/public/papers/DMAB_final.pdf" + }, + "type": "Journal Papers", + "year": 2014 + }, + { + "title": "Energy-efficient Design of Heterogeneous Cellular Networks from Deployment to Operation", + "authors": [ + "Kyuho Son", + "Eunsung Oh", + "Bhaskar Krishnamachari" + ], + "venue": "Computer Networks (COMNET): Special Issue on Green Communications, 2014.", + "links": { + "pdf": "/static/public/papers/Kyuho14.pdf" + }, + "type": "Journal Papers", + "year": 2014 + }, + { + "title": "Trust-based Backpressure Routing in Wireless Sensor Networks", + "authors": [ + "Revathi Venkataraman", + "Scott Moeller", + "Bhaskar Krishnamachari", + "Rama Rao T" + ], + "venue": "International Journal of Sensor Networks (IJSNet), 2014.", + "links": { + "pdf": "/static/public/papers/IJSNET.pdf" + }, + "type": "Journal Papers", + "year": 2014 + }, + { + "title": "Optimizing Content Dissemination in Vehicular Networks with Radio Heterogeneity", + "authors": [ + "Joon Ahn", + "Maheswaran Sathiamoorthy", + "Bhaskar Krishnamachari", + "Fan Bai", + "Lin Zhang" + ], + "venue": "IEEE Transactions on Mobile Computing, vol.13, no.6, pp.1312-1325, June 2014.", + "links": { + "pdf": "/static/public/papers/JoonAhn_TMC13.pdf" + }, + "type": "Journal Papers", + "year": 2013 + }, + { + "title": "DAWN: A density adaptive routing for deadline-based data collection in vehicular delay tolerant networks", + "authors": [ + "Qiao Fu", + "Bhaskar Krishnamachari", + "Lin Zhang" + ], + "venue": "\u201cTsinghua Science and Technology , vol.18, no.3, pp.230,241, June 2013.\u201d", + "links": { + "pdf": "/static/public/papers/DAWN_Fu.pdf" + }, + "type": "Journal Papers", + "year": 2013 + }, + { + "title": "Distributed Storage Codes Reduce Latency in Vehicular Networks", + "authors": [ + "Maheswaran Sathiamoorthy", + "Alexandros G Dimakis", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "IEEE Transactions on Mobile Computing, vol.13, no.9, pp.2016-2027, Sept. 2014.", + "links": { + "pdf": "/static/public/papers/VANETCodingTMC_Sathiamoorthy.pdf", + "code": "http://anrg.usc.edu/www/papers/VANETCodingTMC_Sathiamoorthy.pdf" + }, + "type": "Journal Papers", + "year": 2013 + }, + { + "title": "Dynamic Base Station Switching-on/off Strategies for Green Cellular Networks", + "authors": [ + "Eunsung Oh", + "Kyuho Son", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Trans. on Wireless Communications, vol. 12, no. 5, pp. 2126-2136, May 2013.", + "links": { + "pdf": "/static/public/papers/EungsungOh_GreenCellular.pdf" + }, + "type": "Journal Papers", + "year": 2013 + }, + { + "title": "LIFO-Backpressure achieves near optimal utility-delay tradeoff", + "authors": [ + "Longbo Huang", + "Scott Moeller", + "Michael J Neely", + "Bhaskar Krishnamachari" + ], + "venue": "\u201cIEEE/ACM Transactions on Networking, accepted, 2012.\u201d", + "links": { + "pdf": "/static/public/papers/qla-lifo-journal.pdf" + }, + "type": "Journal Papers", + "year": 2012 + }, + { + "title": "Rate Control for Heterogeneous Wireless Sensor Networks: Characterization, Algorithms and Performance", + "authors": [ + "Jiong Jin", + "Marimuthu Palaniswami", + "Bhaskar Krishnamachari" + ], + "venue": "\u201cComputer Networks 2012\u201d.", + "links": { + "pdf": "/static/public/papers/RateControlWSN_ComputerNetworks.pdf" + }, + "type": "Journal Papers", + "year": 2012 + }, + { + "title": "Energy-efficient deployment strategies in structural health monitoring using wireless sensor networks", + "authors": [ + "Tat Fu", + "Amitabha Ghosh", + "Erik Johnson", + "Bhaskar Krishnamachari" + ], + "venue": "\u201cJournal of Structural Control and Health Monitoring, May 2012 (in press)\u201d.", + "links": { + "pdf": "/static/public/papers/SHM_Amitabha.pdf" + }, + "type": "Journal Papers", + "year": 2012 + }, + { + "title": "Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards and Individual Observations", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari", + "Rahul Jain" + ], + "venue": "\u201cIEEE/ACM Transactions on Networking, vol. 20, no. 5, 2012.\u201d", + "links": { + "pdf": "/static/public/papers/TON-Jan2012.pdf" + }, + "type": "Journal Papers", + "year": 2012 + }, + { + "title": "Fast Data Collection in Tree-Based Wireless Sensor Networks", + "authors": [ + "Ozlem Durmaz Incel", + "Amitabha Ghosh", + "Bhaskar Krishnamachari", + "Krishnakant Chintalapudi" + ], + "venue": "\u201cIEEE Transactions on Mobile Computing, vol. 11, no. 1, pp. 86\u201399, Jan 2012.\u201d", + "links": { + "pdf": "/static/public/papers/TMC-Jan2012.pdf" + }, + "type": "Journal Papers", + "year": 2012 + }, + { + "title": "Load Balancing by Network Curvature Control", + "authors": [ + "M Lou", + "E Jonckheere", + "F Bonahon", + "Y Baryshnikov", + "B Krishnamachari" + ], + "venue": "\u201cInt. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844, Vol. VI (2011), No. 1 (March), pp. 134-149\u201d", + "links": { + "pdf": "/static/public/papers/loadbalancing_lou.pdf" + }, + "type": "Journal Papers", + "year": 2011 + }, + { + "title": "Multi-Channel Scheduling and Spanning Trees: Throughput-Delay Tradeoff for Fast Data Collection in Sensor Networks", + "authors": [ + "Amitabha Ghosh", + "Ozlem Durmaz Incel", + "V S Anil Kumar", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE/ACM Transactions on Networking, 2011. [An error in one of the illustrative figures of this paper is corrected here].", + "links": { + "pdf": "/static/public/papers/TON-2011-accepted.pdf" + }, + "type": "Journal Papers", + "year": 2011 + }, + { + "title": "Base Station Operation and User Association Mechanisms for Energy-Delay Tradeoffs in Green Cellular Networks", + "authors": [ + "Kyuho Son", + "Hongseok Kim", + "Yung Yi", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Journal on Selected Area in Communications: Special Issue on Energy-Efficient Wireless Communications, vol. 29, no. 8, pp.1525-1536, Sept. 2011.\u201d", + "links": { + "pdf": "/static/public/papers/JSAC2011_GreenBS.pdf" + }, + "type": "Journal Papers", + "year": 2011 + }, + { + "title": "Towards Dynamic Energy-Efficient Operation of Cellular Network Infrastructure", + "authors": [ + "Eunsung Oh", + "Bhaskar Krishnamachari", + "Xin Liu", + "Zhisheng Niu" + ], + "venue": "IEEE communications magazine, vol. 49, no. 6, pp. 56-61, June 2011. [A few numbers in the paper are clarified and corrected here.]", + "links": { + "pdf": "/static/public/papers/Comm.Magazine.pdf" + }, + "type": "Journal Papers", + "year": 2011 + }, + { + "title": "Handling Inelastic Traf\ufb01c in Wireless Sensor Networks", + "authors": [ + "Jiong Jin", + "Avinash Sridharan", + "Bhaskar Krishnamachari", + "Marimuthu Palaniswami" + ], + "venue": "IEEE Journal on Selected areas in communications (JSAC), 2010.", + "links": { + "pdf": "/static/public/papers/JinSridharanKrishnamachariPalaniswami_JSAC2010.pdf" + }, + "type": "Journal Papers", + "year": 2010 + }, + { + "title": "Exploiting the wisdom of the crowd: localized, distributed information-centric VANETs", + "authors": [ + "Fan Bai", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Communications Magazine, vol. 48, no. 5, May 2010.", + "links": { + "pdf": "http://portal.acm.org/citation.cfm?id=1825522" + }, + "type": "Journal Papers", + "year": 2010 + }, + { + "title": "Dynamic Multichannel Access with Imperfect Channel State Detection", + "authors": [ + "Keqin Liu", + "Qing Zhao", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Signal Processing, vol. 58, No. 5, pp. 2795 \u2013 2808, May, 2010.", + "links": { + "pdf": "/static/public/papers/LiuEtal10TSP.pdf" + }, + "type": "Journal Papers", + "year": 2010 + }, + { + "title": "Determining Localized Tree Construction Schemes Based on Sensor Network Lifetime", + "authors": [ + "Jae-Joon Lee", + "Bhaskar Krishnamachari", + "C-C Jay Kuo" + ], + "venue": "EURASIP Journal on Wireless Communications and Networking Volume 2010 (2010), Article ID 350198, 13 pages.", + "links": { + "pdf": "/static/public/papers/LocalizedTreeConstruction_JaeJoonLeeKrishnamachariKuo_Journal.pdf" + }, + "type": "Journal Papers", + "year": 2010 + }, + { + "title": "Tech Report", + "authors": [ + "Joon Ahn", + "Affan", + "Syed", + "Bhaskar Krishnamachari", + "John Heidemann", + "Design", + "Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks", + "Elsevier Ad Hoc Networks Journal" + ], + "venue": "", + "links": { + "pdf": "/static/public/papers/ahn10design-TR.pdf" + }, + "type": "Journal Papers", + "year": 2010 + }, + { + "title": "Optimality of Myopic Sensing in Multi-Channel Opportunistic Access", + "authors": [ + "Sahand H A Ahmad", + "Mingyan Liu", + "Tara Javidi", + "Qing Zhao", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Information Theory, 2009.", + "links": { + "pdf": "/static/public/papers/AhmadEtal09IT.pdf" + }, + "type": "Journal Papers", + "year": 2009 + }, + { + "title": "A Framework for Multi-Robot Node Coverage in Sensor Networks", + "authors": [ + "Andrea Gasparri", + "Bhaskar Krishnamachari", + "Gaurav S Sukhatme" + ], + "venue": "Annals of Math and Artificial Intelligence (AMAI), Special Issue on Multi-Robot Coverage, Search, and Exploration, 2009.", + "links": { + "pdf": "/static/public/papers/GasparriKrishnamachariSukhatme_ArtifIntell2008.pdf" + }, + "type": "Journal Papers", + "year": 2009 + }, + { + "title": "Using Heterogeneity to Enhance Random Walk-based Queries", + "authors": [ + "Marco Zuniga", + "Chen Avin", + "Bhaskar Krishnamachari" + ], + "venue": "Journal of Signal Processing Systems, December 2009, Volume 57, Issue 3, pages 401-414.", + "links": { + "pdf": "/static/public/papers/ZunigaAvinKrishnamachari_SignalProcessing2008.pdf" + }, + "type": "Journal Papers", + "year": 2009 + }, + { + "title": "Static Replication Strategies for Content Availability in Vehicular Ad-hoc Networks", + "authors": [ + "Shyam Kapadia", + "Bhaskar Krishnamachari", + "Shahram Ghandeharizadeh" + ], + "venue": "Mobile Networks and Applications, October 2009, Volume 14, Issue 5, pages 590-610.", + "links": { + "pdf": "/static/public/papers/KapadiaKrishnamachariGhandeharizadeh_MNA2008.pdf" + }, + "type": "Journal Papers", + "year": 2009 + }, + { + "title": "Scaling Laws for Data-Centric Storage and Querying in Wireless Sensor Networks", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE/ACM Transactions on Networking, Aug 2009, Volume 17, Issue 4, pages 1242-1255.", + "links": { + "pdf": "/static/public/papers/AhnKrishnamachari_TON.pdf" + }, + "type": "Journal Papers", + "year": 2009 + }, + { + "title": "Using Local Geometry and Position Control for Tunable Sensor Network Configuration", + "authors": [ + "Sameera Poduri", + "Sundeep Pattem", + "Bhaskar Krishnamachari", + "Gaurav S Sukhatme" + ], + "venue": "IEEE Transactions on Mobile Computing, Volume 8, Issue 2, February 2009.", + "links": { + "pdf": "/static/public/papers/PoduriPattemKrishnamachariSukhatme_TMC.pdf" + }, + "type": "Journal Papers", + "year": 2009 + }, + { + "title": "Curvature of Indoor Sensor Network: Clustering Coefficient", + "authors": [ + "Fariba Ariaei", + "Mingji Lou", + "Edmond Jonckheere", + "Bhaskar Krishnamachari", + "Marco Zuniga" + ], + "venue": "EURASIP Journal on Wireless Communications and Networking, November 2008.", + "links": { + "pdf": "/static/public/papers/AriaeiLouJonckheereKrishnamachariZuniga_EURASIP_WCN2008.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "On the Multi-Hop Performance of Synchronization Mechanisms in High Propagation Delay Networks", + "authors": [ + "Pai-Han Huang", + "Maulik Desai", + "Xiaofan Qiu", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Computers, May 2009, vol. 58, no. 5, pp. 577-590.", + "links": { + "pdf": "/static/public/papers/Timesync_TC_2008.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "On Myopic Sensing for Multi-Channel Opportunistic Access: Structure, Optimality, and Performance", + "authors": [ + "Qing Zhao", + "Bhaskar Krishnamachari", + "Keqin Liu" + ], + "venue": "IEEE Transactions on Wireless Communications, Dec 2008, vol. 7, no. 22, pp. 5431 \u2013 5440.", + "links": { + "pdf": "/static/public/papers/ZhaoEtal08TWC.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "The Impact of Spatial Correlation on Routing with Compression in Wireless Sensor Networks", + "authors": [ + "Sundeep Pattem", + "Bhaskar Krishnamachari", + "Ramesh Govindan" + ], + "venue": "ACM Transactions on Sensor Networks, Volume 4, Number 4, August 2008.", + "links": { + "pdf": "/static/public/papers/PattemKrishnamachariGovindan_TOSN.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "Aging Analysis in Large-scale Wireless Sensor Networks", + "authors": [ + "Jae-Joon Lee", + "Bhaskar Krishnamachari", + "C-C Jay Kuo" + ], + "venue": "Elsevier Ad Hoc Networks, Sept 2008, Volume 6, Issue 7, pp. 1117-1133.", + "links": { + "pdf": "/static/public/papers/LeeKrishnamachariKuo_Elsevier.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "Efficient geographic routing over lossy links in wireless sensor networks", + "authors": [ + "Marco Zuniga", + "Karim Seada", + "Bhaskar Krishnamachari", + "Ahmed Helmy" + ], + "venue": "ACM Transactions on Sensor Networks, May 2008, Volume 4, Issue 3, pages 111-143.", + "links": { + "pdf": "/static/public/papers/seadazuniga_krishnamachari_TOSN08.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "Empirical evaluation of querying mechanisms for unstructured wireless sensor networks", + "authors": [ + "Joon Ahn", + "Shyam Kapadia", + "Sundeep Pattem", + "Avinash Sridharan", + "Marco Zuniga", + "Jung-Hyun Jun", + "Chen Avin", + "Bhaskar Krishnamachari" + ], + "venue": "SIGCOMM Comput. Commun. Rev., 38(3):17\u201326, 2008", + "links": { + "pdf": "/static/public/papers/AhnKapadiaPattem_etal_CCR.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "Maximizing network utilization with max-min fairness in wireless sensor networks", + "authors": [ + "Avinash Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "ACM/Kluwer Wireless Networks, ISSN:1572-8196 (Online), Februrary 2008", + "links": { + "pdf": "/static/public/papers/winet07_maxminduality.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "The Power of Choice in Random Walks: An Empirical Study", + "authors": [ + "Chen Avin", + "Bhaskar Krishnamachari" + ], + "venue": "Elsevier Computer Networks Journal Special Issue on Wireless Performance,Vol. 52, No. 1, 2008 (invited from the best papers of MSWiM \u201906)", + "links": { + "pdf": "/static/public/papers/AvinKrishnamachari_Elsevier.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "Data Gathering with Tunable Compression in SensorNetworks", + "authors": [ + "Y Yu", + "B Krishnamachari", + "V K Prasanna" + ], + "venue": "IEEE Transactions on Parallel and Distributed Computing (TPDS), Vol. 19, No. 2, February 2008.", + "links": { + "pdf": "/static/public/papers/YuKrishnamachariPrasanna_TPDS.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "Sequence-Based Localization in Wireless Sensor Networks", + "authors": [ + "Kiran Yedavalli", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Mobile Computing, Vol. 7, no. 1, January 2008.", + "links": { + "pdf": "/static/public/papers/YedavalliKrishnamachari_TMC.pdf" + }, + "type": "Journal Papers", + "year": 2008 + }, + { + "title": "An Analysis of Unreliability and Asymmetry in Low-Power Wireless Links", + "authors": [ + "Marco Zuniga", + "Bhaskar Krishnamachari" + ], + "venue": "ACM Transactions on Sensor Networks, Vol 3, No. 2, June 2007.", + "links": { + "pdf": "/static/public/papers/zunigakrishnamachari_journal2008TOSN.pdf" + }, + "type": "Journal Papers", + "year": 2007 + }, + { + "title": "Minimum Latency Joint Scheduling and Routing in Wireless Sensor Networks", + "authors": [ + "Gang Lu", + "Bhaskar Krishnamachari" + ], + "venue": "Ad Hoc Networks Journal (Elsevier), special issue on Recent Advances in Wireless Sensor Networks, 2007.", + "links": { + "pdf": "/static/public/papers/lukrishnamachari_journal2008_adhocnetworks.pdf" + }, + "type": "Journal Papers", + "year": 2007 + }, + { + "title": "Fast/Fair Mobile Localization in Infrastructure Wireless Sensor Networks", + "authors": [ + "Kiran Yedavalli", + "Bhaskar Krishnamachari", + "Lakshmi Venkataraman" + ], + "venue": "ACM Mobile Computing and Communications Review, special issue on Localization Technologies and Algorithms, 2007.", + "links": { + "pdf": "/static/public/papers/Yedavalli_Krishnamachari_Venkatraman_FastFairLocalization.pdf" + }, + "type": "Journal Papers", + "year": 2007 + }, + { + "title": "\u201cAn Adaptive Energy-Efficient and Low-Latency MAC for Tree-based Data Gathering in Sensor Networks\u201d", + "authors": [ + "Gang Yu", + "Bhaskar Krishnamachari", + "Cauligi S Raghavendra" + ], + "venue": "Journal of Wireless Communications and Mobile Computing, special issue on Advances in Resource-Constrained Device Networking, Vol. 7, 2007.", + "links": { + "pdf": "/static/public/papers/LuKrishnamachariRaghavendra_WCMC.pdf" + }, + "type": "Journal Papers", + "year": 2007 + }, + { + "title": "\u201cEnergy Minimization for Real-Time Data Gathering in Wireless Sensor Networks\u201d", + "authors": [ + "Yang Yu", + "Bhaskar Krishnamachari", + "Viktor Prasanna" + ], + "venue": "IEEE Transactions on Wireless Communications, Vol. 5, No. 11, pp. 3087-3096, November 2006.", + "links": { + "pdf": "/static/public/papers/YuPrasannaKrishnamachari_IEEETWC.pdf" + }, + "type": "Journal Papers", + "year": 2006 + }, + { + "title": "Decentralized Utility Based Sensor Network Design", + "authors": [ + "Narayanan Sadagopan", + "Mitali Singh", + "Bhaskar Krishnamachari" + ], + "venue": "ACM Mobile Networks and Applications Journal, Vol. 11, No. 3, 2006.", + "links": { + "pdf": "/static/public/papers/SadagopanSinghKrishnamachari_MONET.pdf" + }, + "type": "Journal Papers", + "year": 2006 + }, + { + "title": "Monotone Properties of Random Geometric Graphs Have Sharp Thresholds", + "authors": [ + "Ashish Goel", + "Sanatan Rai", + "Bhaskar Krishnamachari" + ], + "venue": "Annals of Applied Probability, Vol. 15, No. 4, November 2005.", + "links": { + "pdf": "/static/public/papers/GoelRaiKrishnamachari_AAP0122.pdf" + }, + "type": "Journal Papers", + "year": 2005 + }, + { + "title": "Optimal Transmission Radius for Flooding in Large Scale Sensor Networks", + "authors": [ + "Marco Zuniga", + "Bhaskar Krishnamachari" + ], + "venue": "Journal of Cluster Computing, Cluster Computing Journal, Springer, Vol. 8, no. 2-3, pp. 167-178, July 2005.", + "links": { + "pdf": "/static/public/papers/ZunigaKrishnamachari_optimalRadius61603.pdf" + }, + "type": "Journal Papers", + "year": 2005 + }, + { + "title": "Maximizing Data Extraction in Energy-Limited Sensor Networks", + "authors": [ + "Narayanan Sadagopan", + "Bhaskar Krishnamachari" + ], + "venue": "International Journal of Distributed Sensor Networks, 2005.", + "links": { + "pdf": "/static/public/papers/SadagopanKrishnamachari_DSN05.pdf" + }, + "type": "Journal Papers", + "year": 2005 + }, + { + "title": "Sensor networks and distributed CSP: Communication, Computation and Complexity", + "authors": [ + "Ramon Bejar", + "Cesar Fernandez", + "Magda Valls", + "Carmel Domshlak", + "Carla Gomes", + "Bart Selman", + "Bhaskar Krishnamachari" + ], + "venue": "Artificial Intelligence Journal, Vol. 161, No. 1-2, pp. 117-148, January 2005.", + "links": { + "pdf": "/static/public/papers/BejarKrishnamachri_AI.pdf" + }, + "type": "Journal Papers", + "year": 2005 + }, + { + "title": "Active Query Forwarding in Sensor Networks (ACQUIRE)", + "authors": [ + "Narayanan Sadagopan", + "Bhaskar Krishnamachari", + "Ahmed Helmy" + ], + "venue": "Journal of Ad Hoc Networks, Elsevier, Vol 3, Issue 1, pp. 91-113, January 2005.", + "links": { + "pdf": "/static/public/papers/ACQUIRE-Journal-published.pdf" + }, + "type": "Journal Papers", + "year": 2005 + }, + { + "title": "The Effect of Mobility-induced Location Errors on Geographic Routing in Mobile Ad Hoc and Sensor Networks: Analysis and Improvement using Mobility Prediction", + "authors": [ + "Dongjin Son", + "Ahmed Helmy", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Transactions on Mobile Computing (Special Issue on Mobile Sensor Networks), Vol.3, No. 3, pp. 233-245, July 2004.", + "links": { + "pdf": "/static/public/papers/ieeeTMC-May20.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "Optimal Information Extraction in Energy-Limited Wireless Sensor Networks", + "authors": [ + "Fernando Ordonez", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE Journal on Selected Areas in Communications, special issue on Fundamental Performance Limits of Wireless Sensor Networks, Vol. 22, No. 6, pp. 1121-1129, August 2004.", + "links": { + "pdf": "/static/public/papers/OrdonezKrishnamachari_optimWSN.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "Modeling Path Duration Distributions in MANETs and their Impact on Reactive MANET Routing Protocols", + "authors": [ + "Fan Bai", + "Narayanan Sadagopan", + "Bhaskar Krishnamachari", + "Ahmed Helmy" + ], + "venue": "IEEE Journal on Selected Areas in Communications, Quality of Service Delivery in Variable Topology Networks, Vol. 22, No. 7, pp. 1357-1373, September 2004.", + "links": { + "pdf": "/static/public/papers/paths-jsac-journal.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "Placement of Continuous Media in Wireless Peer-to-Peer Networks", + "authors": [ + "Shahram Ghandeharizadeh", + "Bhaskar Krishnamachari", + "Shanshan Song" + ], + "venue": "IEEE Transactions on Multimedia, Special Issue on Streaming Media, Vol. 6 , No. 2, April 2004.", + "links": { + "pdf": "/static/public/papers/GhandeharizadehKrishnamachariSong_IEEE-TMM04.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "Bayesian Algorithms for Fault-tolerant Event Region Detection in Wireless Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Sitharama Iyengar" + ], + "venue": "IEEE Transactions on Computers, Vol. 53, No. 3, March 2004. [Some errors in this paper are indicated and corrected here.]", + "links": { + "pdf": "/static/public/papers/KrishnamachariIyengar_IEEETOC04.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "Optimal Sequential Paging in Cellular Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Rung-Hung Gau", + "Stephen B Wicker", + "Zygmunt J Haas" + ], + "venue": "ACM/Baltzer Wireless Networks, Vol. 10, No. 2, March 2004.", + "links": { + "pdf": "/static/public/papers/OptimalSequentialPaging.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "Issues in Designing Middleware for Wireless Sensor Networks", + "authors": [ + "Yang Yu", + "Bhaskar Krishnamachari", + "Viktor K Prasanna" + ], + "venue": "IEEE Network Magazine, January 2004.", + "links": { + "pdf": "/static/public/papers/YuKrishnamachariPrasanna_middleware.pdf" + }, + "type": "Journal Papers", + "year": 2004 + }, + { + "title": "On the Complexity of Distributed Self-Configuration in Wireless Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen Wicker", + "Ramon Bejar", + "Cesar Fernandez" + ], + "venue": "Journal of Telecommunication Systems, Special Issue on Wireless Networks and Mobile Computing, Eds. I. Stojmenovic and S. Olariu, Vol. 22, No. 1, January/April 2003.", + "links": { + "pdf": "/static/public/papers/KrishnamachariCompDistWireless_revised.pdf" + }, + "type": "Journal Papers", + "year": 2003 + }, + { + "title": "Multicast Flow Control for Heterogeneous Receivers", + "authors": [ + "Rung-Hung Gau", + "Zygmunt J Haas", + "Bhaskar Krishnamachari" + ], + "venue": "IEEE/ACM Transactions on Networking, Vol. 10, No. 1, February 2002.", + "links": { + "pdf": "/static/public/papers/ToN_flowD9.pdf" + }, + "type": "Journal Papers", + "year": 2002 + }, + { + "title": "Networking Wireless Sensors", + "authors": [ + "Bhaskar Krishnamachari" + ], + "venue": "Cambridge University Press, January 2006. (survey textbook)", + "links": { + "pdf": "http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521838479" + }, + "type": "Books", + "year": null + }, + { + "title": "Information Processing and Routing in Wireless Sensor Networks", + "authors": [ + "Yang Yu", + "Viktor Prasanna", + "Bhaskar Krishnamachari" + ], + "venue": "World Scientific Press, December 2006. (research monograph).", + "links": { + "pdf": null + }, + "type": "Books", + "year": null + }, + { + "title": "https://doi.org/10.1007/978-981-4585-87-3_47-1", + "authors": [ + "Gowri Sankar Ramachandran", + "Bhaskar Krishnamachari", + "Real-Time Internet of Things for Smart Environments", + "In Tian YC", + "Levy D eds Handbook of Real-Time Computing", + "ISBN 978-981-4585-87-3", + "Springer", + "DOI" + ], + "venue": "", + "links": { + "pdf": "https://urldefense.com/v3/__https://doi.org/10.1007/978-981-4585-87-3_47-1__;!!LIr3w8kk_Xxm!741FzO4gduVfxCIAaWBto31hzvnPT7I7Y4-8kaUmWfx9ORYl05dZuWhQefXJiw$" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Security and Privacy in Vehicular Networks: Challenges and Algorithm", + "authors": [ + "Yi Gai", + "Jian Lin", + "Bhaskar Krishnamachari" + ], + "venue": "in Cognitive Vehicular Networks, Eds. Anna Maria Vegni and Dharma P. Agrawal, CRC Press, p. 151-168, 2016", + "links": { + "pdf": null + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Robotic Wireless Sensor Networks", + "authors": [ + "Pradipta Ghosh", + "Andrea Gasparri", + "Jiong Jin", + "Bhaskar Krishnamachari" + ], + "venue": "in The Philosophy of Mission-Oriented Wireless Sensor Networks, Springer., 2017.", + "links": { + "pdf": "https://arxiv.org/abs/1705.05415" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Toward Energy-Efficient Operation of Base Stations in Cellular Wireless Networks", + "authors": [ + "Kyuho Son", + "Hongseok Kim", + "Yung Yi", + "Bhaskar Krishnamachari" + ], + "venue": "book chapter in Green Communications: Theoretical Fundamentals, Algorithms, and Applications (ISBN: 978-1-4665-0107-2), CRC Press, Taylor & Francis, LLC, 2012.", + "links": { + "pdf": null + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "http://www.intechopen.com/books/mobile-ad-hoc-networks-protocol-design/data-delivery-in-delay-tolerant-networks-a-survey", + "authors": [ + "Shyam Kapadia", + "Bhaskar Krishnamachari", + "Lin Zhang 2011 Data Delivery in Delay Tolerant Networks A Survey", + "Mobile Ad-Hoc Networks Protocol Design", + "Prof Xin Wang Ed", + "ISBN 978-953-307-402-3", + "InTech", + "DOI 10577212944 Available from" + ], + "venue": "", + "links": { + "pdf": "http://www.intechopen.com/books/mobile-ad-hoc-networks-protocol-design/data-delivery-in-delay-tolerant-networks-a-survey" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "\u201cScheduling Algorithms for Tree-Based Data Collection in Wireless Sensor Networks,\u201d", + "authors": [ + "Ozlem Durmaz Incel", + "Amitabha Ghosh", + "Bhaskar Krishnamachari" + ], + "venue": "Theoretical Aspects of Distributed Computing in Sensor Networks, Eds. S. Nicoletseas, J. Rolim, Springer Verlag, 2010.", + "links": { + "pdf": "/static/public/papers/Scheduling-Survey-2010.pdf" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Game Theoretic Tools Applied to Wireless Networks", + "authors": [ + "Hua Liu", + "Bhaskar Krishnamachari", + "Shyam Kapadia" + ], + "venue": "Encyclopedia of Ad Hoc and Ubiquitous Computing, Editor D. Agrawal, World Scientific Publishers, 2008", + "links": { + "pdf": null + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Optimization and Distributed Control for Fair Data Gathering in Wireless Sensor Networks", + "authors": [ + "Avinash Sridharan", + "Bhaskar Krishnamachari" + ], + "venue": "Modeling and Control of Complex Systems, Eds. P.Ioannou and A. Pitsillides, CRC Press, 2007.", + "links": { + "pdf": null + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "The Impact of Fairness Constraints on Data Gathering in Energy-Limited Wireless Sensor Networks: A Study Using Optimization Models", + "authors": [ + "Bhaskar Krishnamachari", + "Fernando Ordonez" + ], + "venue": "in Wireless Ad-Hoc and Sensor Networks, Ed. Ahmed Safwat, 2007.", + "links": { + "pdf": null + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "\u201cModeling Data Gathering in Wireless Sensor Networks\u201d", + "authors": [ + "Bhaskar Krishnamachari" + ], + "venue": "book chapter in Wireless Sensor Networks and Applications, Eds. Y. Li, M. Thai, and W. Wu, Springer, 2007.", + "links": { + "pdf": "/static/public/papers/Krishnamachari_ModelingDataGathering.pdf" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Kiran Yedavalli", + "Secure Sequence-based Localization for Wireless Networks", + "book chapter in" + ], + "venue": "Eds. R. Poovendran, C. Wang, S. Roy, Springer, November 2006.", + "links": { + "pdf": "/static/public/papers/securesbl.pdf" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Distributed Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "A Survey of Adaptive Active Querying", + "book chapter in" + ], + "venue": "Eds. R. Brooks and S.S. Iyengar, CRC Press, 2005.", + "links": { + "pdf": "http://www.amazon.com/Distributed-Networks-Chapman-Computer-Information/dp/1584883839/sr=1-1/qid=1166218535/ref=sr_1_1/103-0281958-5855814?ie=UTF8&s=books" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Wireless Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Fernando Ordonez", + "Fundamental Limits of Networked Sensing", + "book chapter in" + ], + "venue": "Eds. T. Znati, K. Sivalingam and C. S. Raghavendra, Kluwer Academic Publishers, 2004.", + "links": { + "pdf": "http://www.wkap.nl/prod/b/1-4020-7883-8?a=1" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Advances in Pervasive Computing and Networking", + "authors": [ + "Bhaskar Krishnamachari", + "Congzhou Zhou", + "Baharak Shademan", + "Self Optimization in Sensor Networks", + "book chapter in" + ], + "venue": "Eds. B. Szymanski and B. Yener, Kluwer Publishers, 2004.", + "links": { + "pdf": "http://www.amazon.com/Advances-Pervasive-Computing-Networking-Szymanski/dp/0387230424" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "Soft Computing in Communications", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen Wicker", + "Base Station Location Optimization in Cellular Wireless Networks using Heuristic Search Algorithms", + "book chapter in" + ], + "venue": "Ed. L. Wang, Springer-Verlag, 2004.", + "links": { + "pdf": "http://www.springeronline.com/sgw/cda/frontpage/0,10735,5-40109-22-3094204-0,00.html?changeHeader=true" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "\u201cCommunication and computation in distributed CSP algorithms,\u201d", + "authors": [ + "Cesar Fernandez", + "Ramon Bejar", + "Bhaskar Krishnamachari", + "Carla Gomes", + "and Bart Selman" + ], + "venue": "book chapter in Distributed Sensor Networks, A Multiagent Perspective, Eds. V. Lesser, C.L. Ortiz, Jr., and M. Tambe, Kluwer Academic Publishers, May 2003.", + "links": { + "pdf": "/static/public/papers/03.ants-book.pdf" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "\u201cCritical Density Thresholds in Distributed Wireless Networks,\u201d", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen Wicker", + "Ramon Bejar", + "Marc Pearlman" + ], + "venue": "book chapter in Communications, Information and Network Security, Eds. H. Bhargava, H.V. Poor, V. Tarokh, and S. Yoon, Kluwer Publishers, December 2002.", + "links": { + "pdf": "/static/public/papers/densityChapter.pdf" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "\u201cGlobal Search Techniques for Problems in Mobile Communications,\u201d", + "authors": [ + "Bhaskar Krishnamachari", + "Stephen B Wicker" + ], + "venue": "book chapter in Telecommunications Optimization: Adaptive and Heuristic Approaches, Eds. David Corne et al., John Wiley & Sons Publishers, October 2000.", + "links": { + "pdf": "http://ceng.usc.edu/~bkrishna/research/papers/BOOKCHAPTER_globalsearchinmobilecommunications.ps" + }, + "type": "Book Chapters", + "year": null + }, + { + "title": "A Survey on GPT-3", + "authors": [ + "Mingyu Zong", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report ANRG-2022-01, December 2022.", + "links": { + "pdf": "/static/public/papers/A_Survey_On_GPT3.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2022 + }, + { + "title": "Blizzard: a Distributed Consensus Protocol for Mobile Devices", + "authors": [ + "Mehrdad Kiamari", + "Bhaskar Krishnamachari", + "Muhammad Naveed", + "Seokgu Yun" + ], + "venue": "arXiv preprint arXiv:2201.02002, 2022.", + "links": { + "pdf": "https://arxiv.org/abs/2201.02002" + }, + "type": "Technical Reports and Preprints", + "year": 2022 + }, + { + "title": "GCNScheduler: Scheduling distributed computing applications using graph convolutional networks", + "authors": [ + "Kiamari", + "Mehrdad", + "Bhaskar Krishnamachari" + ], + "venue": "arXiv preprint arXiv:2110.11552, 2021.", + "links": { + "pdf": "https://arxiv.org/abs/2110.11552" + }, + "type": "Technical Reports and Preprints", + "year": 2021 + }, + { + "title": "Design and Experimental Evaluation of Algorithms for Optimizing the Throughput of Dispersed Computing", + "authors": [ + "Zhao", + "Xiangchen", + "Diyi Hu", + "Bhaskar Krishnamachari" + ], + "venue": "arXiv preprint arXiv:2112.13875, 2021.", + "links": { + "pdf": "https://arxiv.org/abs/2112.13875" + }, + "type": "Technical Reports and Preprints", + "year": 2021 + }, + { + "title": "CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics", + "authors": [ + "Arvin Hekmati", + "Gowri Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report ANRG-2020-01. https://arxiv.org/abs/2004.05251", + "links": { + "pdf": "/static/public/papers/CONTAIN_Privacy_oriented_Contact_Tracing_ANRG_2020_01.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2020 + }, + { + "title": "ParkingJSON: An Open Standard Format for Parking Data in Smart Cities", + "authors": [ + "Gowri Ramachandran", + "Jeremy Stout", + "Joyce J Edson", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report ANRG-2020-02.", + "links": { + "pdf": "/static/public/papers/ParkingJSON_ACM_Arxiv.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2020 + }, + { + "title": "Noctua: A Publish-Process-Subscribe System for IoT", + "authors": [ + "Kwame-Lante Wright", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "USC ANRG Technical Report ANRG-2019-01. arXiv: 1805.02818 [cs.DC].", + "links": { + "pdf": "/static/public/papers/Noctua_TR.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2019 + }, + { + "title": "Blockchain for the IoT: Opportunities and Challenges", + "authors": [ + "Gowri Sankar Ramachandran", + "Bhaskar Krishnamachari" + ], + "venue": "arXiv: 1805.02818 [cs.DC].", + "links": { + "pdf": "https://arxiv.org/abs/1805.02818" + }, + "type": "Technical Reports and Preprints", + "year": 2018 + }, + { + "title": "Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks", + "authors": [ + "Shangxing Wang", + "Hanpeng Liu", + "Pedro Henrique Gomes and Bhaskar Krishnamachari" + ], + "venue": "arXiv: 1802.06958 [cs.NI].", + "links": { + "pdf": "https://arxiv.org/abs/1802.06958" + }, + "type": "Technical Reports and Preprints", + "year": 2018 + }, + { + "title": "WAVE: A Distributed Scheduling Framework for Dispersed Computing", + "authors": [ + "Pranav Sakulkar", + "Pradipta Ghosh", + "Aleksandra Knezevic", + "Jiatong Wang", + "Quynh Nguyen", + "Jason Tran", + "HV Krishna Giri Narra", + "Zhifeng Lin", + "Songze Li", + "Ming Yu", + "Bhaskar Krishnamachari", + "Salman Avestimehr", + "Murali Annavaram" + ], + "venue": "USC ANRG Technical Report, ANRG-2018-01.", + "links": { + "pdf": "/static/public/papers/wave_dispersed_computing_ANRGTechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2018 + }, + { + "title": "Greedy\u200b \u200b Pipeline\u200b \u200b Scheduling\u200b \u200b for\u200b \u200b Online\u200b \u200b Dispersed\u200b \u200b Computing", + "authors": [ + "Diyi Hu", + "Pranav Sakulkar", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report, ANRG-2017-06.", + "links": { + "pdf": "/static/public/papers/GreedyPipelineSchedulingForOnlineDispersedComputing_ANRGTechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2017 + }, + { + "title": "Ollivier\u2019s Ricci Curvature of real low-power wireless network testbed", + "authors": [ + "Pedro Henrique Gomes", + "Chi Wang", + "Bhaskar Krishnamachari", + "Edmond Jonckheere" + ], + "venue": "USC ANRG Technical Report, ANRG-2017-05, 2017.", + "links": { + "pdf": "/static/public/papers/TR_ORC_on_multi_channel_wireless_networks.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2017 + }, + { + "title": "The Publish-Process-Subscribe Paradigm for the Internet of Things", + "authors": [ + "Bhaskar Krishnamachari", + "Kwame Wright" + ], + "venue": "USC ANRG Technical Report, ANRG-2017-04, 2017.", + "links": { + "pdf": "/static/public/papers/ANRG_TechReport_201704_PublishProcessSubscribeForIoT.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2017 + }, + { + "title": "A Unifying Bayesian Optimization Framework for Radio Frequency Localization", + "authors": [ + "Nachikethas A Jagadeesan", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report, ANRG-2017-03, arXiv:1703.02639 [cs.NI].", + "links": { + "pdf": "/static/public/papers/tr_201703.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2017 + }, + { + "title": "Painting the DragonEye: From Inanimate Data to Interactive Control Emulation of Cellular Networks", + "authors": [ + "Jingchu Liu", + "Bhaskar Krishnamachari", + "Sheng Zhou", + "Zhisheng Niu" + ], + "venue": "USC ANRG Technical Report, ANRG-2017-02.", + "links": { + "pdf": "/static/public/papers/DragonEye_ANRG_TechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2017 + }, + { + "title": "Interference Power Bound Analysis of a Network of Wireless Robots", + "authors": [ + "Pradipta Ghosh", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report, ANRG-2016-04, arXiv:1608.08261 [cs.RO].", + "links": { + "pdf": "https://arxiv.org/abs/1608.08261" + }, + "type": "Technical Reports and Preprints", + "year": 2016 + }, + { + "title": "Online Learning of Power Allocation Policies in Energy Harvesting Communications", + "authors": [ + "Pranav Sakulkar", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report, ANRG-2016-03.", + "links": { + "pdf": "/static/public/papers/UCLP_ANRG_TechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2016 + }, + { + "title": "Stochastic Contextual Bandits with Known Reward Functions", + "authors": [ + "Pranav Sakulkar", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report, ANRG-2016-02.", + "links": { + "pdf": "/static/public/papers/DCB_ANRG_TechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2016 + }, + { + "title": "Optimizing Single-Phase Downloads over Random Duration Links in Mobile Networks", + "authors": [ + "Amber Bhargava", + "Timothy Ferrell", + "Alex Jones", + "Leo Linsky", + "Jayashree Mohan", + "Bhaskar Krishnamachari" + ], + "venue": "USC ANRG Technical Report.", + "links": { + "pdf": "/static/public/papers/MERLIN_ANRGTechnicalReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2016 + }, + { + "title": "Helper Node Allocation Strategies for Content Dissemination in Intermittently Connected Mobile Networks", + "authors": [ + "Maheswaran Sathiamoorthy", + "Keyvan Rezaei Moghadam", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "USC ANRG Technical Report, ANRG-2014-01.", + "links": { + "pdf": "/static/public/papers/HelperNodeTR.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2014 + }, + { + "title": "Decentralized Online Learning Algorithms for Opportunistic Spectrum Access", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari" + ], + "venue": "arXiv:1104.0111.", + "links": { + "pdf": "http://arxiv.org/abs/1104.0111" + }, + "type": "Technical Reports and Preprints", + "year": 2011 + }, + { + "title": "Distributed Storage Codes Reduce Latency in Vehicular Networks", + "authors": [ + "Maheswaran Sathiamoorthy", + "Alexandros G Dimakis", + "Bhaskar Krishnamachari", + "Fan Bai" + ], + "venue": "CENG-2011-3.", + "links": { + "pdf": "http://ceng.usc.edu/", + "code": "http://ceng.usc.edu/" + }, + "type": "Technical Reports and Preprints", + "year": 2011 + }, + { + "title": "Energy-Aware Hierarchical Cell Configuration: from Deployment to Operation", + "authors": [ + "Kyuho Son", + "Eunsung Oh", + "Bhaskar Krishnamachari" + ], + "venue": "CENG-2010-10.", + "links": { + "pdf": "/static/public/papers/73138.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2010 + }, + { + "title": "Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari", + "Rahul Jain" + ], + "venue": "CENG-2010-9. (A journal version of this technical report is under submission in IEEE/ACM Transactions on Networking)", + "links": { + "pdf": "http://arxiv.org/abs/1011.4748" + }, + "type": "Technical Reports and Preprints", + "year": 2010 + }, + { + "title": "On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards", + "authors": [ + "Yi Gai", + "Bhaskar Krishnamachari", + "Mingyan Liu" + ], + "venue": "arXiv:1012.3005.", + "links": { + "pdf": "http://arxiv.org/abs/1012.3005" + }, + "type": "Technical Reports and Preprints", + "year": 2010 + }, + { + "title": "Backpressure Routing Made Practical", + "authors": [ + "Scott Moeller", + "Avinash Sridharan", + "Bhaskar Krishnamachari", + "Omprakash Gnawali" + ], + "venue": "USC CENG Technical Report, CENG-2009-10", + "links": { + "pdf": "/static/public/papers/CENG-2009-10_BCP.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2009 + }, + { + "title": "Compressed Sensing and Routing in Sensor Networks", + "authors": [ + "Sungwon Lee", + "Sundeep Pattem", + "Maheswaran Sathiamoorthy", + "Bhaskar Krishnamachari", + "Antonio Ortega" + ], + "venue": "USC CENG Technical Report, CENG-2009-4", + "links": { + "pdf": "/static/public/papers/CENG-2009-4_CSplusR.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2009 + }, + { + "title": "Investigating Backpressure-based Rate Control Protocols for Wireless Sensor Networks", + "authors": [ + "Avinash Sridharan", + "Scott Moeller", + "Bhaskar Krishnamachari" + ], + "venue": "CENG Technical Report, CENG-2008-7", + "links": { + "pdf": "/static/public/papers/CENG-2008-7_TechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2008 + }, + { + "title": "Algorithms for Fast Aggregated Convergecast in Sensor Networks", + "authors": [ + "Amitabha Ghosh", + "Ozlem Durmaz Incel", + "V S Anil Kumar", + "Bhaskar Krishnamachari" + ], + "venue": "CENG Technical Report, CENG-2008-8", + "links": { + "pdf": "/static/public/papers/CENG-2008-8_TechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2008 + }, + { + "title": "Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks", + "authors": [ + "Ozlem Durmaz Incel", + "Amitabha Ghosh", + "Bhaskar Krishnamachari", + "Krishna Kant Chintalapudi" + ], + "venue": "CENG Technical Report, CENG-2008-9", + "links": { + "pdf": "/static/public/papers/CENG-2008-9_TechReport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2008 + }, + { + "title": "Wireless Medium Access for Concurrent Communication", + "authors": [ + "Dongjin Son", + "Bhaskar Krishnamachari", + "John Heidemann" + ], + "venue": "USC-ISI Technical Report ISI-TR-652, May 2008", + "links": { + "pdf": "/static/public/papers/SonKrishnamachariHeidemann_USC-ISI-TR-652_08.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2008 + }, + { + "title": "Performance of Propagation Delay Tolerant ALOHA Protocol for Underwater Wireless Networks", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "USC CENG Technical Report CENG-2007-13, Nov, 2007", + "links": { + "pdf": "/static/public/papers/AhnKrishnamachari_UWSN-ALOHA-2D.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2007 + }, + { + "title": "Derivations of the Expected Energy Cost of Search and Replication in Wireless Sensor Networks", + "authors": [ + "Joon Ahn", + "Bhaskar Krishnamachari" + ], + "venue": "USC CENG Technical Report CENG-2006-3, 2006", + "links": { + "pdf": "/static/public/papers/mobihoc06-derivations-techreport.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2006 + }, + { + "title": "Optimizing Data Replication for Expanding Ring Queries in Wireless Sensor Networks", + "authors": [ + "Bhaskar Krishnamachari", + "Joon Ahn" + ], + "venue": "USC CENG Technical Report CENG-05-14, Oct. 2005", + "links": { + "pdf": "/static/public/papers/OptimizingReplicationTR05.pdf" + }, + "type": "Technical Reports and Preprints", + "year": 2005 + } +] \ No newline at end of file diff --git a/database/original_documents/publications_text/1998_bidirectional_buckboost_converter_with_variable_output_voltage.txt b/database/original_documents/publications_text/1998_bidirectional_buckboost_converter_with_variable_output_voltage.txt new file mode 100644 index 0000000000000000000000000000000000000000..604cabe701c56a05af7652bd5b4c37e834bd39fe --- /dev/null +++ b/database/original_documents/publications_text/1998_bidirectional_buckboost_converter_with_variable_output_voltage.txt @@ -0,0 +1,18 @@ +# Publication +title=Bi-directional Buck-Boost Converter with Variable Output Voltage +venue=1998 IEEE International Symposium on Circuits and Systems (ISCAS ’98), Monterey, California, June 1998. +authors=['Bhaskar Krishnamachari', 'Dariusz Czarkowski'] +abstract=This paper investigates an approach for achieving zero-voltage switching of an interleaved bi-directional buck–boost converter over a wide input–output voltage operating range by utilizing a coupled inductor with a variable coupling coefficient. The approach is based on regulating the value of the coupling coefficient by means of a direct current depending on the converter conversion ratio, thereby controlling the amplitude and duration of the resonant voltage transition. The impact of the controllable value of the coupling coefficient on the equivalent inductance, the zero-voltage transition period, and the resonant amplitude is analyzed in detail by applying analytical modeling. In comparison to the converter with a fixed coupled inductor operating over a wide input–output voltage span, the variable coupled inductor significantly improves the soft-switching range and reduces the circulating energy. Outside of the controllable resonant amplitude region, the converter with a variable coupled inductor still achieves reduction in the duration of the resonant transition period. To validate theoretical analysis, experimental results are recorded on the gallium nitride interleaved bi-directional buck–boost converter prototype. Improvements in efficiency at both full and half loads in comparison to the prototype with a fixed coupled inductor are achieved. + +# Information +links.pdf=/static/public/papers/ISCAS98_buckboost.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3da2990a8568c82f914387c0f06f073dc9be2a1d +type=Conference Papers +year=1998 +paper_id=9f0d9fe4 +ss_title=Zero-Voltage Switching Control of an Interleaved Bi-Directional Buck–Boost Converter With Variable Coupled Inductor +ss_authors=[{'authorId': '30727687', 'name': 'Milan Pajnić'}, {'authorId': '1961429', 'name': 'P. Pejovic'}] +ss_venue=IEEE transactions on power electronics +ss_year=2019 +ss_abstract=This paper investigates an approach for achieving zero-voltage switching of an interleaved bi-directional buck–boost converter over a wide input–output voltage operating range by utilizing a coupled inductor with a variable coupling coefficient. The approach is based on regulating the value of the coupling coefficient by means of a direct current depending on the converter conversion ratio, thereby controlling the amplitude and duration of the resonant voltage transition. The impact of the controllable value of the coupling coefficient on the equivalent inductance, the zero-voltage transition period, and the resonant amplitude is analyzed in detail by applying analytical modeling. In comparison to the converter with a fixed coupled inductor operating over a wide input–output voltage span, the variable coupled inductor significantly improves the soft-switching range and reduces the circulating energy. Outside of the controllable resonant amplitude region, the converter with a variable coupled inductor still achieves reduction in the duration of the resonant transition period. To validate theoretical analysis, experimental results are recorded on the gallium nitride interleaved bi-directional buck–boost converter prototype. Improvements in efficiency at both full and half loads in comparison to the prototype with a fixed coupled inductor are achieved. +ss_paper_id=3da2990a8568c82f914387c0f06f073dc9be2a1d \ No newline at end of file diff --git a/database/original_documents/publications_text/1998_ultra_high_speed_digital_processing_for_wireless_systems_using_passive_microwave_logic.txt b/database/original_documents/publications_text/1998_ultra_high_speed_digital_processing_for_wireless_systems_using_passive_microwave_logic.txt new file mode 100644 index 0000000000000000000000000000000000000000..90f571b992d47eaeea89b4e755eb2ac19e8bbfcf --- /dev/null +++ b/database/original_documents/publications_text/1998_ultra_high_speed_digital_processing_for_wireless_systems_using_passive_microwave_logic.txt @@ -0,0 +1,18 @@ +# Publication +title=Ultra High Speed Digital Processing for Wireless Systems using Passive Microwave Logic +venue=1998 IEEE International Radio and Wireless Conference (RAWCON ’98), Colorado Springs, Colorado, August 1998. [See EETimes article]. This work also received the First Prize at the IEEE Region I Annual Student Paper Contest. +authors=['Bhaskar Krishnamachari', 'Simon Lok', 'Christopher Gracia', 'Sajan Abraham'] +abstract=This paper proposes two novel high-speed digital logic families that are implemented using passive microwave circuits. The proposed logic gates can process binary information represented in two high frequency carrier modulation formats-amplitude shift keying (ASK), and binary phase shift keying (BPSK). The fundamental logic gates (NOT, OR, AND) presented for both these data representations can process extremely high speed bit streams (1-100 Gbps). The combinational circuits formed from these passive logic gates can operate much faster than traditional electronic gates because they are not limited by the finite carrier mobility that is characteristic of semiconductors. Besides their higher operating speeds, these circuits are well suited for wireless communication systems because they process digital signals in a native high frequency transmission format and it is easy to integrate them with analog RF/microwave circuits. + +# Information +links.pdf=/static/public/papers/RAWCON98_ghzdigital.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d189945557058f5119576c20f4da3f8246585314 +type=Conference Papers +year=1998 +paper_id=d476ab11 +ss_title=Ultra high speed digital processing for wireless systems using passive microwave logic +ss_authors=[{'authorId': '103323511', 'name': 'B. Krishnamachari'}, {'authorId': '153325891', 'name': 'S. Lok'}, {'authorId': '69847078', 'name': 'C. Gracia'}, {'authorId': '152821312', 'name': 'S. Abraham'}] +ss_venue=Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194) +ss_year=1998 +ss_abstract=This paper proposes two novel high-speed digital logic families that are implemented using passive microwave circuits. The proposed logic gates can process binary information represented in two high frequency carrier modulation formats-amplitude shift keying (ASK), and binary phase shift keying (BPSK). The fundamental logic gates (NOT, OR, AND) presented for both these data representations can process extremely high speed bit streams (1-100 Gbps). The combinational circuits formed from these passive logic gates can operate much faster than traditional electronic gates because they are not limited by the finite carrier mobility that is characteristic of semiconductors. Besides their higher operating speeds, these circuits are well suited for wireless communication systems because they process digital signals in a native high frequency transmission format and it is easy to integrate them with analog RF/microwave circuits. +ss_paper_id=d189945557058f5119576c20f4da3f8246585314 \ No newline at end of file diff --git a/database/original_documents/publications_text/2000_analysis_of_random_walk_and_random_noise_algorithms_for_satisfiability_testing.txt b/database/original_documents/publications_text/2000_analysis_of_random_walk_and_random_noise_algorithms_for_satisfiability_testing.txt new file mode 100644 index 0000000000000000000000000000000000000000..9d3a666dd80967296abee6addd714bf46ae5046d --- /dev/null +++ b/database/original_documents/publications_text/2000_analysis_of_random_walk_and_random_noise_algorithms_for_satisfiability_testing.txt @@ -0,0 +1,18 @@ +# Publication +title=Analysis of Random Walk and Random Noise Algorithms for Satisfiability Testing +venue=Principles and Practice of Constraint Programming – CP 2000, Lecture Notes in Computer Science, vol. 1894, Springer-Verlag, September 2000. +authors=['Bhaskar Krishnamachari', 'Xi Xie', 'Bart Selman', 'Stephen B Wicker'] +abstract=None + +# Information +links.pdf=/static/public/papers/CP2000_randomwalkanalysis.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/30f87d31655b1349737a98663e9118ab826d39fe +type=Conference Papers +year=2000 +paper_id=7740137b +ss_title=Analysis of Random Noise and Random Walk Algorithms +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2110638089', 'name': 'Xi Xie'}, {'authorId': '1744679', 'name': 'B. Selman'}, {'authorId': '1690846', 'name': 'S. Wicker'}] +ss_venue=International Conference on Principles and Practice of Constraint Programming +ss_year=2000 +ss_abstract=None +ss_paper_id=30f87d31655b1349737a98663e9118ab826d39fe \ No newline at end of file diff --git a/database/original_documents/publications_text/2000_experimental_analysis_of_local_search_algorithms_for_optimal_base_station_location.txt b/database/original_documents/publications_text/2000_experimental_analysis_of_local_search_algorithms_for_optimal_base_station_location.txt new file mode 100644 index 0000000000000000000000000000000000000000..e7753eccffb4a86b245aaf7db76409e813ca6888 --- /dev/null +++ b/database/original_documents/publications_text/2000_experimental_analysis_of_local_search_algorithms_for_optimal_base_station_location.txt @@ -0,0 +1,18 @@ +# Publication +title=Experimental Analysis of Local Search Algorithms for Optimal Base Station Location +venue=International Conference on Evolutionary Computing for Computer, Communication, Control and Power (ECCAP 2000), Chennai, India, January 2000. +authors=['Bhaskar Krishnamachari', 'Stephen B Wicker'] +abstract=Search techniques such as Genetic Algorithms, Simulated Annealing, Tabu Search and Random Walk Algorithms have been used extensively for global optimization. This paper presents an experimental analysis of the performance of these algorithms for the problem of selecting the optimal location of base stations in a mobile communication system. The effect of varying the value of important parameters for each algorithm is investigated to determine suitable values. The algorithms are then compared to each other using a common neighborhood deenition to ensure fairness. Intuitive explanations are provided for the results. + +# Information +links.pdf=/static/public/papers/experimental-analysis-of-local.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/88617fd08885c66c751df5fc92d4b032c247e4f8 +type=Conference Papers +year=2000 +paper_id=d3184666 +ss_title=OF LOCAL SEARCHALGORITHMS FOR OPTIMAL BASE +ss_authors=[{'authorId': '144728863', 'name': 'S. Krishnamachari'}, {'authorId': '70039814', 'name': 'Stephen B. WickerWireless'}] +ss_venue= +ss_year=2007 +ss_abstract=Search techniques such as Genetic Algorithms, Simulated Annealing, Tabu Search and Random Walk Algorithms have been used extensively for global optimization. This paper presents an experimental analysis of the performance of these algorithms for the problem of selecting the optimal location of base stations in a mobile communication system. The effect of varying the value of important parameters for each algorithm is investigated to determine suitable values. The algorithms are then compared to each other using a common neighborhood deenition to ensure fairness. Intuitive explanations are provided for the results. +ss_paper_id=88617fd08885c66c751df5fc92d4b032c247e4f8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2000_improving_turbo_decoding_via_cross_entropy_minimization.txt b/database/original_documents/publications_text/2000_improving_turbo_decoding_via_cross_entropy_minimization.txt new file mode 100644 index 0000000000000000000000000000000000000000..ad2b4c714fa3c417caab396217aae44ce4bbe03a --- /dev/null +++ b/database/original_documents/publications_text/2000_improving_turbo_decoding_via_cross_entropy_minimization.txt @@ -0,0 +1,18 @@ +# Publication +title=Improving Turbo Decoding via Cross Entropy Minimization +venue=IEEE International Symposium on Information Theory (ISIT 2000), Sorrento, Italy, June 2000. +authors=['M Eoin Buckley', 'Bhaskar Krishnamachari', 'Stephen B Wicker', 'Joachim Hagenauer'] +abstract=We show that the decoding performance of a simple turbo code can be improved by cross-entropy minimization via manipulation of the initial a priori probabilities. + +# Information +links.pdf=/static/public/papers/BuckleyKrishnamachariWickerHagenauer_ISIT00.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5a1e52fff01ccbed2c3e9d159c5ca6d248a6f5a9 +type=Conference Papers +year=2000 +paper_id=31f347fc +ss_title=Improving turbo decoding via cross-entropy minimization +ss_authors=[{'authorId': '150208231', 'name': 'M. Eoin Buckley'}, {'authorId': '103323511', 'name': 'B. Krishnamachari'}, {'authorId': '1690846', 'name': 'S. Wicker'}, {'authorId': '46404423', 'name': 'J. Hagenauer'}] +ss_venue=2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060) +ss_year=2000 +ss_abstract=We show that the decoding performance of a simple turbo code can be improved by cross-entropy minimization via manipulation of the initial a priori probabilities. +ss_paper_id=5a1e52fff01ccbed2c3e9d159c5ca6d248a6f5a9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2000_optimization_of_fixed_network_design_in_cellular_systems_using_local_search_algorithms.txt b/database/original_documents/publications_text/2000_optimization_of_fixed_network_design_in_cellular_systems_using_local_search_algorithms.txt new file mode 100644 index 0000000000000000000000000000000000000000..0daa44be2004ccec29bd1d424b3908940cc1b46c --- /dev/null +++ b/database/original_documents/publications_text/2000_optimization_of_fixed_network_design_in_cellular_systems_using_local_search_algorithms.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimization of Fixed Network Design in Cellular Systems using Local Search Algorithms +venue=IEEE Vehicular Technology Conference (VTC Fall 2000), Boston, Massachusetts, September 2000. +authors=['Bhaskar Krishnamachari', 'Stephen B Wicker'] +abstract=Search techniques such as genetic algorithms, simulated annealing, tabu search and random walk algorithms have been used extensively for global optimization. This paper presents an experimental analysis of the performance of these algorithms for the problem of designing the fixed portion of a cellular network. We first investigate the effect of various algorithm specific parameters on their performance. The algorithms are then compared to each other using criteria that ensure fairness. Under the given problem formulation and assumptions regarding the location of nodes in the network, we find that tabu search and genetic algorithms provide good, robust solutions. + +# Information +links.pdf=/static/public/papers/VTC2000_networkTopology.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/52bbe9bc3171a2d0211ee706ef85bbe5f2a2b5e8 +type=Conference Papers +year=2000 +paper_id=843bb488 +ss_title=Optimization of fixed network design in cellular systems using local search algorithms +ss_authors=[{'authorId': '103323511', 'name': 'B. Krishnamachari'}, {'authorId': '1690846', 'name': 'S. Wicker'}] +ss_venue=Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152) +ss_year=2000 +ss_abstract=Search techniques such as genetic algorithms, simulated annealing, tabu search and random walk algorithms have been used extensively for global optimization. This paper presents an experimental analysis of the performance of these algorithms for the problem of designing the fixed portion of a cellular network. We first investigate the effect of various algorithm specific parameters on their performance. The algorithms are then compared to each other using criteria that ensure fairness. Under the given problem formulation and assumptions regarding the location of nodes in the network, we find that tabu search and genetic algorithms provide good, robust solutions. +ss_paper_id=52bbe9bc3171a2d0211ee706ef85bbe5f2a2b5e8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2001_distributed_constraint_satisfaction_and_the_bounds_on_resource_allocation_in_wireless_networks.txt b/database/original_documents/publications_text/2001_distributed_constraint_satisfaction_and_the_bounds_on_resource_allocation_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..7d8ab6f3447c8eb3327f95dce9975718d382b699 --- /dev/null +++ b/database/original_documents/publications_text/2001_distributed_constraint_satisfaction_and_the_bounds_on_resource_allocation_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Constraint Satisfaction and the Bounds on Resource Allocation in Wireless Networks +venue=Sixth International Symposium on Communications Theory & Application (ISCTA ’01), Ambleside, UK, July 2001. +authors=['Bhaskar Krishnamachari', 'Ramon Bejar', 'Stephen B Wicker'] +abstract=In this paper we consider medium access scheduling in ad hoc networks as a distributed constraint satisfaction problem (DCSP), and present experimental results on the solvability and complexity of this problem. We show that there are “phase transitions” in solvability and complexity with respect to the transmission power of the wireless nodes. The phase transition curves indicate that there is a critical maximum power level for certain arrangements of nodes and a given availability of spectrum in an ad hoc network beyond which the problem of channel allocation becomes intractable. + +# Information +links.pdf=/static/public/papers/2001_4.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fc89ebef988bc7408aaa7b9cc80f4d599d7f7f46 +type=Conference Papers +year=2001 +paper_id=d324b4f6 +ss_title=Distributed Constraint Satisfaction and the Bounds on Resource Allocation in Wireless Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1753023', 'name': 'R. Béjar'}] +ss_venue= +ss_year=2001 +ss_abstract=In this paper we consider medium access scheduling in ad hoc networks as a distributed constraint satisfaction problem (DCSP), and present experimental results on the solvability and complexity of this problem. We show that there are “phase transitions” in solvability and complexity with respect to the transmission power of the wireless nodes. The phase transition curves indicate that there is a critical maximum power level for certain arrangements of nodes and a given availability of spectrum in an ad hoc network beyond which the problem of channel allocation becomes intractable. +ss_paper_id=fc89ebef988bc7408aaa7b9cc80f4d599d7f7f46 \ No newline at end of file diff --git a/database/original_documents/publications_text/2001_distributed_constraint_satisfaction_in_a_wireless_sensor_tracking_system.txt b/database/original_documents/publications_text/2001_distributed_constraint_satisfaction_in_a_wireless_sensor_tracking_system.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c8156b8f0cb4f16e0ff76c90508acfd024eb4ab --- /dev/null +++ b/database/original_documents/publications_text/2001_distributed_constraint_satisfaction_in_a_wireless_sensor_tracking_system.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Constraint Satisfaction in a Wireless Sensor Tracking System +venue=Workshop on Distributed Constraint Reasoning, International Joint Conference on Artificial Intelligence, Seattle, Washington, August 2001. +authors=['Ramon Bejar', 'Bhaskar Krishnamachari', 'Carla Gomes', 'Bart Selman'] +abstract=This paper describes our ongoing work on an interesting distributed constraint satisfaction problem (DCSP), SensorCSP, that is based on a system of wireless sensors tracking multiple mobile nodes. We present some preliminary results showing that the source of combinatorial complexity in this problem is closely linked to the level of communication in the system. This DCSP lends itself naturally to two models one in which agents are associated with the sensors, and one in which agents are associated with the mobile nodes. We show that these models are duals of each other, and discuss how they differ in the number of intra and inter-agent constraints and how this might affect the cost of finding a distributed solution. We also suggest that a careful distinction must be made between explicit and implicit inter-agent constraints in this problem domain as this might affect the communication costs and the scalability of a distributed solution. + +# Information +links.pdf=/static/public/papers/DistdConstraint.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cbbf6a49d331cee303d0053eb20c054d9768a9db +type=Conference Papers +year=2001 +paper_id=a4c7469a +ss_title=Distributed Constraint Satisfaction in a Wireless Sensor Tracking System +ss_authors=[{'authorId': '1753023', 'name': 'R. Béjar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144659218', 'name': 'C. Gomes'}] +ss_venue= +ss_year=2001 +ss_abstract=This paper describes our ongoing work on an interesting distributed constraint satisfaction problem (DCSP), SensorCSP, that is based on a system of wireless sensors tracking multiple mobile nodes. We present some preliminary results showing that the source of combinatorial complexity in this problem is closely linked to the level of communication in the system. This DCSP lends itself naturally to two models one in which agents are associated with the sensors, and one in which agents are associated with the mobile nodes. We show that these models are duals of each other, and discuss how they differ in the number of intra and inter-agent constraints and how this might affect the cost of finding a distributed solution. We also suggest that a careful distinction must be made between explicit and implicit inter-agent constraints in this problem domain as this might affect the communication costs and the scalability of a distributed solution. +ss_paper_id=cbbf6a49d331cee303d0053eb20c054d9768a9db \ No newline at end of file diff --git a/database/original_documents/publications_text/2001_on_the_performance_of_sequential_paging_for_mobile_user_location.txt b/database/original_documents/publications_text/2001_on_the_performance_of_sequential_paging_for_mobile_user_location.txt new file mode 100644 index 0000000000000000000000000000000000000000..0c2dbb08c36dfe79009ce7e62e41ea40e4c7a39d --- /dev/null +++ b/database/original_documents/publications_text/2001_on_the_performance_of_sequential_paging_for_mobile_user_location.txt @@ -0,0 +1,18 @@ +# Publication +title=On the Performance of Sequential Paging for Mobile User Location +venue=IEEE Vehicular Technology Conference (VTC Fall 2001), Atlantic City, New Jersey, October 2001. +authors=['Bhaskar Krishnamachari', 'Rung-Hung Gau', 'Stephen B Wicker', 'Zygmunt J Haas'] +abstract=We present some results regarding the paging cost gains and the cost-delay tradeoff that can be achieved by using sequential paging to locate mobile users in cellular networks. We describe tight bounds on the average paging cost and the paging delay and quantify the intuition that greater gains are achieved when the mobile user's location probabilities are concentrated in a small portion of the location area. We also examine the impact of errors in the location estimates on the paging cost. + +# Information +links.pdf=/static/public/papers/VTC2001_perfPaging.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/29c46a33913a640a2638da4ba02f4825c6fe9a83 +type=Conference Papers +year=2001 +paper_id=ea717420 +ss_title=On the performance of sequential paging for mobile user location +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2342909', 'name': 'Rung-Hung Gau'}, {'authorId': '1690846', 'name': 'S. Wicker'}, {'authorId': '1699630', 'name': 'Z. Haas'}] +ss_venue=IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211) +ss_year=2001 +ss_abstract=We present some results regarding the paging cost gains and the cost-delay tradeoff that can be achieved by using sequential paging to locate mobile users in cellular networks. We describe tight bounds on the average paging cost and the paging delay and quantify the intuition that greater gains are achieved when the mobile user's location probabilities are concentrated in a small portion of the location area. We also examine the impact of errors in the location estimates on the paging cost. +ss_paper_id=29c46a33913a640a2638da4ba02f4825c6fe9a83 \ No newline at end of file diff --git a/database/original_documents/publications_text/2001_phase_transition_phenomena_in_wireless_adhoc_networks.txt b/database/original_documents/publications_text/2001_phase_transition_phenomena_in_wireless_adhoc_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..6a8a70b5b7c9defdaa349c890b8be5e7393d7903 --- /dev/null +++ b/database/original_documents/publications_text/2001_phase_transition_phenomena_in_wireless_adhoc_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Phase Transition Phenomena in Wireless Ad-Hoc Networks +venue=Symposium on Ad-Hoc Wireless Networks, IEEE Globecom, San Antonio, Texas, November 2001. +authors=['Bhaskar Krishnamachari', 'Stephen B Wicker', 'Ramon Bejar'] +abstract=There are many contexts in distributed wireless networks where there is a critical threshold, corresponding to a minimum amount of the communication effort or power expenditure by individual nodes, above which a desirable global property exists with high probability. When this individual node effort is below the threshold the desired global property exists with a low probability. This "phase transition" is typically seen to become sharper as the number of nodes in the network increases. We discuss some examples of properties that exhibit such critical behavior: node reachability with probabilistic flooding, ad-hoc network connectivity, and sensor network coordination. We discuss the connections between these phenomena and the phase transitions that have been shown to arise in random graphs. We argue that a good understanding of these phase transition phenomena can provide useful design principles for engineering distributed wireless networks. + +# Information +links.pdf=/static/public/papers/phaseTransitionWirelessNetworks.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/71b73ef76e41c943edbb8d1d4c3fdaa92eee1bf9 +type=Conference Papers +year=2001 +paper_id=347053d8 +ss_title=Phase transition phenomena in wireless ad hoc networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1690846', 'name': 'S. Wicker'}, {'authorId': '1753023', 'name': 'R. Béjar'}] +ss_venue=GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270) +ss_year=2001 +ss_abstract=There are many contexts in distributed wireless networks where there is a critical threshold, corresponding to a minimum amount of the communication effort or power expenditure by individual nodes, above which a desirable global property exists with high probability. When this individual node effort is below the threshold the desired global property exists with a low probability. This "phase transition" is typically seen to become sharper as the number of nodes in the network increases. We discuss some examples of properties that exhibit such critical behavior: node reachability with probabilistic flooding, ad-hoc network connectivity, and sensor network coordination. We discuss the connections between these phenomena and the phase transitions that have been shown to arise in random graphs. We argue that a good understanding of these phase transition phenomena can provide useful design principles for engineering distributed wireless networks. +ss_paper_id=71b73ef76e41c943edbb8d1d4c3fdaa92eee1bf9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2002_communication_and_computation_in_distributed_csp_algorithms.txt b/database/original_documents/publications_text/2002_communication_and_computation_in_distributed_csp_algorithms.txt new file mode 100644 index 0000000000000000000000000000000000000000..cf162ed0079867cfab6e447205d6c4daa5b011b9 --- /dev/null +++ b/database/original_documents/publications_text/2002_communication_and_computation_in_distributed_csp_algorithms.txt @@ -0,0 +1,18 @@ +# Publication +title=Communication and Computation in Distributed CSP Algorithms +venue=Principles and Practice of Constraint Programming — CP 2002, Lecture Notes in Computer Science, Springer-Verlag, September 2002. +authors=['Cesar Fernandez', 'Ramon Bejar', 'Bhaskar Krishnamachari', 'Carla Gomes'] +abstract=1. Introduction to a Multiagent Perspective V. Lesser, C.L. Ortiz, Jr., M. Tambe. Part I: The Sensor Network Challenge Problem. 2. The Radsim Simulator J.H. Lawton. 3. Challenge Problem Testbed P. Zemany, M. Gaughan. 4. Visualization and Debugging Tools A. Egyed, B. Horling, R. Becker, R. Balzer. 5. Target Tracking with Bayesian Estimation J.E. Vargas, K. Tvalarparti, Zhaojun Wu. Part II: Distributed Resource Allocation: Architectures and Protocols. 6. Dynamic resource-bounded negotiation in non-additive domains C.L. Ortiz, Jr., T.W. Rauenbusch, E. Hsu, R. Vincent. 7. A satisficing, negotiated, and learning coalition formation architecture Leen-Kiat Soh, C. Tsatsoulis, H. Sevay. 8. Using Autonomy, Organizational Design and Negotiation in a DSN B. Horling, R. Mailler, Jiaying Shen, R. Vincent, V. Lesser. 9. Scaling-up Distributed Sensor Networks O. Yadgar, S. Kraus, C.L. Ortiz, Jr. 10. Distributed Resource Allocation P.J. Modi, P. Scerri, Wei-Min Shen, M. Tambe. 11. Distributed Coordination through Anarchic Optimization S. Fitzpatrick, L. Meertens. Part III: Insights into Distributed Resource Allocation Protocols based on Formal Analyses. 12. Communication and Computation in Distributed CSP Algorithms C. Fernandez, R. Bejar, B. Krishnamachari, C. Gomes, B. Selman. 13. A Comparative Study of Distributed Constraint Algorithms Weixiong Zhang, Guandong Wang, Zhao Xing, L. Wittenburg. 14. Analysis of Negotiation Protocols by Distributed Search Guandong Wang, Weixiong Zhang, R. Mailler, V. Lesser. + +# Information +links.pdf=/static/public/papers/CP2002_Cesar.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2f6d7cebe0d7110bc7db8d9235adccec510979b7 +type=Conference Papers +year=2002 +paper_id=75e34c71 +ss_title=Distributed Sensor Networks: A Multiagent Perspective +ss_authors=[{'authorId': '1725492', 'name': 'V. Lesser'}, {'authorId': '143736701', 'name': 'Milind Tambe'}, {'authorId': '34675217', 'name': 'C. Ortiz'}] +ss_venue= +ss_year=2003 +ss_abstract=1. Introduction to a Multiagent Perspective V. Lesser, C.L. Ortiz, Jr., M. Tambe. Part I: The Sensor Network Challenge Problem. 2. The Radsim Simulator J.H. Lawton. 3. Challenge Problem Testbed P. Zemany, M. Gaughan. 4. Visualization and Debugging Tools A. Egyed, B. Horling, R. Becker, R. Balzer. 5. Target Tracking with Bayesian Estimation J.E. Vargas, K. Tvalarparti, Zhaojun Wu. Part II: Distributed Resource Allocation: Architectures and Protocols. 6. Dynamic resource-bounded negotiation in non-additive domains C.L. Ortiz, Jr., T.W. Rauenbusch, E. Hsu, R. Vincent. 7. A satisficing, negotiated, and learning coalition formation architecture Leen-Kiat Soh, C. Tsatsoulis, H. Sevay. 8. Using Autonomy, Organizational Design and Negotiation in a DSN B. Horling, R. Mailler, Jiaying Shen, R. Vincent, V. Lesser. 9. Scaling-up Distributed Sensor Networks O. Yadgar, S. Kraus, C.L. Ortiz, Jr. 10. Distributed Resource Allocation P.J. Modi, P. Scerri, Wei-Min Shen, M. Tambe. 11. Distributed Coordination through Anarchic Optimization S. Fitzpatrick, L. Meertens. Part III: Insights into Distributed Resource Allocation Protocols based on Formal Analyses. 12. Communication and Computation in Distributed CSP Algorithms C. Fernandez, R. Bejar, B. Krishnamachari, C. Gomes, B. Selman. 13. A Comparative Study of Distributed Constraint Algorithms Weixiong Zhang, Guandong Wang, Zhao Xing, L. Wittenburg. 14. Analysis of Negotiation Protocols by Distributed Search Guandong Wang, Weixiong Zhang, R. Mailler, V. Lesser. +ss_paper_id=2f6d7cebe0d7110bc7db8d9235adccec510979b7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2002_distributed_problem_solving_and_the_boundaries_of_selfconfiguration_in_multihop_wireless_networks.txt b/database/original_documents/publications_text/2002_distributed_problem_solving_and_the_boundaries_of_selfconfiguration_in_multihop_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..369260260c9b173e3edbbdd61b3aaf557eb0180f --- /dev/null +++ b/database/original_documents/publications_text/2002_distributed_problem_solving_and_the_boundaries_of_selfconfiguration_in_multihop_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Problem Solving and the Boundaries of Self-Configuration in Multi-hop Wireless Networks +venue=Hawaii International Conference on System Sciences (HICSS-35), Big Island, Hawaii, January 2002. +authors=['Bhaskar Krishnamachari', 'Ramon Bejar', 'Stephen B Wicker'] +abstract=We consider three distributed decision making tasks that arise in the design and configuration of multi-hop wireless networks: medium access scheduling, Hamiltonian cycle formation, and the partitioning of network nodes into coordinating cliques. We first model these tasks as distributed constraint satisfaction problems (DCSPs). We show that the communication complexity of DCSPs can be related to the computational complexity of centralized constraint satisfaction problems. We then use centralized algorithms to obtain experimental results on the solvability and complexity of the three DCSPs. We show that these problems exhibit "phase transitions" in solvability and complexity as the transmission power of the wireless nodes is varied. Based on these results, we argue that phase transition analysis provides a mechanism for quantifying the critical range of network resources needed for scalable, self-configuring multi-hop wireless networks. + +# Information +links.pdf=/static/public/papers/Hawaii_DCSNew.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e114577faa3c6d88046a4dd584c936682d6d7f49 +type=Conference Papers +year=2002 +paper_id=a47b7741 +ss_title=Distributed problem solving and the boundaries of self-configuration in multi-hop wireless networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1753023', 'name': 'R. Béjar'}, {'authorId': '1690846', 'name': 'S. Wicker'}] +ss_venue=Proceedings of the Annual Hawaii International Conference on System Sciences +ss_year=2002 +ss_abstract=We consider three distributed decision making tasks that arise in the design and configuration of multi-hop wireless networks: medium access scheduling, Hamiltonian cycle formation, and the partitioning of network nodes into coordinating cliques. We first model these tasks as distributed constraint satisfaction problems (DCSPs). We show that the communication complexity of DCSPs can be related to the computational complexity of centralized constraint satisfaction problems. We then use centralized algorithms to obtain experimental results on the solvability and complexity of the three DCSPs. We show that these problems exhibit "phase transitions" in solvability and complexity as the transmission power of the wireless nodes is varied. Based on these results, we argue that phase transition analysis provides a mechanism for quantifying the critical range of network resources needed for scalable, self-configuring multi-hop wireless networks. +ss_paper_id=e114577faa3c6d88046a4dd584c936682d6d7f49 \ No newline at end of file diff --git a/database/original_documents/publications_text/2002_multicast_flow_control_for_heterogeneous_receivers.txt b/database/original_documents/publications_text/2002_multicast_flow_control_for_heterogeneous_receivers.txt new file mode 100644 index 0000000000000000000000000000000000000000..7d64da29d9bc32d37837cb4ea7aad43c02948535 --- /dev/null +++ b/database/original_documents/publications_text/2002_multicast_flow_control_for_heterogeneous_receivers.txt @@ -0,0 +1,18 @@ +# Publication +title=Multicast Flow Control for Heterogeneous Receivers +venue=IEEE/ACM Transactions on Networking, Vol. 10, No. 1, February 2002. +authors=['Rung-Hung Gau', 'Zygmunt J Haas', 'Bhaskar Krishnamachari'] +abstract=In this paper, we study the impact of heterogeneous receivers on the throughput of multicast flow control and propose a new multicast flow control algorithm to optimally partition group members into multiple subgroups. Our main contributions are as follows. First, we cast the multicast flow control problem in the Internet as the list partition problem and then prove that the list partition problem is equivalent to the optimal paging problem in cellular networks. The result is not only interesting in itself but also essential to derive the first known analytical bounds for the throughput of multicast flow control. Furthermore, we propose an algorithm to solve not only the list partition problem but also the optimal paging problem and the problem of bulk data transfer using multiple multicast groups. The complexity of our algorithm is one order less than the best known algorithm designed only for the problem of bulk data transfer using multiple multicast groups in the literature. While earlier work uses simulations to justify the usage of multiple subgroups to deliver information to a large amount of receivers in heterogeneous networks, we provide the first analytical support. + +# Information +links.pdf=/static/public/papers/ToN_flowD9.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7efbcea83ff93197b5690f02c8edb9fb0939b531 +type=Journal Papers +year=2002 +paper_id=b0fcb378 +ss_title=On multicast flow control for heterogeneous receivers +ss_authors=[{'authorId': '2342909', 'name': 'Rung-Hung Gau'}, {'authorId': '1699630', 'name': 'Z. Haas'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=TNET +ss_year=2002 +ss_abstract=In this paper, we study the impact of heterogeneous receivers on the throughput of multicast flow control and propose a new multicast flow control algorithm to optimally partition group members into multiple subgroups. Our main contributions are as follows. First, we cast the multicast flow control problem in the Internet as the list partition problem and then prove that the list partition problem is equivalent to the optimal paging problem in cellular networks. The result is not only interesting in itself but also essential to derive the first known analytical bounds for the throughput of multicast flow control. Furthermore, we propose an algorithm to solve not only the list partition problem but also the optimal paging problem and the problem of bulk data transfer using multiple multicast groups. The complexity of our algorithm is one order less than the best known algorithm designed only for the problem of bulk data transfer using multiple multicast groups in the literature. While earlier work uses simulations to justify the usage of multiple subgroups to deliver information to a large amount of receivers in heterogeneous networks, we provide the first analytical support. +ss_paper_id=7efbcea83ff93197b5690f02c8edb9fb0939b531 \ No newline at end of file diff --git a/database/original_documents/publications_text/2002_the_impact_of_data_aggregation_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2002_the_impact_of_data_aggregation_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..560dde9d3698b4cd189d67155bb4595710d39295 --- /dev/null +++ b/database/original_documents/publications_text/2002_the_impact_of_data_aggregation_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=The Impact of Data Aggregation in Wireless Sensor Networks +venue=International Workshop on Distributed Event-Based Systems, (DEBS ’02), held in conjunction with IEEE ICDCS, Vienna, Austria, July 2002. +authors=['Bhaskar Krishnamachari', 'Deborah Estrin', 'Stephen Wicker'] +abstract=Sensor networks are distributed event-based systems that differ from traditional communication networks in several ways: sensor networks have severe energy constraints, redundant low-rate data, and many-to-one flows. Data-centric mechanisms that perform in-network aggregation of data are needed in this setting for energy-efficient information flow. In this paper we model data-centric routing and compare its performance with traditional end-to-end routing schemes. We examine the impact of source-destination placement and communication network density on the energy costs and delay associated with data aggregation. We show that data-centric routing offers significant performance gains across a wide range of operational scenarios. We also examine the complexity of optimal data aggregation, showing that although it is an NP-hard problem in general, there exist useful polynomial-time special cases. + +# Information +links.pdf=/static/public/papers/DEBS02_aggregation.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9ffa39fe875fe7a0db7b530f4dedafe49ee58b46 +type=Conference Papers +year=2002 +paper_id=b2ce56f5 +ss_title=The impact of data aggregation in wireless sensor networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145078811', 'name': 'D. Estrin'}, {'authorId': '1690846', 'name': 'S. Wicker'}] +ss_venue=Proceedings 22nd International Conference on Distributed Computing Systems Workshops +ss_year=2002 +ss_abstract=Sensor networks are distributed event-based systems that differ from traditional communication networks in several ways: sensor networks have severe energy constraints, redundant low-rate data, and many-to-one flows. Data-centric mechanisms that perform in-network aggregation of data are needed in this setting for energy-efficient information flow. In this paper we model data-centric routing and compare its performance with traditional end-to-end routing schemes. We examine the impact of source-destination placement and communication network density on the energy costs and delay associated with data aggregation. We show that data-centric routing offers significant performance gains across a wide range of operational scenarios. We also examine the complexity of optimal data aggregation, showing that although it is an NP-hard problem in general, there exist useful polynomial-time special cases. +ss_paper_id=9ffa39fe875fe7a0db7b530f4dedafe49ee58b46 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_analysis_of_energyefficient_fair_routing_in_wireless_sensor_networks_through_nonlinear_optimization.txt b/database/original_documents/publications_text/2003_analysis_of_energyefficient_fair_routing_in_wireless_sensor_networks_through_nonlinear_optimization.txt new file mode 100644 index 0000000000000000000000000000000000000000..d79ad3ffc3ce9ab518e934547ccbf0af15688c5f --- /dev/null +++ b/database/original_documents/publications_text/2003_analysis_of_energyefficient_fair_routing_in_wireless_sensor_networks_through_nonlinear_optimization.txt @@ -0,0 +1,18 @@ +# Publication +title=Analysis of Energy-Efficient, Fair Routing in Wireless Sensor Networks through Non-linear Optimization +venue=Workshop on Wireless Ad hoc, Sensor, and Wearable Networks, in IEEE Vehicular Technology Conference – Fall, Orlando, Florida, October 2003. +authors=['Bhaskar Krishnamachari', 'Fernando Ordonez'] +abstract=In the area of wireless sensor networks (WSN) there is still a significant gap between theory and practice: system designs and protocols are rapidly out-pacing analysis. We develop formal computational models of a WSN based on non-linear optimization and use them to analyze the impact of fairness constraints on network performance. The optimization framework presented is very general and can also be used to analyze the optimal performance of WSN subject to other design parameters such as the topology, number of nodes, energy levels, source rates, reception power, etc. Our results show that the maximum information that can be extracted for a fixed amount of energy increases and that the minimum energy required outputting a fixed amount of information decreases as we reduce the fairness requirement in the network. We present these functions for a fixed network topology and observe that they exhibit sharp changes in gradient due to qualitative changes in optimal routes. + +# Information +links.pdf=/static/public/papers/1Krishnamachari_Ordonez_Analysis_of_energy.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0651b493cfc66edd4c1661e2e70f5674cacc25a2 +type=Conference Papers +year=2003 +paper_id=e53faeaa +ss_title=Analysis of energy-efficient, fair routing in wireless sensor networks through non-linear optimization +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145160821', 'name': 'F. Ordóñez'}] +ss_venue=2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484) +ss_year=2003 +ss_abstract=In the area of wireless sensor networks (WSN) there is still a significant gap between theory and practice: system designs and protocols are rapidly out-pacing analysis. We develop formal computational models of a WSN based on non-linear optimization and use them to analyze the impact of fairness constraints on network performance. The optimization framework presented is very general and can also be used to analyze the optimal performance of WSN subject to other design parameters such as the topology, number of nodes, energy levels, source rates, reception power, etc. Our results show that the maximum information that can be extracted for a fixed amount of energy increases and that the minimum energy required outputting a fixed amount of information decreases as we reduce the fairness requirement in the network. We present these functions for a fixed network topology and observe that they exhibit sharp changes in gradient due to qualitative changes in optimal routes. +ss_paper_id=0651b493cfc66edd4c1661e2e70f5674cacc25a2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_efficient_and_faulttolerant_feature_extraction_in_sensor_networks.txt b/database/original_documents/publications_text/2003_efficient_and_faulttolerant_feature_extraction_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..cef7cc14f8b134c1a11a519a546c2ad4c2fc9343 --- /dev/null +++ b/database/original_documents/publications_text/2003_efficient_and_faulttolerant_feature_extraction_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Efficient and Fault-tolerant Feature Extraction in Sensor Networks +venue=2nd Workshop on Information Processing in Sensor Networks, IPSN ’03, Palo Alto, California, April 2003. +authors=['Bhaskar Krishnamachari', 'S Sitharama Iyengar'] +abstract=None + +# Information +links.pdf=/static/public/papers/1Krishnamachari_Iyengar_Efficient.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1b9a417b951f32249e4fd7d46bd1fece40315169 +type=Conference Papers +year=2003 +paper_id=81820c24 +ss_title=Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144171208', 'name': 'S. Iyengar'}] +ss_venue=International Symposium on Information Processing in Sensor Networks +ss_year=2003 +ss_abstract=None +ss_paper_id=1b9a417b951f32249e4fd7d46bd1fece40315169 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_energyquality_tradeoffs_for_target_tracking_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2003_energyquality_tradeoffs_for_target_tracking_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c81cefb72534c3d08c08836bd0e01cd1f48f80f2 --- /dev/null +++ b/database/original_documents/publications_text/2003_energyquality_tradeoffs_for_target_tracking_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-Quality Tradeoffs for Target Tracking in Wireless Sensor Networks +venue=2nd Workshop on Information Processing in Sensor Networks, IPSN ’03, Palo Alto, California, April 2003. +authors=['Sundeep Pattem', 'Sameera Poduri', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/1PattemKrishnamachari_TrackingSANoise.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d719bf0ec89de32f498b6ea38558bf8fc8c46e18 +type=Conference Papers +year=2003 +paper_id=c18de706 +ss_title=Energy-Quality Tradeoffs for Target Tracking in Wireless Sensor Networks +ss_authors=[{'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '2975120', 'name': 'Sameera Poduri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Symposium on Information Processing in Sensor Networks +ss_year=2003 +ss_abstract=None +ss_paper_id=d719bf0ec89de32f498b6ea38558bf8fc8c46e18 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_localized_topology_generation_mechanisms_for_selfconfiguring_sensor_networks.txt b/database/original_documents/publications_text/2003_localized_topology_generation_mechanisms_for_selfconfiguring_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..7f7dbc98c731906538f9ee622a189162e901cddf --- /dev/null +++ b/database/original_documents/publications_text/2003_localized_topology_generation_mechanisms_for_selfconfiguring_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Localized Topology Generation Mechanisms for Self-Configuring Sensor Networks +venue=IEEE Globecom, San Francisco, December 2003. +authors=['Congzhou Zhou', 'Bhaskar Krishnamachari'] +abstract=The basic topology desired in data-gathering wireless sensor networks is a spanning tree, since the traffic is mainly in the form of many-to-one flows. Nodes in the network can self-configure themselves into such a topology by a two-phase process: a flood initiated by the root node, followed by parent selection by all nodes. We present four localized topology generation mechanisms - earliest-first, randomized, nearest-first, and weighted-randomized parent selection. We also compare the network performance of these mechanisms on the basis of the following metrics: node degree, robustness, channel quality, data aggregation and latency; our study shows how localized self-configuration mechanisms can impact the global network behavior. + +# Information +links.pdf=/static/public/papers/1Zhou_Krishnamachari_Localized.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f8fe0a14bebc173349e22f5e3642000a9292873a +type=Conference Papers +year=2003 +paper_id=5844fddc +ss_title=Localized topology generation mechanisms for wireless sensor networks +ss_authors=[{'authorId': '3287208', 'name': 'Congzhou Zhou'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489) +ss_year=2003 +ss_abstract=The basic topology desired in data-gathering wireless sensor networks is a spanning tree, since the traffic is mainly in the form of many-to-one flows. Nodes in the network can self-configure themselves into such a topology by a two-phase process: a flood initiated by the root node, followed by parent selection by all nodes. We present four localized topology generation mechanisms - earliest-first, randomized, nearest-first, and weighted-randomized parent selection. We also compare the network performance of these mechanisms on the basis of the following metrics: node degree, robustness, channel quality, data aggregation and latency; our study shows how localized self-configuration mechanisms can impact the global network behavior. +ss_paper_id=f8fe0a14bebc173349e22f5e3642000a9292873a \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_on_the_complexity_of_distributed_selfconfiguration_in_wireless_networks.txt b/database/original_documents/publications_text/2003_on_the_complexity_of_distributed_selfconfiguration_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..4ded3beb4da61fc232047da4da736f930ad942b6 --- /dev/null +++ b/database/original_documents/publications_text/2003_on_the_complexity_of_distributed_selfconfiguration_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=On the Complexity of Distributed Self-Configuration in Wireless Networks +venue=Journal of Telecommunication Systems, Special Issue on Wireless Networks and Mobile Computing, Eds. I. Stojmenovic and S. Olariu, Vol. 22, No. 1, January/April 2003. +authors=['Bhaskar Krishnamachari', 'Stephen Wicker', 'Ramon Bejar', 'Cesar Fernandez'] +abstract=None + +# Information +links.pdf=/static/public/papers/KrishnamachariCompDistWireless_revised.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/52df77c7e9b350a211bdaa67a29bbd769021dda0 +type=Journal Papers +year=2003 +paper_id=ef6978a3 +ss_title=On the Complexity of Distributed Self-Configuration in Wireless Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1690846', 'name': 'S. Wicker'}, {'authorId': '1753023', 'name': 'R. Béjar'}, {'authorId': '144581582', 'name': 'C. Fernández'}] +ss_venue=Telecommunications Systems +ss_year=2003 +ss_abstract=None +ss_paper_id=52df77c7e9b350a211bdaa67a29bbd769021dda0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_optimal_transmission_radius_for_flooding_in_large_scale_sensor_networks.txt b/database/original_documents/publications_text/2003_optimal_transmission_radius_for_flooding_in_large_scale_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..7b40568ed1e66ac216d6756267a361d6eecc3e87 --- /dev/null +++ b/database/original_documents/publications_text/2003_optimal_transmission_radius_for_flooding_in_large_scale_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Transmission Radius for Flooding in Large Scale Sensor Networks +venue=Workshop on Mobile and Wireless Networks, MWN 2003, held in conjunction with the 23rd IEEE International Conference on Distributed Computing Systems (ICDCS), Providence, Rhode Island, May 2003. +authors=['Marco Zuniga', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/1Zuniga_Krishnamchari_Optimal.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b208bd7abe1e2943a8cdd5c6f181577346d1195 +type=Conference Papers +year=2003 +paper_id=6a797c98 +ss_title=Optimal Transmission Radius for Flooding in Large Scale Sensor Networks +ss_authors=[{'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings. +ss_year=2003 +ss_abstract=None +ss_paper_id=3b208bd7abe1e2943a8cdd5c6f181577346d1195 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_paths_analysis_of_path_duration_statistics_and_their_impact_on_reactive_manet_routing_protocols.txt b/database/original_documents/publications_text/2003_paths_analysis_of_path_duration_statistics_and_their_impact_on_reactive_manet_routing_protocols.txt new file mode 100644 index 0000000000000000000000000000000000000000..aff6774de44e0ae2a45d1845efeac6ffdfb8e4b5 --- /dev/null +++ b/database/original_documents/publications_text/2003_paths_analysis_of_path_duration_statistics_and_their_impact_on_reactive_manet_routing_protocols.txt @@ -0,0 +1,18 @@ +# Publication +title=PATHS: analysis of PATH duration Statistics and their impact on reactive MANET routing protocols +venue=The Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis, Maryland, June 2003. [Highly Competitive, Acceptance Rate: 29 of 189 submissions]. +authors=['Narayanan Sadagopan', 'Fan Bai', 'Bhaskar Krishnamachari', 'Ahmed Helmy'] +abstract=We develop a detailed approach to study how mobility impacts the performance of reactive MANET routing protocols. In particular we examine how the statistics of path durations including PDFs vary with the parameters such as the mobility model, relative speed, number of hops, and radio range. We find that at low speeds, certain mobility models may induce multi-modal distributions that reflect the characteristics of the spatial map, mobility constraints and the communicating traffic pattern. However, our study suggests that at moderate and high velocities the exponential distribution with appropriate parameterizations is a good approximation of the path duration distribution for a range of mobility models. The reciprocal of the average path duration is analytically shown to have a strong linear relationship with the throughput and overhead that is confirmed by the simulation results for DSR. + +# Information +links.pdf=/static/public/papers/1PATH_Narayanan_fan_bhaskar_Helmy.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9343884f019d2fe823d22dc7f284c6181f7b00b5 +type=Conference Papers +year=2003 +paper_id=99240ad9 +ss_title=PATHS: analysis of PATH duration statistics and their impact on reactive MANET routing protocols +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue=ACM Interational Symposium on Mobile Ad Hoc Networking and Computing +ss_year=2003 +ss_abstract=We develop a detailed approach to study how mobility impacts the performance of reactive MANET routing protocols. In particular we examine how the statistics of path durations including PDFs vary with the parameters such as the mobility model, relative speed, number of hops, and radio range. We find that at low speeds, certain mobility models may induce multi-modal distributions that reflect the characteristics of the spatial map, mobility constraints and the communicating traffic pattern. However, our study suggests that at moderate and high velocities the exponential distribution with appropriate parameterizations is a good approximation of the path duration distribution for a range of mobility models. The reciprocal of the average path duration is analytically shown to have a strong linear relationship with the throughput and overhead that is confirmed by the simulation results for DSR. +ss_paper_id=9343884f019d2fe823d22dc7f284c6181f7b00b5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_the_acquire_mechanism_for_efficient_querying_in_sensor_networks.txt b/database/original_documents/publications_text/2003_the_acquire_mechanism_for_efficient_querying_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c37fe40a27dd0002f8ca464cb5f365913aac15d2 --- /dev/null +++ b/database/original_documents/publications_text/2003_the_acquire_mechanism_for_efficient_querying_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=The ACQUIRE Mechanism for Efficient Querying in Sensor Networks +venue=IEEE International Workshop on Sensor Network Protocols and Applications (SNPA’03), held in conjunction with the IEEE International Conference on Communications (ICC 2003), Anchorage, Alaska, May 2003. +authors=['Narayanan Sadagopan', 'Bhaskar Krishnamachari', 'Ahmed Helmy'] +abstract=We propose a novel and efficient mechanism for obtaining information in sensor networks which we refer to as ACQUIRE. In ACQUIRE an active query is forwarded through the network, and intermediate nodes use cached local information (within a look-ahead of d hops) in order to partially resolve the query. When the query is fully resolved, a completed response is sent directly back to the querying node. We take a mathematical modelling approach in this paper to calculate the energy costs associated with ACQUIRE. The models permit us to characterize analytically the impact of critical parameters, and compare the performance of ACQUIRE with respect to alternatives such as flooding-based querying (FBQ) and expanding ring search (ERS). We show that with optimal parameter settings, depending on the update frequency, ACQUIRE obtains order of magnitude reduction over FBQ and potentially over 60% reduction over ERS in consumed energy. + +# Information +links.pdf=/static/public/papers/1Sadagopan_Krishnamachari_Helmy_The_ACQUIRE.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fea50d4f6ead220927bdb70de709c195e81a1b98 +type=Conference Papers +year=2003 +paper_id=cc450cc8 +ss_title=The ACQUIRE mechanism for efficient querying in sensor networks +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue=Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003. +ss_year=2003 +ss_abstract=We propose a novel and efficient mechanism for obtaining information in sensor networks which we refer to as ACQUIRE. In ACQUIRE an active query is forwarded through the network, and intermediate nodes use cached local information (within a look-ahead of d hops) in order to partially resolve the query. When the query is fully resolved, a completed response is sent directly back to the querying node. We take a mathematical modelling approach in this paper to calculate the energy costs associated with ACQUIRE. The models permit us to characterize analytically the impact of critical parameters, and compare the performance of ACQUIRE with respect to alternatives such as flooding-based querying (FBQ) and expanding ring search (ERS). We show that with optimal parameter settings, depending on the update frequency, ACQUIRE obtains order of magnitude reduction over FBQ and potentially over 60% reduction over ERS in consumed energy. +ss_paper_id=fea50d4f6ead220927bdb70de709c195e81a1b98 \ No newline at end of file diff --git a/database/original_documents/publications_text/2003_the_energyrobustness_tradeoff_for_routing_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2003_the_energyrobustness_tradeoff_for_routing_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..39bd75a3b6d80ec6325a5f19333cabd56a6d9ef8 --- /dev/null +++ b/database/original_documents/publications_text/2003_the_energyrobustness_tradeoff_for_routing_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=The Energy-Robustness Tradeoff for Routing in Wireless Sensor Networks +venue=IEEE International Conference on Communications (ICC 2003), Anchorage, Alaska, May 2003. +authors=['Bhaskar Krishnamachari', 'Yasser Mourtada', 'Stephen Wicker'] +abstract=Wireless sensor networks consisting of large numbers of inexpensive energy-constrained nodes are an area of emerging networking research. Routing algorithms in these networks are required to provide tolerance to temporary or lasting faults in individual devices. The conventional methodology is to set radio transmit powers to the minimum levels required for connectivity and use multipath routing to provide robustness. We show in this paper through an analytical example and detailed simulation results that using a single path routing scheme with higher transmit power can also be an energy-efficient solution for robustness to node failures. + +# Information +links.pdf=/static/public/papers/1Krishnamchari_Mourtada_Wicker_The_energy_robustness.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5a72a99c4543e956439c9a806c4530f806a872f6 +type=Conference Papers +year=2003 +paper_id=f3c9d887 +ss_title=The energy-robustness tradeoff for routing in wireless sensor networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2903621', 'name': 'Y. Mourtada'}, {'authorId': '1690846', 'name': 'S. Wicker'}] +ss_venue=IEEE International Conference on Communications, 2003. ICC '03. +ss_year=2003 +ss_abstract=Wireless sensor networks consisting of large numbers of inexpensive energy-constrained nodes are an area of emerging networking research. Routing algorithms in these networks are required to provide tolerance to temporary or lasting faults in individual devices. The conventional methodology is to set radio transmit powers to the minimum levels required for connectivity and use multipath routing to provide robustness. We show in this paper through an analytical example and detailed simulation results that using a single path routing scheme with higher transmit power can also be an energy-efficient solution for robustness to node failures. +ss_paper_id=5a72a99c4543e956439c9a806c4530f806a872f6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_a_case_for_a_mobility_based_admission_control_policy.txt b/database/original_documents/publications_text/2004_a_case_for_a_mobility_based_admission_control_policy.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ad1043302c0a358cf3005f9dd03d61c5dedee3e --- /dev/null +++ b/database/original_documents/publications_text/2004_a_case_for_a_mobility_based_admission_control_policy.txt @@ -0,0 +1,18 @@ +# Publication +title=A Case for a Mobility Based Admission Control Policy +venue=International Conference on Distributed Multimedia Systems, San Francisco, September 2004. +authors=['Shahram Ghandeharizadeh', 'Touraj Helmi', 'Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=" ! # $ !% " ! ! & '$ ( *) #+ ), -. -/+ ) 0 ! -. 0 21 34+&5 0 5768) ) 9 !:; < " < ! = $ 7 7< > ?*@2 =) A $:; ! B) C$C " " D) " B E) B: ) "C '$ A) ; ! $" ' 7'$ 9:; D F G) HI) 'E F " J) E K%F A F ! L A "C$ !H C '$ M N A ":; $ ! O $'$ P $ ! Q R " $<7 ! S DT ' !:; ! !? U O = E) A " ! $<7 ! V) Q: ) <7 $ "W D YX >P F% 7 $:; ! =) Z ( ) ) ( " R A L '$ ( [) \ F>F E) :; " \ ! " ! L ] ! $ ! " 7 $ !HV:; 7X$ " A > H^:O' -4 7C_ E) 'F L B \ `) E Ca 7 "X " b A) = 8)BW cF D A F d =) R ' 'F 7?2e/ ! V $ !Hf) g " ! " " A< ! V) $:; " " 7 h ! iCa A " >Y ! ) $ ! ! j 'E) " " >J kF % " ! h3 j k$6b X %7 D JX >L $ ;' S $ R>F R !:P? U $ A CE) Ca ( b: ) l # $ Q D) O m S)* F ! ! ! =) A "n! ! o 7X$ " A >LX ) D \ ^p :; A " q+r 3 o ^pB6^Ca " A (> ?OsJ $ %l ! " 7C j lkO'$ " " />9:; F ! " 2 BT ' ) d>Q $ &Ca m : ) $ ! B $ A *Ca 7 " " >` t) ] ! % 7 :; ) * !:;C " D>F * $ )7 F:; " A q ! u?gv XF =) " D h ! ' S D w ! 7 $ ! "' "%l ! > E), o ^pxC$ ,% A $ ! B = $ S : ) <7 ' $ ; ":;C$ ,%l !:; P ! 7:;C ) D P Q)7 $:; " " 7 Y ! 7 7 u? 1. INTRODUCTION pV'F A $ D), !H ) 'F 7:; X " " g: ) '$ m) 'F E)D%l #Xa ! ! : ), l " F R !:; !? U L R>F R !:; ; />FC$ A !) " >` ! $" R # 2)Qp#z p{C$ A)D>l DHE)S m 7 A -/ F D P ! ! |HE)9% A $ QQ E " ! !?8e/ S " 8% A " ZHl%7 ! ! " ! S) Q DT ' "C Ca D g J D), -. -4 D) DHiCa ! -. -4Ca ! ( ;34+&5 0 576 $ %F " ! " ( S m :~)^:; X " " &)7 $ ( / ;3 o ^1 @ U 6(? @2) = h+&5 0 59 A # DT ' "C$Ca D N g) X ' ) #) :; 7'$ 8 R ) < 7Ha)OC$ ! ! DHa) E P)O ! " ! # ( / A $<9 D), = |? U YC$ " ! "C$ A g = E), =) ( A R " h V ! 7 " ' 7'$ ;:; D $ A)\ ' = ) S% A $ ! g) E q) 'E F A g " B ! O "<7 J ' R =) " $ D qX B =) ; T ' !:; ! D?ge4 ^)h R>F R !: $ A "%l ( 9)g ! " "C€), ;)P =) N " D E) M QC$ (Ca ! WE D q =) '$ 9 Ca ! A) &C$ D) 'F A 3u 7? <$?"H CF -. m = " F r N% G F ! O) E ; =) $ : " ! ) ' $ " $? U $ ! N) u) Q), ! 7 " " ! "%l ! >L :; D M‚ ƒ.„ „ … † ‡=? q " ! ' C$-. G ! 2 $ " C A)!>b " Z $ 2 A F D) T ' ) " />V F % A ^3 j lk 6 C$ ,% A $ D ) P E Y'$ D? ˆ ! ! 7 j kN " 7 g " # $ 7X$ %l D N R =) '$CP A) ! $ > H$ $ W D *) & B F ! A)D>N X %l ! d :t $ ! S)&' ( m ! $ ! ! })& ! " "Cb & 2 7 ( $ " C$ G)!> ? ^ " |+&5 0 5S $ !% " ! ! &: )!>9 !C$ " A !) VCa C ' A), A !H X$'$ r $ > :Q'$ R ! 7 " A) Xa =) 9 " g = $ # C$ ,% G F b' # h) A), <7 ! " ! " ; f A !?2@I) ( +&5 0 5V: )!>O ! 7 "X 'F ) d =) ( A r S R =) < ; A J)*Ca ! ( -4 -4Ca ! b: ) ( V YXa 9 !' C$ A ! X >* $ b R>F R !:9) "<7 $ D P ! " "C !? U S A "C$ :; "<7 #Xa b d! $ ! D NX > '$ & i 7 b:; X " " B+&5 0 5Q F !% A ! & E) &) ( / \ !) = E) X$ " \3u " $ ! "'E $ " $€ \ A "C$ N ) * " * D) $ D $ A 7)7 ]) _C A)!>` " ])M " ! ' C$-. G ! h: ) $ " t) D) 7 E) X " N) :; ' b & ":; P3u ? \ ), A R G>F A $* ! 7 $ R =) " (6(? U ! = $ AT '$ ! ^ ) B) ! V ! O ( ) " " ! < ! S) 9 ":;C ) D X >q * ( ) =) " R " ! $ o #1V@ U HIC$ A) ! !:; 9) $ A "%l ( >; ( $ D $'$ " A $ ?8+r 7 $ A $ 2 D) ( S " '$ |? o X " " " > HF)S 7 > o #1V@ U = E) =) " R " 7HF " r C$ : ) >S = E) A " ! $<7 #Xa ! D) ' # " r $ " =), ! 8 & " m -. ":; |CE), Xa ! ! *)OCF $'$ ! ) E N)S ! '$:; & ), =)F?8sŒ $ $ " C$ G)!>J # ), =)g A S ,%l A) C$Ca D J M 9 $ A "%l ( > H8)PCE), !C ) 9: )!>L A $ !'$ Q $ G)!>F O ) S ! ' O " € $) =)P R =), %7), A ) L $ A !' C|? e/ L)7 F A ZH Ca 7 " 7< >J = E) < ! B A:;C ) b $ )D%7) " G) X " " />N ZXa * ), =)Q) ;XE) F A F |? U ),% ) " A) X$ " "/> 2 ) =)S " ^) " ; A:;C ) ! NX > C A) ! :; ! #) $ F ! V) E g b $ < ! O 2 !C " " D) " Z?Ov S: )!>Y !C$ " A !) ), =)B) r $ ^< =) ' A), " > Z ! )S A "Ch Ž f )bX " ( g 5D4?  " E) A > H <7 "%l ! S I "<7 Q ) =),-. =) r DT '$ " :; ! ! 7 " $' ' B:; D F G)Y $ " C A)!>F Q) E J " ":; D JXE) E G L ! '$ ! !H B R>F R !:‘:Q' R #Xa S ! 7 FWE< '$ D P J) \)7 $:; " " 7 h ! $7 8Ca A " >h P ) $ " Q:O' "C " Q ":Q'$ =) 7' b A "CJ $ D $" l) $ !?#e/ gC ) " !' A), DHa S)7 F:; A " \ 7 7 ZCa 7 " " >g:Q'$ R R "%l I $ )*’/< ^“R X ”V E /“/ ! " <# 7 !T '$ ! R i ) ) B'$ " " l ! >* ;Xa b ), " RWE D Y " h)Q D) 7 ) X " O) :; ' 2 ":; 7?Sk ! " 7 \•; m : ) " An ! B) LT 'E) "W ! " bT 'E) A =) "%l Q:; " QX >gC$ ,% A $ " <*'$ " " />h:; $ A V d j lkh E), ! A $ I & ' :OXa 8 f /“/ ! D Q !T '$ ! R !Hl $ # '$:QXa 8 )7 F:; D P DT ' ! R ) V) 9 '$ ! ! ! R d' uH ) E g S ' :QXa ( E)7 F:; " ! b !T '$ ! R i ) m) " :; ! )# Ca ! WE D S R =) ' C A) ! $ >* ! 7 $ R =) " D? +r 7:;C ) D g * =) $ " 7 ) I)7 $:; " " 7 L ! 7 2 ! = $ AT '$ ! !H I+&5 0 5 o ^1 @ U ! % " :; ! f Šf Z $ m 7 " " D " < '$ AT ' = E) " " ! $<7 ! !?  R I $ B 7Ca " 7< >9 A r F>F E) :; " 7?8k ! 7 P S)7 F:; A " \ 7 7 }:O' R #Xa OCa ( m :; ! P A \) $ " R"X 'F D : ) $ Z) Z ( 2 " Z & ! ! =) 7 ! = $ " E), A OCa " m $ S $ / r a?  '$ $ DHE A # E), = P ; ! R ": ) B b 7'F ! ! & E), " " ZXa ),% ) " A) X$ " V m ^)S ! " ACY $ D " 7)7 L3u " $ ! P Ca 7 " 7< >_ " " = E) <7 h F'$ " Y ! 7 "X 'F " 7 h 8 " ^CE) Ca ( V " S F ! "<7 L) E g) E) "> " V r) A:;C$ " O:; X " " " >gXE) D h)7 F:; A " L ! 7 }Ca 7 " " > ' " $< +&5 0 5 o ^1V@ U ":O' A) " 7 Y R 'E $ " ! !?8sŒ $ " A B) $:; " R" 7 \ ! 7 } A ^ ! " } R 'E F " D g A h D h O FH .Hf BXa ! R # I '$ ^ D " D $< 7HaXa ! A $ 7'F CF " # N R =) " E) >K ! " ! N $ %F " ! P 5 H Ž(.Hr ( Y " 9 " A Y " V) > C$ " # r N 7 Y $ " 7C " 7? ! ! ! V R ' $ " ! b) ! " < j lkh " o ^1 @ U B), 9) V m 7 " D !? t '$ %l > j k :; " ! & " o #1V@ U # " C$ ,% A $ D X >q Ž ,.? U ! O R 'E $ " ! ^ ! VX ' " A P 7 h 7Ch I $ O cF " R " € 7 "X '$ " _ " ; c ! * B ! F%7 ! A E) $ (WE " 7 g 2)7 F:; A " \ 7 7 ) q " F' ! )g ":;C " ;:; X " " " >JX ) D M) $:; " " 7 K ! $7 Ca A " >B ^ R 'E F> r '$:QXa i “R ! ! |Hl ), " RWE D O) E ' $ ) " RWE ! * DT ' ! R & " g) o ^1V@ U 34+&5 0 5Q 6(? U # ! R & i " C ) Ca A r VX ) D B)7 F:; " A O 7 7 Ca 7 " " > ?8e Yk ! " 7 N• HF r $ , _ #Ca m : ) 7X$ %l D " * F% 7 $:; ! F !C " D> D ; P) $ 7'$ o #pQ? pV'$ g CE) ! " A:; =), A O)P ! 7:;C ) " 7 M o ^p‰ M $ )7 F:; " A ; ! 7 $ ! = $ GT '$ ! 8 A 2 rCF ! ! D Q $ 7?2v 'F ! ! "' " ^) bC$ ! D * " hk ! " 7 F? 2. ADMISSION CONTROL kF " 7 L5 ?"ŽS m : ) " An ! b)7 F:; " A h ! 7 7 ) $ SCF ! ! #) $:; " *XE) D Y) $:; " " 7 P ! 7 iCa " A (> ? 2. + +# Information +links.pdf=/static/public/papers/2004_15.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9c73b46d474cdd07350c4088d6aaff3c5517cfaa +type=Conference Papers +year=2004 +paper_id=54cfdcf7 +ss_title=A Case for a Mobility based Admission Control Policy +ss_authors=[{'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}, {'authorId': '3085146', 'name': 'Tooraj Helmi'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2004 +ss_abstract=" ! # $ !% " ! ! & '$ ( *) #+ ), -. -/+ ) 0 ! -. 0 21 34+&5 0 5768) ) 9 !:; < " < ! = $ 7 7< > ?*@2 =) A $:; ! B) C$C " " D) " B E) B: ) "C '$ A) ; ! $" ' 7'$ 9:; D F G) HI) 'E F " J) E K%F A F ! L A "C$ !H C '$ M N A ":; $ ! O $'$ P $ ! Q R " $<7 ! S DT ' !:; ! !? U O = E) A " ! $<7 ! V) Q: ) <7 $ "W D YX >P F% 7 $:; ! =) Z ( ) ) ( " R A L '$ ( [) \ F>F E) :; " \ ! " ! L ] ! $ ! " 7 $ !HV:; 7X$ " A > H^:O' -4 7C_ E) 'F L B \ `) E Ca 7 "X " b A) = 8)BW cF D A F d =) R ' 'F 7?2e/ ! V $ !Hf) g " ! " " A< ! V) $:; " " 7 h ! iCa A " >Y ! ) $ ! ! j 'E) " " >J kF % " ! h3 j k$6b X %7 D JX >L $ ;' S $ R>F R !:P? U $ A CE) Ca ( b: ) l # $ Q D) O m S)* F ! ! ! =) A "n! ! o 7X$ " A >LX ) D \ ^p :; A " q+r 3 o ^pB6^Ca " A (> ?OsJ $ %l ! " 7C j lkO'$ " " />9:; F ! " 2 BT ' ) d>Q $ &Ca m : ) $ ! B $ A *Ca 7 " " >` t) ] ! % 7 :; ) * !:;C " D>F * $ )7 F:; " A q ! u?gv XF =) " D h ! ' S D w ! 7 $ ! "' "%l ! > E), o ^pxC$ ,% A $ ! B = $ S : ) <7 ' $ ; ":;C$ ,%l !:; P ! 7:;C ) D P Q)7 $:; " " 7 Y ! 7 7 u? 1. INTRODUCTION pV'F A $ D), !H ) 'F 7:; X " " g: ) '$ m) 'F E)D%l #Xa ! ! : ), l " F R !:; !? U L R>F R !:; ; />FC$ A !) " >` ! $" R # 2)Qp#z p{C$ A)D>l DHE)S m 7 A -/ F D P ! ! |HE)9% A $ QQ E " ! !?8e/ S " 8% A " ZHl%7 ! ! " ! S) Q DT ' "C Ca D g J D), -. -4 D) DHiCa ! -. -4Ca ! ( ;34+&5 0 576 $ %F " ! " ( S m :~)^:; X " " &)7 $ ( / ;3 o ^1 @ U 6(? @2) = h+&5 0 59 A # DT ' "C$Ca D N g) X ' ) #) :; 7'$ 8 R ) < 7Ha)OC$ ! ! DHa) E P)O ! " ! # ( / A $<9 D), = |? U YC$ " ! "C$ A g = E), =) ( A R " h V ! 7 " ' 7'$ ;:; D $ A)\ ' = ) S% A $ ! g) E q) 'E F A g " B ! O "<7 J ' R =) " $ D qX B =) ; T ' !:; ! D?ge4 ^)h R>F R !: $ A "%l ( 9)g ! " "C€), ;)P =) N " D E) M QC$ (Ca ! WE D q =) '$ 9 Ca ! A) &C$ D) 'F A 3u 7? <$?"H CF -. m = " F r N% G F ! O) E ; =) $ : " ! ) ' $ " $? U $ ! N) u) Q), ! 7 " " ! "%l ! >L :; D M‚ ƒ.„ „ … † ‡=? q " ! ' C$-. G ! 2 $ " C A)!>b " Z $ 2 A F D) T ' ) " />V F % A ^3 j lk 6 C$ ,% A $ D ) P E Y'$ D? ˆ ! ! 7 j kN " 7 g " # $ 7X$ %l D N R =) '$CP A) ! $ > H$ $ W D *) & B F ! A)D>N X %l ! d :t $ ! S)&' ( m ! $ ! ! })& ! " "Cb & 2 7 ( $ " C$ G)!> ? ^ " |+&5 0 5S $ !% " ! ! &: )!>9 !C$ " A !) VCa C ' A), A !H X$'$ r $ > :Q'$ R ! 7 " A) Xa =) 9 " g = $ # C$ ,% G F b' # h) A), <7 ! " ! " ; f A !?2@I) ( +&5 0 5V: )!>O ! 7 "X 'F ) d =) ( A r S R =) < ; A J)*Ca ! ( -4 -4Ca ! b: ) ( V YXa 9 !' C$ A ! X >* $ b R>F R !:9) "<7 $ D P ! " "C !? U S A "C$ :; "<7 #Xa b d! $ ! D NX > '$ & i 7 b:; X " " B+&5 0 5Q F !% A ! & E) &) ( / \ !) = E) X$ " \3u " $ ! "'E $ " $€ \ A "C$ N ) * " * D) $ D $ A 7)7 ]) _C A)!>` " ])M " ! ' C$-. G ! h: ) $ " t) D) 7 E) X " N) :; ' b & ":; P3u ? \ ), A R G>F A $* ! 7 $ R =) " (6(? U ! = $ AT '$ ! ^ ) B) ! V ! O ( ) " " ! < ! S) 9 ":;C ) D X >q * ( ) =) " R " ! $ o #1V@ U HIC$ A) ! !:; 9) $ A "%l ( >; ( $ D $'$ " A $ ?8+r 7 $ A $ 2 D) ( S " '$ |? o X " " " > HF)S 7 > o #1V@ U = E) =) " R " 7HF " r C$ : ) >S = E) A " ! $<7 #Xa ! D) ' # " r $ " =), ! 8 & " m -. ":; |CE), Xa ! ! *)OCF $'$ ! ) E N)S ! '$:; & ), =)F?8sŒ $ $ " C$ G)!>J # ), =)g A S ,%l A) C$Ca D J M 9 $ A "%l ( > H8)PCE), !C ) 9: )!>L A $ !'$ Q $ G)!>F O ) S ! ' O " € $) =)P R =), %7), A ) L $ A !' C|? e/ L)7 F A ZH Ca 7 " 7< >J = E) < ! B A:;C ) b $ )D%7) " G) X " " />N ZXa * ), =)Q) ;XE) F A F |? U ),% ) " A) X$ " "/> 2 ) =)S " ^) " ; A:;C ) ! NX > C A) ! :; ! #) $ F ! V) E g b $ < ! O 2 !C " " D) " Z?Ov S: )!>Y !C$ " A !) ), =)B) r $ ^< =) ' A), " > Z ! )S A "Ch Ž f )bX " ( g 5D4?  " E) A > H <7 "%l ! S I "<7 Q ) =),-. =) r DT '$ " :; ! ! 7 " $' ' B:; D F G)Y $ " C A)!>F Q) E J " ":; D JXE) E G L ! '$ ! !H B R>F R !:‘:Q' R #Xa S ! 7 FWE< '$ D P J) \)7 $:; " " 7 h ! $7 8Ca A " >h P ) $ " Q:O' "C " Q ":Q'$ =) 7' b A "CJ $ D $" l) $ !?#e/ gC ) " !' A), DHa S)7 F:; A " \ 7 7 ZCa 7 " " >g:Q'$ R R "%l I $ )*’/< ^“R X ”V E /“/ ! " <# 7 !T '$ ! R i ) ) B'$ " " l ! >* ;Xa b ), " RWE D Y " h)Q D) 7 ) X " O) :; ' 2 ":; 7?Sk ! " 7 \•; m : ) " An ! B) LT 'E) "W ! " bT 'E) A =) "%l Q:; " QX >gC$ ,% A $ " <*'$ " " />h:; $ A V d j lkh E), ! A $ I & ' :OXa 8 f /“/ ! D Q !T '$ ! R !Hl $ # '$:QXa 8 )7 F:; D P DT ' ! R ) V) 9 '$ ! ! ! R d' uH ) E g S ' :QXa ( E)7 F:; " ! b !T '$ ! R i ) m) " :; ! )# Ca ! WE D S R =) ' C A) ! $ >* ! 7 $ R =) " D? +r 7:;C ) D g * =) $ " 7 ) I)7 $:; " " 7 L ! 7 2 ! = $ AT '$ ! !H I+&5 0 5 o ^1 @ U ! % " :; ! f Šf Z $ m 7 " " D " < '$ AT ' = E) " " ! $<7 ! !?  R I $ B 7Ca " 7< >9 A r F>F E) :; " 7?8k ! 7 P S)7 F:; A " \ 7 7 }:O' R #Xa OCa ( m :; ! P A \) $ " R"X 'F D : ) $ Z) Z ( 2 " Z & ! ! =) 7 ! = $ " E), A OCa " m $ S $ / r a?  '$ $ DHE A # E), = P ; ! R ": ) B b 7'F ! ! & E), " " ZXa ),% ) " A) X$ " V m ^)S ! " ACY $ D " 7)7 L3u " $ ! P Ca 7 " 7< >_ " " = E) <7 h F'$ " Y ! 7 "X 'F " 7 h 8 " ^CE) Ca ( V " S F ! "<7 L) E g) E) "> " V r) A:;C$ " O:; X " " " >gXE) D h)7 F:; A " L ! 7 }Ca 7 " " > ' " $< +&5 0 5 o ^1V@ U ":O' A) " 7 Y R 'E $ " ! !?8sŒ $ " A B) $:; " R" 7 \ ! 7 } A ^ ! " } R 'E F " D g A h D h O FH .Hf BXa ! R # I '$ ^ D " D $< 7HaXa ! A $ 7'F CF " # N R =) " E) >K ! " ! N $ %F " ! P 5 H Ž(.Hr ( Y " 9 " A Y " V) > C$ " # r N 7 Y $ " 7C " 7? ! ! ! V R ' $ " ! b) ! " < j lkh " o ^1 @ U B), 9) V m 7 " D !? t '$ %l > j k :; " ! & " o #1V@ U # " C$ ,% A $ D X >q Ž ,.? U ! O R 'E $ " ! ^ ! VX ' " A P 7 h 7Ch I $ O cF " R " € 7 "X '$ " _ " ; c ! * B ! F%7 ! A E) $ (WE " 7 g 2)7 F:; A " \ 7 7 ) q " F' ! )g ":;C " ;:; X " " " >JX ) D M) $:; " " 7 K ! $7 Ca A " >B ^ R 'E F> r '$:QXa i “R ! ! |Hl ), " RWE D O) E ' $ ) " RWE ! * DT ' ! R & " g) o ^1V@ U 34+&5 0 5Q 6(? U # ! R & i " C ) Ca A r VX ) D B)7 F:; " A O 7 7 Ca 7 " " > ?8e Yk ! " 7 N• HF r $ , _ #Ca m : ) 7X$ %l D " * F% 7 $:; ! F !C " D> D ; P) $ 7'$ o #pQ? pV'$ g CE) ! " A:; =), A O)P ! 7:;C ) " 7 M o ^p‰ M $ )7 F:; " A ; ! 7 $ ! = $ GT '$ ! 8 A 2 rCF ! ! D Q $ 7?2v 'F ! ! "' " ^) bC$ ! D * " hk ! " 7 F? 2. ADMISSION CONTROL kF " 7 L5 ?"ŽS m : ) " An ! b)7 F:; " A h ! 7 7 ) $ SCF ! ! #) $:; " *XE) D Y) $:; " " 7 P ! 7 iCa " A (> ? 2. +ss_paper_id=9c73b46d474cdd07350c4088d6aaff3c5517cfaa \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_an_adaptive_energyefficient_and_lowlatency_mac_for_data_gathering_in_sensor_networks.txt b/database/original_documents/publications_text/2004_an_adaptive_energyefficient_and_lowlatency_mac_for_data_gathering_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa4cd0e1d2c092501f8742679e9fe55c795c3c36 --- /dev/null +++ b/database/original_documents/publications_text/2004_an_adaptive_energyefficient_and_lowlatency_mac_for_data_gathering_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Sensor Networks +venue=4th International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN 04), held in conjunction with the IEEE IPDPS Conference 18th International Parallel and Distributed Processing Symposium, April 2004. +authors=['Gang Lu', 'Bhaskar Krishnamachari', 'Cauligi Raghavendra'] +abstract=Summary form only given. In many sensor network applications the major traffic pattern consists of data collected from several source nodes to a sink through a unidirectional tree. We propose DMAC, an energy efficient and low latency MAC that is designed and optimized for such data gathering trees in wireless sensor networks. We first show that previously proposed MAC protocols for sensor networks that utilize activation/sleep duty cycles suffer from a data forwarding interruption problem, whereby not all nodes on a multihop path to the sink are notified of data delivery in progress, resulting in significant sleep delay. DMAC is designed to solve the interruption problem and allow continuous packet forwarding by giving the sleep schedule of a node an offset that depends upon its depth on the tree. DMAC also adjusts the duty cycles adaptively according to the traffic load in the network. We further propose a data prediction mechanism and the use of more-to-send (MTS) packets in order to alleviate problems pertaining to channel contention and collisions. Our simulation results show that by exploiting the application-specific structure of data gathering trees in sensor networks, DMAC provides significant energy savings and latency reduction while ensuring high data reliability. + +# Information +links.pdf=/static/public/papers/DMAC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/37a8ef6a9a61b3295cfe35b3b0f74bfc1371fb34 +type=Conference Papers +year=2004 +paper_id=780c7b63 +ss_title=An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks +ss_authors=[{'authorId': '145316946', 'name': 'Gang Lu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1756733', 'name': 'C. Raghavendra'}] +ss_venue=18th International Parallel and Distributed Processing Symposium, 2004. Proceedings. +ss_year=2004 +ss_abstract=Summary form only given. In many sensor network applications the major traffic pattern consists of data collected from several source nodes to a sink through a unidirectional tree. We propose DMAC, an energy efficient and low latency MAC that is designed and optimized for such data gathering trees in wireless sensor networks. We first show that previously proposed MAC protocols for sensor networks that utilize activation/sleep duty cycles suffer from a data forwarding interruption problem, whereby not all nodes on a multihop path to the sink are notified of data delivery in progress, resulting in significant sleep delay. DMAC is designed to solve the interruption problem and allow continuous packet forwarding by giving the sleep schedule of a node an offset that depends upon its depth on the tree. DMAC also adjusts the duty cycles adaptively according to the traffic load in the network. We further propose a data prediction mechanism and the use of more-to-send (MTS) packets in order to alleviate problems pertaining to channel contention and collisions. Our simulation results show that by exploiting the application-specific structure of data gathering trees in sensor networks, DMAC provides significant energy savings and latency reduction while ensuring high data reliability. +ss_paper_id=37a8ef6a9a61b3295cfe35b3b0f74bfc1371fb34 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_analyzing_the_transitional_region_in_low_power_wireless_links.txt b/database/original_documents/publications_text/2004_analyzing_the_transitional_region_in_low_power_wireless_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..60247848487f0a992051b47a14a9491bcaf0489d --- /dev/null +++ b/database/original_documents/publications_text/2004_analyzing_the_transitional_region_in_low_power_wireless_links.txt @@ -0,0 +1,18 @@ +# Publication +title=Analyzing the Transitional Region in Low Power Wireless Links +venue=First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004. [Highly Competitive, Acceptance rate: only 68 papers from 358 submissions] +authors=['Marco Zuniga', 'Bhaskar Krishnamachari'] +abstract=The wireless sensor networks community, has now an increased understanding of the need for realistic link layer models. Recent experimental studies have shown that real deployments have a "transitional region" with highly unreliable links, and that therefore the idealized perfect-reception-within-range models used in common network simulation tools can be very misleading. In this paper, we use mathematical techniques from communication theory to model and analyze the low power wireless links. The primary contribution of this work is the identification of the causes of the transitional region, and a quantification of their influence. Specifically, we derive expressions for the packet reception rate as a function of distance, and for the width of the transitional region. These expressions incorporate important channel and radio parameters such as the path loss exponent and shadowing variance of the channel; and the modulation and encoding of the radio. A key finding is that for radios using narrow-band modulation, the transitional region is not an artifact of the radio non-ideality, as it would exist even with perfect-threshold receivers because of multi-path fading. However, we hypothesize that radios with mechanisms to combat multi-path effects, such as spread-spectrum and diversity techniques, can reduce the transitional region. + +# Information +links.pdf=/static/public/papers/chanelmodellingSECON04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/48a9997cd9a838aaed5bfb94b8237d1e7c6c7546 +type=Conference Papers +year=2004 +paper_id=02a25873 +ss_title=Analyzing the transitional region in low power wireless links +ss_authors=[{'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. +ss_year=2004 +ss_abstract=The wireless sensor networks community, has now an increased understanding of the need for realistic link layer models. Recent experimental studies have shown that real deployments have a "transitional region" with highly unreliable links, and that therefore the idealized perfect-reception-within-range models used in common network simulation tools can be very misleading. In this paper, we use mathematical techniques from communication theory to model and analyze the low power wireless links. The primary contribution of this work is the identification of the causes of the transitional region, and a quantification of their influence. Specifically, we derive expressions for the packet reception rate as a function of distance, and for the width of the transitional region. These expressions incorporate important channel and radio parameters such as the path loss exponent and shadowing variance of the channel; and the modulation and encoding of the radio. A key finding is that for radios using narrow-band modulation, the transitional region is not an artifact of the radio non-ideality, as it would exist even with perfect-threshold receivers because of multi-path fading. However, we hypothesize that radios with mechanisms to combat multi-path effects, such as spread-spectrum and diversity techniques, can reduce the transitional region. +ss_paper_id=48a9997cd9a838aaed5bfb94b8237d1e7c6c7546 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_applicationspecific_modelling_of_information_routing_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_applicationspecific_modelling_of_information_routing_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..9daf9fc7906d9f9cfe48d17060cdc8af9165a2e4 --- /dev/null +++ b/database/original_documents/publications_text/2004_applicationspecific_modelling_of_information_routing_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Application-Specific Modelling of Information Routing in Wireless Sensor Networks +venue=invited paper presented at the Workshop on Multihop Wireless Networks (MWN’04) held in conjunction with the IEEE International Performance Computing and Communications Conference (IPCCC), April 2004. +authors=['Bhaskar Krishnamachari', 'John Heidemann'] +abstract=Sensor network applications have a diverse set of requirements - some involve extraction of sensor data to a single point, others exploit sensor-to-sensor communication; some employ long-lasting data streams while connections in others are mainly ephemeral. Different variants of the directed diffusion routing protocol - pull-based, push-based and hybrid rendezvous-based - have been developed, along with in-network processing and geographic routing techniques. We mathematically model and analyze the performance of these routing techniques across a range of application scenarios (with varying numbers of nodes, sources, sinks, data settings etc.). Besides quantifying the conditions under which the different routing algorithms outperform each other, we obtain a number of useful design insights. Our analysis shows that algorithms mismatched to applications can result in drastically poor performance; demonstrates the desirability of reducing flooded interest and exploratory messages when data aggregation is used; and suggests that it may be difficult to implement efficient hybrid schemes because their performance is very sensitive to the optimal placement of rendezvous points. + +# Information +links.pdf=/static/public/papers/KrishnamachariHeidemann_ApplicationModeling.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4d950ce891660af12700ce4c0ffaeb64f9be31ca +type=Conference Papers +year=2004 +paper_id=22b65fcd +ss_title=Application-specific modelling of information routing in wireless sensor networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '46351573', 'name': 'J. Heidemann'}] +ss_venue=IEEE International Conference on Performance, Computing, and Communications, 2004 +ss_year=2004 +ss_abstract=Sensor network applications have a diverse set of requirements - some involve extraction of sensor data to a single point, others exploit sensor-to-sensor communication; some employ long-lasting data streams while connections in others are mainly ephemeral. Different variants of the directed diffusion routing protocol - pull-based, push-based and hybrid rendezvous-based - have been developed, along with in-network processing and geographic routing techniques. We mathematically model and analyze the performance of these routing techniques across a range of application scenarios (with varying numbers of nodes, sources, sinks, data settings etc.). Besides quantifying the conditions under which the different routing algorithms outperform each other, we obtain a number of useful design insights. Our analysis shows that algorithms mismatched to applications can result in drastically poor performance; demonstrates the desirability of reducing flooded interest and exploratory messages when data aggregation is used; and suggests that it may be difficult to implement efficient hybrid schemes because their performance is very sensitive to the optimal placement of rendezvous points. +ss_paper_id=4d950ce891660af12700ce4c0ffaeb64f9be31ca \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_bayesian_algorithms_for_faulttolerant_event_region_detection_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_bayesian_algorithms_for_faulttolerant_event_region_detection_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..21a0bfa9ab64aa54142e75ad57897708dc11bdda --- /dev/null +++ b/database/original_documents/publications_text/2004_bayesian_algorithms_for_faulttolerant_event_region_detection_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Bayesian Algorithms for Fault-tolerant Event Region Detection in Wireless Sensor Networks +venue=IEEE Transactions on Computers, Vol. 53, No. 3, March 2004. [Some errors in this paper are indicated and corrected here.] +authors=['Bhaskar Krishnamachari', 'Sitharama Iyengar'] +abstract=We propose a distributed solution for a canonical task in wireless sensor networks - the binary detection of interesting environmental events. We explicitly take into account the possibility of sensor measurement faults and develop a distributed Bayesian algorithm for detecting and correcting such faults. Theoretical analysis and simulation results show that 85-95 percent of faults can be corrected using this algorithm, even when as many as 10 percent of the nodes are faulty. + +# Information +links.pdf=/static/public/papers/KrishnamachariIyengar_IEEETOC04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bcf65bd011458cd2f182f0ecf84e23cca66bab7e +type=Journal Papers +year=2004 +paper_id=33820cb5 +ss_title=Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144171208', 'name': 'S. Iyengar'}] +ss_venue=IEEE transactions on computers +ss_year=2004 +ss_abstract=We propose a distributed solution for a canonical task in wireless sensor networks - the binary detection of interesting environmental events. We explicitly take into account the possibility of sensor measurement faults and develop a distributed Bayesian algorithm for detecting and correcting such faults. Theoretical analysis and simulation results show that 85-95 percent of faults can be corrected using this algorithm, even when as many as 10 percent of the nodes are faulty. +ss_paper_id=bcf65bd011458cd2f182f0ecf84e23cca66bab7e \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_c2p2_a_peertopeer_network_for_ondemand_automobile_information_services.txt b/database/original_documents/publications_text/2004_c2p2_a_peertopeer_network_for_ondemand_automobile_information_services.txt new file mode 100644 index 0000000000000000000000000000000000000000..33d876169d3c9c67f9564a7b54c928e2ec85928c --- /dev/null +++ b/database/original_documents/publications_text/2004_c2p2_a_peertopeer_network_for_ondemand_automobile_information_services.txt @@ -0,0 +1,18 @@ +# Publication +title=C2P2: A Peer-to-Peer Network for On-Demand Automobile Information Services +venue=First International Workshop on Grid and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous Distributed Database Systems (GLOBE’04), Zaragoza, Spain, August 2004. +authors=['Shahram Ghandeharizadeh', 'Bhaskar Krishnamachari'] +abstract=This short work outlines challenges of delivering continuous media and traffic information to mobile car-to-car peer-to-peer (C2P2) network of devices. We analyze network connectivity of a C2P2 cloud as a function of radio range of each device. A novel concept introduced by C2P2 is on-demand delivery of continuous media, audio and video clips to moving vehicles. + +# Information +links.pdf=/static/public/papers/Ghandeharizadeh_S_C2P2.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/721d2f75647aca86040e9f49974979f7801a3ca7 +type=Conference Papers +year=2004 +paper_id=708a91fc +ss_title=C2P2: a peer-to-peer network for on-demand automobile information services +ss_authors=[{'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004. +ss_year=2004 +ss_abstract=This short work outlines challenges of delivering continuous media and traffic information to mobile car-to-car peer-to-peer (C2P2) network of devices. We analyze network connectivity of a C2P2 cloud as a function of radio range of each device. A novel concept introduced by C2P2 is on-demand delivery of continuous media, audio and video clips to moving vehicles. +ss_paper_id=721d2f75647aca86040e9f49974979f7801a3ca7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_decentralized_utilitybased_design_of_sensor_networks.txt b/database/original_documents/publications_text/2004_decentralized_utilitybased_design_of_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..fb34ade6232680940863e28737cca2be33655256 --- /dev/null +++ b/database/original_documents/publications_text/2004_decentralized_utilitybased_design_of_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Decentralized Utility-based Design of Sensor Networks +venue=WiOpt’04: Second Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, University of Cambridge, UK, March, 2004. +authors=['Narayanan Sadagopan', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/2004_11.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/73ca8156cc8d5218bc8d136fabd2fdd60c452dde +type=Conference Papers +year=2004 +paper_id=84b2e942 +ss_title=Decentralized Utility-based Sensor Network Design +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '2110430921', 'name': 'Mitali Singh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Mob. Networks Appl. +ss_year=2006 +ss_abstract=None +ss_paper_id=73ca8156cc8d5218bc8d136fabd2fdd60c452dde \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_distributed_online_localization_in_sensor_networks_using_a_moving_target.txt b/database/original_documents/publications_text/2004_distributed_online_localization_in_sensor_networks_using_a_moving_target.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e80b8316b0d09ab670b1043ce9fe4154821a78c --- /dev/null +++ b/database/original_documents/publications_text/2004_distributed_online_localization_in_sensor_networks_using_a_moving_target.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Online Localization in Sensor Networks Using a Moving Target +venue=ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN), April 26-27, Berkeley, CA 2004. +authors=['Aram Galstyan', 'Bhaskar Krishnamachari', 'Kristina Lerman', 'Sundeep Pattem'] +abstract=We describe a novel method for node localization in a sensor network where there are a fraction of reference nodes with known locations. For application-specific sensor networks, we argue that it makes sense to treat localization through online distributed learning and integrate it with an application task such as target tracking. We propose distributed online algorithm in which sensor nodes use geometric constraints induced by both radio connectivity and sensing to decrease the uncertainty of their position. The sensing constraints, which are caused by a commonly sensed moving target, are usually tighter than connectivity based constraints and lead to a decrease in average localization error over time. Different sensing models, such as radial binary detection and distance-bound estimation, are considered. First, we demonstrate our approach by studying a simple scenario in which a moving beacon broadcasts its own coordinates to the nodes in its vicinity. We then generalize this to the case when instead of a beacon, there is a moving target with a-priori unknown coordinates. The algorithms presented are fully distributed and assume only local information exchange between neighboring nodes. Our results indicate that the proposed method can be used to significantly enhance the accuracy in position estimation, even when the fraction of reference nodes is small. We compare the efficiency of the distributed algorithms to the case when node positions are estimated using centralized (convex) programming. Finally, simulations using the TinyOS-Nido platform are used to study the performance in more realistic scenarios. + +# Information +links.pdf=/static/public/papers/GalstyanKrishnamachariLermanPattem_IPSN04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/36e7ffc35a80743def7730a52a3d73ce59d73674 +type=Conference Papers +year=2004 +paper_id=5d0f219e +ss_title=Distributed online localization in sensor networks using a moving target +ss_authors=[{'authorId': '143728483', 'name': 'A. Galstyan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1782658', 'name': 'Kristina Lerman'}, {'authorId': '1697016', 'name': 'S. Pattem'}] +ss_venue=Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004 +ss_year=2004 +ss_abstract=We describe a novel method for node localization in a sensor network where there are a fraction of reference nodes with known locations. For application-specific sensor networks, we argue that it makes sense to treat localization through online distributed learning and integrate it with an application task such as target tracking. We propose distributed online algorithm in which sensor nodes use geometric constraints induced by both radio connectivity and sensing to decrease the uncertainty of their position. The sensing constraints, which are caused by a commonly sensed moving target, are usually tighter than connectivity based constraints and lead to a decrease in average localization error over time. Different sensing models, such as radial binary detection and distance-bound estimation, are considered. First, we demonstrate our approach by studying a simple scenario in which a moving beacon broadcasts its own coordinates to the nodes in its vicinity. We then generalize this to the case when instead of a beacon, there is a moving target with a-priori unknown coordinates. The algorithms presented are fully distributed and assume only local information exchange between neighboring nodes. Our results indicate that the proposed method can be used to significantly enhance the accuracy in position estimation, even when the fraction of reference nodes is small. We compare the efficiency of the distributed algorithms to the case when node positions are estimated using centralized (convex) programming. Finally, simulations using the TinyOS-Nido platform are used to study the performance in more realistic scenarios. +ss_paper_id=36e7ffc35a80743def7730a52a3d73ce59d73674 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_distributed_parameter_estimation_for_monitoring_diffusion_phenomena_using_physical_models.txt b/database/original_documents/publications_text/2004_distributed_parameter_estimation_for_monitoring_diffusion_phenomena_using_physical_models.txt new file mode 100644 index 0000000000000000000000000000000000000000..8f8113bdcb3dc07d57fe6b836bd1ab2b87cb5f72 --- /dev/null +++ b/database/original_documents/publications_text/2004_distributed_parameter_estimation_for_monitoring_diffusion_phenomena_using_physical_models.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Parameter Estimation for Monitoring Diffusion Phenomena Using Physical Models +venue=First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004. [Highly Competitive, Acceptance rate: only 68 papers from 358 submissions]. +authors=['Lorenzo Rossi', 'Bhaskar Krishnamachari', 'CC Jay Kuo'] +abstract=In this work, we address the problem of estimating parameters of diffusion phenomena via autonomous wireless sensor networks. Diffusion phenomena, such as the propagation of a gas in the air or of a chemical agent in the water, can be modeled by means of partial differential equations (PDE's). In several scenarios, the parameters characterizing such models, i.e. the coefficients of the PDE's, are not known a-priori and need to be estimated. We develop an adaptive approach for the distributed identification of the parameters of diffusion models for both the cases of known and unknown boundary conditions (BCs). The technique also applies to the case of spatially varying parameters. We present simulation results to show the performance and the various trade-offs of the method. + +# Information +links.pdf=None +links.semantic_scholar=https://www.semanticscholar.org/paper/4d7ec134ca443f60483ef5171a6e067468b16164 +type=Conference Papers +year=2004 +paper_id=3761cb72 +ss_title=Distributed parameter estimation for monitoring diffusion phenomena using physical models +ss_authors=[{'authorId': '1701017', 'name': 'Lorenzo A. Rossi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. +ss_year=2004 +ss_abstract=In this work, we address the problem of estimating parameters of diffusion phenomena via autonomous wireless sensor networks. Diffusion phenomena, such as the propagation of a gas in the air or of a chemical agent in the water, can be modeled by means of partial differential equations (PDE's). In several scenarios, the parameters characterizing such models, i.e. the coefficients of the PDE's, are not known a-priori and need to be estimated. We develop an adaptive approach for the distributed identification of the parameters of diffusion models for both the cases of known and unknown boundary conditions (BCs). The technique also applies to the case of spatially varying parameters. We present simulation results to show the performance and the various trade-offs of the method. +ss_paper_id=4d7ec134ca443f60483ef5171a6e067468b16164 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_election_energyefficient_and_lowlatency_scheduling_technique_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_election_energyefficient_and_lowlatency_scheduling_technique_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..85cbd7ededb6b179f4ecc420931e881da09a16b3 --- /dev/null +++ b/database/original_documents/publications_text/2004_election_energyefficient_and_lowlatency_scheduling_technique_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=ELECTION: Energy-efficient and Low-latEncy sCheduling Technique for wIreless sensOr Networks +venue=The 29th Annual IEEE Conference on Local Computer Networks (LCN), Tampa, FL, November 2004. +authors=['Shamim Begum', 'Shaocheng Wang', 'Bhaskar Krishnamachari', 'Ahmed Helmy'] +abstract=We propose ELECTION, a new sleep scheduling scheme that adaptively schedules the sleep cycles of both communication radios and sensors in wireless active sensor networks. Taking advantage of spatial and temporal correlations in the underlying physical phenomenon, our scheme controls sleeping schedules of radios and sensors, and adaptively meets the energy efficiency, latency and responsiveness needs of applications. During the normal phase of operation, sensors take samples of the environment once at each wakeup time, and based on the perceived environment they adapt their sleep cycles. When an abnormality is perceived from the sampled data, sensors communicate with their neighbors to form a cluster and report to the base station. Analysis and simulation results show that ELECTION outperforms existing protocols significantly in terms of energy savings as well as delay and responsiveness. + +# Information +links.pdf=/static/public/papers/2004_14.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4afdd6edaa61e4194f8adbfa1612641fb6b1250e +type=Conference Papers +year=2004 +paper_id=6f80e8c7 +ss_title=ELECTION: energy-efficient and low-latency scheduling technique for wireless sensor networks +ss_authors=[{'authorId': '116376592', 'name': 'S. Begum'}, {'authorId': '2117147497', 'name': 'Shao-Cheng Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue=29th Annual IEEE International Conference on Local Computer Networks +ss_year=2004 +ss_abstract=We propose ELECTION, a new sleep scheduling scheme that adaptively schedules the sleep cycles of both communication radios and sensors in wireless active sensor networks. Taking advantage of spatial and temporal correlations in the underlying physical phenomenon, our scheme controls sleeping schedules of radios and sensors, and adaptively meets the energy efficiency, latency and responsiveness needs of applications. During the normal phase of operation, sensors take samples of the environment once at each wakeup time, and based on the perceived environment they adapt their sleep cycles. When an abnormality is perceived from the sampled data, sensors communicate with their neighbors to form a cluster and report to the base station. Analysis and simulation results show that ELECTION outperforms existing protocols significantly in terms of energy savings as well as delay and responsiveness. +ss_paper_id=4afdd6edaa61e4194f8adbfa1612641fb6b1250e \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_energy_efficient_forwarding_strategies_for_geographic_routing_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_energy_efficient_forwarding_strategies_for_geographic_routing_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..99fd1f26d627c1e58f8e65862a042154ab750d0a --- /dev/null +++ b/database/original_documents/publications_text/2004_energy_efficient_forwarding_strategies_for_geographic_routing_in_wireless_sensor_networks.txt @@ -0,0 +1,20 @@ +# Publication +title=Energy Efficient Forwarding Strategies for Geographic Routing in Wireless Sensor Networks +venue=2nd ACM Conference on Embedded Networked Sensor Systems (Sensys), November 2004. [Highly Competitive, Acceptance rate: only 21 from 145 submissions] +authors=['Karim Seada', 'Marco Zuniga', 'Ahmed Helmy', 'Bhaskar Krishnamachari'] +abstract=Recent experimental studies have shown that wireless links in real sensor networks can be extremely unreliable, deviating to a large extent from the idealized perfect-reception-within-range models used in common network simulation tools. Previously proposed geographic routing protocols commonly employ a maximum-distance greedy forwarding technique that works well in ideal conditions. However, such a forwarding technique performs poorly in realistic conditions as it tends to forward packets on lossy links. We identify and illustrate this weak-link problem and the related distance-hop trade-off, whereby energy efficient geographic forwarding must strike a balance between shorter, high-quality links, and longer lossy links. The study is done for scenarios with and without automatic repeat request (ARQ). + Based on an analytical link loss model, we study the distance-hop trade-off via mathematical analysis and extensive simulations of a wide array of blacklisting/link-selection strategies; we also validate some strategies using a set of real experiments on motes. Our analysis, simulations and experiments all show that the product of the packet reception rate (PRR) and the distance traversed towards destination is the optimal forwarding metric for the ARQ case, and is a good metric even without ARQ. Nodes using this metric often take advantage of neighbors in the transitional region (high-variance links). Our results also show that reception-based forwarding strategies are more efficient than purely distance-based strategies; relative blacklisting schemes reduce disconnections and achieve higher delivery rates than absolute blacklisting schemes; and that ARQ schemes become more important in larger networks. + +# Information +links.pdf=/static/public/papers/SeadaZunigaKrishnamachariHelmy_Sensys04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a8267bbc19a45ac1778c1fac1976462f1b3ba332 +type=Conference Papers +year=2004 +paper_id=4689fd4d +ss_title=Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks +ss_authors=[{'authorId': '1734047', 'name': 'K. Seada'}, {'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '145483017', 'name': 'A. Helmy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM International Conference on Embedded Networked Sensor Systems +ss_year=2004 +ss_abstract=Recent experimental studies have shown that wireless links in real sensor networks can be extremely unreliable, deviating to a large extent from the idealized perfect-reception-within-range models used in common network simulation tools. Previously proposed geographic routing protocols commonly employ a maximum-distance greedy forwarding technique that works well in ideal conditions. However, such a forwarding technique performs poorly in realistic conditions as it tends to forward packets on lossy links. We identify and illustrate this weak-link problem and the related distance-hop trade-off, whereby energy efficient geographic forwarding must strike a balance between shorter, high-quality links, and longer lossy links. The study is done for scenarios with and without automatic repeat request (ARQ). + Based on an analytical link loss model, we study the distance-hop trade-off via mathematical analysis and extensive simulations of a wide array of blacklisting/link-selection strategies; we also validate some strategies using a set of real experiments on motes. Our analysis, simulations and experiments all show that the product of the packet reception rate (PRR) and the distance traversed towards destination is the optimal forwarding metric for the ARQ case, and is a good metric even without ARQ. Nodes using this metric often take advantage of neighbors in the transitional region (high-variance links). Our results also show that reception-based forwarding strategies are more efficient than purely distance-based strategies; relative blacklisting schemes reduce disconnections and achieve higher delivery rates than absolute blacklisting schemes; and that ARQ schemes become more important in larger networks. +ss_paper_id=a8267bbc19a45ac1778c1fac1976462f1b3ba332 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_energylatency_tradeoffs_for_data_gathering_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_energylatency_tradeoffs_for_data_gathering_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..8e0301f6e5bcc372ec1bbe1b0f8ad21703fad6f1 --- /dev/null +++ b/database/original_documents/publications_text/2004_energylatency_tradeoffs_for_data_gathering_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-Latency Tradeoffs for Data Gathering in Wireless Sensor Networks +venue=IEEE Infocom, Hong Kong, March 2004. [Highly Competitive, Acceptance Rate: 261 of 1420 submissions]. +authors=['Yang Yu', 'Bhaskar Krishnamachari', 'Viktor K Prasanna'] +abstract=We study the problem of scheduling packet transmissions for data gathering in wireless sensor networks. The focus is to explore the energy-latency tradeoffs in wireless communication using techniques such as modulation scaling. The data aggregation tree - a multiple-source single-sink communication paradigm - is employed for abstracting the packet flow. We consider a real-time scenario where the data gathering must be performed within a specified latency constraint. We present algorithms to minimize the overall energy dissipation of the sensor nodes in the aggregation tree subject to the latency constraint. For the off-line problem, we propose (a) a numerical algorithm for the optimal solution, and (h) a pseudo-polynomial time approximation algorithm based on dynamic programming. We also discuss techniques for handling interference among the sensor nodes. Simulations have been conducted for both long-range communication and short-range communication. The simulation results show that compared with the classic shutdown technique, between 20% to 90% energy savings can be achieved by our techniques, under different settings of several key system parameters. We also develop an on-line distributed protocol that relies only on the local information available at each sensor node within the aggregation tree. Simulation results show that between 15% to 90% energy conservation can be achieved by the on-line protocol. The adaptability of the protocol with respect to variations in the packet size and latency constraint is also demonstrated through several run-time scenarios. + +# Information +links.pdf=http://anrg.usc.edu/www/papers/2004_12.ps +links.semantic_scholar=https://www.semanticscholar.org/paper/aabb38634d329a5f554cfedc41fb881acf40742b +type=Conference Papers +year=2004 +paper_id=30487cf1 +ss_title=Energy-latency tradeoffs for data gathering in wireless sensor networks +ss_authors=[{'authorId': '2152845619', 'name': 'Yang Yu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1728271', 'name': 'V. Prasanna'}] +ss_venue=IEEE INFOCOM 2004 +ss_year=2004 +ss_abstract=We study the problem of scheduling packet transmissions for data gathering in wireless sensor networks. The focus is to explore the energy-latency tradeoffs in wireless communication using techniques such as modulation scaling. The data aggregation tree - a multiple-source single-sink communication paradigm - is employed for abstracting the packet flow. We consider a real-time scenario where the data gathering must be performed within a specified latency constraint. We present algorithms to minimize the overall energy dissipation of the sensor nodes in the aggregation tree subject to the latency constraint. For the off-line problem, we propose (a) a numerical algorithm for the optimal solution, and (h) a pseudo-polynomial time approximation algorithm based on dynamic programming. We also discuss techniques for handling interference among the sensor nodes. Simulations have been conducted for both long-range communication and short-range communication. The simulation results show that compared with the classic shutdown technique, between 20% to 90% energy savings can be achieved by our techniques, under different settings of several key system parameters. We also develop an on-line distributed protocol that relies only on the local information available at each sensor node within the aggregation tree. Simulation results show that between 15% to 90% energy conservation can be achieved by the on-line protocol. The adaptability of the protocol with respect to variations in the packet size and latency constraint is also demonstrated through several run-time scenarios. +ss_paper_id=aabb38634d329a5f554cfedc41fb881acf40742b \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_experimental_study_of_the_effects_of_transmission_power_control_and_blacklisting_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_experimental_study_of_the_effects_of_transmission_power_control_and_blacklisting_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c538ce0e3305b7f7e267f2904fa120a74937ac81 --- /dev/null +++ b/database/original_documents/publications_text/2004_experimental_study_of_the_effects_of_transmission_power_control_and_blacklisting_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Experimental study of the effects of Transmission Power Control and Blacklisting in Wireless Sensor Networks +venue=First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004. +authors=['Dongjin Son', 'Bhaskar Krishnamachari', 'John Heidemann'] +abstract=We experimentally investigate the impact of variable transmission power on link quality, and propose variable power link quality control techniques to enhance the performance of data delivery in wireless sensor networks. This study extends the state of the art in two key respects: first, while there are a number of previous results on power control techniques for wireless ad hoc and sensor networks, to our knowledge, nearly all of them have been simulated and analytically studied that assumes the idealized link conditions; second, while there are several recent experimental studies that have shown the prevalence of non-ideal unreliable communication links in sensor networks, the paper has not thoroughly investigated the impact of variable transmission power. We perform a systematic set of experiments to analyze how the transmission power changes affect the quality of low power RF wireless links between nodes. These experiments show how significant variation in link qualities occur in real-world deployments and how these effects strongly influence the effectiveness of transmission power control. We then present a packet-based transmission power control mechanism that incorporates blacklisting to enhance link reliability while minimizing interference. The effectiveness of the proposed scheme is demonstrated via test bed experiments. + +# Information +links.pdf=/static/public/papers/secon-pcbl.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a5d3a72d094a927875fec288366a19a095e252a4 +type=Conference Papers +year=2004 +paper_id=30f7fbcd +ss_title=Experimental study of the effects of transmission power control and blacklisting in wireless sensor networks +ss_authors=[{'authorId': '1760388', 'name': 'Dongjin Son'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '46351573', 'name': 'J. Heidemann'}] +ss_venue=2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. +ss_year=2004 +ss_abstract=We experimentally investigate the impact of variable transmission power on link quality, and propose variable power link quality control techniques to enhance the performance of data delivery in wireless sensor networks. This study extends the state of the art in two key respects: first, while there are a number of previous results on power control techniques for wireless ad hoc and sensor networks, to our knowledge, nearly all of them have been simulated and analytically studied that assumes the idealized link conditions; second, while there are several recent experimental studies that have shown the prevalence of non-ideal unreliable communication links in sensor networks, the paper has not thoroughly investigated the impact of variable transmission power. We perform a systematic set of experiments to analyze how the transmission power changes affect the quality of low power RF wireless links between nodes. These experiments show how significant variation in link qualities occur in real-world deployments and how these effects strongly influence the effectiveness of transmission power control. We then present a packet-based transmission power control mechanism that incorporates blacklisting to enhance link reliability while minimizing interference. The effectiveness of the proposed scheme is demonstrated via test bed experiments. +ss_paper_id=a5d3a72d094a927875fec288366a19a095e252a4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_hybrid_data_and_decision_fusion_techniques_for_modelbased_data_gathering_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_hybrid_data_and_decision_fusion_techniques_for_modelbased_data_gathering_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c7e5b9366781d040afd75bb4e5a16aaae1ba8076 --- /dev/null +++ b/database/original_documents/publications_text/2004_hybrid_data_and_decision_fusion_techniques_for_modelbased_data_gathering_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Hybrid Data and Decision Fusion Techniques for Model-Based Data Gathering in Wireless Sensor Networks +venue=IEEE Vehicular Technology Conference (VTC Fall ’04), September 2004. +authors=['Lorenzo Rossi', 'Bhaskar Krishnamachari', 'C-C Jay Kuo'] +abstract=The data gathering problem in wireless sensor networks for environmental monitoring, where the physical phenomena can be modeled by partial differential equations (PDE's), is investigated. Under this context, it suffices for the sensor network to update the base station with estimates of model parameters rather than transmitting raw sensor measurements. In-network processing techniques to estimate the PDE coefficients are presented. A scheme that provides a hybrid combination of decision and data fusion is proposed to find a tradeoff between performance and energy efficiency. The role that the assumptions of PDE models can play in designing such methods is investigated. + +# Information +links.pdf=/static/public/papers/VTC2004FallLR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1dba98b68c2ccb6f527ed17d115254524a78245b +type=Conference Papers +year=2004 +paper_id=b2725701 +ss_title=Hybrid Data and Decision Fusion Techniques for Model-Based Data Gathering in Wireless Sensor Networks +ss_authors=[{'authorId': '1701017', 'name': 'Lorenzo A. Rossi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 +ss_year=2004 +ss_abstract=The data gathering problem in wireless sensor networks for environmental monitoring, where the physical phenomena can be modeled by partial differential equations (PDE's), is investigated. Under this context, it suffices for the sensor network to update the base station with estimates of model parameters rather than transmitting raw sensor measurements. In-network processing techniques to estimate the PDE coefficients are presented. A scheme that provides a hybrid combination of decision and data fusion is proposed to find a tradeoff between performance and energy efficiency. The role that the assumptions of PDE models can play in designing such methods is investigated. +ss_paper_id=1dba98b68c2ccb6f527ed17d115254524a78245b \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_impact_of_heterogeneous_deployment_on_lifetime_sensing_coverage_in_sensor_networks.txt b/database/original_documents/publications_text/2004_impact_of_heterogeneous_deployment_on_lifetime_sensing_coverage_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..024dc3b618acf2c6fd06b4884bf9d01bb0b81c06 --- /dev/null +++ b/database/original_documents/publications_text/2004_impact_of_heterogeneous_deployment_on_lifetime_sensing_coverage_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Impact of Heterogeneous Deployment on Lifetime Sensing Coverage in Sensor Networks +venue=First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004.[Highly Competitive, Acceptance rate: only 68 papers from 358 submissions]. +authors=['Jae-Joon Lee', 'Bhaskar Krishnamachari', 'CC Jay Kuo'] +abstract=While most research on wireless sensor networks have focused on the deployment of large numbers of cheap homogeneous sensor devices, in practical settings, it is often feasible to consider heterogeneous deployments of devices with different capabilities. Under the prescribed cost constraints, we analyze such heterogeneous deployments both mathematically and through simulations, and show how they impact the coverage aging process of a sensor network, i.e., how it degrades over time as some nodes become energy-depleted. We derive expressions for the heterogeneous mixture of devices that optimizes the lifetime sensing coverage in a single-hop direct communication model. We then investigate a multi-hop communication model through simulations, and examine the impact of heterogeneity on lifetime sensing coverage and coverage aging both with and without data aggregation. Our results show that using an optimal mixture of many inexpensive low-capability devices and some expensive high-capability devices can significantly extend the duration of a network's sensing performance. + +# Information +links.pdf=/static/public/papers/leeKrishnamachariKuo_Secon04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bbcbc6824e153ba8439ebd8449baab0ef028d147 +type=Conference Papers +year=2004 +paper_id=cd5f9ba9 +ss_title=Impact of heterogeneous deployment on lifetime sensing coverage in sensor networks +ss_authors=[{'authorId': '2108395405', 'name': 'Jae-Joon Lee'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. +ss_year=2004 +ss_abstract=While most research on wireless sensor networks have focused on the deployment of large numbers of cheap homogeneous sensor devices, in practical settings, it is often feasible to consider heterogeneous deployments of devices with different capabilities. Under the prescribed cost constraints, we analyze such heterogeneous deployments both mathematically and through simulations, and show how they impact the coverage aging process of a sensor network, i.e., how it degrades over time as some nodes become energy-depleted. We derive expressions for the heterogeneous mixture of devices that optimizes the lifetime sensing coverage in a single-hop direct communication model. We then investigate a multi-hop communication model through simulations, and examine the impact of heterogeneity on lifetime sensing coverage and coverage aging both with and without data aggregation. Our results show that using an optimal mixture of many inexpensive low-capability devices and some expensive high-capability devices can significantly extend the duration of a network's sensing performance. +ss_paper_id=bbcbc6824e153ba8439ebd8449baab0ef028d147 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_issues_in_designing_middleware_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_issues_in_designing_middleware_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..338d50dacf1fcdc96a1f1d28f863dbf8538c1d1e --- /dev/null +++ b/database/original_documents/publications_text/2004_issues_in_designing_middleware_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Issues in Designing Middleware for Wireless Sensor Networks +venue=IEEE Network Magazine, January 2004. +authors=['Yang Yu', 'Bhaskar Krishnamachari', 'Viktor K Prasanna'] +abstract=Wireless sensor networks are being developed for a variety of applications. With the continuing advances in network and application design, appropriate middleware is needed to provide both standardized and portable system abstractions, and the capability to support and coordinate concurrent applications on sensor networks. In this article, we first identify several design principles for such middleware. These principles motivate a cluster-based lightweight middleware framework that separates application semantics from the underlying hardware, operating system, and network infrastructure. We propose a layered architecture for each cluster that consists of a cluster control layer and a resource management layer. Key design issues and related challenges within this framework that deserve further investigation are outlined. Finally, we discuss a technique for energy-efficient resource allocation in a single-hop cluster, which serves as a basic primitive for the development of the resource management layer. + +# Information +links.pdf=/static/public/papers/YuKrishnamachariPrasanna_middleware.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5bd742cdf6f5e93e645152450f073fe3389d5c47 +type=Journal Papers +year=2004 +paper_id=0dc70d38 +ss_title=Issues in designing middleware for wireless sensor networks +ss_authors=[{'authorId': '2152845619', 'name': 'Yang Yu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1728271', 'name': 'V. Prasanna'}] +ss_venue=IEEE Network +ss_year=2004 +ss_abstract=Wireless sensor networks are being developed for a variety of applications. With the continuing advances in network and application design, appropriate middleware is needed to provide both standardized and portable system abstractions, and the capability to support and coordinate concurrent applications on sensor networks. In this article, we first identify several design principles for such middleware. These principles motivate a cluster-based lightweight middleware framework that separates application semantics from the underlying hardware, operating system, and network infrastructure. We propose a layered architecture for each cluster that consists of a cluster control layer and a resource management layer. Key design issues and related challenges within this framework that deserve further investigation are outlined. Finally, we discuss a technique for energy-efficient resource allocation in a single-hop cluster, which serves as a basic primitive for the development of the resource management layer. +ss_paper_id=5bd742cdf6f5e93e645152450f073fe3389d5c47 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_learning_enforced_time_domain_routing_to_mobile_sinks_in_wireless_sensor_fields.txt b/database/original_documents/publications_text/2004_learning_enforced_time_domain_routing_to_mobile_sinks_in_wireless_sensor_fields.txt new file mode 100644 index 0000000000000000000000000000000000000000..741ea62211850fc041f46be338876466491b9a40 --- /dev/null +++ b/database/original_documents/publications_text/2004_learning_enforced_time_domain_routing_to_mobile_sinks_in_wireless_sensor_fields.txt @@ -0,0 +1,18 @@ +# Publication +title=Learning Enforced Time Domain Routing to Mobile Sinks in Wireless Sensor Fields +venue=First IEEE Workshop on Embedded Networked Sensors (EmNetS-I), held in conjunction with IEEE LCN, Tampa, FL, November 2004. [Highly Competitive, Acceptance rate: only 12 full papers from 56 submissions] +authors=['Pritam Baruah', 'Rahul Urgaonkar', 'Bhaskar Krishnamachari'] +abstract=We propose a learning-based approach to efficiently and reliably route data to a mobile sink in a wireless sensor field. Specifically, we consider a mobile sink that does not know when to query or does not need to query. Furthermore, the sink moves in a certain pattern within the sensor field. Such a sink passively listens for incoming data that distant source sensors unilaterally push towards it. Unlike traditional routing mechanisms, our technique takes the time-domain explicitly into account, with each node involved making the decision "at this time what is the best way to forward the packet to the sink?". In the presented scheme, motes (nodes in the vicinity of the sink) learn its movement pattern over time and statistically characterize it as a probability distribution function. Having obtained this information at the motes, our scheme uses reinforcement learning to locate the sink efficiently at any point of time. + +# Information +links.pdf=/static/public/papers/AnalyzingTransitionalRegion_ZunigaKrishnamachari_JournalVersion.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1dae51e4a40821592dd8f8856190d6886f72ba25 +type=Conference Papers +year=2004 +paper_id=a4927af9 +ss_title=Learning-enforced time domain routing to mobile sinks in wireless sensor fields +ss_authors=[{'authorId': '3143739', 'name': 'Pritam Baruah'}, {'authorId': '1749756', 'name': 'Rahul Urgaonkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=29th Annual IEEE International Conference on Local Computer Networks +ss_year=2004 +ss_abstract=We propose a learning-based approach to efficiently and reliably route data to a mobile sink in a wireless sensor field. Specifically, we consider a mobile sink that does not know when to query or does not need to query. Furthermore, the sink moves in a certain pattern within the sensor field. Such a sink passively listens for incoming data that distant source sensors unilaterally push towards it. Unlike traditional routing mechanisms, our technique takes the time-domain explicitly into account, with each node involved making the decision "at this time what is the best way to forward the packet to the sink?". In the presented scheme, motes (nodes in the vicinity of the sink) learn its movement pattern over time and statistically characterize it as a probability distribution function. Having obtained this information at the motes, our scheme uses reinforcement learning to locate the sink efficiently at any point of time. +ss_paper_id=1dae51e4a40821592dd8f8856190d6886f72ba25 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_maximizing_data_extraction_in_energylimited_sensor_networks.txt b/database/original_documents/publications_text/2004_maximizing_data_extraction_in_energylimited_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..adaf937666c4b37892f2b64ce9781e81bad67feb --- /dev/null +++ b/database/original_documents/publications_text/2004_maximizing_data_extraction_in_energylimited_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Maximizing Data Extraction in Energy-Limited Sensor Networks +venue=IEEE Infocom, Hong Kong, March 2004. [Highly Competitive, Acceptance Rate: 261 of 1420 submissions]. +authors=['Narayanan Sadagopan', 'Bhaskar Krishnamachari'] +abstract=We examine the problem of maximizing data collection from an energy-limited store-and-extract wireless sensor network, which is analogous to the maximum lifetime problem of interest in continuous data-gathering sensor networks. One significant difference is that this problem requires attention to “data-awareness” in addition to “energy-awareness”. We formulate the maximum data extraction problem as a linear program and present a 1 + ω iterative approximation algorithm for it. As a practical distributed implementation we develop a faster greedy heuristic for this problem that uses an exponential metric based on the approximation algorithm. We then show through simulation results that the greedy heuristic incorporating this exponential metric performs near-optimally (within 1 to 10% of optimal, with low overhead) and significantly better than other energy aware routing approaches (developed mainly through intuition), particularly when nodes are heterogeneous in their energy and data availability. + +# Information +links.pdf=/static/public/papers/2004_13.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a334a7f25950926fe1404f1ed3a310ae9e863fba +type=Conference Papers +year=2004 +paper_id=16c4db07 +ss_title=Maximizing Data Extraction in Energy-Limited Sensor Networks +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE INFOCOM 2004 +ss_year=2004 +ss_abstract=We examine the problem of maximizing data collection from an energy-limited store-and-extract wireless sensor network, which is analogous to the maximum lifetime problem of interest in continuous data-gathering sensor networks. One significant difference is that this problem requires attention to “data-awareness” in addition to “energy-awareness”. We formulate the maximum data extraction problem as a linear program and present a 1 + ω iterative approximation algorithm for it. As a practical distributed implementation we develop a faster greedy heuristic for this problem that uses an exponential metric based on the approximation algorithm. We then show through simulation results that the greedy heuristic incorporating this exponential metric performs near-optimally (within 1 to 10% of optimal, with low overhead) and significantly better than other energy aware routing approaches (developed mainly through intuition), particularly when nodes are heterogeneous in their energy and data availability. +ss_paper_id=a334a7f25950926fe1404f1ed3a310ae9e863fba \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_maxmin_fair_collisionfree_scheduling_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_maxmin_fair_collisionfree_scheduling_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..ea942809c77b68b970bf7892f971e9967e56466d --- /dev/null +++ b/database/original_documents/publications_text/2004_maxmin_fair_collisionfree_scheduling_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Max-Min Fair Collision-Free Scheduling for Wireless Sensor Networks +venue=Workshop on Multihop Wireless Networks (MWN’04) held in conjunction with the IEEE International Performance Computing and Communications Conference (IPCCC), April 2004. +authors=['Avinash Sridharan', 'Bhaskar Krishnamachari'] +abstract=When the data rates in sensor networks are comparable to the available channel bandwidth, traditional randomized access schemes face the problem of energy inefficiency and reduced throughput due to increased MAC collisions as well as the problem of unfair data delivery. We argue that under such conditions it is preferable to focus on techniques for scheduled access. We present a linear programming formulation and corresponding distributed TDMA-based scheduling algorithms to provide max-min fair collision-free bandwidth allocation to all sources. We evaluate the performance of the proposed scheduled flow technique using the Tossim/Nido network simulator for the Berkeley Mote/TinyOS platform. Our results show that under high data rate conditions, the proposed scheme significantly outperforms randomized access based schemes in terms of key metrics such as fairness, energy efficiency, throughput, and delay. + +# Information +links.pdf=/static/public/papers/SridharanKrishnamachari_MWN_IPCCC04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3d9f08a296d657b0daaf2e21ef2e7ea8a43daddd +type=Conference Papers +year=2004 +paper_id=d91d4604 +ss_title=Max-min fair collision-free scheduling for wireless sensor networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE International Conference on Performance, Computing, and Communications, 2004 +ss_year=2004 +ss_abstract=When the data rates in sensor networks are comparable to the available channel bandwidth, traditional randomized access schemes face the problem of energy inefficiency and reduced throughput due to increased MAC collisions as well as the problem of unfair data delivery. We argue that under such conditions it is preferable to focus on techniques for scheduled access. We present a linear programming formulation and corresponding distributed TDMA-based scheduling algorithms to provide max-min fair collision-free bandwidth allocation to all sources. We evaluate the performance of the proposed scheduled flow technique using the Tossim/Nido network simulator for the Berkeley Mote/TinyOS platform. Our results show that under high data rate conditions, the proposed scheme significantly outperforms randomized access based schemes in terms of key metrics such as fairness, energy efficiency, throughput, and delay. +ss_paper_id=3d9f08a296d657b0daaf2e21ef2e7ea8a43daddd \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_modeling_path_duration_distributions_in_manets_and_their_impact_on_reactive_manet_routing_protocols.txt b/database/original_documents/publications_text/2004_modeling_path_duration_distributions_in_manets_and_their_impact_on_reactive_manet_routing_protocols.txt new file mode 100644 index 0000000000000000000000000000000000000000..23ccd168b3a24241cff4d2be9fb57b7809b82fb1 --- /dev/null +++ b/database/original_documents/publications_text/2004_modeling_path_duration_distributions_in_manets_and_their_impact_on_reactive_manet_routing_protocols.txt @@ -0,0 +1,18 @@ +# Publication +title=Modeling Path Duration Distributions in MANETs and their Impact on Reactive MANET Routing Protocols +venue=IEEE Journal on Selected Areas in Communications, Quality of Service Delivery in Variable Topology Networks, Vol. 22, No. 7, pp. 1357-1373, September 2004. +authors=['Fan Bai', 'Narayanan Sadagopan', 'Bhaskar Krishnamachari', 'Ahmed Helmy'] +abstract=We develop a detailed approach to study how mobility impacts the performance of reactive mobile ad hoc network routing protocols. In particular, we examine how the statistics of path durations including probability density functions vary with the parameters such as the mobility model, relative speed, number of hops, and radio range. We find that at low speeds, certain mobility models may induce multimodal distributions that reflect the characteristics of the spatial map, mobility constraints and the communicating traffic pattern. However, this paper suggests that at moderate and high velocities the exponential distribution with appropriate parameterizations is a good approximation of the path duration distribution for a range of mobility models. Analytically, we show that the reciprocal of the average path duration has a strong linear relationship with the throughput and overhead of dynamic source routing (DSR), which is also confirmed by simulation results. In addition, we show how the mathematical expression obtained for the path duration distribution can also be used to prove that the nonpropagating cache hit ratio in DSR is independent of velocity for the freeway mobility model. These two case studies illustrate how various aspects of protocol performance can be analyzed with respect to a number of significant parameters including the statistics of link and path durations. + +# Information +links.pdf=/static/public/papers/paths-jsac-journal.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fca31da5b6d833bd84b1f0e2a871ceb9fccc78c6 +type=Journal Papers +year=2004 +paper_id=ec673ed7 +ss_title=Modeling path duration distributions in MANETs and their impact on reactive routing protocols +ss_authors=[{'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue=IEEE Journal on Selected Areas in Communications +ss_year=2004 +ss_abstract=We develop a detailed approach to study how mobility impacts the performance of reactive mobile ad hoc network routing protocols. In particular, we examine how the statistics of path durations including probability density functions vary with the parameters such as the mobility model, relative speed, number of hops, and radio range. We find that at low speeds, certain mobility models may induce multimodal distributions that reflect the characteristics of the spatial map, mobility constraints and the communicating traffic pattern. However, this paper suggests that at moderate and high velocities the exponential distribution with appropriate parameterizations is a good approximation of the path duration distribution for a range of mobility models. Analytically, we show that the reciprocal of the average path duration has a strong linear relationship with the throughput and overhead of dynamic source routing (DSR), which is also confirmed by simulation results. In addition, we show how the mathematical expression obtained for the path duration distribution can also be used to prove that the nonpropagating cache hit ratio in DSR is independent of velocity for the freeway mobility model. These two case studies illustrate how various aspects of protocol performance can be analyzed with respect to a number of significant parameters including the statistics of link and path durations. +ss_paper_id=fca31da5b6d833bd84b1f0e2a871ceb9fccc78c6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_networked_sensing_for_structural_health_monitoring.txt b/database/original_documents/publications_text/2004_networked_sensing_for_structural_health_monitoring.txt new file mode 100644 index 0000000000000000000000000000000000000000..6933ae1464dd0610b99fe8ea7e47c1945b7d25e1 --- /dev/null +++ b/database/original_documents/publications_text/2004_networked_sensing_for_structural_health_monitoring.txt @@ -0,0 +1,18 @@ +# Publication +title=Networked Sensing for Structural Health Monitoring +venue=In 4th International Workshop on Structural Control, Columbia University, New York, June 2004. +authors=['John Caffrey', 'Ramesh Govindan', 'Erik Johnson', 'Bhaskar Krishnamachari', 'Sami Masri', 'Gaurav S Sukhatme', 'Krishna K Chintalapudi', 'Karthik Dantu', 'Sumit Rangwala', 'Avinash Sridharan', 'Ning Xu', 'Marco Zuniga'] +abstract=This paper describes an ongoing project investigating embedded networked sensing for structural health monitoring applications. The vision is of many low-power sensor “motes” embedded throughout the structure with a smaller number of nodes that can provide local excitation. The challenge is to develop both the networking algorithms to reliably communicate within the network, and distributed algorithms to monitor the state of the structure. A wireless data acquisition network is described, including the methods of storing and transmitting the data. A damage detection scheme is described that uses extremely low transmission bandwidth, and is shown to be effective in detecting damage in a simulated structure. Finally, a large-scale structural testbed that is being used for this project is described. The outcome of this work-in-progress is expected to be strong recommendations and algorithms for distributed wireless sensor/actuator structural health monitoring networks. + +# Information +links.pdf=/static/public/papers/421.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/045db6b37f09c125aa8e20874311ea62fe91ab59 +type=Conference Papers +year=2004 +paper_id=0a81f3f1 +ss_title=Networked Sensing for Structural Health Monitoring +ss_authors=[{'authorId': '5137426', 'name': 'J. Caffrey'}, {'authorId': '1747970', 'name': 'R. Govindan'}, {'authorId': '2148773657', 'name': 'Erik A. Johnson'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1976050', 'name': 'S. Masri'}, {'authorId': '1732493', 'name': 'G. Sukhatme'}, {'authorId': '1751888', 'name': 'K. Chintalapudi'}, {'authorId': '3119495', 'name': 'K. Dantu'}, {'authorId': '3330134', 'name': 'S. Rangwala'}, {'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '145857599', 'name': 'N. Xu'}, {'authorId': '145662238', 'name': 'M. Zúñiga'}] +ss_venue= +ss_year=2004 +ss_abstract=This paper describes an ongoing project investigating embedded networked sensing for structural health monitoring applications. The vision is of many low-power sensor “motes” embedded throughout the structure with a smaller number of nodes that can provide local excitation. The challenge is to develop both the networking algorithms to reliably communicate within the network, and distributed algorithms to monitor the state of the structure. A wireless data acquisition network is described, including the methods of storing and transmitting the data. A damage detection scheme is described that uses extremely low transmission bandwidth, and is shown to be effective in detecting damage in a simulated structure. Finally, a large-scale structural testbed that is being used for this project is described. The outcome of this work-in-progress is expected to be strong recommendations and algorithms for distributed wireless sensor/actuator structural health monitoring networks. +ss_paper_id=045db6b37f09c125aa8e20874311ea62fe91ab59 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_node_aging_effect_on_connectivity_of_data_gathering_trees_in_sensor_networks.txt b/database/original_documents/publications_text/2004_node_aging_effect_on_connectivity_of_data_gathering_trees_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..854d8786d39d66e5b117e284c1555b99054b773b --- /dev/null +++ b/database/original_documents/publications_text/2004_node_aging_effect_on_connectivity_of_data_gathering_trees_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Node Aging Effect on Connectivity of Data Gathering Trees in Sensor Networks +venue=IEEE Vehicular Technology Conference (VTC Fall ’04), September 2004. +authors=['Jae-Joon Lee', 'Bhaskar Krishnamachari', 'C-C Jay Kuo'] +abstract=Sensor nodes age over time due to device failure and/or battery energy depletion. Node survival rates affect data communication, sensing coverage, and, especially, the connectivity of data gathering trees that provide a forwarding path from each source to the sink and enable data aggregation. The node aging effect on the connectivity of a data gathering tree over time is analyzed. First, we discuss the general node aging problem by considering the device failure rate and the energy consumption rate. In the analysis of the energy consumption rate, we examine the effect of the data aggregation degree and the hop distance on the amount of data communication handled by a node of a data gathering tree. Then, we present the survival function and the connectivity probability per hop distance in a data gathering tree. Finally, the resulting non-uniform connectivity over time in a data gathering tree is examined with the comparison between the device failure effect and the energy depletion effect through extensive simulation. It is shown by mathematical analysis, as well as simulation, that the node aging process has a significant impact on connectivity as the hop distance increases. + +# Information +links.pdf=/static/public/papers/200417.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c8f5c6c09dc4f49d78d8035c9d9ad9e397d52bae +type=Conference Papers +year=2004 +paper_id=32e87f1b +ss_title=Node aging effect on connectivity of data gathering trees in sensor networks +ss_authors=[{'authorId': '2108395405', 'name': 'Jae-Joon Lee'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 +ss_year=2004 +ss_abstract=Sensor nodes age over time due to device failure and/or battery energy depletion. Node survival rates affect data communication, sensing coverage, and, especially, the connectivity of data gathering trees that provide a forwarding path from each source to the sink and enable data aggregation. The node aging effect on the connectivity of a data gathering tree over time is analyzed. First, we discuss the general node aging problem by considering the device failure rate and the energy consumption rate. In the analysis of the energy consumption rate, we examine the effect of the data aggregation degree and the hop distance on the amount of data communication handled by a node of a data gathering tree. Then, we present the survival function and the connectivity probability per hop distance in a data gathering tree. Finally, the resulting non-uniform connectivity over time in a data gathering tree is examined with the comparison between the device failure effect and the energy depletion effect through extensive simulation. It is shown by mathematical analysis, as well as simulation, that the node aging process has a significant impact on connectivity as the hop distance increases. +ss_paper_id=c8f5c6c09dc4f49d78d8035c9d9ad9e397d52bae \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_optimal_information_extraction_in_energylimited_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_optimal_information_extraction_in_energylimited_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..68a53057f9cdeeae35efa739c94ef78b71f05a14 --- /dev/null +++ b/database/original_documents/publications_text/2004_optimal_information_extraction_in_energylimited_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Information Extraction in Energy-Limited Wireless Sensor Networks +venue=IEEE Journal on Selected Areas in Communications, special issue on Fundamental Performance Limits of Wireless Sensor Networks, Vol. 22, No. 6, pp. 1121-1129, August 2004. +authors=['Fernando Ordonez', 'Bhaskar Krishnamachari'] +abstract=The current practice in wireless sensor networks (WSNs) is to develop functional system designs and protocols for information extraction using intuition and heuristics, and validate them through simulations and implementations. We address the need for a complementary formal methodology by developing nonlinear optimization models of static WSN that yield fundamental performance bounds and optimal designs. We present models both for maximizing the total information gathered subject to energy constraints (on sensing, transmission, and reception), and for minimizing the energy usage subject to information constraints. Other constraints in these models correspond to fairness and channel capacity (assuming noise but no interference). We also discuss extensions of these models that can handle data aggregation, interference, and even node mobility. We present results and illustrations from computational experiments using these models that show how the optimal solution varies as a function of the energy/information constraints, network size, fairness constraints, and reception power. We also compare the performance of some simple heuristics with respect to the optimal solutions. + +# Information +links.pdf=/static/public/papers/OrdonezKrishnamachari_optimWSN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2e1fb4b197a7aa5f6fe7d6663ac218fc3da6bff4 +type=Journal Papers +year=2004 +paper_id=cc63d99c +ss_title=Optimal information extraction in energy-limited wireless sensor networks +ss_authors=[{'authorId': '145160821', 'name': 'F. Ordóñez'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Journal on Selected Areas in Communications +ss_year=2004 +ss_abstract=The current practice in wireless sensor networks (WSNs) is to develop functional system designs and protocols for information extraction using intuition and heuristics, and validate them through simulations and implementations. We address the need for a complementary formal methodology by developing nonlinear optimization models of static WSN that yield fundamental performance bounds and optimal designs. We present models both for maximizing the total information gathered subject to energy constraints (on sensing, transmission, and reception), and for minimizing the energy usage subject to information constraints. Other constraints in these models correspond to fairness and channel capacity (assuming noise but no interference). We also discuss extensions of these models that can handle data aggregation, interference, and even node mobility. We present results and illustrations from computational experiments using these models that show how the optimal solution varies as a function of the energy/information constraints, network size, fairness constraints, and reception power. We also compare the performance of some simple heuristics with respect to the optimal solutions. +ss_paper_id=2e1fb4b197a7aa5f6fe7d6663ac218fc3da6bff4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_optimal_sequential_paging_in_cellular_networks.txt b/database/original_documents/publications_text/2004_optimal_sequential_paging_in_cellular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..8bcc83048c8f0f440856a9b52791e7a07317d82e --- /dev/null +++ b/database/original_documents/publications_text/2004_optimal_sequential_paging_in_cellular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Sequential Paging in Cellular Networks +venue=ACM/Baltzer Wireless Networks, Vol. 10, No. 2, March 2004. +authors=['Bhaskar Krishnamachari', 'Rung-Hung Gau', 'Stephen B Wicker', 'Zygmunt J Haas'] +abstract=In a high-capacity cellular network with limited spectral resources, it is desirable to minimize the radio bandwidth costs associated with paging when locating mobile users. Sequential paging, in which cells in the coverage area are partitioned into groups and paged in a non-increasing order of user location probabilities, permits a reduction in the average radio costs of paging at the expense of greater delay in locating the users. We present a polynomial time algorithm for minimizing paging cost under the average delay constraint, a problem that has previously been considered intractable. We show the conditions under which cluster paging, a simple heuristic technique proposed for use with dynamic location update schemes, is optimal. We also present analytical results on the average delay and paging cost obtained with sequential paging, including tight bounds. + +# Information +links.pdf=/static/public/papers/OptimalSequentialPaging.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5e7d1eca19fc6b9f42391c989bbfb251f9e8bea8 +type=Journal Papers +year=2004 +paper_id=d168f862 +ss_title=Optimal Sequential Paging in Cellular Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2342909', 'name': 'Rung-Hung Gau'}, {'authorId': '1690846', 'name': 'S. Wicker'}, {'authorId': '1699630', 'name': 'Z. Haas'}] +ss_venue= +ss_year=2001 +ss_abstract=In a high-capacity cellular network with limited spectral resources, it is desirable to minimize the radio bandwidth costs associated with paging when locating mobile users. Sequential paging, in which cells in the coverage area are partitioned into groups and paged in a non-increasing order of user location probabilities, permits a reduction in the average radio costs of paging at the expense of greater delay in locating the users. We present a polynomial time algorithm for minimizing paging cost under the average delay constraint, a problem that has previously been considered intractable. We show the conditions under which cluster paging, a simple heuristic technique proposed for use with dynamic location update schemes, is optimal. We also present analytical results on the average delay and paging cost obtained with sequential paging, including tight bounds. +ss_paper_id=5e7d1eca19fc6b9f42391c989bbfb251f9e8bea8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_pavan_a_policy_framework_for_availability_in_vehicular_adhoc_networks.txt b/database/original_documents/publications_text/2004_pavan_a_policy_framework_for_availability_in_vehicular_adhoc_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..d0cc532a7b1e9c36c7cb3e73e97d8d77491f1e7d --- /dev/null +++ b/database/original_documents/publications_text/2004_pavan_a_policy_framework_for_availability_in_vehicular_adhoc_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=PAVAN: A Policy Framework for Availability in Vehicular Ad-Hoc Networks +venue=First ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004), Held in conjunction with ACM MobiCom, Philadelphia, PA, October 2004. [Highly Competitive, Acceptance rate: only 9 full papers from 43 submissions] +authors=['Shyam Kapadia', 'Bhaskar Krishnamachari', 'Shahram Ghandeharizadeh'] +abstract=Advances in wireless communication, storage and processing are realizing next-generation in-vehicle entertainment systems. Even if hundreds of different video or audio titles are stored among several vehicles in an area, only a subset of these titles might be available to a given vehicle depending on its current location, intended path, and the dynamics of its ad-hoc network connectivity. The vehicle's entertainment system must somehow predictively determine which titles are available either immediately or within the future d time units, so that the user can select a title to view. The available title list must seek to satisfy the user by striking a delicate balance between showing far fewer titles than can actually be accessed and showing too many titles that cannot be accessed. In addition to defining this availability problem, we make two key contributions. First, a two-tier system architecture which leverages the low-rate cellular infrastructure as a control network for the high-rate data network consisting of the vehicular ad-hoc network. Second, PAVAN as a policy framework for predicting the availability of a title. We describe several variants of PAVAN which incorporate information based on a Markov mobility model, spatio-temporal look-ahead, and title replications. Our results demonstrate that the quality of PAVAN's predictions is critically dependent on title degree of replication, as well as its relative size with respect to the trip duration. When degree of replication is below a certain threshold, PAVAN with content density information and the predictive mobility model is shown to provide the best overall performance. + +# Information +links.pdf=/static/public/papers/GhandeharizadehKapadiaKrishnamachari_VANET04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d9b5c4995e6699c6cde315a69cc85031e131675a +type=Conference Papers +year=2004 +paper_id=382041ff +ss_title=PAVAN: a policy framework for content availabilty in vehicular ad-hoc networks +ss_authors=[{'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Workshop on VehiculAr Inter-NETworking +ss_year=2004 +ss_abstract=Advances in wireless communication, storage and processing are realizing next-generation in-vehicle entertainment systems. Even if hundreds of different video or audio titles are stored among several vehicles in an area, only a subset of these titles might be available to a given vehicle depending on its current location, intended path, and the dynamics of its ad-hoc network connectivity. The vehicle's entertainment system must somehow predictively determine which titles are available either immediately or within the future d time units, so that the user can select a title to view. The available title list must seek to satisfy the user by striking a delicate balance between showing far fewer titles than can actually be accessed and showing too many titles that cannot be accessed. In addition to defining this availability problem, we make two key contributions. First, a two-tier system architecture which leverages the low-rate cellular infrastructure as a control network for the high-rate data network consisting of the vehicular ad-hoc network. Second, PAVAN as a policy framework for predicting the availability of a title. We describe several variants of PAVAN which incorporate information based on a Markov mobility model, spatio-temporal look-ahead, and title replications. Our results demonstrate that the quality of PAVAN's predictions is critically dependent on title degree of replication, as well as its relative size with respect to the trip duration. When degree of replication is below a certain threshold, PAVAN with content density information and the predictive mobility model is shown to provide the best overall performance. +ss_paper_id=d9b5c4995e6699c6cde315a69cc85031e131675a \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_performance_evaluation_of_the_ieee_802154_mac_for_lowrate_lowpower_wireless_networks.txt b/database/original_documents/publications_text/2004_performance_evaluation_of_the_ieee_802154_mac_for_lowrate_lowpower_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..cec519fa04cd2b23cb53ea17290c22346619ac82 --- /dev/null +++ b/database/original_documents/publications_text/2004_performance_evaluation_of_the_ieee_802154_mac_for_lowrate_lowpower_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Performance Evaluation of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks +venue=Workshop on Energy-Efficient Wireless Communications and Networks (EWCN ’04), held in conjunction with the IEEE International Performance Computing and Communications Conference (IPCCC), April 2004. +authors=['Gang Lu', 'Bhaskar Krishnamachari', 'Cauligi Raghavendra'] +abstract=IEEE 802.15.4 is a new standard to address the need for low-rate low-power low-cost wireless networking. We provide in this paper one of the first simulation-based performance evaluations of the new medium access protocol in IEEE 802.15.4, focusing on its beacon-enabled mode for a star-topology network. We describe its key features such as the superframe structure, which allows devices to access channels in a contention access period (CAP) or a collision free period (CFP) and the beacon-based synchronization mechanism. Our performance evaluation study reveals some of the key throughput-energy-delay tradeoffs inherent in this MAC protocol. We provide an analysis comparing the energy costs of beacon tracking and non-tracking modes for synchronization, showing that the optimum choice depends upon the combination of duty cycles and data rates. + +# Information +links.pdf=/static/public/papers/LuKrishnamachariRaghavendra_802154_EWCN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/da172b6af1dd1892ce420196fc1634e94e773082 +type=Conference Papers +year=2004 +paper_id=62cfe576 +ss_title=Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks +ss_authors=[{'authorId': '145316946', 'name': 'Gang Lu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1756733', 'name': 'C. Raghavendra'}] +ss_venue=IEEE International Conference on Performance, Computing, and Communications, 2004 +ss_year=2004 +ss_abstract=IEEE 802.15.4 is a new standard to address the need for low-rate low-power low-cost wireless networking. We provide in this paper one of the first simulation-based performance evaluations of the new medium access protocol in IEEE 802.15.4, focusing on its beacon-enabled mode for a star-topology network. We describe its key features such as the superframe structure, which allows devices to access channels in a contention access period (CAP) or a collision free period (CFP) and the beacon-based synchronization mechanism. Our performance evaluation study reveals some of the key throughput-energy-delay tradeoffs inherent in this MAC protocol. We provide an analysis comparing the energy costs of beacon tracking and non-tracking modes for synchronization, showing that the optimum choice depends upon the combination of duty cycles and data rates. +ss_paper_id=da172b6af1dd1892ce420196fc1634e94e773082 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_placement_of_continuous_media_in_wireless_peertopeer_networks.txt b/database/original_documents/publications_text/2004_placement_of_continuous_media_in_wireless_peertopeer_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..682fca2275fe917ed0359b30354ca91a0e73bd12 --- /dev/null +++ b/database/original_documents/publications_text/2004_placement_of_continuous_media_in_wireless_peertopeer_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Placement of Continuous Media in Wireless Peer-to-Peer Networks +venue=IEEE Transactions on Multimedia, Special Issue on Streaming Media, Vol. 6 , No. 2, April 2004. +authors=['Shahram Ghandeharizadeh', 'Bhaskar Krishnamachari', 'Shanshan Song'] +abstract=This paper investigates a novel streaming architecture consisting of home-to-home online (H2O) devices that collaborate with one another to provide on-demand access to large repositories of continuous media such as audio and video clips. An H2O device is configured with a high bandwidth wireless communication component, a powerful processor, and gigabytes of storage. A key challenge of this environment is how to place data across H2O devices in order to enhance startup latency, defined as the delay observed from when a user requests a clip, to the onset of its display. Our primary contribution is a novel replication technique that enhances startup latency, while minimizing the total storage space required from an environment consisting of N H2O devices. This technique is based on the following intuition: The first few blocks of a clip are required more urgently than its last few blocks, and should be replicated more frequently in order to minimize startup latency. We develop analytical models to quantify the number of replicas required for each block. In addition, we describe two alternative distributed implementation of our replication strategy. When compared with full replication, our technique provides on average greater than 97% (i.e., several orders of magnitude) savings in storage space, while ensuring zero startup latency and a hiccup-free reception. + +# Information +links.pdf=/static/public/papers/GhandeharizadehKrishnamachariSong_IEEE-TMM04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/933a21bd1d12a980f040472bd239aaabe80efa4e +type=Journal Papers +year=2004 +paper_id=10920940 +ss_title=Placement of continuous media in wireless peer-to-peer networks +ss_authors=[{'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145083500', 'name': 'Shanshan Song'}] +ss_venue=IEEE transactions on multimedia +ss_year=2004 +ss_abstract=This paper investigates a novel streaming architecture consisting of home-to-home online (H2O) devices that collaborate with one another to provide on-demand access to large repositories of continuous media such as audio and video clips. An H2O device is configured with a high bandwidth wireless communication component, a powerful processor, and gigabytes of storage. A key challenge of this environment is how to place data across H2O devices in order to enhance startup latency, defined as the delay observed from when a user requests a clip, to the onset of its display. Our primary contribution is a novel replication technique that enhances startup latency, while minimizing the total storage space required from an environment consisting of N H2O devices. This technique is based on the following intuition: The first few blocks of a clip are required more urgently than its last few blocks, and should be replicated more frequently in order to minimize startup latency. We develop analytical models to quantify the number of replicas required for each block. In addition, we describe two alternative distributed implementation of our replication strategy. When compared with full replication, our technique provides on average greater than 97% (i.e., several orders of magnitude) savings in storage space, while ensuring zero startup latency and a hiccup-free reception. +ss_paper_id=933a21bd1d12a980f040472bd239aaabe80efa4e \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_resource_allocation_and_emergent_coodination_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_resource_allocation_and_emergent_coodination_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..cb61f54e3f14a35ca6995d8556bd176b70b84c58 --- /dev/null +++ b/database/original_documents/publications_text/2004_resource_allocation_and_emergent_coodination_in_wireless_sensor_networks.txt @@ -0,0 +1,12 @@ +# Publication +title=Resource Allocation and Emergent Coordination in Wireless Sensor Networks +venue=Workshop on Sensor Networks at the The Nineteenth National Conference on Artificial Intelligence (AAAI-04) , San Jose, California, July 2004. +authors=['Aram Galstyan', 'Bhaskar Krishnamachari', 'Kristina Lerman'] +abstract=None + +# Information +links.pdf=/static/public/papers/GalstyanKrishnamachariLerman_EmergentCoordWSN_AAAI04.pdf +type=Conference Papers +year=2004 +paper_id=88312365 +ss_paper_id=1823c7dde0608effacb1fa0216c4cdb7a7d91d1e \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_resource_allocation_and_emergent_coordination_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_resource_allocation_and_emergent_coordination_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..09a4d6d531d86a234114b3fa57165dcf536374ff --- /dev/null +++ b/database/original_documents/publications_text/2004_resource_allocation_and_emergent_coordination_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Resource Allocation and Emergent Coordination in Wireless Sensor Networks +venue=Workshop on Sensor Networks at the The Nineteenth National Conference on Artificial Intelligence (AAAI-04) , San Jose, California, July 2004. +authors=['Aram Galstyan', 'Bhaskar Krishnamachari', 'Kristina Lerman'] +abstract=Coordination in wireless sensor networks (WSN) is required for many tasks that are best achieved collectively, such as coverage and medium access. One of the major challenges in the design of WSN are the strong limitations imposed by finite onboard power capacity. Because communication requires considerable energy, it is imperative to have a coordination mechanism that requires little or no communication. Moreover, since WSN are likely to operate in unstructured and dynamic environments, the coordination mechanism has to be adaptive and robust with respect to environmental changes. Lack of centralized control in WSN requires alternative means for coordinating actions and resources of individual nodes to achieve long network lifetime, while not severely compromising network task performance. In this paper we explore the paradigm of emergent coordination as a mechanism for adaptive, distributed coordination in WSN. Specifically, we study a WSN composed of self–interested nodes that utilize a simple reinforcement learning scheme and achieve coordination by playing repeated resource allocation (load balancing) games with changing resource (load) capacities. Our results indicate that for a certain range of parameters the network is very adaptive to these changes. Although we formulate the problem in rather abstract settings of repeated games, the methods can be applied to a range of specific sensor coordination problems such as network coverage + +# Information +links.pdf=/static/public/papers/GalstyanKrishnamachariLerman_EmergentCoordWSN_AAAI04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1823c7dde0608effacb1fa0216c4cdb7a7d91d1e +type=Conference Papers +year=2004 +paper_id=88312365 +ss_paper_id=1823c7dde0608effacb1fa0216c4cdb7a7d91d1e +ss_title=Resource Allocation and Emergent Coordination in Wireless Sensor Networks +ss_authors=[{'authorId': '143728483', 'name': 'A. Galstyan'}, {'authorId': '1782658', 'name': 'Kristina Lerman'}] +ss_venue= +ss_year=2004 +ss_abstract=Coordination in wireless sensor networks (WSN) is required for many tasks that are best achieved collectively, such as coverage and medium access. One of the major challenges in the design of WSN are the strong limitations imposed by finite onboard power capacity. Because communication requires considerable energy, it is imperative to have a coordination mechanism that requires little or no communication. Moreover, since WSN are likely to operate in unstructured and dynamic environments, the coordination mechanism has to be adaptive and robust with respect to environmental changes. Lack of centralized control in WSN requires alternative means for coordinating actions and resources of individual nodes to achieve long network lifetime, while not severely compromising network task performance. In this paper we explore the paradigm of emergent coordination as a mechanism for adaptive, distributed coordination in WSN. Specifically, we study a WSN composed of self–interested nodes that utilize a simple reinforcement learning scheme and achieve coordination by playing repeated resource allocation (load balancing) games with changing resource (load) capacities. Our results indicate that for a certain range of parameters the network is very adaptive to these changes. Although we formulate the problem in rather abstract settings of repeated games, the methods can be applied to a range of specific sensor coordination problems such as network coverage \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_sharp_thresholds_for_monotone_properties_in_random_geometric_graphs.txt b/database/original_documents/publications_text/2004_sharp_thresholds_for_monotone_properties_in_random_geometric_graphs.txt new file mode 100644 index 0000000000000000000000000000000000000000..eb376df1cac3bc7ddb2efb58394a700b62d4c42d --- /dev/null +++ b/database/original_documents/publications_text/2004_sharp_thresholds_for_monotone_properties_in_random_geometric_graphs.txt @@ -0,0 +1,18 @@ +# Publication +title=Sharp thresholds for monotone properties in random geometric graphs +venue=ACM Symposium on Theory of Computing (STOC), June 2004. [Major conference in theoretical computer science]. +authors=['Ashish Goel', 'Sanatan Rai', 'Bhaskar Krishnamachari'] +abstract=Random geometric graphs result from taking n uniformly distributed points in the unit cube, [0,1]d, and connecting two points if their Euclidean distance is at most r, for some prescribed r. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of $n$ points distributed uniformly in [0,1]d. We present upper bounds on the threshold width, and show that our bound is sharp for d = 1 and at most a sublogarithmic factor away for d ≥ 2. Interestingly, the threshold width is much sharper for random geometric graphs than for Bernoulli random graphs. Further, a random geometric graph is shown to be a subgraph, with high probability, of another independently drawn random geometric graph with a slightly larger radius; this property is shown to have no analogue for Bernoulli random graphs. + +# Information +links.pdf=/static/public/papers/GoelRaiKrishnamachari_STOC04.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bd297c812d2bec23b40a0ee5ecf10df2898f5dff +type=Conference Papers +year=2004 +paper_id=e22a3e0f +ss_title=Sharp thresholds For monotone properties in random geometric graphs +ss_authors=[{'authorId': '143638107', 'name': 'Ashish Goel'}, {'authorId': '34994278', 'name': 'S. Rai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Symposium on the Theory of Computing +ss_year=2003 +ss_abstract=Random geometric graphs result from taking n uniformly distributed points in the unit cube, [0,1]d, and connecting two points if their Euclidean distance is at most r, for some prescribed r. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of $n$ points distributed uniformly in [0,1]d. We present upper bounds on the threshold width, and show that our bound is sharp for d = 1 and at most a sublogarithmic factor away for d ≥ 2. Interestingly, the threshold width is much sharper for random geometric graphs than for Bernoulli random graphs. Further, a random geometric graph is shown to be a subgraph, with high probability, of another independently drawn random geometric graph with a slightly larger radius; this property is shown to have no analogue for Bernoulli random graphs. +ss_paper_id=bd297c812d2bec23b40a0ee5ecf10df2898f5dff \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_the_effect_of_mobilityinduced_location_errors_on_geographic_routing_in_ad_hoc_networks_analysis_and_improvement_using_mobility_prediction.txt b/database/original_documents/publications_text/2004_the_effect_of_mobilityinduced_location_errors_on_geographic_routing_in_ad_hoc_networks_analysis_and_improvement_using_mobility_prediction.txt new file mode 100644 index 0000000000000000000000000000000000000000..baee4fa4099df84a0050a6a2dd3ebff3c77eb677 --- /dev/null +++ b/database/original_documents/publications_text/2004_the_effect_of_mobilityinduced_location_errors_on_geographic_routing_in_ad_hoc_networks_analysis_and_improvement_using_mobility_prediction.txt @@ -0,0 +1,18 @@ +# Publication +title=The Effect of Mobility-induced Location Errors on Geographic Routing in Ad Hoc Networks: Analysis and Improvement using Mobility Prediction +venue=IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, Georgia, March 2004. +authors=['Dongjin Son', 'Ahmed Helmy', 'Bhaskar Krishnamachari'] +abstract=Geographic routing in mobile ad hoc networks has proved to provide drastic performance improvement over strictly address-centric routing schemes. While geographic routing has been shown to be correct and efficient when location information is accurate, its performance in the face of location errors is not well understood. In this paper, we study the effect of inaccurate location information caused by node mobility under a rich set of scenarios and mobility models. We identify two main problems, named LINK and LOOP, that are caused by mobility-induced location errors. Based on the analysis via ns-2 simulations, we propose two mobility prediction schemes - neighbor location prediction (NLP) and destination location prediction (DLP) to mitigate these problems. Simulation results have shown noticeable improvement under all mobility models used in our study. Our schemes achieve up to 27% improvement in packet delivery and 37% reduction in network resource wastage on average without incurring any additional communication or intense computation. + +# Information +links.pdf=/static/public/papers/prediction-wcnc-accepted.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bc5943a829650f7c5fbf7496da9e0d0cf5aec247 +type=Conference Papers +year=2004 +paper_id=c7941c64 +ss_title=The effect of mobility-induced location errors on geographic routing in ad hoc networks: analysis and improvement using mobility prediction +ss_authors=[{'authorId': '1760388', 'name': 'Dongjin Son'}, {'authorId': '145483017', 'name': 'A. Helmy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Wireless Communications and Networking Conference +ss_year=2004 +ss_abstract=Geographic routing in mobile ad hoc networks has proved to provide drastic performance improvement over strictly address-centric routing schemes. While geographic routing has been shown to be correct and efficient when location information is accurate, its performance in the face of location errors is not well understood. In this paper, we study the effect of inaccurate location information caused by node mobility under a rich set of scenarios and mobility models. We identify two main problems, named LINK and LOOP, that are caused by mobility-induced location errors. Based on the analysis via ns-2 simulations, we propose two mobility prediction schemes - neighbor location prediction (NLP) and destination location prediction (DLP) to mitigate these problems. Simulation results have shown noticeable improvement under all mobility models used in our study. Our schemes achieve up to 27% improvement in packet delivery and 37% reduction in network resource wastage on average without incurring any additional communication or intense computation. +ss_paper_id=bc5943a829650f7c5fbf7496da9e0d0cf5aec247 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_the_effect_of_mobilityinduced_location_errors_on_geographic_routing_in_mobile_ad_hoc_and_sensor_networks_analysis_and_improvement_using_mobility_prediction.txt b/database/original_documents/publications_text/2004_the_effect_of_mobilityinduced_location_errors_on_geographic_routing_in_mobile_ad_hoc_and_sensor_networks_analysis_and_improvement_using_mobility_prediction.txt new file mode 100644 index 0000000000000000000000000000000000000000..a2d48fa99fb6f1c09447b3e00631f64fa0ad6537 --- /dev/null +++ b/database/original_documents/publications_text/2004_the_effect_of_mobilityinduced_location_errors_on_geographic_routing_in_mobile_ad_hoc_and_sensor_networks_analysis_and_improvement_using_mobility_prediction.txt @@ -0,0 +1,18 @@ +# Publication +title=The Effect of Mobility-induced Location Errors on Geographic Routing in Mobile Ad Hoc and Sensor Networks: Analysis and Improvement using Mobility Prediction +venue=IEEE Transactions on Mobile Computing (Special Issue on Mobile Sensor Networks), Vol.3, No. 3, pp. 233-245, July 2004. +authors=['Dongjin Son', 'Ahmed Helmy', 'Bhaskar Krishnamachari'] +abstract=Geographic routing has been introduced in mobile ad hoc networks and sensor networks. Under ideal settings, it has been proven to provide drastic performance improvement over strictly address centric routing schemes. While geographic routing has been shown to be correct and efficient when location information is accurate, its performance in the face of location errors is not well understood. We study the effect of inaccurate location information caused by node mobility under a rich set of scenarios and mobility models. We identify two main problems, named LLNK and LOOP, that are caused by mobility-induced location errors. Based on analysis via ns-2 simulations, we propose two mobility prediction schemes - neighbor location prediction (NLP) and destination location prediction (DLP) to mitigate these problems. Simulation results show noticeable improvement under all mobility models used in our study. Under the settings we examine, our schemes achieve up to 27 percent improvement in packet delivery and 37 percent reduction in network resource wastage, on average without incurring any additional communication or intense computation. + +# Information +links.pdf=/static/public/papers/ieeeTMC-May20.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d83a1cc341b1a42eddde5ca8cbcdb4b96cb261c8 +type=Journal Papers +year=2004 +paper_id=1aaad98c +ss_title=The effect of mobility-induced location errors on geographic routing in mobile ad hoc sensor networks: analysis and improvement using mobility prediction +ss_authors=[{'authorId': '1760388', 'name': 'Dongjin Son'}, {'authorId': '145483017', 'name': 'A. Helmy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2004 +ss_abstract=Geographic routing has been introduced in mobile ad hoc networks and sensor networks. Under ideal settings, it has been proven to provide drastic performance improvement over strictly address centric routing schemes. While geographic routing has been shown to be correct and efficient when location information is accurate, its performance in the face of location errors is not well understood. We study the effect of inaccurate location information caused by node mobility under a rich set of scenarios and mobility models. We identify two main problems, named LLNK and LOOP, that are caused by mobility-induced location errors. Based on analysis via ns-2 simulations, we propose two mobility prediction schemes - neighbor location prediction (NLP) and destination location prediction (DLP) to mitigate these problems. Simulation results show noticeable improvement under all mobility models used in our study. Under the settings we examine, our schemes achieve up to 27 percent improvement in packet delivery and 37 percent reduction in network resource wastage, on average without incurring any additional communication or intense computation. +ss_paper_id=d83a1cc341b1a42eddde5ca8cbcdb4b96cb261c8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2004_the_impact_of_spatial_correlation_on_routing_with_compression_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2004_the_impact_of_spatial_correlation_on_routing_with_compression_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..9b6befb42049cd10575946e718bd4c922b3375e9 --- /dev/null +++ b/database/original_documents/publications_text/2004_the_impact_of_spatial_correlation_on_routing_with_compression_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=The Impact of Spatial Correlation on Routing with Compression in Wireless Sensor Networks +venue=ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN), April 26-27, Berkeley, CA 2004. Winner of IPSN 2004 Best Student Paper Award [Highly Competitive, given to only 3 papers from 50 accepted papers from about 145 submissions]. +authors=['Sundeep Pattem', 'Bhaskar Krishnamachari', 'Ramesh Govindan'] +abstract=The efficacy of data aggregation in sensor networks is a function of the degree of spatial correlation in the sensed phenomenon. The recent literature has examined a variety of schemes that achieve greater data aggregation by routing data with regard to the underlying spatial correlation. A well known conclusion from these papers is that the nature of optimal routing with compression depends on the correlation level. In this article we show the existence of a simple, practical, and static correlation-unaware clustering scheme that satisfies a min-max near-optimality condition. The implication for system design is that a static correlation-unaware scheme can perform as well as sophisticated adaptive schemes for joint routing and compression. + +# Information +links.pdf=/static/public/papers/PattemKrishnamachariGovindan_correlations.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d9cdfc2ef098a2017d8406fbb5c0b7b9f127cfaa +type=Conference Papers +year=2004 +paper_id=411eb670 +ss_title=The impact of spatial correlation on routing with compression in wireless sensor networks +ss_authors=[{'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1747970', 'name': 'R. Govindan'}] +ss_venue=TOSN +ss_year=2008 +ss_abstract=The efficacy of data aggregation in sensor networks is a function of the degree of spatial correlation in the sensed phenomenon. The recent literature has examined a variety of schemes that achieve greater data aggregation by routing data with regard to the underlying spatial correlation. A well known conclusion from these papers is that the nature of optimal routing with compression depends on the correlation level. In this article we show the existence of a simple, practical, and static correlation-unaware clustering scheme that satisfies a min-max near-optimality condition. The implication for system design is that a static correlation-unaware scheme can perform as well as sophisticated adaptive schemes for joint routing and compression. +ss_paper_id=d9cdfc2ef098a2017d8406fbb5c0b7b9f127cfaa \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_a_local_metric_for_geographic_routing_with_power_control_in_wireless_networks.txt b/database/original_documents/publications_text/2005_a_local_metric_for_geographic_routing_with_power_control_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..8fd0b0ff8c08e9f22848cad0e8dd855425184ac3 --- /dev/null +++ b/database/original_documents/publications_text/2005_a_local_metric_for_geographic_routing_with_power_control_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=A Local Metric for Geographic Routing with Power Control in Wireless Networks +venue=Second IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, September 2005. [Acceptance rate: only 55 papers from 202 submissions] +authors=['Chih-Ping Li', 'Wei-Jen Hsu', 'Bhaskar Krishnamachari'] +abstract=We investigate the combination of distributed ge- ographic routing with transmission power control for energy efficient delivery of information in multihop wireless networks. Using realistic models for wireless channel fading as well as radio modulation and encoding, we first show that the optimal power control strategy over a given link should set the transmission power to achieve a special signal-to-noise ratio (SNR) constant that can be computed using an elegant characteristic equation. Counter-intuitively, for typical radios, this corresponds to an optimal operating point of SNR that lies in the transitional region (where packet error rates are non-negligible). We then propose a local power efficiency metric for distributed routing such that at each step the transmitter picks as the next hop the neighbor for which this metric is maximized. Through extensive simulations, we compare the performance of the proposed algorithm and globally optimal routing algorithms. We show that in randomly deployed 2-D networks, the combination of this local metric for routing with optimal power control has close performances, in terms of average power consumption under different node density settings and physical transmission power limits, to the best strategy using global network link state information. In particular, when electronic power is relatively low, the proposed algorithm can provide up to six times reduction in power usage compared to channel-unaware routing algorithms. + +# Information +links.pdf=/static/public/papers/1.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/afbf8309b647b9b24ff5765f14d05d3782a5d4bf +type=Conference Papers +year=2005 +paper_id=3c0b6cea +ss_title=A local metric for geographic routing with power control in wireless networks +ss_authors=[{'authorId': '2109747047', 'name': 'Chih-Ping Li'}, {'authorId': '3319759', 'name': 'Wei-jen Hsu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue=2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON 2005. +ss_year=2005 +ss_abstract=We investigate the combination of distributed ge- ographic routing with transmission power control for energy efficient delivery of information in multihop wireless networks. Using realistic models for wireless channel fading as well as radio modulation and encoding, we first show that the optimal power control strategy over a given link should set the transmission power to achieve a special signal-to-noise ratio (SNR) constant that can be computed using an elegant characteristic equation. Counter-intuitively, for typical radios, this corresponds to an optimal operating point of SNR that lies in the transitional region (where packet error rates are non-negligible). We then propose a local power efficiency metric for distributed routing such that at each step the transmitter picks as the next hop the neighbor for which this metric is maximized. Through extensive simulations, we compare the performance of the proposed algorithm and globally optimal routing algorithms. We show that in randomly deployed 2-D networks, the combination of this local metric for routing with optimal power control has close performances, in terms of average power consumption under different node density settings and physical transmission power limits, to the best strategy using global network link state information. In particular, when electronic power is relatively low, the proposed algorithm can provide up to six times reduction in power usage compared to channel-unaware routing algorithms. +ss_paper_id=afbf8309b647b9b24ff5765f14d05d3782a5d4bf \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_active_query_forwarding_in_sensor_networks_acquire.txt b/database/original_documents/publications_text/2005_active_query_forwarding_in_sensor_networks_acquire.txt new file mode 100644 index 0000000000000000000000000000000000000000..c2935f2cd8ba94a0aed457a5fce4f04685ed7296 --- /dev/null +++ b/database/original_documents/publications_text/2005_active_query_forwarding_in_sensor_networks_acquire.txt @@ -0,0 +1,18 @@ +# Publication +title=Active Query Forwarding in Sensor Networks (ACQUIRE) +venue=Journal of Ad Hoc Networks, Elsevier, Vol 3, Issue 1, pp. 91-113, January 2005. +authors=['Narayanan Sadagopan', 'Bhaskar Krishnamachari', 'Ahmed Helmy'] +abstract=While sensor networks are going to be deployed in diverse application specific contexts, one unifying view is to treat them essentially as distributed databases. The simplest mechanism to obtain information from this kind of a database is to flood queries for named data within the network and obtain the relevant responses from sources. However, if the queries are a) complex, b) one-shot, and c) for replicated data, this simple approach can be highly inefficient. In the context of energy-starved sensor networks, alternative strategies need to be examined for such queries. We propose a novel and efficient mechanism for obtaining information in sensor networks which we refer to as ACQUIRE. The basic principle behind ACQUIRE is to consider the query as an active entity that is forwarded through the network (either randomly or in some directed manner) in search of the solution. ACQUIRE also incorporates a look-ahead parameter d in the following manner: intermediate nodes that handle the active query use information from all nodes within d hops in order to partially resolve the query. When the active query is fully resolved, a completed response is sent directly back to the querying node. We take a mathematical modelling approach in this paper to calculate the energy costs associated with ACQUIRE. The models permit us to characterize analytically the impact of critical parameters, and compare the performance of ACQUIRE with respect to other schemes such as flooding-based querying (FBQ) and expanding ring search (ERS), in terms of energy usage, response latency and storage requirements. We show that with optimal parameter settings, depending on the update frequency, ACQUIRE obtains order of magnitude reduction over FBQ and potentially 60 to 85% energy reduction over ERS (in highly dynamic environments and high query rates). We show that these energy savings are provided in trade for increased response latency. The mathematical analysis is validated through extensive simulations. + +# Information +links.pdf=/static/public/papers/ACQUIRE-Journal-published.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/549c2ab6642861254952aa99a17fd9b21fce6057 +type=Journal Papers +year=2005 +paper_id=b1b2f5ae +ss_title=Active Query Forwarding in Sensor Networks ( ACQUIRE ) +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue= +ss_year=2002 +ss_abstract=While sensor networks are going to be deployed in diverse application specific contexts, one unifying view is to treat them essentially as distributed databases. The simplest mechanism to obtain information from this kind of a database is to flood queries for named data within the network and obtain the relevant responses from sources. However, if the queries are a) complex, b) one-shot, and c) for replicated data, this simple approach can be highly inefficient. In the context of energy-starved sensor networks, alternative strategies need to be examined for such queries. We propose a novel and efficient mechanism for obtaining information in sensor networks which we refer to as ACQUIRE. The basic principle behind ACQUIRE is to consider the query as an active entity that is forwarded through the network (either randomly or in some directed manner) in search of the solution. ACQUIRE also incorporates a look-ahead parameter d in the following manner: intermediate nodes that handle the active query use information from all nodes within d hops in order to partially resolve the query. When the active query is fully resolved, a completed response is sent directly back to the querying node. We take a mathematical modelling approach in this paper to calculate the energy costs associated with ACQUIRE. The models permit us to characterize analytically the impact of critical parameters, and compare the performance of ACQUIRE with respect to other schemes such as flooding-based querying (FBQ) and expanding ring search (ERS), in terms of energy usage, response latency and storage requirements. We show that with optimal parameter settings, depending on the update frequency, ACQUIRE obtains order of magnitude reduction over FBQ and potentially 60 to 85% energy reduction over ERS (in highly dynamic environments and high query rates). We show that these energy savings are provided in trade for increased response latency. The mathematical analysis is validated through extensive simulations. +ss_paper_id=549c2ab6642861254952aa99a17fd9b21fce6057 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_comparison_of_replication_strategies_for_content_availability_in_c2p2_networks.txt b/database/original_documents/publications_text/2005_comparison_of_replication_strategies_for_content_availability_in_c2p2_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..27a4f5be041851110cbce70c92fe6da0bf1716b0 --- /dev/null +++ b/database/original_documents/publications_text/2005_comparison_of_replication_strategies_for_content_availability_in_c2p2_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Comparison of Replication Strategies for Content Availability in C2P2 Networks +venue=6th International Conference on Mobile DataManagement (MDM’05), Ayia Napa, Cyprus, May 2005. +authors=['Shahram Ghandeharizadeh', 'Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=This study investigates alternative continuous media replication techniques and their impact on content availability in a mobile car-to-car peer-to-peer (C2P2) network of devices. Using aggregate availability latency as a metric, we compare a simple random replication mechanism with a family of techniques that compute the degree of replication for each title based on its popularity, i.e., frequency of access. We use a simulation study along with some supporting analytical analysis for this comparison. Obtained results demonstrate the following key lesson. When total storage capacity of the network is significantly larger than the clip repository size, a random replication technique is sufficient. Otherwise, there is a large parameter space where the frequency-based replication schemes provide superior performance. + +# Information +links.pdf=/static/public/papers/rep-avail.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/63d666b63adb6a4ca56781ee4c97733de59132fb +type=Conference Papers +year=2005 +paper_id=9767f193 +ss_title=Comparison of replication strategies for content availability in C2P2 networks +ss_authors=[{'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Mobile Data Management +ss_year=2005 +ss_abstract=This study investigates alternative continuous media replication techniques and their impact on content availability in a mobile car-to-car peer-to-peer (C2P2) network of devices. Using aggregate availability latency as a metric, we compare a simple random replication mechanism with a family of techniques that compute the degree of replication for each title based on its popularity, i.e., frequency of access. We use a simulation study along with some supporting analytical analysis for this comparison. Obtained results demonstrate the following key lesson. When total storage capacity of the network is significantly larger than the clip repository size, a random replication technique is sufficient. Otherwise, there is a large parameter space where the frequency-based replication schemes provide superior performance. +ss_paper_id=63d666b63adb6a4ca56781ee4c97733de59132fb \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_comparison_of_replicationstrategies_for_content_availability_in_c2p2_networks.txt b/database/original_documents/publications_text/2005_comparison_of_replicationstrategies_for_content_availability_in_c2p2_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..837341d3c46cb944ac26fd63d84a363b2b7fdf2c --- /dev/null +++ b/database/original_documents/publications_text/2005_comparison_of_replicationstrategies_for_content_availability_in_c2p2_networks.txt @@ -0,0 +1,11 @@ +# Publication +title=Comparison of Replication Strategies for Content Availability in C2P2 Networks +venue=6th International Conference on Mobile DataManagement (MDM’05), Ayia Napa, Cyprus, May 2005. +authors=['Shahram Ghandeharizadeh', 'Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/rep-avail.pdf +type=Conference Papers +year=2005 +paper_id=9767f193 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_cooperative_communication_and_routing_over_fading_channels_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2005_cooperative_communication_and_routing_over_fading_channels_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..dfda654a4b7598923147f58bd0befac409b5e6f3 --- /dev/null +++ b/database/original_documents/publications_text/2005_cooperative_communication_and_routing_over_fading_channels_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Cooperative communication and routing over fading channels in wireless sensor networks +venue=IEEE International Conference on Wireless Networks,Communications, and Mobile Computing (WirelessCom), Maui, Hawaii, June 2005. +authors=['Shiou-Hung Chen', 'Urbashi Mitra', 'Bhaskar Krishnamachari'] +abstract=The dense deployments of wireless sensor networks offer the opportunity to develop novel communication techniques based on multi-node cooperation that can perform efficiently even over harsh fading channels. Several key contributions in the development and analysis of such techniques are provided. First, prior studies on cooperative communication and routing are extended by explicitly considering fading channels and relaxing synchronization requirements. It is demonstrated that significant asymptotic spatial diversity gains are achievable with K-cooperation even if error propagation is considered. Second, we provide a low complexity near-optimal power distribution algorithm over cooperating nodes, which selects the number of cooperating transmitters based on observed channel conditions, and several power distribution strategies over links are compared. Finally, it is shown that multi-hop cooperative routing can be highly energy efficient in realistic settings. + +# Information +links.pdf=/static/public/papers/CooperativeCommRouting.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c29f2bb39f27d482478d18ab306534a1ad8b91d4 +type=Conference Papers +year=2005 +paper_id=2ce995f9 +ss_title=Cooperative communication and routing over fading channels in wireless sensor networks +ss_authors=[{'authorId': '2163312', 'name': 'Shiou-Hung Chen'}, {'authorId': '144172505', 'name': 'U. Mitra'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2005 International Conference on Wireless Networks, Communications and Mobile Computing +ss_year=2005 +ss_abstract=The dense deployments of wireless sensor networks offer the opportunity to develop novel communication techniques based on multi-node cooperation that can perform efficiently even over harsh fading channels. Several key contributions in the development and analysis of such techniques are provided. First, prior studies on cooperative communication and routing are extended by explicitly considering fading channels and relaxing synchronization requirements. It is demonstrated that significant asymptotic spatial diversity gains are achievable with K-cooperation even if error propagation is considered. Second, we provide a low complexity near-optimal power distribution algorithm over cooperating nodes, which selects the number of cooperating transmitters based on observed channel conditions, and several power distribution strategies over links are compared. Finally, it is shown that multi-hop cooperative routing can be highly energy efficient in realistic settings. +ss_paper_id=c29f2bb39f27d482478d18ab306534a1ad8b91d4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_delay_efficient_sleep_scheduling_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2005_delay_efficient_sleep_scheduling_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..19f3d4414bd86378278347d56311426be08adcae --- /dev/null +++ b/database/original_documents/publications_text/2005_delay_efficient_sleep_scheduling_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Delay Efficient Sleep Scheduling in Wireless Sensor Networks +venue=IEEE INFOCOM 2005, Miami, FL, March 2005. [Please see correction to complexity proof]. +authors=['Gang Lu', 'Narayanan Sadagopan', 'Bhaskar Krishnamachari', 'Ashish Goel'] +abstract=Medium access techniques for wireless sensor networks raise the important question of providing periodic energy-efficient radio sleep cycles while minimizing the end-to-end communication delays. This study aims to minimize the communication latency given that each sensor has a duty cycling requirement of being awake for only 1/k time slots on an average. As a first step we consider the single wake-up schedule case, where each sensor can choose exactly one of the k slots to wake up. We formulate a novel graph-theoretical abstraction of this problem in the general setting of a low-traffic wireless sensor network with arbitrary communication flows and prove that minimizing the end-to-end communication delays is in general NP-hard. However, we are able to derive and analyze optimal solutions for two special cases: tree topologies and ring topologies. Several heuristics for arbitrary topologies are proposed and evaluated by simulations. Our simulations suggest that distributed heuristics may perform poorly because of the global nature of the constraints involved. We also show that by carefully choosing multiple wake-up slots for each sensor significant delay savings can be obtained over the single wake-up schedule case while maintaining the same duty cycling. Using this technique, we propose algorithms that offer a desirable bound of d+O(k) on the delay for specialized topologies like the tree and grid and a weaker guarantee of O((d+k)log n) for arbitrary graphs, where d is the shortest path between 2 nodes in the underlying topology and n is the total number of nodes. + +# Information +links.pdf=/static/public/papers/LuSadagopanKrishnamachariGoel_Infocom05.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a22a916cb0a29558f23053bf12f75a86fc350d0a +type=Conference Papers +year=2005 +paper_id=89019bdd +ss_title=Delay efficient sleep scheduling in wireless sensor networks +ss_authors=[{'authorId': '145316946', 'name': 'Gang Lu'}, {'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143638107', 'name': 'Ashish Goel'}] +ss_venue=Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies. +ss_year=2005 +ss_abstract=Medium access techniques for wireless sensor networks raise the important question of providing periodic energy-efficient radio sleep cycles while minimizing the end-to-end communication delays. This study aims to minimize the communication latency given that each sensor has a duty cycling requirement of being awake for only 1/k time slots on an average. As a first step we consider the single wake-up schedule case, where each sensor can choose exactly one of the k slots to wake up. We formulate a novel graph-theoretical abstraction of this problem in the general setting of a low-traffic wireless sensor network with arbitrary communication flows and prove that minimizing the end-to-end communication delays is in general NP-hard. However, we are able to derive and analyze optimal solutions for two special cases: tree topologies and ring topologies. Several heuristics for arbitrary topologies are proposed and evaluated by simulations. Our simulations suggest that distributed heuristics may perform poorly because of the global nature of the constraints involved. We also show that by carefully choosing multiple wake-up slots for each sensor significant delay savings can be obtained over the single wake-up schedule case while maintaining the same duty cycling. Using this technique, we propose algorithms that offer a desirable bound of d+O(k) on the delay for specialized topologies like the tree and grid and a weaker guarantee of O((d+k)log n) for arbitrary graphs, where d is the shortest path between 2 nodes in the underlying topology and n is the total number of nodes. +ss_paper_id=a22a916cb0a29558f23053bf12f75a86fc350d0a \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_ecolocation_a_sequence_based_technique_for_rfonly_localization_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2005_ecolocation_a_sequence_based_technique_for_rfonly_localization_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..12446ac9952b0ab557f4981c99f76b5c7e8a39c4 --- /dev/null +++ b/database/original_documents/publications_text/2005_ecolocation_a_sequence_based_technique_for_rfonly_localization_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Ecolocation: A Sequence Based Technique for RF-only Localization in Wireless Sensor Networks +venue=The Fourth International Conference on Information Processing in Sensor Networks (IPSN ’05), Los Angeles, CA, April 2005. +authors=['Kiran Yedavalli', 'Bhaskar Krishnamachari', 'Sharmila Ravula', 'Bhaskar Srinivasan'] +abstract=In this paper we present a novel sequence-based RF localization algorithm called Ecolocation. Our algorithm determines the location of unknown nodes by examining the ordered sequence of received signal strength (RSS) measurements taken at multiple reference nodes. We employ a constraint-based approach that provides for robust location decoding even in the presence of random RSS fluctuations due to multi-path fading and shadowing. Through extensive systematic simulations, and a representative set of real mote experiments, we show that over a wide range of settings Ecolocation performs better than other state of the art approaches in terms of localization accuracy and precision. + +# Information +links.pdf=/static/public/papers/ecolocationIPSN05.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/91b362e6ada079f55cb829109258179040127b3d +type=Conference Papers +year=2005 +paper_id=b1f999fb +ss_title=Ecolocation: a sequence based technique for RF localization in wireless sensor networks +ss_authors=[{'authorId': '1704940', 'name': 'Kiran Yedavalli'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2888165', 'name': 'S. Ravula'}, {'authorId': '2057595630', 'name': 'B. Srinivasan'}] +ss_venue=IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005. +ss_year=2005 +ss_abstract=In this paper we present a novel sequence-based RF localization algorithm called Ecolocation. Our algorithm determines the location of unknown nodes by examining the ordered sequence of received signal strength (RSS) measurements taken at multiple reference nodes. We employ a constraint-based approach that provides for robust location decoding even in the presence of random RSS fluctuations due to multi-path fading and shadowing. Through extensive systematic simulations, and a representative set of real mote experiments, we show that over a wide range of settings Ecolocation performs better than other state of the art approaches in terms of localization accuracy and precision. +ss_paper_id=91b362e6ada079f55cb829109258179040127b3d \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_energy_efficient_joint_scheduling_and_power_control_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2005_energy_efficient_joint_scheduling_and_power_control_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..da396762c58cc5787573dd8e543d99b974d8f26c --- /dev/null +++ b/database/original_documents/publications_text/2005_energy_efficient_joint_scheduling_and_power_control_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy Efficient Joint Scheduling and Power Control in Wireless Sensor Networks +venue=Second IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, September 2005. [Acceptance rate: only 55 papers from 202 submissions] +authors=['Gang Lu', 'Bhaskar Krishnamachari'] +abstract=We investigate the problem of energy efficiency in TDMA link scheduling with transmission power control using a realistic SINR-based interference model, given packets of a set of links to be transmitted within a latency bound. First we formulate a fundamental optimization problem (TJSPC) that provides tunable tradeoffs between energy, throughput and latency through a single parameter β. We present both expo- nential and polynomial complexity solutions to this problem and evaluate their performance. Our results show that for moderate traffic loads, with appropriate tuning of parameters, major energy savings can be obtained without significantly sacrificing throughput. We then investigate the scheduling and power control problem with the objective of minimizing the total transmission energy cost under the constraint that all transmission requests are satisfied (JSPC-TR). We present an iterative approach to solve JSPC-TR that leverages the heuristics for TJSPC and converges rapidly to the setting of β which achieves energy efficiency while guaranteeing data delivery. + +# Information +links.pdf=/static/public/papers/LuKrishnamachari_SECON05.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7b09f9a2d0e081cbf7b0b770d2c4cef653d8b662 +type=Conference Papers +year=2005 +paper_id=36f4e098 +ss_title=Energy efficient joint scheduling and power control for wireless sensor networks +ss_authors=[{'authorId': '145316946', 'name': 'Gang Lu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON 2005. +ss_year=2005 +ss_abstract=We investigate the problem of energy efficiency in TDMA link scheduling with transmission power control using a realistic SINR-based interference model, given packets of a set of links to be transmitted within a latency bound. First we formulate a fundamental optimization problem (TJSPC) that provides tunable tradeoffs between energy, throughput and latency through a single parameter β. We present both expo- nential and polynomial complexity solutions to this problem and evaluate their performance. Our results show that for moderate traffic loads, with appropriate tuning of parameters, major energy savings can be obtained without significantly sacrificing throughput. We then investigate the scheduling and power control problem with the objective of minimizing the total transmission energy cost under the constraint that all transmission requests are satisfied (JSPC-TR). We present an iterative approach to solve JSPC-TR that leverages the heuristics for TJSPC and converges rapidly to the setting of β which achieves energy efficiency while guaranteeing data delivery. +ss_paper_id=7b09f9a2d0e081cbf7b0b770d2c4cef653d8b662 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_maximizing_data_extraction_in_energylimited_sensor_networks.txt b/database/original_documents/publications_text/2005_maximizing_data_extraction_in_energylimited_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..fe913b926d3a5f0b72f44ecdcd612da9b2cc61de --- /dev/null +++ b/database/original_documents/publications_text/2005_maximizing_data_extraction_in_energylimited_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Maximizing Data Extraction in Energy-Limited Sensor Networks +venue=International Journal of Distributed Sensor Networks, 2005. +authors=['Narayanan Sadagopan', 'Bhaskar Krishnamachari'] +abstract=We examine the problem of maximizing data collection from an energy-limited store-and-extract wireless sensor network, which is analogous to the maximum lifetime problem of interest in continuous data-gathering sensor networks. One significant difference is that this problem requires attention to “data-awareness” in addition to “energy-awareness”. We formulate the maximum data extraction problem as a linear program and present a 1 + ω iterative approximation algorithm for it. As a practical distributed implementation we develop a faster greedy heuristic for this problem that uses an exponential metric based on the approximation algorithm. We then show through simulation results that the greedy heuristic incorporating this exponential metric performs near-optimally (within 1 to 10% of optimal, with low overhead) and significantly better than other energy aware routing approaches (developed mainly through intuition), particularly when nodes are heterogeneous in their energy and data availability. + +# Information +links.pdf=/static/public/papers/SadagopanKrishnamachari_DSN05.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a334a7f25950926fe1404f1ed3a310ae9e863fba +type=Journal Papers +year=2005 +paper_id=64857847 +ss_title=Maximizing Data Extraction in Energy-Limited Sensor Networks +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE INFOCOM 2004 +ss_year=2004 +ss_abstract=We examine the problem of maximizing data collection from an energy-limited store-and-extract wireless sensor network, which is analogous to the maximum lifetime problem of interest in continuous data-gathering sensor networks. One significant difference is that this problem requires attention to “data-awareness” in addition to “energy-awareness”. We formulate the maximum data extraction problem as a linear program and present a 1 + ω iterative approximation algorithm for it. As a practical distributed implementation we develop a faster greedy heuristic for this problem that uses an exponential metric based on the approximation algorithm. We then show through simulation results that the greedy heuristic incorporating this exponential metric performs near-optimally (within 1 to 10% of optimal, with low overhead) and significantly better than other energy aware routing approaches (developed mainly through intuition), particularly when nodes are heterogeneous in their energy and data availability. +ss_paper_id=a334a7f25950926fe1404f1ed3a310ae9e863fba \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_monotone_properties_of_random_geometric_graphs_have_sharp_thresholds.txt b/database/original_documents/publications_text/2005_monotone_properties_of_random_geometric_graphs_have_sharp_thresholds.txt new file mode 100644 index 0000000000000000000000000000000000000000..ae42503cffcc9864c05277018b8ae2df0565baed --- /dev/null +++ b/database/original_documents/publications_text/2005_monotone_properties_of_random_geometric_graphs_have_sharp_thresholds.txt @@ -0,0 +1,18 @@ +# Publication +title=Monotone Properties of Random Geometric Graphs Have Sharp Thresholds +venue=Annals of Applied Probability, Vol. 15, No. 4, November 2005. +authors=['Ashish Goel', 'Sanatan Rai', 'Bhaskar Krishnamachari'] +abstract=ean distance is at most r, for some prescribed r. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of n points distributed uniformly in [0, 1] d . We present upper bounds on the threshold width, and show that our bound is sharp for d = 1 and at most a sublogarithmic factor away for d ≥ 2. Interestingly, the threshold width is much sharper for random geometric graphs than for Bernoulli random graphs. Further, a random geometric graph is shown to be a subgraph, with high probability, of another independently drawn random geometric graph with a slightly larger radius; this property is shown to have no analogue for Bernoulli random graphs. + +# Information +links.pdf=/static/public/papers/GoelRaiKrishnamachari_AAP0122.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f6aaecabd2d432d8762cc9e064b9b82e7d595ff8 +type=Journal Papers +year=2005 +paper_id=db5f0c0c +ss_title=Monotone properties of random geometric graphs have sharp thresholds +ss_authors=[{'authorId': '143638107', 'name': 'Ashish Goel'}, {'authorId': '34994278', 'name': 'S. Rai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2003 +ss_abstract=ean distance is at most r, for some prescribed r. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of n points distributed uniformly in [0, 1] d . We present upper bounds on the threshold width, and show that our bound is sharp for d = 1 and at most a sublogarithmic factor away for d ≥ 2. Interestingly, the threshold width is much sharper for random geometric graphs than for Bernoulli random graphs. Further, a random geometric graph is shown to be a subgraph, with high probability, of another independently drawn random geometric graph with a slightly larger radius; this property is shown to have no analogue for Bernoulli random graphs. +ss_paper_id=f6aaecabd2d432d8762cc9e064b9b82e7d595ff8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_optimal_transmission_radius_for_flooding_in_large_scale_sensor_networks.txt b/database/original_documents/publications_text/2005_optimal_transmission_radius_for_flooding_in_large_scale_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..98d5c92f462a6c1142ab5a0d32d1e7b0f44be45c --- /dev/null +++ b/database/original_documents/publications_text/2005_optimal_transmission_radius_for_flooding_in_large_scale_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Transmission Radius for Flooding in Large Scale Sensor Networks +venue=Journal of Cluster Computing, Cluster Computing Journal, Springer, Vol. 8, no. 2-3, pp. 167-178, July 2005. +authors=['Marco Zuniga', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/ZunigaKrishnamachari_optimalRadius61603.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b208bd7abe1e2943a8cdd5c6f181577346d1195 +type=Journal Papers +year=2005 +paper_id=9ff24968 +ss_title=Optimal Transmission Radius for Flooding in Large Scale Sensor Networks +ss_authors=[{'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings. +ss_year=2003 +ss_abstract=None +ss_paper_id=3b208bd7abe1e2943a8cdd5c6f181577346d1195 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_optimizing_data_replication_for_expanding_ring_queries_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2005_optimizing_data_replication_for_expanding_ring_queries_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..acdbe22437406265f52ad5c2996d3d2548ffcbcd --- /dev/null +++ b/database/original_documents/publications_text/2005_optimizing_data_replication_for_expanding_ring_queries_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimizing Data Replication for Expanding Ring Queries in Wireless Sensor Networks +venue=USC CENG Technical Report CENG-05-14, Oct. 2005 +authors=['Bhaskar Krishnamachari', 'Joon Ahn'] +abstract=We consider the problem of optimizing the number of replicas for event information in wireless sensor networks, when queries are disseminated using expanding rings. We obtain closed-form approximations for the expected energy costs of search, as well as replication. Using these expressions we derive the replication strategies that minimize the expected total energy cost consisting of search and replication costs, both with and without storage constraints. In both cases, we find that events should be replicated with a frequency that is proportional to the square root of their query rates. We validate our analysis and optimization through a set of realistic simulations that incorporate non-idealities including deployment boundary effects and lossy wireless links. + +# Information +links.pdf=/static/public/papers/OptimizingReplicationTR05.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/8b17c8876351d26a6ed55799d196dfcaf84799e7 +type=Technical Reports and Preprints +year=2005 +paper_id=5e23e469 +ss_title=Optimizing Data Replication for Expanding Ring-based Queries in Wireless Sensor Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2111115072', 'name': 'Joon Ahn'}] +ss_venue=International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks +ss_year=2006 +ss_abstract=We consider the problem of optimizing the number of replicas for event information in wireless sensor networks, when queries are disseminated using expanding rings. We obtain closed-form approximations for the expected energy costs of search, as well as replication. Using these expressions we derive the replication strategies that minimize the expected total energy cost consisting of search and replication costs, both with and without storage constraints. In both cases, we find that events should be replicated with a frequency that is proportional to the square root of their query rates. We validate our analysis and optimization through a set of realistic simulations that incorporate non-idealities including deployment boundary effects and lossy wireless links. +ss_paper_id=8b17c8876351d26a6ed55799d196dfcaf84799e7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2005_sensor_networks_and_distributed_csp_communication_computation_and_complexity.txt b/database/original_documents/publications_text/2005_sensor_networks_and_distributed_csp_communication_computation_and_complexity.txt new file mode 100644 index 0000000000000000000000000000000000000000..ea5a18fac5cdad4aaf1de81005e2bd73975fba6e --- /dev/null +++ b/database/original_documents/publications_text/2005_sensor_networks_and_distributed_csp_communication_computation_and_complexity.txt @@ -0,0 +1,18 @@ +# Publication +title=Sensor networks and distributed CSP: Communication, Computation and Complexity +venue=Artificial Intelligence Journal, Vol. 161, No. 1-2, pp. 117-148, January 2005. +authors=['Ramon Bejar', 'Cesar Fernandez', 'Magda Valls', 'Carmel Domshlak', 'Carla Gomes', 'Bart Selman', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/BejarKrishnamachri_AI.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/576a6079a7edd3b8939a1c76d04030cd852c49c2 +type=Journal Papers +year=2005 +paper_id=3977f5dd +ss_title=Sensor networks and distributed CSP: communication, computation and complexity +ss_authors=[{'authorId': '1753023', 'name': 'R. Béjar'}, {'authorId': '1735824', 'name': 'C. Domshlak'}, {'authorId': '144581582', 'name': 'C. Fernández'}, {'authorId': '144659218', 'name': 'C. Gomes'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1744679', 'name': 'B. Selman'}, {'authorId': '2066525198', 'name': 'Magda Valls'}] +ss_venue=Artificial Intelligence +ss_year=2005 +ss_abstract=None +ss_paper_id=576a6079a7edd3b8939a1c76d04030cd852c49c2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_a_pricebased_reliable_routing_game_in_wireless_networks.txt b/database/original_documents/publications_text/2006_a_pricebased_reliable_routing_game_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..f7d035e2104f183cd27e281276bc960b83d03dda --- /dev/null +++ b/database/original_documents/publications_text/2006_a_pricebased_reliable_routing_game_in_wireless_networks.txt @@ -0,0 +1,26 @@ +# Publication +title=A Price-based Reliable Routing Game in Wireless Networks +venue=Workshop on Game Theory for Networks (GameNets), Pisa, Italy, October 2006. +authors=['Hua Liu', 'Bhaskar Krishnamachari'] +abstract=In emerging self-organizing wireless networks, each device is controlled by a potentially selfish participant who can tamper with the networking protocols in his/her device. This behavior is dangerous as it can lead to inefficient global utilization and the collapse of service provisioning in the network. Motivating the participants to cooperate with each other becomes a key issue in such networks. The mathematical principles of game theory provide a flexible and powerful framework and tool set to study the behavior of rational selfish participants in strategic interaction. We apply game theory to analyze the performance of protocols wireless networks with selfish users and to design incentives for users to cooperate so that they are driven to operate at efficient equilibria. +We provide a thorough survey on game theory applied in wireless networks and illustrate how to apply game theoretic tools to enhance cooperation via three specific case studies: routing in wireless ad-hoc networks, spectrum sharing in cognitive radio networks and incentive design in community-based social mobile networks. +In the case study of routing problem in wireless ad-hoc networks, the goal is to find a reliable routing path. We investigate a pricing mechanism and proposed a polynomial-time construction that can generate a Nash equilibrium path in which no route participant has an incentive to cheat. We show that there is a critical price threshold beyond which an equilibrium path exists with high probability. We also illustrate that there exists an optimal price setting beyond the price threshold at which the source can maximize its utility. We evaluate the approach using simulations based on realistic wireless topologies. +In the case study of spectrum sharing problem in cognitive radio networks, we consider in detail the specific case where two secondary users opportunistically access two channels on which each user has potentially different valuations. We formulate the problem as a non-cooperative simultaneous strategic game and identify the equilibria in this game. For cases where the resulting Nash equilibria are not efficient, we proposed a novel distributed coordinated channel access mechanism that can be implemented with low overhead. This mechanism is based on the Nash bargaining solution and can guarantee full utilization of the available spectrum resources. Resulting gains are quantified for this mechanism. We also consider the user truthfulness in exchanging channel valuation information. We show that truthfulness is not guaranteed in the bargaining process, so that there is a tradeoff between enforcing truthfulness and efficiency. +In the case study of cooperation in community-based mobile social applications, we motivate the work through a personal safety application, where we point out a fundamental tension between users desire for preserving the privacy of their own data and their need for fine-grained information about others. We model the privacy-participation tradeoffs in this safety application as a non-cooperative game and design a tit-for-tat (TFT) mechanism to give users incentives to reveal their local information to the application. We propose an algorithm that yields a Pareto optimal Nash equilibrium. We show that this algorithm, which can be implemented in a distributed manner, guarantees polynomial time convergence. + +# Information +links.pdf=/static/public/papers/LiuKrishnamachari_Pricing_Gamenets06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/78df5f8a961d1c2de0f833fa5e623d8723a09f36 +type=Conference Papers +year=2006 +paper_id=6e14a6d7 +ss_title=Cooperation in wireless networks with selfish users +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2145497349', 'name': 'Hua Liu'}] +ss_venue= +ss_year=2010 +ss_abstract=In emerging self-organizing wireless networks, each device is controlled by a potentially selfish participant who can tamper with the networking protocols in his/her device. This behavior is dangerous as it can lead to inefficient global utilization and the collapse of service provisioning in the network. Motivating the participants to cooperate with each other becomes a key issue in such networks. The mathematical principles of game theory provide a flexible and powerful framework and tool set to study the behavior of rational selfish participants in strategic interaction. We apply game theory to analyze the performance of protocols wireless networks with selfish users and to design incentives for users to cooperate so that they are driven to operate at efficient equilibria. +We provide a thorough survey on game theory applied in wireless networks and illustrate how to apply game theoretic tools to enhance cooperation via three specific case studies: routing in wireless ad-hoc networks, spectrum sharing in cognitive radio networks and incentive design in community-based social mobile networks. +In the case study of routing problem in wireless ad-hoc networks, the goal is to find a reliable routing path. We investigate a pricing mechanism and proposed a polynomial-time construction that can generate a Nash equilibrium path in which no route participant has an incentive to cheat. We show that there is a critical price threshold beyond which an equilibrium path exists with high probability. We also illustrate that there exists an optimal price setting beyond the price threshold at which the source can maximize its utility. We evaluate the approach using simulations based on realistic wireless topologies. +In the case study of spectrum sharing problem in cognitive radio networks, we consider in detail the specific case where two secondary users opportunistically access two channels on which each user has potentially different valuations. We formulate the problem as a non-cooperative simultaneous strategic game and identify the equilibria in this game. For cases where the resulting Nash equilibria are not efficient, we proposed a novel distributed coordinated channel access mechanism that can be implemented with low overhead. This mechanism is based on the Nash bargaining solution and can guarantee full utilization of the available spectrum resources. Resulting gains are quantified for this mechanism. We also consider the user truthfulness in exchanging channel valuation information. We show that truthfulness is not guaranteed in the bargaining process, so that there is a tradeoff between enforcing truthfulness and efficiency. +In the case study of cooperation in community-based mobile social applications, we motivate the work through a personal safety application, where we point out a fundamental tension between users desire for preserving the privacy of their own data and their need for fine-grained information about others. We model the privacy-participation tradeoffs in this safety application as a non-cooperative game and design a tit-for-tat (TFT) mechanism to give users incentives to reveal their local information to the application. We propose an algorithm that yields a Pareto optimal Nash equilibrium. We show that this algorithm, which can be implemented in a distributed manner, guarantees polynomial time convergence. +ss_paper_id=78df5f8a961d1c2de0f833fa5e623d8723a09f36 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_an_evaluation_of_availability_latency_in_carrierbased_vehicular_adhoc_networks.txt b/database/original_documents/publications_text/2006_an_evaluation_of_availability_latency_in_carrierbased_vehicular_adhoc_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..962bd3bb07cb3ada23e3a79625d9355c3d8387c2 --- /dev/null +++ b/database/original_documents/publications_text/2006_an_evaluation_of_availability_latency_in_carrierbased_vehicular_adhoc_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=An evaluation of availability latency in carrier-based vehicular ad-hoc networks +venue=ACM MobiDE, Chicago, June 2006. +authors=['Saharam Ghandeharizadeh', 'Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=On-demand delivery of audio and video clips in peer-to-peer vehicular ad-hoc networks is an emerging area of research. Our target environment uses data carriers, termed zebroids, where a mobile device carries a data item on behalf of a server to a client thereby minimizing its availability latency. In this study, we quantify the variation in availability latency with zebroids as a function of a rich set of parameters such as car density, storage per device, repository size, and replacement policies employed by zebroids. Using analysis and extensive simulations, we gain novel insights into the design of carrier-based systems. Significant improvements in latency can be obtained with zebroids at the cost of a minimal overhead. These improvements occur even in scenarios with lower accuracy in the predictions of the car routes. Two particularly surprising findings are: (1) a naive random replacement policy employed by the zebroids shows competitive performance, and (2) latency improvements obtained with a simplified instantiation of zebroids are found to be robust to changes in the popularity distribution of the data items. + +# Information +links.pdf=/static/public/papers/GhandeharizadehKapadiaKrishnamachari_Mobide06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e1a26ae05a3f149c0d499d3dc5c47b1296dba78e +type=Conference Papers +year=2006 +paper_id=411ab12a +ss_title=An evaluation of availability latency in carrier-based wehicular ad-hoc networks +ss_authors=[{'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM International Workshop on Data Engineering for Wireless and Mobile Access +ss_year=2006 +ss_abstract=On-demand delivery of audio and video clips in peer-to-peer vehicular ad-hoc networks is an emerging area of research. Our target environment uses data carriers, termed zebroids, where a mobile device carries a data item on behalf of a server to a client thereby minimizing its availability latency. In this study, we quantify the variation in availability latency with zebroids as a function of a rich set of parameters such as car density, storage per device, repository size, and replacement policies employed by zebroids. Using analysis and extensive simulations, we gain novel insights into the design of carrier-based systems. Significant improvements in latency can be obtained with zebroids at the cost of a minimal overhead. These improvements occur even in scenarios with lower accuracy in the predictions of the car routes. Two particularly surprising findings are: (1) a naive random replacement policy employed by the zebroids shows competitive performance, and (2) latency improvements obtained with a simplified instantiation of zebroids are found to be robust to changes in the popularity distribution of the data items. +ss_paper_id=e1a26ae05a3f149c0d499d3dc5c47b1296dba78e \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_analysis_of_existing_approaches_and_a_new_hybrid_strategy_for_synchronization_in_sensor_networks.txt b/database/original_documents/publications_text/2006_analysis_of_existing_approaches_and_a_new_hybrid_strategy_for_synchronization_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..4dfb90b66e49902658715f4d6f01f4d3e16407ff --- /dev/null +++ b/database/original_documents/publications_text/2006_analysis_of_existing_approaches_and_a_new_hybrid_strategy_for_synchronization_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Analysis of existing approaches and a new hybrid strategy for synchronization in sensor networks +venue=EmNets, Cambridge, MA, May 2006. +authors=['Pai-Han Huang', 'Bhaskar Krishnamachari'] +abstract=Prior work on sender-receiver-based time synchronization in sensor networks can be categorized into two approaches: two-way packet exchange and one-way packet dissemination. We provide a comprehensive analysis of synchronization errors with these two approaches. We find that one-way dissemination approach provides good relative drift estimation and poor drift estimation while the two-way exchange approach provides good drift estimation but poor relative drift estimation. Consequently, both approaches can result in significant cumulative error propagation over multiple hops. We develop and analyze a hybrid one-way dissemination/two-way exchange technique. The results suggest that this hybrid approach can provide bounded error propagation in multi-hop settings. + +# Information +links.pdf=/static/public/papers/HuangKrishnamachari_HybridTimeSync_EmNets06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fa2c2a2f23306e8edfc8c31d1542f63acf49f9a6 +type=Conference Papers +year=2006 +paper_id=65242e37 +ss_title=Analysis of Existing Approaches and a New Hybrid Strategy for Synchronization in Sensor Networks ∗ +ss_authors=[{'authorId': '3137372', 'name': 'P. Huang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2006 +ss_abstract=Prior work on sender-receiver-based time synchronization in sensor networks can be categorized into two approaches: two-way packet exchange and one-way packet dissemination. We provide a comprehensive analysis of synchronization errors with these two approaches. We find that one-way dissemination approach provides good relative drift estimation and poor drift estimation while the two-way exchange approach provides good drift estimation but poor relative drift estimation. Consequently, both approaches can result in significant cumulative error propagation over multiple hops. We develop and analyze a hybrid one-way dissemination/two-way exchange technique. The results suggest that this hybrid approach can provide bounded error propagation in multi-hop settings. +ss_paper_id=fa2c2a2f23306e8edfc8c31d1542f63acf49f9a6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_comparative_analysis_of_pushpull_query_strategies_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2006_comparative_analysis_of_pushpull_query_strategies_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..a83dd0a2823a4eb7294a9962424ed60e1d1fe0a9 --- /dev/null +++ b/database/original_documents/publications_text/2006_comparative_analysis_of_pushpull_query_strategies_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Comparative Analysis of Push-Pull Query Strategies for Wireless Sensor Networks +venue=International Conference on Distributed Computing in Sensor Systems (DCOSS), June 2006. +authors=['Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/KapadiaKrishnamachari_DCOSS06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3bc2275905f1ae39151964acd8cc5f4c4620b6b6 +type=Conference Papers +year=2006 +paper_id=de7a075a +ss_title=Comparative Analysis of Push-Pull Query Strategies for Wireless Sensor Networks +ss_authors=[{'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Distributed Computing in Sensor Systems +ss_year=2006 +ss_abstract=None +ss_paper_id=3bc2275905f1ae39151964acd8cc5f4c4620b6b6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_decentralized_utility_based_sensor_network_design.txt b/database/original_documents/publications_text/2006_decentralized_utility_based_sensor_network_design.txt new file mode 100644 index 0000000000000000000000000000000000000000..84d4350677f34ee717ee0e400f8e968d5e5681d9 --- /dev/null +++ b/database/original_documents/publications_text/2006_decentralized_utility_based_sensor_network_design.txt @@ -0,0 +1,18 @@ +# Publication +title=Decentralized Utility Based Sensor Network Design +venue=ACM Mobile Networks and Applications Journal, Vol. 11, No. 3, 2006. +authors=['Narayanan Sadagopan', 'Mitali Singh', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/SadagopanSinghKrishnamachari_MONET.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/73ca8156cc8d5218bc8d136fabd2fdd60c452dde +type=Journal Papers +year=2006 +paper_id=0fd87639 +ss_title=Decentralized Utility-based Sensor Network Design +ss_authors=[{'authorId': '2074296975', 'name': 'N. Sadagopan'}, {'authorId': '2110430921', 'name': 'Mitali Singh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Mob. Networks Appl. +ss_year=2006 +ss_abstract=None +ss_paper_id=73ca8156cc8d5218bc8d136fabd2fdd60c452dde \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_derivations_of_the_expected_energy_cost_of_search_and_replication_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2006_derivations_of_the_expected_energy_cost_of_search_and_replication_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..42d73b36e4b062124f7059addfbba3092d221255 --- /dev/null +++ b/database/original_documents/publications_text/2006_derivations_of_the_expected_energy_cost_of_search_and_replication_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Derivations of the Expected Energy Cost of Search and Replication in Wireless Sensor Networks +venue=USC CENG Technical Report CENG-2006-3, 2006 +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=We develop closed-form expressions of the expected minimum search energy cost and replication energy cost for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We use both the square grid and random topology to derive each cost modeling. We find that the search cost of unstructured networks is proportional to the number of nodes N and inversely proportional to (r + 1) (where r denotes the number of copies of the target event). The search cost of structured networks is proportional to √ N/ √ r while the replication cost of both structured and unstructured networks is proportional to √ N(r − 1). Furthermore, the proportionality of those costs is independent of whether the topology is grid or random, which implies that the two topologies have common structural characteristics in terms of search and replication costs. + +# Information +links.pdf=/static/public/papers/mobihoc06-derivations-techreport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1ad07f42b9b7cef64097d2e6569f130b2c398336 +type=Technical Reports and Preprints +year=2006 +paper_id=74064130 +ss_title=Derivations of the Expected Energy Costs of Search and Replication in Wireless Sensor Networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2006 +ss_abstract=We develop closed-form expressions of the expected minimum search energy cost and replication energy cost for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We use both the square grid and random topology to derive each cost modeling. We find that the search cost of unstructured networks is proportional to the number of nodes N and inversely proportional to (r + 1) (where r denotes the number of copies of the target event). The search cost of structured networks is proportional to √ N/ √ r while the replication cost of both structured and unstructured networks is proportional to √ N(r − 1). Furthermore, the proportionality of those costs is independent of whether the topology is grid or random, which implies that the two topologies have common structural characteristics in terms of search and replication costs. +ss_paper_id=1ad07f42b9b7cef64097d2e6569f130b2c398336 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_energy_efficient_datarepresentation_and_routing_for_wireless_sensor_networks_based_on_a_distributed_wavelet_compression_algorithm.txt b/database/original_documents/publications_text/2006_energy_efficient_datarepresentation_and_routing_for_wireless_sensor_networks_based_on_a_distributed_wavelet_compression_algorithm.txt new file mode 100644 index 0000000000000000000000000000000000000000..a223cc83933b656313da2cbcd9a36ea8e7170d4a --- /dev/null +++ b/database/original_documents/publications_text/2006_energy_efficient_datarepresentation_and_routing_for_wireless_sensor_networks_based_on_a_distributed_wavelet_compression_algorithm.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy Efficient Data-Representation and Routing for Wireless Sensor Networks Based on a Distributed Wavelet Compression Algorithm +venue=ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN), Nashville, Tennessee, April 2006. [Acceptance rate: only 41 papers from 165 submissions]. +authors=['Alexandre Ciancio', 'Sundeep Pattem', 'Antonio Ortega', 'Bhaskar Krishnamachari'] +abstract=We address the problem of energy consumption reduction for wireless sensor networks, where each of the sensors has limited power and acquires data that should be transmitted to a central node. The final goal is to have a reconstructed version of the data measurements at the central node, with the sensors spending as little energy as possible, for a given data reconstruction accuracy. In our scenario, sensors in the network have a choice of different coding schemes to achieve varying levels of compression. The compression algorithms considered are based on the lifting factorization of the wavelet transform, and exploit the natural data flow in the network to aggregate data by computing partial wavelet coefficients that are refined as data flows towards the central node. The proposed algorithm operates by first selecting a routing strategy through the network. Then, for each route, an optimal combination of data representation algorithms i.e. assignment at each node, is selected. A simple heuristic is used to determine the data representation technique to use once path merges are taken into consideration. We demonstrate that by optimizing the coding algorithm selection the overall energy consumption can be significantly reduced when compared to the case when data is just quantized and forwarded to the central node. Moreover, the proposed algorithm provides a tool to compare different routing techniques and identify those that are most efficient overall, for given node locations. We evaluate the algorithm using both a second-order autoregressive (AR) model and empirical data from a real wireless sensor network deployment + +# Information +links.pdf=/static/public/papers/CiancioPattemOrtegaKrishnamachari_IPSN06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cb2609186dda502a552d6bfb396b03f4ffdda597 +type=Conference Papers +year=2006 +paper_id=ed7be855 +ss_title=Energy-efficient data representation and routing for wireless sensor networks based on a distributed wavelet compression algorithm +ss_authors=[{'authorId': '1773878', 'name': 'A. Ciancio'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '145029825', 'name': 'Antonio Ortega'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2006 5th International Conference on Information Processing in Sensor Networks +ss_year=2006 +ss_abstract=We address the problem of energy consumption reduction for wireless sensor networks, where each of the sensors has limited power and acquires data that should be transmitted to a central node. The final goal is to have a reconstructed version of the data measurements at the central node, with the sensors spending as little energy as possible, for a given data reconstruction accuracy. In our scenario, sensors in the network have a choice of different coding schemes to achieve varying levels of compression. The compression algorithms considered are based on the lifting factorization of the wavelet transform, and exploit the natural data flow in the network to aggregate data by computing partial wavelet coefficients that are refined as data flows towards the central node. The proposed algorithm operates by first selecting a routing strategy through the network. Then, for each route, an optimal combination of data representation algorithms i.e. assignment at each node, is selected. A simple heuristic is used to determine the data representation technique to use once path merges are taken into consideration. We demonstrate that by optimizing the coding algorithm selection the overall energy consumption can be significantly reduced when compared to the case when data is just quantized and forwarded to the central node. Moreover, the proposed algorithm provides a tool to compare different routing techniques and identify those that are most efficient overall, for given node locations. We evaluate the algorithm using both a second-order autoregressive (AR) model and empirical data from a real wireless sensor network deployment +ss_paper_id=cb2609186dda502a552d6bfb396b03f4ffdda597 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_energy_minimization_for_realtime_data_gathering_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2006_energy_minimization_for_realtime_data_gathering_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..f815f30b23fd2fa7b796e9625fc5451a72667900 --- /dev/null +++ b/database/original_documents/publications_text/2006_energy_minimization_for_realtime_data_gathering_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=“Energy Minimization for Real-Time Data Gathering in Wireless Sensor Networks” +venue=IEEE Transactions on Wireless Communications, Vol. 5, No. 11, pp. 3087-3096, November 2006. +authors=['Yang Yu', 'Bhaskar Krishnamachari', 'Viktor Prasanna'] +abstract=This paper studies the challenging problem of scheduling packet transmissions for data gathering in wireless sensor networks. The focus of our work is to explore the energy-latency tradeoffs in packet transmission using techniques such as modulation scaling. The data aggregation tree – a multiple-source single-sink communication paradigm – is employed for abstracting the packet flow. We consider a realtime scenario in which the data gathering must be performed within a specified latency constraint. We present algorithms to minimize the overall energy dissipation of sensor nodes in the data aggregation tree without violating the latency constraint. For the off-line version of the problem, we propose (a) a numerical algorithm for optimal solutions, and (b) a dynamic programming-based polynormial approximation algorithm by discretizing the transmission time. While interference can be minimized by medium access control (MAC) layer mechanisms, we also illustrate explicit packet scheduling for interference avoidance when multi-packet reception techniques (such as CDMA, FDMA) are used. Moreover, the discretized transmission time naturally leads to a simple, distributed on-line protocol that relies only on the local information available at each sensor node. Extensive simulations were conducted This work is supported in part by NSF grants 0330445, 0325875, and 0347621. A preliminary version of this paper appears in IEEE InfoCom 2004 [1]. This version contains additional content and improvements, including complete proofs, improved on-line protocol, and more comprehensive simulation results. + +# Information +links.pdf=/static/public/papers/YuPrasannaKrishnamachari_IEEETWC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ca898bdde296cda5cdc8535086cf61fb2aeaf587 +type=Journal Papers +year=2006 +paper_id=1e78bd29 +ss_title=Exploring Energy-Latency Tradeoffs for Real-Time Data Gathering in Wireless Sensor Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1728271', 'name': 'V. Prasanna'}] +ss_venue= +ss_year=2004 +ss_abstract=This paper studies the challenging problem of scheduling packet transmissions for data gathering in wireless sensor networks. The focus of our work is to explore the energy-latency tradeoffs in packet transmission using techniques such as modulation scaling. The data aggregation tree – a multiple-source single-sink communication paradigm – is employed for abstracting the packet flow. We consider a realtime scenario in which the data gathering must be performed within a specified latency constraint. We present algorithms to minimize the overall energy dissipation of sensor nodes in the data aggregation tree without violating the latency constraint. For the off-line version of the problem, we propose (a) a numerical algorithm for optimal solutions, and (b) a dynamic programming-based polynormial approximation algorithm by discretizing the transmission time. While interference can be minimized by medium access control (MAC) layer mechanisms, we also illustrate explicit packet scheduling for interference avoidance when multi-packet reception techniques (such as CDMA, FDMA) are used. Moreover, the discretized transmission time naturally leads to a simple, distributed on-line protocol that relies only on the local information available at each sensor node. Extensive simulations were conducted This work is supported in part by NSF grants 0330445, 0325875, and 0347621. A preliminary version of this paper appears in IEEE InfoCom 2004 [1]. This version contains additional content and improvements, including complete proofs, improved on-line protocol, and more comprehensive simulation results. +ss_paper_id=ca898bdde296cda5cdc8535086cf61fb2aeaf587 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_experimental_study_of_concurrent_transmission_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2006_experimental_study_of_concurrent_transmission_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..9325a9158aafce7677da713d25aca1128d9d9187 --- /dev/null +++ b/database/original_documents/publications_text/2006_experimental_study_of_concurrent_transmission_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Experimental Study of Concurrent Transmission in Wireless Sensor Networks +venue=4th ACM Conference on Embedded Networked Sensor Systems (Sensys), Colorado, November 2006. +authors=['Dongjin Son', 'Bhaskar Krishnamachari', 'John Heidemann'] +abstract=We undertake a systematic experimental study of the effects of concurrent packet transmissions in low-power wireless networks. Our measurements, conducted with Mica2 motes equipped with CC1000 radios, confirm that guaranteeing successful packet reception with high probability in the presence of concurrent transmissions requires that the signal-to-interference-plus-noise-ratio (SINR) exceed a critical threshold. However, we find a significant variation of about 6 dB in the threshold for groups of radios operating at different transmission powers. We find that it is harder to estimate the level of interference in the presence of multiple interferers. We also find that the measured SINR threshold generally increases with the number of interferers. Our study offers a better understanding of concurrent transmissions and suggests richer interference models and useful guidelines to improve the design and analysis of higher layer protocols. + +# Information +links.pdf=/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5bf8d1162a85ce36fee42f4915b74ca93f8f2dc8 +type=Conference Papers +year=2006 +paper_id=1749582e +ss_title=Experimental study of concurrent transmission in wireless sensor networks +ss_authors=[{'authorId': '1760388', 'name': 'Dongjin Son'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '46351573', 'name': 'J. Heidemann'}] +ss_venue=ACM International Conference on Embedded Networked Sensor Systems +ss_year=2006 +ss_abstract=We undertake a systematic experimental study of the effects of concurrent packet transmissions in low-power wireless networks. Our measurements, conducted with Mica2 motes equipped with CC1000 radios, confirm that guaranteeing successful packet reception with high probability in the presence of concurrent transmissions requires that the signal-to-interference-plus-noise-ratio (SINR) exceed a critical threshold. However, we find a significant variation of about 6 dB in the threshold for groups of radios operating at different transmission powers. We find that it is harder to estimate the level of interference in the presence of multiple interferers. We also find that the measured SINR threshold generally increases with the number of interferers. Our study offers a better understanding of concurrent transmissions and suggests richer interference models and useful guidelines to improve the design and analysis of higher layer protocols. +ss_paper_id=5bf8d1162a85ce36fee42f4915b74ca93f8f2dc8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_fundamental_scaling_laws_for_energyefficient_storage_and_querying_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2006_fundamental_scaling_laws_for_energyefficient_storage_and_querying_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..16ff7dfe2c2b358399fda6f54f256c5d8e3ffe32 --- /dev/null +++ b/database/original_documents/publications_text/2006_fundamental_scaling_laws_for_energyefficient_storage_and_querying_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Fundamental Scaling Laws for Energy-Efficient Storage and Querying in Wireless Sensor Networks +venue=In Proceedings of the 7th ACM international Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’06), Florence, Italy, May 22 – 25, 2006 [Highly Competitive, Acceptance rate: only 31 papers from 318 submissions]. Winner of 2006 USC EE Department Best Student Paper Award. +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=We use a constrained optimization framework to derive fundamental scaling laws for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We find that the scalability of a sensor network's performance depends upon whether or not the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads. Let m be the number of events sensed by a network over a finite period of deployment, q the number of queries for each event, and N the size of the network. Our key finding is that q1/2•m must be O(N1/4)for unstructured net-works, and q2/3•m must be O(N1/2)for structured networks, to ensure scalable network performance. These conditions determine (i) whether or not the energy requirement per node grows without bound with the network size for a fixed-duration deployment, (ii) whether or not there exists a maximum network size that can be operated for a specified duration on a fixed energy budget, and (iii) whether the network lifetime increases or decreases with the size of the network for a fixed energy budget. We discuss the practical implications of these results for the design of hierarchical two-tier wireless sensor networks. + +# Information +links.pdf=/static/public/papers/AhnKrishnamachari_ScalingLaws.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d5f9a989511c960d3f9ff13a96ef611c152a1c51 +type=Conference Papers +year=2006 +paper_id=f55cebf7 +ss_title=Fundamental scaling laws for energy-efficient storage and querying in wireless sensor networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM Interational Symposium on Mobile Ad Hoc Networking and Computing +ss_year=2006 +ss_abstract=We use a constrained optimization framework to derive fundamental scaling laws for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We find that the scalability of a sensor network's performance depends upon whether or not the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads. Let m be the number of events sensed by a network over a finite period of deployment, q the number of queries for each event, and N the size of the network. Our key finding is that q1/2•m must be O(N1/4)for unstructured net-works, and q2/3•m must be O(N1/2)for structured networks, to ensure scalable network performance. These conditions determine (i) whether or not the energy requirement per node grows without bound with the network size for a fixed-duration deployment, (ii) whether or not there exists a maximum network size that can be operated for a specified duration on a fixed energy budget, and (iii) whether the network lifetime increases or decreases with the size of the network for a fixed energy budget. We discuss the practical implications of these results for the design of hierarchical two-tier wireless sensor networks. +ss_paper_id=d5f9a989511c960d3f9ff13a96ef611c152a1c51 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_optimizing_data_replication_for_expanding_ringbased_queries_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2006_optimizing_data_replication_for_expanding_ringbased_queries_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..6516573dd61d77500c44229718bcd60495478aad --- /dev/null +++ b/database/original_documents/publications_text/2006_optimizing_data_replication_for_expanding_ringbased_queries_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimizing data replication for expanding ring-based queries in wireless sensor networks +venue=Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th International Symposium on (WiOpt ’06), Boston, MA, April 2006. +authors=['Bhaskar Krishnamachari', 'Joon Ahn'] +abstract=We consider the problem of optimizing the number of replicas for event information in wireless sensor networks, when queries are disseminated using expanding rings. We obtain closed-form approximations for the expected energy costs of search, as well as replication. Using these expressions we derive the replication strategies that minimize the expected total energy cost consisting of search and replication costs, both with and without storage constraints. In both cases, we find that events should be replicated with a frequency that is proportional to the square root of their query rates. We validate our analysis and optimization through a set of realistic simulations that incorporate non-idealities including deployment boundary effects and lossy wireless links. + +# Information +links.pdf=/static/public/papers/KrishnamachariAhn_WiOpt06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/8b17c8876351d26a6ed55799d196dfcaf84799e7 +type=Conference Papers +year=2006 +paper_id=c24c4b72 +ss_title=Optimizing Data Replication for Expanding Ring-based Queries in Wireless Sensor Networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2111115072', 'name': 'Joon Ahn'}] +ss_venue=International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks +ss_year=2006 +ss_abstract=We consider the problem of optimizing the number of replicas for event information in wireless sensor networks, when queries are disseminated using expanding rings. We obtain closed-form approximations for the expected energy costs of search, as well as replication. Using these expressions we derive the replication strategies that minimize the expected total energy cost consisting of search and replication costs, both with and without storage constraints. In both cases, we find that events should be replicated with a frequency that is proportional to the square root of their query rates. We validate our analysis and optimization through a set of realistic simulations that incorporate non-idealities including deployment boundary effects and lossy wireless links. +ss_paper_id=8b17c8876351d26a6ed55799d196dfcaf84799e7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_poster_is_datacentric_storage_and_querying_scalable.txt b/database/original_documents/publications_text/2006_poster_is_datacentric_storage_and_querying_scalable.txt new file mode 100644 index 0000000000000000000000000000000000000000..d89a3deecf54806eff34656eb744dcfec4f2f7a1 --- /dev/null +++ b/database/original_documents/publications_text/2006_poster_is_datacentric_storage_and_querying_scalable.txt @@ -0,0 +1,18 @@ +# Publication +title=POSTER: Is Data-Centric Storage and Querying Scalable? +venue=ACM Sensys, Oct. 2006 +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=The scalability of a wireless sensor network has been of interest and importance. We use a constrained optimization framework to derive fundamental scaling laws for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We find that the scalability of a sensor network’s perfo rmance depends upon whether or not the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads . We have figured out the theoretical scaling laws for the networks of 2 dimensional deployment in our previous work [2]. We report on our work-in-progress aimed at extending the scaling laws to networks of various dimensional deployment. As a recent achievement, we find that m· q 1/2 must be O(N d 1 2d ) for unstructured networks, and + +# Information +links.pdf=/static/public/papers/JAhn_Sensys06.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d83d4e459d26431a7911ccc69e44fdcb10accf4b +type=Conference Papers +year=2006 +paper_id=7342b6d1 +ss_title=Poster Abstract: Is Data-Centric Storage and Querying Scalable? +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2006 +ss_abstract=The scalability of a wireless sensor network has been of interest and importance. We use a constrained optimization framework to derive fundamental scaling laws for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We find that the scalability of a sensor network’s perfo rmance depends upon whether or not the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads . We have figured out the theoretical scaling laws for the networks of 2 dimensional deployment in our previous work [2]. We report on our work-in-progress aimed at extending the scaling laws to networks of various dimensional deployment. As a recent achievement, we find that m· q 1/2 must be O(N d 1 2d ) for unstructured networks, and +ss_paper_id=d83d4e459d26431a7911ccc69e44fdcb10accf4b \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_sensor_network_configuration_and_the_curse_of_dimensionality.txt b/database/original_documents/publications_text/2006_sensor_network_configuration_and_the_curse_of_dimensionality.txt new file mode 100644 index 0000000000000000000000000000000000000000..d8a99abc7c2fb614e867a77e9652d0de3814d328 --- /dev/null +++ b/database/original_documents/publications_text/2006_sensor_network_configuration_and_the_curse_of_dimensionality.txt @@ -0,0 +1,18 @@ +# Publication +title=Sensor Network Configuration and the Curse of Dimensionality +venue=EmNets, Cambridge, MA, May 2006. +authors=['Sameera Poduri', 'Sundeep Pattem', 'Bhaskar Krishnamachari'] +abstract=Sensor network problems in three dimensions have not been adequately addressed there is a tendency to either ignore the extension of algorithms from two dimensions (2D) to three dimensions (3D) for simplicity or believe that it is straightforward. We draw examples from well known problems in geometry and argue that this step needs special investigation while some properties of networks in 2D directly generalize to 3D, many require additional computational complexity, and a few do not generalize at all. This paper focuses on the problem of deployment and configuration of sensor networks in 3D, draws attention to the fundamental difficulties involved, and presents a set of local geometric rules that can be used to construct efficient network topologies in 3D. + +# Information +links.pdf=/static/public/papers/PoduriPattemKrishnamachariSukhatme_EmNets2006.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/77e4822005197db2bcbc41486d6e0673991441d6 +type=Conference Papers +year=2006 +paper_id=b7c6b60c +ss_title=Sensor Network Configuration and the Curse of Dimensionality +ss_authors=[{'authorId': '2975120', 'name': 'Sameera Poduri'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1732493', 'name': 'G. Sukhatme'}] +ss_venue= +ss_year=2006 +ss_abstract=Sensor network problems in three dimensions have not been adequately addressed there is a tendency to either ignore the extension of algorithms from two dimensions (2D) to three dimensions (3D) for simplicity or believe that it is straightforward. We draw examples from well known problems in geometry and argue that this step needs special investigation while some properties of networks in 2D directly generalize to 3D, many require additional computational complexity, and a few do not generalize at all. This paper focuses on the problem of deployment and configuration of sensor networks in 3D, draws attention to the fundamental difficulties involved, and presents a set of local geometric rules that can be used to construct efficient network topologies in 3D. +ss_paper_id=77e4822005197db2bcbc41486d6e0673991441d6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2006_the_power_of_choice_in_random_walks_an_empirical_study.txt b/database/original_documents/publications_text/2006_the_power_of_choice_in_random_walks_an_empirical_study.txt new file mode 100644 index 0000000000000000000000000000000000000000..835c4ac4e16fe02d38ed0ae4ac41d679de409451 --- /dev/null +++ b/database/original_documents/publications_text/2006_the_power_of_choice_in_random_walks_an_empirical_study.txt @@ -0,0 +1,18 @@ +# Publication +title=The Power of Choice in Random Walks: An Empirical Study +venue=9th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, (MSWiM), Malaga, Spain, October 2006. Winner of MSWiM 2006 Best Paper Award. +authors=['Chen Avin', 'Bhaskar Krishnamachari'] +abstract=In recent years random-walk-based algorithms have been proposed for a variety of networking tasks. These proposals include searching, routing, self-stabilization, and query processing in wireless networks, peer-to-peer networks and other distributed systems. This approach is gaining popularity because random walks present locality, simplicity, low-overhead and inherent robustness to structural changes. In this work we propose and investigate an enhanced algorithm that we refer to as random walks with choice. In this algorithm, instead of selecting just one neighbor at each step, the walk moves to the next node after examining a small number of neighbors sampled at random. Our empirical results on random geometric graphs, the model best suited for wireless networks, suggest a significant improvement in important metrics such as the cover time and load-balancing properties of random walks. We also systematically investigate random walks with choice on networks with a square grid topology. For this case, our simulations indicate that there is an unbounded improvement in cover time even with a choice of only two neighbors. We also observe a large reduction in the variance of the cover time, and a significant improvement in visit load balancing. + +# Information +links.pdf=/static/public/papers/AvinKrishnamachari_PowerOfChoice.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3a57d8441e3862a33dfb273eadaf09f3e480111b +type=Conference Papers +year=2006 +paper_id=fd59ed64 +ss_title=The power of choice in random walks: an empirical study +ss_authors=[{'authorId': '145707494', 'name': 'C. Avin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems +ss_year=2006 +ss_abstract=In recent years random-walk-based algorithms have been proposed for a variety of networking tasks. These proposals include searching, routing, self-stabilization, and query processing in wireless networks, peer-to-peer networks and other distributed systems. This approach is gaining popularity because random walks present locality, simplicity, low-overhead and inherent robustness to structural changes. In this work we propose and investigate an enhanced algorithm that we refer to as random walks with choice. In this algorithm, instead of selecting just one neighbor at each step, the walk moves to the next node after examining a small number of neighbors sampled at random. Our empirical results on random geometric graphs, the model best suited for wireless networks, suggest a significant improvement in important metrics such as the cover time and load-balancing properties of random walks. We also systematically investigate random walks with choice on networks with a square grid topology. For this case, our simulations indicate that there is an unbounded improvement in cover time even with a choice of only two neighbors. We also observe a large reduction in the variance of the cover time, and a significant improvement in visit load balancing. +ss_paper_id=3a57d8441e3862a33dfb273eadaf09f3e480111b \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_an_adaptive_energyefficient_and_lowlatency_mac_for_treebased_data_gathering_in_sensor_networks.txt b/database/original_documents/publications_text/2007_an_adaptive_energyefficient_and_lowlatency_mac_for_treebased_data_gathering_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..8722ebfe9627d5bf73db4a8637e1f0e09a680816 --- /dev/null +++ b/database/original_documents/publications_text/2007_an_adaptive_energyefficient_and_lowlatency_mac_for_treebased_data_gathering_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=“An Adaptive Energy-Efficient and Low-Latency MAC for Tree-based Data Gathering in Sensor Networks” +venue=Journal of Wireless Communications and Mobile Computing, special issue on Advances in Resource-Constrained Device Networking, Vol. 7, 2007. +authors=['Gang Yu', 'Bhaskar Krishnamachari', 'Cauligi S Raghavendra'] +abstract=Summary A specific characteristic of sensor network applications is that the major traffic consists of data collection from various sensor source nodes to a sink via a unidirectional tree. In this paper, we propose DMAC, an energy efficient and low latency MAC that is designed and optimized for such data gathering trees in wireless sensor networks. We first show that previously proposed MAC protocols for sensor networks that utilize activation/sleep duty cycles suffer from a data forwarding interruption problem, whereby not all nodes on a multihop path to the sink can be notified of data delivery in progress, resulting in significant sleep delay. DMAC is designed to solve the interruption problem, by giving the active/sleep schedule of a node an offset that depends upon its depth on the tree. This scheme allows continuous packet forwarding because all nodes on the multihop path can be notified of the data delivery in progress. DMAC also adjusts node duty cycles adaptively according to the traffic load in the network by varying the number of active slots in an schedule interval. We further propose a data prediction mechanism and the use of more to send (MTS) packets in order to alleviate problems pertaining to channel contention and collisions. Our simulation results as well as experimental results with the Mote platform show that by exploiting the applicationspecific structure of data gathering trees in sensor networks, DMAC provides significant energy savings and latency reduction while ensuring high data reliability. Copyright © 2007 John Wiley & Sons, Ltd. + +# Information +links.pdf=/static/public/papers/LuKrishnamachariRaghavendra_WCMC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/61dcd0bff93f52fc69e9943261ac3c16d586afea +type=Journal Papers +year=2007 +paper_id=b11c6352 +ss_title=An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks +ss_authors=[{'authorId': '145316946', 'name': 'Gang Lu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1756733', 'name': 'C. Raghavendra'}] +ss_venue=Wireless Communications and Mobile Computing +ss_year=2007 +ss_abstract=Summary A specific characteristic of sensor network applications is that the major traffic consists of data collection from various sensor source nodes to a sink via a unidirectional tree. In this paper, we propose DMAC, an energy efficient and low latency MAC that is designed and optimized for such data gathering trees in wireless sensor networks. We first show that previously proposed MAC protocols for sensor networks that utilize activation/sleep duty cycles suffer from a data forwarding interruption problem, whereby not all nodes on a multihop path to the sink can be notified of data delivery in progress, resulting in significant sleep delay. DMAC is designed to solve the interruption problem, by giving the active/sleep schedule of a node an offset that depends upon its depth on the tree. This scheme allows continuous packet forwarding because all nodes on the multihop path can be notified of the data delivery in progress. DMAC also adjusts node duty cycles adaptively according to the traffic load in the network by varying the number of active slots in an schedule interval. We further propose a data prediction mechanism and the use of more to send (MTS) packets in order to alleviate problems pertaining to channel contention and collisions. Our simulation results as well as experimental results with the Mote platform show that by exploiting the applicationspecific structure of data gathering trees in sensor networks, DMAC provides significant energy savings and latency reduction while ensuring high data reliability. Copyright © 2007 John Wiley & Sons, Ltd. +ss_paper_id=61dcd0bff93f52fc69e9943261ac3c16d586afea \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_an_analysis_of_unreliability_and_asymmetry_in_lowpower_wireless_links.txt b/database/original_documents/publications_text/2007_an_analysis_of_unreliability_and_asymmetry_in_lowpower_wireless_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..16c3acf12c3826a0c88a66d686674558d0a9c587 --- /dev/null +++ b/database/original_documents/publications_text/2007_an_analysis_of_unreliability_and_asymmetry_in_lowpower_wireless_links.txt @@ -0,0 +1,18 @@ +# Publication +title=An Analysis of Unreliability and Asymmetry in Low-Power Wireless Links +venue=ACM Transactions on Sensor Networks, Vol 3, No. 2, June 2007. +authors=['Marco Zuniga', 'Bhaskar Krishnamachari'] +abstract=Experimental studies have demonstrated that the behavior of real links in low-power wireless networks (such as wireless sensor networks) deviates to a large extent from the ideal binary model used in several simulation studies. In particular, there is a large transitional region in wireless link quality that is characterized by significant levels of unreliability and asymmetry, significantly impacting the performance of higher-layer protocols. We provide a comprehensive analysis of the root causes of unreliability and asymmetry. In particular, we derive expressions for the distribution, expectation, and variance of the packet reception rate as a function of distance, as well as for the location and extent of the transitional region. These expressions incorporate important environmental and radio parameters such as the path loss exponent and shadowing variance of the channel, and the modulation, encoding, and hardware variance of the radios. + +# Information +links.pdf=/static/public/papers/zunigakrishnamachari_journal2008TOSN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bc3cd07c3745ac3e11fde10d314cda978c3acb58 +type=Journal Papers +year=2007 +paper_id=e313dd51 +ss_title=An analysis of unreliability and asymmetry in low-power wireless links +ss_authors=[{'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=TOSN +ss_year=2007 +ss_abstract=Experimental studies have demonstrated that the behavior of real links in low-power wireless networks (such as wireless sensor networks) deviates to a large extent from the ideal binary model used in several simulation studies. In particular, there is a large transitional region in wireless link quality that is characterized by significant levels of unreliability and asymmetry, significantly impacting the performance of higher-layer protocols. We provide a comprehensive analysis of the root causes of unreliability and asymmetry. In particular, we derive expressions for the distribution, expectation, and variance of the packet reception rate as a function of distance, as well as for the location and extent of the transitional region. These expressions incorporate important environmental and radio parameters such as the path loss exponent and shadowing variance of the channel, and the modulation, encoding, and hardware variance of the radios. +ss_paper_id=bc3cd07c3745ac3e11fde10d314cda978c3acb58 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_efficient_distributed_topology_control_in_3dimensional_wireless_networks.txt b/database/original_documents/publications_text/2007_efficient_distributed_topology_control_in_3dimensional_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..dbafc076d96c26e0735e59b9d019bdf921b947c6 --- /dev/null +++ b/database/original_documents/publications_text/2007_efficient_distributed_topology_control_in_3dimensional_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Efficient Distributed Topology Control in 3-Dimensional Wireless Networks +venue=4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 91-100, San Diego, June 2007. +authors=['Amitabha Ghosh', 'Yi Wang', 'Bhaskar Krishnamachari'] +abstract=Distributed topology control mechanisms for 3-dimensional settings are of considerable interest for automated network configuration in diverse applications including structural monitoring networks and underwater networks. The 3-D CBTC technique proposed by Bahramgiri et al. [7] has a complexity of O (d 3 log d), where d represents the average number of neighbors per node. We present two efficient alternatives. The first is a heuristic based on 2-D orthographic projections that provides excellent performance in practice, but is theoretically not guaranteed to produce a connected network. The second is a more rigorous approach based on spherical Delaunay triangulation (SDT). Both have significantly better running times that scale as O (d log d). Our simulation results indicate that network topologies generated based on the SDT algorithm have substantially lower average node degree and average transmission power level compared to the original network for random deployments. + +# Information +links.pdf=/static/public/papers/GhoshWangKrishnamachari_SECON2007.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6ccaac9f8ee643d24ad6339370a7904b1b2d5a9a +type=Conference Papers +year=2007 +paper_id=57e371bb +ss_title=Efficient Distributed Topology Control in 3-Dimensional Wireless Networks +ss_authors=[{'authorId': '144942535', 'name': 'Amitava Ghosh'}, {'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2007 +ss_abstract=Distributed topology control mechanisms for 3-dimensional settings are of considerable interest for automated network configuration in diverse applications including structural monitoring networks and underwater networks. The 3-D CBTC technique proposed by Bahramgiri et al. [7] has a complexity of O (d 3 log d), where d represents the average number of neighbors per node. We present two efficient alternatives. The first is a heuristic based on 2-D orthographic projections that provides excellent performance in practice, but is theoretically not guaranteed to produce a connected network. The second is a more rigorous approach based on spherical Delaunay triangulation (SDT). Both have significantly better running times that scale as O (d log d). Our simulation results indicate that network topologies generated based on the SDT algorithm have substantially lower average node degree and average transmission power level compared to the original network for random deployments. +ss_paper_id=6ccaac9f8ee643d24ad6339370a7904b1b2d5a9a \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_empirical_evaluation_of_querying_mechanisms_for_unstructured_wireless_sensor_networks.txt b/database/original_documents/publications_text/2007_empirical_evaluation_of_querying_mechanisms_for_unstructured_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..980ef1f219279a51ffc6956f768b0a167cbb5a48 --- /dev/null +++ b/database/original_documents/publications_text/2007_empirical_evaluation_of_querying_mechanisms_for_unstructured_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Empirical Evaluation of Querying Mechanisms for Unstructured Wireless Sensor Networks +venue=Workshop on Wireless Sensor Network Deployments (WiDeploy), at the 3rd IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2007), Santa Fe, New Mexico, June 2007. +authors=['Joon Ahn', 'Shyam Kapadia', 'Sundeep Pattem', 'Avinash Sridharan', 'Marco Zuniga', 'Jung-Hyun Jun', 'Chen Avin', 'Bhaskar Krishnamachari'] +abstract=In the last few years, several studies have analyzed the performance of flooding and random walks as querying mechanisms for unstructured wireless sensor networks. However, most of the work is theoretical in nature and while providing insights into the asymptotic behavior of these querying mechanisms, does not account for the non-idealities faced by the network in real deployments. In this paper, we propose a 3-way handshake protocol as a reliable implementation of a random walk and compare its performance with flooding in real environments. The metrics considered are delay, reliability and transmission cost. Our initial results suggest that flooding is better suited for low-interference environments, while random walks might be a better option in networks with high interference. We also present possible research directions to improve the performance oflooding and random walks. + +# Information +links.pdf=/static/public/papers/AhnKapadiaPattemEtAl_WiDeploy07.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1214aa4120693754fd0fd175c7bc73a154615d2c +type=Conference Papers +year=2007 +paper_id=ee822612 +ss_title=Empirical evaluation of querying mechanisms for unstructured wireless sensor networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '2068922951', 'name': 'Jung-Hyun Jun'}, {'authorId': '145707494', 'name': 'C. Avin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=CCRV +ss_year=2008 +ss_abstract=In the last few years, several studies have analyzed the performance of flooding and random walks as querying mechanisms for unstructured wireless sensor networks. However, most of the work is theoretical in nature and while providing insights into the asymptotic behavior of these querying mechanisms, does not account for the non-idealities faced by the network in real deployments. In this paper, we propose a 3-way handshake protocol as a reliable implementation of a random walk and compare its performance with flooding in real environments. The metrics considered are delay, reliability and transmission cost. Our initial results suggest that flooding is better suited for low-interference environments, while random walks might be a better option in networks with high interference. We also present possible research directions to improve the performance oflooding and random walks. +ss_paper_id=1214aa4120693754fd0fd175c7bc73a154615d2c \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_fastfair_mobile_localization_in_infrastructure_wireless_sensor_networks.txt b/database/original_documents/publications_text/2007_fastfair_mobile_localization_in_infrastructure_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca542c641eef07a7d0a5e09415d5e409e8815e29 --- /dev/null +++ b/database/original_documents/publications_text/2007_fastfair_mobile_localization_in_infrastructure_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Fast/Fair Mobile Localization in Infrastructure Wireless Sensor Networks +venue=ACM Mobile Computing and Communications Review, special issue on Localization Technologies and Algorithms, 2007. +authors=['Kiran Yedavalli', 'Bhaskar Krishnamachari', 'Lakshmi Venkataraman'] +abstract=We introduce the problem of fast and fair localization of mobile units in indoor infrastructure wireless sensor networks. We define metrics and derive expressions for delay and fairness of localization and investigate a heuristic algorithm for fast and fair localization. Simulation results show that localization is faster for lower levels of location estimate accuracy, irrespective of anchor density, and that it is fairer for higher anchor densities, irrespective of location estimate accuracy. Also, localization is faster and fairer for grid deployment of anchors as compared to random deployment. The results also suggest that a guarantee on the desired level of location estimate accuracy can be provided for the entire localization area for specific speeds of movement of the mobile unit, and that these speeds are higher for denser anchor deployments. + +# Information +links.pdf=/static/public/papers/Yedavalli_Krishnamachari_Venkatraman_FastFairLocalization.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2b1bbcc741695ea306e94b7538cdaa9dc84b2e85 +type=Journal Papers +year=2007 +paper_id=10855a0b +ss_title=Fast/fair mobile localization in infrastructure wireless sensor networks +ss_authors=[{'authorId': '1704940', 'name': 'Kiran Yedavalli'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144759868', 'name': 'Lakshmi Venkatraman'}] +ss_venue=MOCO +ss_year=2007 +ss_abstract=We introduce the problem of fast and fair localization of mobile units in indoor infrastructure wireless sensor networks. We define metrics and derive expressions for delay and fairness of localization and investigate a heuristic algorithm for fast and fair localization. Simulation results show that localization is faster for lower levels of location estimate accuracy, irrespective of anchor density, and that it is fairer for higher anchor densities, irrespective of location estimate accuracy. Also, localization is faster and fairer for grid deployment of anchors as compared to random deployment. The results also suggest that a guarantee on the desired level of location estimate accuracy can be provided for the entire localization area for specific speeds of movement of the mobile unit, and that these speeds are higher for denser anchor deployments. +ss_paper_id=2b1bbcc741695ea306e94b7538cdaa9dc84b2e85 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_lowcomplexity_approaches_to_spectrum_opportunity_tracking.txt b/database/original_documents/publications_text/2007_lowcomplexity_approaches_to_spectrum_opportunity_tracking.txt new file mode 100644 index 0000000000000000000000000000000000000000..674190da391b0ce097b7517ca16039ee31304b45 --- /dev/null +++ b/database/original_documents/publications_text/2007_lowcomplexity_approaches_to_spectrum_opportunity_tracking.txt @@ -0,0 +1,18 @@ +# Publication +title=Low-Complexity Approaches to Spectrum Opportunity Tracking +venue=2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), Orlando, Florida, August, 2007. +authors=['Q Zhao', 'B Krishnamachari', 'K Liu'] +abstract=We consider opportunistic spectrum access under design constraints imposed at both node and link levels. First, hardware and energy limitations at node level may prevent a secondary user from sensing all the channels in the spectrum simultaneously. A channel selection strategy is thus necessary to track the time-varying spectrum opportunities. Second, sensing errors are inevitable. A secondary user needs to decide, based on imperfect sensing outcomes, whether to access the sensed channel and how to update its statistical knowledge of spectrum dynamics for better tracking in the future. Third, a secondary transmitter and its intended receiver need to hop synchronously in the spectrum in order to communicate. When a dynamic opportunity tracking strategy is used where the channel selection depends on the sensing history, achieving this synchrony is nontrivial in the absence of a dedicated control channel and in the presence of sensing errors. These practical constraints significantly complicate the design of opportunistic spectrum access, and the optimal performance requires the joint design of the spectrum sensor, opportunity tracking strategy, and spectrum access decisions. The focus of this paper is on developing low-complexity approaches for opportunistic spectrum access. We show that under certain conditions on the spectrum dynamics, simple myopic strategies can provide optimal performance for the joint design of spectrum sensor, opportunity tracking, and opportunity exploitation. We also propose an alternate low-complexity indexing strategy for other conditions that takes into account the expected time to channel availability. + +# Information +links.pdf=/static/public/papers/ZhaoKrishnamachariLiu_CrownCom2007.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6b9de7cef2fed04cc86fded3b3f8db64a0533276 +type=Conference Papers +year=2007 +paper_id=d0db8b9f +ss_title=Low-Complexity Approaches to Spectrum Opportunity Tracking +ss_authors=[{'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '8070370', 'name': 'Keqin Liu'}] +ss_venue=International Conference on Cognitive Radio Oriented Wireless Networks and Communications +ss_year=2007 +ss_abstract=We consider opportunistic spectrum access under design constraints imposed at both node and link levels. First, hardware and energy limitations at node level may prevent a secondary user from sensing all the channels in the spectrum simultaneously. A channel selection strategy is thus necessary to track the time-varying spectrum opportunities. Second, sensing errors are inevitable. A secondary user needs to decide, based on imperfect sensing outcomes, whether to access the sensed channel and how to update its statistical knowledge of spectrum dynamics for better tracking in the future. Third, a secondary transmitter and its intended receiver need to hop synchronously in the spectrum in order to communicate. When a dynamic opportunity tracking strategy is used where the channel selection depends on the sensing history, achieving this synchrony is nontrivial in the absence of a dedicated control channel and in the presence of sensing errors. These practical constraints significantly complicate the design of opportunistic spectrum access, and the optimal performance requires the joint design of the spectrum sensor, opportunity tracking strategy, and spectrum access decisions. The focus of this paper is on developing low-complexity approaches for opportunistic spectrum access. We show that under certain conditions on the spectrum dynamics, simple myopic strategies can provide optimal performance for the joint design of spectrum sensor, opportunity tracking, and opportunity exploitation. We also propose an alternate low-complexity indexing strategy for other conditions that takes into account the expected time to channel availability. +ss_paper_id=6b9de7cef2fed04cc86fded3b3f8db64a0533276 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_lowimpact_of_localized_tree_construction_on_sensor_network_lifetime.txt b/database/original_documents/publications_text/2007_lowimpact_of_localized_tree_construction_on_sensor_network_lifetime.txt new file mode 100644 index 0000000000000000000000000000000000000000..dfaba7037a368ee88962b8911c11dbd1e73db2e5 --- /dev/null +++ b/database/original_documents/publications_text/2007_lowimpact_of_localized_tree_construction_on_sensor_network_lifetime.txt @@ -0,0 +1,11 @@ +# Publication +title=Low-Impact of Localized Tree Construction on Sensor Network Lifetime +venue=Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS), at the 3rd IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2007), Santa Fe, New Mexico, June 2007. +authors=['Jae-Joon Lee', 'Bhaskar Krishnamachari', 'C-C Jay Kuo'] +abstract=None + +# Information +links.pdf=/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf +type=Conference Papers +year=2007 +paper_id=d131b90b \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_maximizing_network_utilization_with_maxmin_fairness_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2007_maximizing_network_utilization_with_maxmin_fairness_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..79d5a55587ee3a746a7479c3932f03cd5c91a082 --- /dev/null +++ b/database/original_documents/publications_text/2007_maximizing_network_utilization_with_maxmin_fairness_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Maximizing Network Utilization with Max-Min Fairness in Wireless Sensor Networks +venue=5th International. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), April 2007. +authors=['Avinash Sridharan', 'Bhaskar Krishnamachari'] +abstract=The state of the art for optimal data-gathering in wireless sensor networks is to use additive increase algorithms to achieve fair rate allocation while implicity trying to maximize network utilization. We explicitly formulate the problem of maximizing the network utilization subject to a max-min fair rate allocation constraint in the form of two coupled linear programs. We first show how the max-min rate can be computed efficiently for a given network. We then adopt a dual-based approach to maximize the network utilization. The analysis of the dual shows the sub-optimality of previously proposed additive increase algorithms with respect to bandwidth efficiency. Although in theory a dual-based sub-gradient search algorithm can take a long time to converge, we find empirically that setting shadow prices to 1 results in near-optimal solutions within one iteration (within 2% of the optimum in 99.65% of the cases). This results in a fast heuristic distributed algorithm that has a nice intuitive explanation - rates are allocated sequentially after rank ordering flows based on the number of downstream receivers whose bandwidth they consume. + +# Information +links.pdf=/static/public/papers/SridharanKrishnamachari_WiOpt07.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f5c57db9b4149a63b079b710f7f80b8e1d69fef9 +type=Conference Papers +year=2007 +paper_id=b4513115 +ss_title=Maximizing Network Utilization with Max-Min Fairness in Wireless Sensor Networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops +ss_year=2007 +ss_abstract=The state of the art for optimal data-gathering in wireless sensor networks is to use additive increase algorithms to achieve fair rate allocation while implicity trying to maximize network utilization. We explicitly formulate the problem of maximizing the network utilization subject to a max-min fair rate allocation constraint in the form of two coupled linear programs. We first show how the max-min rate can be computed efficiently for a given network. We then adopt a dual-based approach to maximize the network utilization. The analysis of the dual shows the sub-optimality of previously proposed additive increase algorithms with respect to bandwidth efficiency. Although in theory a dual-based sub-gradient search algorithm can take a long time to converge, we find empirically that setting shadow prices to 1 results in near-optimal solutions within one iteration (within 2% of the optimum in 99.65% of the cases). This results in a fast heuristic distributed algorithm that has a nice intuitive explanation - rates are allocated sequentially after rank ordering flows based on the number of downstream receivers whose bandwidth they consume. +ss_paper_id=f5c57db9b4149a63b079b710f7f80b8e1d69fef9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_minimum_latency_joint_scheduling_and_routing_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2007_minimum_latency_joint_scheduling_and_routing_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e556797477c03ce2dd318e63a1e0ad43f2b865f --- /dev/null +++ b/database/original_documents/publications_text/2007_minimum_latency_joint_scheduling_and_routing_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Minimum Latency Joint Scheduling and Routing in Wireless Sensor Networks +venue=Ad Hoc Networks Journal (Elsevier), special issue on Recent Advances in Wireless Sensor Networks, 2007. +authors=['Gang Lu', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/lukrishnamachari_journal2008_adhocnetworks.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e2d74a3f78cf0ca81ab4bf8e5f58db8d08254351 +type=Journal Papers +year=2007 +paper_id=1ba89b6b +ss_title=Minimum latency joint scheduling and routing in wireless sensor networks +ss_authors=[{'authorId': '145316946', 'name': 'Gang Lu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Ad hoc networks +ss_year=2007 +ss_abstract=None +ss_paper_id=e2d74a3f78cf0ca81ab4bf8e5f58db8d08254351 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_modeling_search_costs_in_wireless_networks.txt b/database/original_documents/publications_text/2007_modeling_search_costs_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..cf6557ffa736f3ea1979cf15fb816b686283d805 --- /dev/null +++ b/database/original_documents/publications_text/2007_modeling_search_costs_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Modeling Search Costs in Wireless Networks +venue=Workshop on Spatial Stochastic Models in Wireless Networks (SpaSWiN), Limassol, Cyprus, April 2007. +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=We develop approximate closed-form expressions of expected minimum search energy costs for data-centric wireless sensor networks showing the search performance with respect to the network size N and the number of randomly placed copies of the target event r. We consider both unstructured sensor networks, which use blind sequential search for querying, and structured sensor networks, which use efficient hash-based querying. We also consider two kinds of deployments: a fixed transmit power (FTP) model and the geometric random graph (GRG) model. We find that the search cost of unstructured networks under the FTP deployment is proportional to N and inversely proportional to (r + 1) regardless of the spatial dimension d in which nodes are deployed, while that of the GRG is proportional to N(log N)eta/d/r + 1 where eta is the path-loss exponent. The search cost of structured networks under the FTP deployment is found to be proportional to dradicN/dradicr, while that of the GRG deployment is proportional to dradicN(log N)eta-1/dradicr. In all cases, we also provide bounds on the coefficient of proportionality. + +# Information +links.pdf=/static/public/papers/AhnKrishnamachari_SpaSim2007.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/36cda036f9477ac9d5df18377fb3945324c579e4 +type=Conference Papers +year=2007 +paper_id=3cc06c39 +ss_title=Modeling Search Costs in Wireless Sensor Networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops +ss_year=2007 +ss_abstract=We develop approximate closed-form expressions of expected minimum search energy costs for data-centric wireless sensor networks showing the search performance with respect to the network size N and the number of randomly placed copies of the target event r. We consider both unstructured sensor networks, which use blind sequential search for querying, and structured sensor networks, which use efficient hash-based querying. We also consider two kinds of deployments: a fixed transmit power (FTP) model and the geometric random graph (GRG) model. We find that the search cost of unstructured networks under the FTP deployment is proportional to N and inversely proportional to (r + 1) regardless of the spatial dimension d in which nodes are deployed, while that of the GRG is proportional to N(log N)eta/d/r + 1 where eta is the path-loss exponent. The search cost of structured networks under the FTP deployment is found to be proportional to dradicN/dradicr, while that of the GRG deployment is proportional to dradicN(log N)eta-1/dradicr. In all cases, we also provide bounds on the coefficient of proportionality. +ss_paper_id=36cda036f9477ac9d5df18377fb3945324c579e4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_optimal_location_of_feedback_handler_under_receiver_contention_schemes_for_routing_in_wireless_networks.txt b/database/original_documents/publications_text/2007_optimal_location_of_feedback_handler_under_receiver_contention_schemes_for_routing_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..b20b9c61806c406be5013451dc07f79c4d30637c --- /dev/null +++ b/database/original_documents/publications_text/2007_optimal_location_of_feedback_handler_under_receiver_contention_schemes_for_routing_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal location of feedback handler under receiver contention schemes for routing in wireless networks +venue=Proceedings of the SPIE, Volume 6697, pp. 66970J-66970J-10 (2007). +authors=['Pai-Han Huang', 'Bhaskar Krishnamachari'] +abstract=Due to the broadcast and error prone nature of wireless medium, novel routing mechanisms based on receiver contention have been proposed recently. The intuition of this strategy is, transmitters make routing decisions based on contentions of nodes that have successful reception. A remarkable advantage of receiver contention is the long average advancement of transmissions. To the best our knowledge, existing works utilizing receiver contention schemes are all based on a common assumption. That is, feedback packets sent by contending nodes are all destined to the transmitters. However, probability of reception is a function of distance. The longer the distance is, the lower the reception probability will be5. According to this relation, we argue that transmitters may not be the best nodes to taking care of contention packets. In this paper, we consider uniformly distributed sensor networks, and propose the optimal locations, in terms of maximizing the expected advancement of each transmission, to place nodes which are responsible for handling feedback packets. We call these nodes feedback handlers. Based on the simulation results, placing the feedback handlers on the optimal locations can raise expected advancement up to about 30 percent, comparing to existing works. + +# Information +links.pdf=/static/public/papers/Feedback_handler_SPIE_2007.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/652300453ea34c9ceba0d9fadc2fd14e7cd2292a +type=Conference Papers +year=2007 +paper_id=f52ed0a3 +ss_title=Optimal location of feedback handler under receiver contention schemes for routing in wireless networks +ss_authors=[{'authorId': '3137372', 'name': 'P. Huang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=SPIE Optical Engineering + Applications +ss_year=2007 +ss_abstract=Due to the broadcast and error prone nature of wireless medium, novel routing mechanisms based on receiver contention have been proposed recently. The intuition of this strategy is, transmitters make routing decisions based on contentions of nodes that have successful reception. A remarkable advantage of receiver contention is the long average advancement of transmissions. To the best our knowledge, existing works utilizing receiver contention schemes are all based on a common assumption. That is, feedback packets sent by contending nodes are all destined to the transmitters. However, probability of reception is a function of distance. The longer the distance is, the lower the reception probability will be5. According to this relation, we argue that transmitters may not be the best nodes to taking care of contention packets. In this paper, we consider uniformly distributed sensor networks, and propose the optimal locations, in terms of maximizing the expected advancement of each transmission, to place nodes which are responsible for handling feedback packets. We call these nodes feedback handlers. Based on the simulation results, placing the feedback handlers on the optimal locations can raise expected advancement up to about 30 percent, comparing to existing works. +ss_paper_id=652300453ea34c9ceba0d9fadc2fd14e7cd2292a \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_optimal_sink_deployment_for_distributed_sensing_of_spatially_nonstationary_phenomena.txt b/database/original_documents/publications_text/2007_optimal_sink_deployment_for_distributed_sensing_of_spatially_nonstationary_phenomena.txt new file mode 100644 index 0000000000000000000000000000000000000000..4a7b81c137dea50dadd70bced4f8ce36778d76c9 --- /dev/null +++ b/database/original_documents/publications_text/2007_optimal_sink_deployment_for_distributed_sensing_of_spatially_nonstationary_phenomena.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Sink Deployment for Distributed Sensing of Spatially Nonstationary Phenomena +venue=IEEE Globecom Ad-hoc and Sensor Networking Symposium, Washington DC, November 2007. +authors=['Lorenzo Rossi', 'Bhaskar Krishnamachari', 'C C Jay Kuo'] +abstract=The optimal deployment of sinks in a sensor region for power efficient data gathering of a physical phenomenon is investigated in this work. In the system of consideration, nodes perform lossless distributed coding of the sensed data and the spatial statistics of the monitored phenomenon are possibly nonstationary due to heterogeneity in the sensing environment (e.g. variations in the altimetric profile). Non-stationary spatial statistics lead to uneven spatial profiles of the bit rates, unlike stationary statistics. The properties of rate profiles and the consequent optimal sink locations for a broad class of spatially non-stationary covariance models are studied by mathematical analysis and numerical examples. + +# Information +links.pdf=/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7de50f8748f8aa66f0980178ab84c4022a809f40 +type=Conference Papers +year=2007 +paper_id=4c55a839 +ss_title=Optimal Sink Deployment for Distributed Sensing of Spatially Nonstationary Phenomena +ss_authors=[{'authorId': '1701017', 'name': 'Lorenzo A. Rossi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference +ss_year=2007 +ss_abstract=The optimal deployment of sinks in a sensor region for power efficient data gathering of a physical phenomenon is investigated in this work. In the system of consideration, nodes perform lossless distributed coding of the sensed data and the spatial statistics of the monitored phenomenon are possibly nonstationary due to heterogeneity in the sensing environment (e.g. variations in the altimetric profile). Non-stationary spatial statistics lead to uneven spatial profiles of the bit rates, unlike stationary statistics. The properties of rate profiles and the consequent optimal sink locations for a broad class of spatially non-stationary covariance models are studied by mathematical analysis and numerical examples. +ss_paper_id=7de50f8748f8aa66f0980178ab84c4022a809f40 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_performance_of_propagation_delay_tolerant_aloha_protocol_for_underwater_wireless_networks.txt b/database/original_documents/publications_text/2007_performance_of_propagation_delay_tolerant_aloha_protocol_for_underwater_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f1c28e2a531ef7a0fbdf75e03c0577ef2a4887f --- /dev/null +++ b/database/original_documents/publications_text/2007_performance_of_propagation_delay_tolerant_aloha_protocol_for_underwater_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Performance of Propagation Delay Tolerant ALOHA Protocol for Underwater Wireless Networks +venue=USC CENG Technical Report CENG-2007-13, Nov, 2007 +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/AhnKrishnamachari_UWSN-ALOHA-2D.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/65daf49d84dea46a982f3111272e822d0185460d +type=Technical Reports and Preprints +year=2007 +paper_id=1fce839b +ss_title=Performance of a Propagation Delay Tolerant ALOHA Protocol for Underwater Wireless Networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Distributed Computing in Sensor Systems +ss_year=2008 +ss_abstract=None +ss_paper_id=65daf49d84dea46a982f3111272e822d0185460d \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_structure_and_optimality_of_myopic_sensing_for_opportunistic_spectrum_access.txt b/database/original_documents/publications_text/2007_structure_and_optimality_of_myopic_sensing_for_opportunistic_spectrum_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..2dc2b6462c52e72662ce4ab642f778bf860b9698 --- /dev/null +++ b/database/original_documents/publications_text/2007_structure_and_optimality_of_myopic_sensing_for_opportunistic_spectrum_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Structure and Optimality of Myopic Sensing for Opportunistic Spectrum Access +venue=IEEE Workshop on Cognitive Radio Networks (CogNet), held in conjunction with IEEE ICC, Glasgow, Scotland, June 2007. +authors=['Qing Zhao', 'Bhaskar Krishnamachari'] +abstract=We consider opportunistic spectrum access for secondary users over multiple channels whose occupancy by primary users is modeled as discrete-time Markov processes. Due to hardware limitations and energy constraints, a secondary user can choose, in each slot, one channel to sense and decide whether to access based on the sensing outcome. The design of sensing strategies that govern channel selections in each slot for optimal throughput performance of the secondary user can be formulated as a partially observable Markov decision process (POMDP). We exploit the structure of this problem when channels are independently and identically distributed. We reveal that the myopic sensing policy has a simple structure: channel selection is reduced to a counting process with little complexity. Further, for the two-channel case, we prove that the myopic sensing policy is in fact the optimal policy. Numerical results have also demonstrated the optimality of the myopic sensing policy when there are more than two channels. + +# Information +links.pdf=/static/public/papers/ZhaoKrishnamachari_Cognet07.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ed78dc224e0408f222235b2a7cb8a865289d2f59 +type=Conference Papers +year=2007 +paper_id=43186817 +ss_title=Structure and Optimality of Myopic Sensing for Opportunistic Spectrum Access +ss_authors=[{'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE International Conference on Communications +ss_year=2007 +ss_abstract=We consider opportunistic spectrum access for secondary users over multiple channels whose occupancy by primary users is modeled as discrete-time Markov processes. Due to hardware limitations and energy constraints, a secondary user can choose, in each slot, one channel to sense and decide whether to access based on the sensing outcome. The design of sensing strategies that govern channel selections in each slot for optimal throughput performance of the secondary user can be formulated as a partially observable Markov decision process (POMDP). We exploit the structure of this problem when channels are independently and identically distributed. We reveal that the myopic sensing policy has a simple structure: channel selection is reduced to a counting process with little complexity. Further, for the two-channel case, we prove that the myopic sensing policy is in fact the optimal policy. Numerical results have also demonstrated the optimality of the myopic sensing policy when there are more than two channels. +ss_paper_id=ed78dc224e0408f222235b2a7cb8a865289d2f59 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_the_impact_of_capture_on_multihop_wireless_networks_in_an_optimal_rate_control_framework.txt b/database/original_documents/publications_text/2007_the_impact_of_capture_on_multihop_wireless_networks_in_an_optimal_rate_control_framework.txt new file mode 100644 index 0000000000000000000000000000000000000000..9649f1d0d8f727d443948fd4fa459f5ffded064a --- /dev/null +++ b/database/original_documents/publications_text/2007_the_impact_of_capture_on_multihop_wireless_networks_in_an_optimal_rate_control_framework.txt @@ -0,0 +1,18 @@ +# Publication +title=The Impact of Capture on Multihop Wireless Networks in an Optimal Rate Control Framework +venue=Third Annual International Wireless Internet Conference (WICON), Austin, Texas, October 2007. +authors=['Jung Hyun Jun', 'Affan Syed', 'Bhaskar Krishnamachari'] +abstract=We consider the end-to-end fair rate control problem in a multi-hop Aloha network with capture. Capture (also referred to as co-channel interference tolerance) occurs when a packet with a stronger signal strength can be correctly decoded at the receiver despite the presence of a weaker interfering signal. We provide an approximate model for the link capacity with capture and incorporate it into a cross-layer joint link/session rate optimization framework. We show that this is a convex optimization problem and then present a sub-gradient algorithm for realistic distributed implementation in a network. Through analysis and simulations, we quantify the improvement in performance obtained with capture. We find that the capture effect benefits primarily low-contention links and non-bottle-neck sessions. As a result, although capture provides significant improvements in the total throughput (sum rate), it seems to provide little improvement in the objective function (sum of the logarithm of the rates). + +# Information +links.pdf=/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f0359e24ec85c45399f1315076dcee05a3ac97b0 +type=Conference Papers +year=2007 +paper_id=cb9ee8f4 +ss_title=The impact of capture on multihop wireless networks in an optimal rate control framework +ss_authors=[{'authorId': '1694857', 'name': 'J. Jun'}, {'authorId': '2032257', 'name': 'A. Syed'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Wireless Internet Conference +ss_year=2007 +ss_abstract=We consider the end-to-end fair rate control problem in a multi-hop Aloha network with capture. Capture (also referred to as co-channel interference tolerance) occurs when a packet with a stronger signal strength can be correctly decoded at the receiver despite the presence of a weaker interfering signal. We provide an approximate model for the link capacity with capture and incorporate it into a cross-layer joint link/session rate optimization framework. We show that this is a convex optimization problem and then present a sub-gradient algorithm for realistic distributed implementation in a network. Through analysis and simulations, we quantify the improvement in performance obtained with capture. We find that the capture effect benefits primarily low-contention links and non-bottle-neck sessions. As a result, although capture provides significant improvements in the total throughput (sum rate), it seems to provide little improvement in the objective function (sum of the logarithm of the rates). +ss_paper_id=f0359e24ec85c45399f1315076dcee05a3ac97b0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2007_understanding_spatiotemporal_uncertainty_in_medium_access_with_aloha_protocols.txt b/database/original_documents/publications_text/2007_understanding_spatiotemporal_uncertainty_in_medium_access_with_aloha_protocols.txt new file mode 100644 index 0000000000000000000000000000000000000000..bcb8784f305cd02193a44df86e244820ab1dcfd3 --- /dev/null +++ b/database/original_documents/publications_text/2007_understanding_spatiotemporal_uncertainty_in_medium_access_with_aloha_protocols.txt @@ -0,0 +1,18 @@ +# Publication +title=Understanding Spatio-Temporal Uncertainty in Medium Access with ALOHA Protocols +venue=Second ACM International Workshop on Underwater Networks (WUWNet), Quebec, Canada, September, 2007. +authors=['Affan Syed', 'Wei Ye', 'Bhaskar Krishnamachari', 'John Heidemann'] +abstract=The goal of this paper is understand how location-dependent propagation latency affects medium access control (MAC) by using ALOHA as a case study. MAC protocols in underwater acoustic networks suffer from latency that is five orders-of-magnitude larger than that in radio networks. Existing work on analyzing MAC throughput in RF networks, where the propagation latency is negligible, generally makes assumptions that render propagation latency irrelevant. As a result, only transmit time is considered as being uncertain in contention-based protocols. In this paper, we investigate the spatial dimension of uncertainty that is inherent to varying locations of transmitters, resulting in unequal propagation latency to a receiver. We show through simulation that the benefit of synchronization in slotted ALOHA is completely lost due to such latency. To handle spatial uncertainty, we propose a modification that adds guard bands to transmission slots. We then perform simulation and first-order analysis on this modified MAC to find its optimal operating parameters. Our simulation and analytic results suggest that shorter hops improve throughput. + +# Information +links.pdf=/static/public/papers/SonKrishnamachariHeidemann_Sensys2006.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4d0b9fc50682796dd332f6a89186bb4307c2e8a2 +type=Conference Papers +year=2007 +paper_id=8f87627f +ss_title=Understanding spatio-temporal uncertainty in medium access with ALOHA protocols +ss_authors=[{'authorId': '2032257', 'name': 'A. Syed'}, {'authorId': '145235147', 'name': 'W. Ye'}, {'authorId': '46351573', 'name': 'J. Heidemann'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Underwater Networks +ss_year=2007 +ss_abstract=The goal of this paper is understand how location-dependent propagation latency affects medium access control (MAC) by using ALOHA as a case study. MAC protocols in underwater acoustic networks suffer from latency that is five orders-of-magnitude larger than that in radio networks. Existing work on analyzing MAC throughput in RF networks, where the propagation latency is negligible, generally makes assumptions that render propagation latency irrelevant. As a result, only transmit time is considered as being uncertain in contention-based protocols. In this paper, we investigate the spatial dimension of uncertainty that is inherent to varying locations of transmitters, resulting in unequal propagation latency to a receiver. We show through simulation that the benefit of synchronization in slotted ALOHA is completely lost due to such latency. To handle spatial uncertainty, we propose a modification that adds guard bands to transmission slots. We then perform simulation and first-order analysis on this modified MAC to find its optimal operating parameters. Our simulation and analytic results suggest that shorter hops improve throughput. +ss_paper_id=4d0b9fc50682796dd332f6a89186bb4307c2e8a2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_a_negotiation_game_for_multichannel_access_in_cognitive_radio_networks.txt b/database/original_documents/publications_text/2008_a_negotiation_game_for_multichannel_access_in_cognitive_radio_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..653a253b7c2bbe937f056ae1d75c3527571cd5a0 --- /dev/null +++ b/database/original_documents/publications_text/2008_a_negotiation_game_for_multichannel_access_in_cognitive_radio_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=A Negotiation Game for Multichannel Access in Cognitive Radio Networks +venue=“The Fourth International Wireless Internet Conference (WICON 2008), Hawaii, USA” +authors=['Hua Liu', 'Longbo Huang Bhaksar Krishnamachari', 'Qing Zhao'] +abstract=We consider the problem of efficient opportunistic spectrum access in cognitive radio networks where there are multiple secondary users trying to share access to multiple channels. In our formulation, each user has a potentially different valuation of each channel and wishes to pick a channel in such a way as to maximize its benefit without interfering with other users. There is a fundamental tradeoff in this problem -- while information about other secondary users is useful in making a good channel sensing/access decision, the communication cost of gathering this information must be taken into account. We formulate the problem as a multi-round negotiation game in which the users try to gather "just-enough-information" to make their decisions. The channel valuations are modeled as independently uniformly distributed random variables between 0 and 1. We propose a threshold-based channel sensing policy based on observations from a previous work. For a two-user two-channel setting, we calculate optimal thresholds, and obtain the corresponding performance for cases with no information exchange, partial information exchange, and full information exchange. We then show how the optimal amount of information exchange varies with the cost of negotiation. + +# Information +links.pdf=/static/public/papers/wicon_Liu.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e87297f7f427cd4af58772ed5612d7c0c239764b +type=Conference Papers +year=2008 +paper_id=3c16f282 +ss_title=A negotiation game for multichannel access in cognitive radio networks +ss_authors=[{'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': None, 'name': 'Longbo Huang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}] +ss_venue=International Wireless Internet Conference +ss_year=2008 +ss_abstract=We consider the problem of efficient opportunistic spectrum access in cognitive radio networks where there are multiple secondary users trying to share access to multiple channels. In our formulation, each user has a potentially different valuation of each channel and wishes to pick a channel in such a way as to maximize its benefit without interfering with other users. There is a fundamental tradeoff in this problem -- while information about other secondary users is useful in making a good channel sensing/access decision, the communication cost of gathering this information must be taken into account. We formulate the problem as a multi-round negotiation game in which the users try to gather "just-enough-information" to make their decisions. The channel valuations are modeled as independently uniformly distributed random variables between 0 and 1. We propose a threshold-based channel sensing policy based on observations from a previous work. For a two-user two-channel setting, we calculate optimal thresholds, and obtain the corresponding performance for cases with no information exchange, partial information exchange, and full information exchange. We then show how the optimal amount of information exchange varies with the cost of negotiation. +ss_paper_id=e87297f7f427cd4af58772ed5612d7c0c239764b \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_aging_analysis_in_largescale_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_aging_analysis_in_largescale_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..39218785c823c458d8942245e87591b38f43cd12 --- /dev/null +++ b/database/original_documents/publications_text/2008_aging_analysis_in_largescale_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Aging Analysis in Large-scale Wireless Sensor Networks +venue=Elsevier Ad Hoc Networks, Sept 2008, Volume 6, Issue 7, pp. 1117-1133. +authors=['Jae-Joon Lee', 'Bhaskar Krishnamachari', 'C-C Jay Kuo'] +abstract=None + +# Information +links.pdf=/static/public/papers/LeeKrishnamachariKuo_Elsevier.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/8486b457d03fe67048584397f6b33af9e304e45c +type=Journal Papers +year=2008 +paper_id=f27ec131 +ss_title=Aging analysis in large-scale wireless sensor networks +ss_authors=[{'authorId': '2108395405', 'name': 'Jae-Joon Lee'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=Ad hoc networks +ss_year=2008 +ss_abstract=None +ss_paper_id=8486b457d03fe67048584397f6b33af9e304e45c \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_algorithms_for_fast_aggregated_convergecast_in_sensor_networks.txt b/database/original_documents/publications_text/2008_algorithms_for_fast_aggregated_convergecast_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..45bc3c78fdcf54a1a099557bf9fdd3a8e586564d --- /dev/null +++ b/database/original_documents/publications_text/2008_algorithms_for_fast_aggregated_convergecast_in_sensor_networks.txt @@ -0,0 +1,22 @@ +# Publication +title=Algorithms for Fast Aggregated Convergecast in Sensor Networks +venue=CENG Technical Report, CENG-2008-8 +authors=['Amitabha Ghosh', 'Ozlem Durmaz Incel', 'V S Anil Kumar', 'Bhaskar Krishnamachari'] +abstract=Convergecast, namely the many-to-one flow of data from a set of sources to a common sink over a tree-based routing topology, is a fundamental communication primitive in wireless sensor networks. For real-time, mission-critical, and high data-rate applications, it is often critical to maximize the aggregated data collection rate (throughput) at the sink node, as well as minimize the time (delay) required for packets to get there. In this thesis, we look into the algorithmic aspects of jointly optimizing both throughput and delay for aggregated data collection in sensor networks. Our contributions are in designing efficient algorithms with provably good, worst-case performance bounds for arbitrarily deployed networks. To the best of our knowledge, we are the first ones to address these two mutually conflicting performance objectives – throughput and delay – under the same optimization framework and develop techniques to meet the stringent requirements for fast data collection. +Our approach in addressing the throughput-delay performance trade-off comprises three techniques: (i) multi-channel scheduling, (ii) routing over optimal topologies, and (iii) transmission power control. We exploit the benefits of multiple frequency channels to design efficient TDMA scheduling algorithms, both under the graph-based and the SINR-based interference models. In particular, by decoupling the joint frequency and time slot assignment problem into two separate subproblems of frequency assignment and time slot assignment, we show that our scheduling algorithms have constant factor and logarithmic approximation ratios on the optimal throughput for random geometric graphs as well as for SINR-based models. +In order to further enhance the data collection rate and bound the maximum delay, we study the degree-radius trade-off in spanning trees and propose algorithms under the bicriteria optimization framework. In particular, we construct bounded-degree-minimum-radius spanning trees that have constant factor approximations on the maximum node degree as well as the tree radius. We also show that our multi-channel scheduling algorithms perform much better on such trees in maximizing the aggregated throughput and minimizing the maximum delay, thus achieving the best of both worlds. Lastly, we design efficient, distributed power control schemes for sensor networks deployed in 3-D, where very high density of nodes causes high interference resulting in low network throughput. Our proposed algorithms have low computational overhead compared to the state-of-the-art, and by using local geometric information and tools from computational geometry produce sparse yet connected topologies in 3-D, thus reducing interference and allowing for high throughput. + +# Information +links.pdf=/static/public/papers/CENG-2008-8_TechReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b21c03affaa0f1632e59b2e89c8f5469efa9665b +type=Technical Reports and Preprints +year=2008 +paper_id=9b099970 +ss_title=Algorithmic aspects of throughput-delay performance for fast data collection in wireless sensor networks +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2110112916', 'name': 'Amitabha Ghosh'}] +ss_venue= +ss_year=2010 +ss_abstract=Convergecast, namely the many-to-one flow of data from a set of sources to a common sink over a tree-based routing topology, is a fundamental communication primitive in wireless sensor networks. For real-time, mission-critical, and high data-rate applications, it is often critical to maximize the aggregated data collection rate (throughput) at the sink node, as well as minimize the time (delay) required for packets to get there. In this thesis, we look into the algorithmic aspects of jointly optimizing both throughput and delay for aggregated data collection in sensor networks. Our contributions are in designing efficient algorithms with provably good, worst-case performance bounds for arbitrarily deployed networks. To the best of our knowledge, we are the first ones to address these two mutually conflicting performance objectives – throughput and delay – under the same optimization framework and develop techniques to meet the stringent requirements for fast data collection. +Our approach in addressing the throughput-delay performance trade-off comprises three techniques: (i) multi-channel scheduling, (ii) routing over optimal topologies, and (iii) transmission power control. We exploit the benefits of multiple frequency channels to design efficient TDMA scheduling algorithms, both under the graph-based and the SINR-based interference models. In particular, by decoupling the joint frequency and time slot assignment problem into two separate subproblems of frequency assignment and time slot assignment, we show that our scheduling algorithms have constant factor and logarithmic approximation ratios on the optimal throughput for random geometric graphs as well as for SINR-based models. +In order to further enhance the data collection rate and bound the maximum delay, we study the degree-radius trade-off in spanning trees and propose algorithms under the bicriteria optimization framework. In particular, we construct bounded-degree-minimum-radius spanning trees that have constant factor approximations on the maximum node degree as well as the tree radius. We also show that our multi-channel scheduling algorithms perform much better on such trees in maximizing the aggregated throughput and minimizing the maximum delay, thus achieving the best of both worlds. Lastly, we design efficient, distributed power control schemes for sensor networks deployed in 3-D, where very high density of nodes causes high interference resulting in low network throughput. Our proposed algorithms have low computational overhead compared to the state-of-the-art, and by using local geometric information and tools from computational geometry produce sparse yet connected topologies in 3-D, thus reducing interference and allowing for high throughput. +ss_paper_id=b21c03affaa0f1632e59b2e89c8f5469efa9665b \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_cooperation_and_learning_in_multiuser_opportunistic_spectrum_access.txt b/database/original_documents/publications_text/2008_cooperation_and_learning_in_multiuser_opportunistic_spectrum_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..14a4258df877a6b162b16d594f55da406d371edb --- /dev/null +++ b/database/original_documents/publications_text/2008_cooperation_and_learning_in_multiuser_opportunistic_spectrum_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Cooperation and Learning in Multiuser Opportunistic Spectrum Access +venue=IEEE Workshop on Cognition in Wireless Networks (CogNet), in conjunction with IEEE ICC, Beijing, China, May 2008. +authors=['Hua Liu', 'Bhaskar Krishnamachari', 'Qing Zhao'] +abstract=We consider how two secondary users should interact to maximize their total throughput in a two- channel sensing-based opportunistic spectrum access network where spectrum opportunities are time varying and spatially inhomogeneous. By modeling the occupancy of the primary users as discrete-time Markov chains, we obtain the optimal dynamic coordination policy using a partially observable Markov decision process (POMDP) solver. We also develop several tractable approaches - a cooperative multiuser approach based on explicit communication between the secondary users, a learning-based approach involving use of collision feedback information, and a single-user approach based on uncooperative independent decisions. As a baseline we consider the static partitioning policy where both users are allocated a single channel of their own. Simulations comparing the performance of these strategies yield several interesting findings: that significant improvements over static partitioning are possible with the optimal scheme; that the cooperative multiuser approach shows near-optimal performance in all cases; that there are scenarios when learning through collision feedback can be beneficial; and that the single-user approach generally shows poor performance. + +# Information +links.pdf=/static/public/papers/LiuKrishnamachariZhao_Cognet08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a1d2dd4bc8ac7ebd6cd710d04256adb34e353ba9 +type=Conference Papers +year=2008 +paper_id=f6b119d1 +ss_title=Cooperation and Learning in Multiuser Opportunistic Spectrum Access +ss_authors=[{'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}] +ss_venue=ICC Workshops - 2008 IEEE International Conference on Communications Workshops +ss_year=2008 +ss_abstract=We consider how two secondary users should interact to maximize their total throughput in a two- channel sensing-based opportunistic spectrum access network where spectrum opportunities are time varying and spatially inhomogeneous. By modeling the occupancy of the primary users as discrete-time Markov chains, we obtain the optimal dynamic coordination policy using a partially observable Markov decision process (POMDP) solver. We also develop several tractable approaches - a cooperative multiuser approach based on explicit communication between the secondary users, a learning-based approach involving use of collision feedback information, and a single-user approach based on uncooperative independent decisions. As a baseline we consider the static partitioning policy where both users are allocated a single channel of their own. Simulations comparing the performance of these strategies yield several interesting findings: that significant improvements over static partitioning are possible with the optimal scheme; that the cooperative multiuser approach shows near-optimal performance in all cases; that there are scenarios when learning through collision feedback can be beneficial; and that the single-user approach generally shows poor performance. +ss_paper_id=a1d2dd4bc8ac7ebd6cd710d04256adb34e353ba9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_curvature_of_indoor_sensor_network_clustering_coefficient.txt b/database/original_documents/publications_text/2008_curvature_of_indoor_sensor_network_clustering_coefficient.txt new file mode 100644 index 0000000000000000000000000000000000000000..23507c6a9af6437cbde7d4d43e234eed4a7cdae2 --- /dev/null +++ b/database/original_documents/publications_text/2008_curvature_of_indoor_sensor_network_clustering_coefficient.txt @@ -0,0 +1,18 @@ +# Publication +title=Curvature of Indoor Sensor Network: Clustering Coefficient +venue=EURASIP Journal on Wireless Communications and Networking, November 2008. +authors=['Fariba Ariaei', 'Mingji Lou', 'Edmond Jonckheere', 'Bhaskar Krishnamachari', 'Marco Zuniga'] +abstract=We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR). A transition from positive curvature ("meshed" network) to negative curvature ("core concentric" network) is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid), and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network. + +# Information +links.pdf=/static/public/papers/AriaeiLouJonckheereKrishnamachariZuniga_EURASIP_WCN2008.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/42e9938d5be1b6b13cff26a1e076fa7bc5b40a49 +type=Journal Papers +year=2008 +paper_id=077b5336 +ss_title=Curvature of Indoor Sensor Network: Clustering Coefficient +ss_authors=[{'authorId': '3042219', 'name': 'F. Ariaei'}, {'authorId': '38929192', 'name': 'M. Lou'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145662238', 'name': 'M. Zúñiga'}] +ss_venue=EURASIP Journal on Wireless Communications and Networking +ss_year=2008 +ss_abstract=We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR). A transition from positive curvature ("meshed" network) to negative curvature ("core concentric" network) is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid), and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network. +ss_paper_id=42e9938d5be1b6b13cff26a1e076fa7bc5b40a49 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_data_gathering_with_tunable_compression_in_sensor_networks.txt b/database/original_documents/publications_text/2008_data_gathering_with_tunable_compression_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..5b322c055b2011f775b8cbdad64b2548ca14e171 --- /dev/null +++ b/database/original_documents/publications_text/2008_data_gathering_with_tunable_compression_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Data Gathering with Tunable Compression in Sensor Networks +venue=IEEE Transactions on Parallel and Distributed Computing (TPDS), Vol. 19, No. 2, February 2008. +authors=['Y Yu', 'B Krishnamachari', 'V K Prasanna'] +abstract=We study the problem of constructing a data gathering tree over a wireless sensor network in order to minimize the total energy for compressing and transporting information from a set of source nodes to the sink. This problem is crucial for advanced computationally intensive applications, where traditional "maximum" in-network compression may result in significant computation energy. We investigate a tunable data compression technique that enables effective trade-offs between the computation and communication costs. We derive the optimal compression strategy for a given data gathering tree and then investigate the performance of different tree structures for networks deployed on a grid topology, as well as general graphs. Our analytical results pertaining to the grid topology and simulation results pertaining to the general graphs indicate that the performance of a simple greedy approximation to the Minimal Steiner Tree (MST) provides a constant-factor approximation for the grid topology and good average performance on the general graphs. Although, theoretically, a more complicated randomized algorithm offers a polylogarithmic performance bound, the simple greedy approximation of MST is attractive for practical implementation. + +# Information +links.pdf=/static/public/papers/YuKrishnamachariPrasanna_TPDS.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a58dfb63d8a92efb2efc67f4431fdd9377fd9548 +type=Journal Papers +year=2008 +paper_id=fb3ea992 +ss_title=Data Gathering with Tunable Compression in Sensor Networks +ss_authors=[{'authorId': '2152845619', 'name': 'Yang Yu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1728271', 'name': 'V. Prasanna'}] +ss_venue=IEEE Transactions on Parallel and Distributed Systems +ss_year=2008 +ss_abstract=We study the problem of constructing a data gathering tree over a wireless sensor network in order to minimize the total energy for compressing and transporting information from a set of source nodes to the sink. This problem is crucial for advanced computationally intensive applications, where traditional "maximum" in-network compression may result in significant computation energy. We investigate a tunable data compression technique that enables effective trade-offs between the computation and communication costs. We derive the optimal compression strategy for a given data gathering tree and then investigate the performance of different tree structures for networks deployed on a grid topology, as well as general graphs. Our analytical results pertaining to the grid topology and simulation results pertaining to the general graphs indicate that the performance of a simple greedy approximation to the Minimal Steiner Tree (MST) provides a constant-factor approximation for the grid topology and good average performance on the general graphs. Although, theoretically, a more complicated randomized algorithm offers a polylogarithmic performance bound, the simple greedy approximation of MST is attractive for practical implementation. +ss_paper_id=a58dfb63d8a92efb2efc67f4431fdd9377fd9548 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_data_gathering_with_tunable_compression_in_sensornetworks.txt b/database/original_documents/publications_text/2008_data_gathering_with_tunable_compression_in_sensornetworks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c20fc32688be10cf6ff5567de32493999f26ef62 --- /dev/null +++ b/database/original_documents/publications_text/2008_data_gathering_with_tunable_compression_in_sensornetworks.txt @@ -0,0 +1,11 @@ +# Publication +title=Data Gathering with Tunable Compression in Sensor Networks +venue=IEEE Transactions on Parallel and Distributed Computing (TPDS), Vol. 19, No. 2, February 2008. +authors=['Y Yu', 'B Krishnamachari', 'V K Prasanna'] +abstract=None + +# Information +links.pdf=/static/public/papers/YuKrishnamachariPrasanna_TPDS.pdf +type=Journal Papers +year=2008 +paper_id=fb3ea992 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_efficient_geographic_routing_over_lossy_links_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_efficient_geographic_routing_over_lossy_links_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..4bb3e74df831381ce69699d4e224553e2fcfba8b --- /dev/null +++ b/database/original_documents/publications_text/2008_efficient_geographic_routing_over_lossy_links_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Efficient geographic routing over lossy links in wireless sensor networks +venue=ACM Transactions on Sensor Networks, May 2008, Volume 4, Issue 3, pages 111-143. +authors=['Marco Zuniga', 'Karim Seada', 'Bhaskar Krishnamachari', 'Ahmed Helmy'] +abstract=Recent experimental studies have shown that wireless links in real sensor networks can be extremely unreliable, deviating to a large extent from the idealized perfect-reception-within-range models used in common network simulation tools. Previously proposed geographic routing protocols commonly employ a maximum-distance greedy forwarding technique that works well in ideal conditions. However, such a forwarding technique performs poorly in realistic conditions as it tends to forward packets on lossy links. Based on a recently developed link loss model, we study the performance of a wide array of forwarding strategies, via analysis, extensive simulations and a set of experiments on motes. We find that the product of the packet reception rate and the distance improvement towards destination (PRR × d) is a highly suitable metric for geographic forwarding in realistic environments. + +# Information +links.pdf=/static/public/papers/seadazuniga_krishnamachari_TOSN08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f149d1c0b20c6a0b254604a98ec8e57490c80465 +type=Journal Papers +year=2008 +paper_id=28058950 +ss_title=Efficient geographic routing over lossy links in wireless sensor networks +ss_authors=[{'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '1734047', 'name': 'K. Seada'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145483017', 'name': 'A. Helmy'}] +ss_venue=TOSN +ss_year=2008 +ss_abstract=Recent experimental studies have shown that wireless links in real sensor networks can be extremely unreliable, deviating to a large extent from the idealized perfect-reception-within-range models used in common network simulation tools. Previously proposed geographic routing protocols commonly employ a maximum-distance greedy forwarding technique that works well in ideal conditions. However, such a forwarding technique performs poorly in realistic conditions as it tends to forward packets on lossy links. Based on a recently developed link loss model, we study the performance of a wide array of forwarding strategies, via analysis, extensive simulations and a set of experiments on motes. We find that the product of the packet reception rate and the distance improvement towards destination (PRR × d) is a highly suitable metric for geographic forwarding in realistic environments. +ss_paper_id=f149d1c0b20c6a0b254604a98ec8e57490c80465 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_empirical_evaluation_of_querying_mechanisms_for_unstructured_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_empirical_evaluation_of_querying_mechanisms_for_unstructured_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..fcfa93f7a6dfe34cfe6cf9a1d5ded02c05f25717 --- /dev/null +++ b/database/original_documents/publications_text/2008_empirical_evaluation_of_querying_mechanisms_for_unstructured_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Empirical evaluation of querying mechanisms for unstructured wireless sensor networks +venue=SIGCOMM Comput. Commun. Rev., 38(3):17–26, 2008 +authors=['Joon Ahn', 'Shyam Kapadia', 'Sundeep Pattem', 'Avinash Sridharan', 'Marco Zuniga', 'Jung-Hyun Jun', 'Chen Avin', 'Bhaskar Krishnamachari'] +abstract=In the last few years, several studies have analyzed the performance of flooding and random walks as querying mechanisms for unstructured wireless sensor networks. However, most of the work is theoretical in nature and while providing insights into the asymptotic behavior of these querying mechanisms, does not account for the non-idealities faced by the network in real deployments. In this paper, we propose a 3-way handshake protocol as a reliable implementation of a random walk and compare its performance with flooding in real environments. The metrics considered are delay, reliability and transmission cost. Our initial results suggest that flooding is better suited for low-interference environments, while random walks might be a better option in networks with high interference. We also present possible research directions to improve the performance oflooding and random walks. + +# Information +links.pdf=/static/public/papers/AhnKapadiaPattem_etal_CCR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1214aa4120693754fd0fd175c7bc73a154615d2c +type=Journal Papers +year=2008 +paper_id=7a2b94fc +ss_title=Empirical evaluation of querying mechanisms for unstructured wireless sensor networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '2068922951', 'name': 'Jung-Hyun Jun'}, {'authorId': '145707494', 'name': 'C. Avin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=CCRV +ss_year=2008 +ss_abstract=In the last few years, several studies have analyzed the performance of flooding and random walks as querying mechanisms for unstructured wireless sensor networks. However, most of the work is theoretical in nature and while providing insights into the asymptotic behavior of these querying mechanisms, does not account for the non-idealities faced by the network in real deployments. In this paper, we propose a 3-way handshake protocol as a reliable implementation of a random walk and compare its performance with flooding in real environments. The metrics considered are delay, reliability and transmission cost. Our initial results suggest that flooding is better suited for low-interference environments, while random walks might be a better option in networks with high interference. We also present possible research directions to improve the performance oflooding and random walks. +ss_paper_id=1214aa4120693754fd0fd175c7bc73a154615d2c \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_energy_optimization_for_upstream_in_802154_beaconenabled_star_formulation.txt b/database/original_documents/publications_text/2008_energy_optimization_for_upstream_in_802154_beaconenabled_star_formulation.txt new file mode 100644 index 0000000000000000000000000000000000000000..528f8dd1ba47a5dc34eb6c1e0e2fef0dacadb39e --- /dev/null +++ b/database/original_documents/publications_text/2008_energy_optimization_for_upstream_in_802154_beaconenabled_star_formulation.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy Optimization for Upstream in 802.15.4 Beacon-enabled Star Formulation +venue=Advanced Signal Processing Algorithms, Architectures, and Implementations of SPIE, 2008 +authors=['Hua Liu', 'Bhaskar Krishnamachari'] +abstract=Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption. + +# Information +links.pdf=/static/public/papers/spie08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b913e5af7142c51bd9fff48f6677bda1361eca05 +type=Conference Papers +year=2008 +paper_id=8b1897d7 +ss_title=Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation +ss_authors=[{'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Optical Engineering + Applications +ss_year=2008 +ss_abstract=Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption. +ss_paper_id=b913e5af7142c51bd9fff48f6677bda1361eca05 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_enhancement_of_the_ieee_802154_mac_protocol_forscalable_data_collection_in_dense_sensor_networks.txt b/database/original_documents/publications_text/2008_enhancement_of_the_ieee_802154_mac_protocol_forscalable_data_collection_in_dense_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..be3b8a1261258aeb20447a065ee34edb9b36f0ab --- /dev/null +++ b/database/original_documents/publications_text/2008_enhancement_of_the_ieee_802154_mac_protocol_forscalable_data_collection_in_dense_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Enhancement of the IEEE 802.15.4 MAC Protocol forScalable Data Collection in Dense Sensor Networks +venue=Sixth Intl. Symposium on Modeling and Optimizationin Mobile, Ad Hoc, and Wireless Networks, WiOpt 2008. +authors=['Kiran Yedavalli', 'Bhaskar Krishnamachari'] +abstract=We find that the IEEE 802.15.4 MAC protocol performs poorly for one-hop data collection in dense sensor networks, showing a steep deterioration in both throughput and energy consumption with increasing number of transmitters. We propose a channel feedback-based enhancement to the protocol that is significantly more scalable, showing a relatively flat, slow-changing total system throughput and energy consumption as the network size increases. A key feature of the enhancement is that the back-off windows are updated after successful transmissions instead of collisions. The window updates are based on an optimality criterion we derive from mathematical modeling of p-persistent CSMA. + +# Information +links.pdf=/static/public/papers/YedavalliKrishnamachari_Wiopt08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a33636ea902596bcb6d9625384c57e95d942c9c3 +type=Conference Papers +year=2008 +paper_id=0c54ebf0 +ss_title=Enhancement of the IEEE 802.15.4 MAC protocol for scalable data collection in dense sensor networks +ss_authors=[{'authorId': '1704940', 'name': 'Kiran Yedavalli'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2008 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops +ss_year=2008 +ss_abstract=We find that the IEEE 802.15.4 MAC protocol performs poorly for one-hop data collection in dense sensor networks, showing a steep deterioration in both throughput and energy consumption with increasing number of transmitters. We propose a channel feedback-based enhancement to the protocol that is significantly more scalable, showing a relatively flat, slow-changing total system throughput and energy consumption as the network size increases. A key feature of the enhancement is that the back-off windows are updated after successful transmissions instead of collisions. The window updates are based on an optimality criterion we derive from mathematical modeling of p-persistent CSMA. +ss_paper_id=a33636ea902596bcb6d9625384c57e95d942c9c3 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_enhancing_the_data_collection_rate_of_treebased_aggregation_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_enhancing_the_data_collection_rate_of_treebased_aggregation_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..0a136fbe78eddc10174acd649b49d79afb1d8cd0 --- /dev/null +++ b/database/original_documents/publications_text/2008_enhancing_the_data_collection_rate_of_treebased_aggregation_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Enhancing the Data Collection Rate of Tree-Based Aggregation in Wireless Sensor Networks +venue=The 5th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2008), San Francisco, CA, June 2008. +authors=['Ozlem Durmaz-Incel', 'Bhaskar Krishnamachari'] +abstract=What is the fastest rate at which we can collect a stream of aggregated data from a set of wireless sensors organized as a tree? We explore a hierarchy of techniques using realistic simulation models to address this question. We begin by considering TDMA scheduling on a single channel, reducing the original problem to minimizing the number of time slots needed to schedule each link of the aggregation tree. The second technique is to combine the scheduling with transmission power control to reduce the effects of interference. To better cope with interference, we then study the impact of utilizing multiple frequency channels by introducing a simple receiver-based frequency and time scheduling approach. We find that for networks of about a hundred nodes, the use of multi-frequency scheduling can suffice to eliminate most of the interference. The data collection rate then becomes limited not by interference, but by the maximum degree of the routing tree. Therefore we consider finally how the data collection rate can be further enhanced by the use of degree-constrained routing trees. Considering deployments at different densities, we show that these enhancements can improve the streaming aggregated data collection by as much as 10 times compared to the baseline of single-channel data collection over non-degree constrained routing trees. Addition to our primary conclusion, in the frequency scheduling domain we evaluate the impact of different interference models on the scheduling performance and give topology-specific bounds on time slot and frequency channel requirements. + +# Information +links.pdf=/static/public/papers/IncelKrishnamachari_SECON2008.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a152276b8162efdd83a06c925721a732c98bb081 +type=Conference Papers +year=2008 +paper_id=8110509d +ss_title=Enhancing the Data Collection Rate of Tree-Based Aggregation in Wireless Sensor Networks +ss_authors=[{'authorId': '2915257', 'name': 'Özlem Durmaz Incel'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2008 +ss_abstract=What is the fastest rate at which we can collect a stream of aggregated data from a set of wireless sensors organized as a tree? We explore a hierarchy of techniques using realistic simulation models to address this question. We begin by considering TDMA scheduling on a single channel, reducing the original problem to minimizing the number of time slots needed to schedule each link of the aggregation tree. The second technique is to combine the scheduling with transmission power control to reduce the effects of interference. To better cope with interference, we then study the impact of utilizing multiple frequency channels by introducing a simple receiver-based frequency and time scheduling approach. We find that for networks of about a hundred nodes, the use of multi-frequency scheduling can suffice to eliminate most of the interference. The data collection rate then becomes limited not by interference, but by the maximum degree of the routing tree. Therefore we consider finally how the data collection rate can be further enhanced by the use of degree-constrained routing trees. Considering deployments at different densities, we show that these enhancements can improve the streaming aggregated data collection by as much as 10 times compared to the baseline of single-channel data collection over non-degree constrained routing trees. Addition to our primary conclusion, in the frequency scheduling domain we evaluate the impact of different interference models on the scheduling performance and give topology-specific bounds on time slot and frequency channel requirements. +ss_paper_id=a152276b8162efdd83a06c925721a732c98bb081 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_game_theoretic_approach_to_location_sharing_with_privacy_in_a_communitybased_mobile_safety_application.txt b/database/original_documents/publications_text/2008_game_theoretic_approach_to_location_sharing_with_privacy_in_a_communitybased_mobile_safety_application.txt new file mode 100644 index 0000000000000000000000000000000000000000..601bfb55ae7301036cd08f9f76b8c3d1b3c49f84 --- /dev/null +++ b/database/original_documents/publications_text/2008_game_theoretic_approach_to_location_sharing_with_privacy_in_a_communitybased_mobile_safety_application.txt @@ -0,0 +1,18 @@ +# Publication +title=Game Theoretic Approach to Location Sharing with Privacy in a Community-based Mobile Safety Application +venue=The 11-th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM), 2008 +authors=['Hua Liu', 'Bhaskar Krishnamachari', 'Murali Annavaram'] +abstract=A new generation of community-based social networking mobile applications is emerging. In these applications, there is often a fundamental tension between users' desire for preserving the privacy of their own data and their need for fine-grained information about others. Our work is motivated by a community-based mobile application called Aegis, a personal safety enhancement service based on sharing location information with trusted nearby friends. We model the privacy-participation tradeoffs in this application using a game theoretic formulation. Users in this game are assumed to be self-interested. They prefer to obtain more fine-grained knowledge from others while limiting their own privacy leak (i.e. their own contributions to the game) as much as possible. We design a tit-for-tat mechanism to give user incentives to contribute to the application. We investigate the convergence of two best response dynamics to achieve a non-trivial Nash equilibrium for this game. Further, we propose an algorithm that yields a Pareto optimal Nash equilibrium. We show that this algorithm guarantees polynomial time convergence and can be executed in a distributed manner. + +# Information +links.pdf=/static/public/papers/mswim8275-liu.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2748a7f1b087cac5af327d4b45abff513f72f291 +type=Conference Papers +year=2008 +paper_id=188bc28f +ss_title=Game theoretic approach to location sharing with privacy in a community-based mobile safety application +ss_authors=[{'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems +ss_year=2008 +ss_abstract=A new generation of community-based social networking mobile applications is emerging. In these applications, there is often a fundamental tension between users' desire for preserving the privacy of their own data and their need for fine-grained information about others. Our work is motivated by a community-based mobile application called Aegis, a personal safety enhancement service based on sharing location information with trusted nearby friends. We model the privacy-participation tradeoffs in this application using a game theoretic formulation. Users in this game are assumed to be self-interested. They prefer to obtain more fine-grained knowledge from others while limiting their own privacy leak (i.e. their own contributions to the game) as much as possible. We design a tit-for-tat mechanism to give user incentives to contribute to the application. We investigate the convergence of two best response dynamics to achieve a non-trivial Nash equilibrium for this game. Further, we propose an algorithm that yields a Pareto optimal Nash equilibrium. We show that this algorithm guarantees polynomial time convergence and can be executed in a distributed manner. +ss_paper_id=2748a7f1b087cac5af327d4b45abff513f72f291 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_ieee_80211p_performance_evaluation_and_protocol_enhancement.txt b/database/original_documents/publications_text/2008_ieee_80211p_performance_evaluation_and_protocol_enhancement.txt new file mode 100644 index 0000000000000000000000000000000000000000..072ddd7ff369f68fa20042b8cc477aa714a08bf6 --- /dev/null +++ b/database/original_documents/publications_text/2008_ieee_80211p_performance_evaluation_and_protocol_enhancement.txt @@ -0,0 +1,18 @@ +# Publication +title=IEEE 802.11p Performance Evaluation and Protocol Enhancement +venue=2008 IEEE International Conference on Vehicular Electronics and Safety, September 22-24, 2008, Columbus Ohio, USA +authors=['Yi Wang', 'Akram Ahmed', 'Bhaskar Krishnamachari', 'Konstantinos Psounis'] +abstract=The IEEE 802.11p wireless access in vehicular environment (WAVE) protocol providing for vehicle-to-infrastructure and vehicle-to-vehicle radio communication is currently under standardization. We provide an NS-2 simulation study of the proposed IEEE 802.11p MAC protocol focusing on vehicle-to-infrastructure communication. We show that the specified MAC parameters for this protocol can lead to undesired throughput performance because the backoff window sizes are not adaptive to dynamics in the numbers of vehicles attempting to communicate. We propose two solutions to this problem. One is a centralized approach where exact information about the number of concurrent transmitting vehicles is used to calculate the optimal window size, and the other is a distributed approach in which vehicles use local observations to adapt the window size.We show that these schemes can provide significant improvements over the standard MAC protocol under dense and dynamic conditions. + +# Information +links.pdf=/static/public/papers/Wang_Ahmed_Krishnamachari_Psounis_ICVES08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c1abd0fdfb7338428c7efca9d10e64c2ddfc45b9 +type=Conference Papers +year=2008 +paper_id=9a0991a4 +ss_title=IEEE 802.11p performance evaluation and protocol enhancement +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '145607313', 'name': 'Akram Ahmed'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9313028', 'name': 'K. Psounis'}] +ss_venue=2008 IEEE International Conference on Vehicular Electronics and Safety +ss_year=2008 +ss_abstract=The IEEE 802.11p wireless access in vehicular environment (WAVE) protocol providing for vehicle-to-infrastructure and vehicle-to-vehicle radio communication is currently under standardization. We provide an NS-2 simulation study of the proposed IEEE 802.11p MAC protocol focusing on vehicle-to-infrastructure communication. We show that the specified MAC parameters for this protocol can lead to undesired throughput performance because the backoff window sizes are not adaptive to dynamics in the numbers of vehicles attempting to communicate. We propose two solutions to this problem. One is a centralized approach where exact information about the number of concurrent transmitting vehicles is used to calculate the optimal window size, and the other is a distributed approach in which vehicles use local observations to adapt the window size.We show that these schemes can provide significant improvements over the standard MAC protocol under dense and dynamic conditions. +ss_paper_id=c1abd0fdfb7338428c7efca9d10e64c2ddfc45b9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_infection_spread_in_mobile_networks_with_random_and_adversarial_node_mobilities.txt b/database/original_documents/publications_text/2008_infection_spread_in_mobile_networks_with_random_and_adversarial_node_mobilities.txt new file mode 100644 index 0000000000000000000000000000000000000000..768a87d90ab9befbf84f8403f66988c12c9457a4 --- /dev/null +++ b/database/original_documents/publications_text/2008_infection_spread_in_mobile_networks_with_random_and_adversarial_node_mobilities.txt @@ -0,0 +1,18 @@ +# Publication +title=Infection Spread in Mobile Networks with Random and Adversarial Node Mobilities +venue=First ACM SIGMOBILE International Workshop on Mobility Models for Networking Research, May 27, 2008, Hong Kong +authors=['Yi Wang', 'Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=We study the process of the spread of an infection among mobile nodes moving on a finite, grid based map. A random walk and a novel adversarial model are considered as two extreme cases of node mobility. With N nodes, we present analytical and simulation results for both mobility models for a square grid map with size √G × √G. A key finding is that with random mobility the total time to infect all nodes decreases with N while with an adversarial model we observe a reverse trend. Specifically, the random case results in a total infection time of Θ(GlogGlogN/(N) as opposed to the adversarial case where the total infection time is found to be Θ(√(Glog(N). We also explore the possibility of emulating such an infection process as a mobile interaction game with wireless sensor motes, and the above results are complimented by traces obtained from an empirical study with humans as players in an outdoor field. + +# Information +links.pdf=/static/public/papers/Wang_Kapadia_Krishnamachari_mobilitymodel08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7ea2adfb98df48d53f0ef8df4153ab5519f08baf +type=Conference Papers +year=2008 +paper_id=b658b626 +ss_title=Infection spread in wireless networks with random and adversarial node mobilities +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=MobilityModels '08 +ss_year=2008 +ss_abstract=We study the process of the spread of an infection among mobile nodes moving on a finite, grid based map. A random walk and a novel adversarial model are considered as two extreme cases of node mobility. With N nodes, we present analytical and simulation results for both mobility models for a square grid map with size √G × √G. A key finding is that with random mobility the total time to infect all nodes decreases with N while with an adversarial model we observe a reverse trend. Specifically, the random case results in a total infection time of Θ(GlogGlogN/(N) as opposed to the adversarial case where the total infection time is found to be Θ(√(Glog(N). We also explore the possibility of emulating such an infection process as a mobile interaction game with wireless sensor motes, and the above results are complimented by traces obtained from an empirical study with humans as players in an outdoor field. +ss_paper_id=7ea2adfb98df48d53f0ef8df4153ab5519f08baf \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_investigating_backpressurebased_rate_control_protocols_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_investigating_backpressurebased_rate_control_protocols_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..f2861331ffce68a403ce322dbdf55dc11321e352 --- /dev/null +++ b/database/original_documents/publications_text/2008_investigating_backpressurebased_rate_control_protocols_for_wireless_sensor_networks.txt @@ -0,0 +1,22 @@ +# Publication +title=Investigating Backpressure-based Rate Control Protocols for Wireless Sensor Networks +venue=CENG Technical Report, CENG-2008-7 +authors=['Avinash Sridharan', 'Scott Moeller', 'Bhaskar Krishnamachari'] +abstract=Because of limited bandwidth availability and their typical dense, multi-hop deployment, wireless sensor networks have a fundamental need for efficient transport layer rate control. State of the art transport layer rate control protocols in wireless sensor networks are primarily heuristics that rely on Additive Increase Multiplicative Decrease (AIMD) mechanisms. This heuristic-based design of state of the art rate control protocols raises two key issues: first, due to the AIMD based mechanism the protocols suffer from long convergence times and large end-to-end packet delays; second, existing protocols are monolithic in design, either focusing purely on congestion control functionality without regard for rate utility optimization, or trying to optimize for a specific rate utility function. We improve upon the state of the art by proposing two rate control protocols that address the above issues. To address the issue of long convergence times and large end-to-end packet delays, we propose the Wireless Rate Control Protocol (WRCP). To address the issue of monolithic protocol design, we propose the Backpressure-based Rate Control Protocol (BRCP). +WRCP, to our knowledge, is the first explicit and precise rate control protocol for wireless sensor networks. WRCP has been designed using a novel interference model, called the receiver capacity model. The model helps determine the exact available capacity at each receiver in the network. WRCP uses the available capacity information presented by the model, and distributes this capacity amongst contending flows in a neighborhood in order to achieve a lexicographic max-min fair rate allocation. The use of explicit capacity information allows WRCP to exhibit fast convergence time. The explicit capacity information also allows WRCP to operate within the capacity region, resulting in small end-to-end delays. +BRCP is a, novel, flexible rate control protocol that has the ability to optimize for any concave rate-utility function. The design of BRCP is achieved by applying Lyapunov drift based stochastic optimization techniques to a Carrier Sense Medium Access (CSMA) based MAC. The ability of BRCP to make rate control decisions purely on local queue information makes it extremely useful in a wireless sensor network, since it requires minimal control information exchange. + +# Information +links.pdf=/static/public/papers/CENG-2008-7_TechReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/03437c10225b4499caa7321030b26864c426366f +type=Technical Reports and Preprints +year=2008 +paper_id=7c3bfaad +ss_title=Transport layer rate control protocols for wireless sensor networks: from theory to practice +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2075075', 'name': 'A. Sridharan'}] +ss_venue= +ss_year=2009 +ss_abstract=Because of limited bandwidth availability and their typical dense, multi-hop deployment, wireless sensor networks have a fundamental need for efficient transport layer rate control. State of the art transport layer rate control protocols in wireless sensor networks are primarily heuristics that rely on Additive Increase Multiplicative Decrease (AIMD) mechanisms. This heuristic-based design of state of the art rate control protocols raises two key issues: first, due to the AIMD based mechanism the protocols suffer from long convergence times and large end-to-end packet delays; second, existing protocols are monolithic in design, either focusing purely on congestion control functionality without regard for rate utility optimization, or trying to optimize for a specific rate utility function. We improve upon the state of the art by proposing two rate control protocols that address the above issues. To address the issue of long convergence times and large end-to-end packet delays, we propose the Wireless Rate Control Protocol (WRCP). To address the issue of monolithic protocol design, we propose the Backpressure-based Rate Control Protocol (BRCP). +WRCP, to our knowledge, is the first explicit and precise rate control protocol for wireless sensor networks. WRCP has been designed using a novel interference model, called the receiver capacity model. The model helps determine the exact available capacity at each receiver in the network. WRCP uses the available capacity information presented by the model, and distributes this capacity amongst contending flows in a neighborhood in order to achieve a lexicographic max-min fair rate allocation. The use of explicit capacity information allows WRCP to exhibit fast convergence time. The explicit capacity information also allows WRCP to operate within the capacity region, resulting in small end-to-end delays. +BRCP is a, novel, flexible rate control protocol that has the ability to optimize for any concave rate-utility function. The design of BRCP is achieved by applying Lyapunov drift based stochastic optimization techniques to a Carrier Sense Medium Access (CSMA) based MAC. The ability of BRCP to make rate control decisions purely on local queue information makes it extremely useful in a wireless sensor network, since it requires minimal control information exchange. +ss_paper_id=03437c10225b4499caa7321030b26864c426366f \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_making_distributed_rate_control_using_lyapunov_drifts_a_reality_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_making_distributed_rate_control_using_lyapunov_drifts_a_reality_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e7e0b15de5952b50985dd272e4e1774efbf9819 --- /dev/null +++ b/database/original_documents/publications_text/2008_making_distributed_rate_control_using_lyapunov_drifts_a_reality_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Making Distributed Rate Control using Lyapunov Drifts a Reality in Wireless Sensor Networks +venue=Sixth Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt, April 2008. +authors=['Avinash Sridharan', 'Scott Moeller', 'Bhaskar Krishnamachari'] +abstract=We take a top-down approach of formulating the rate control problem, over a collection tree, in a wireless sensor network as a generic convex optimization problem and propose a distributed back pressure algorithm using Lyapunov drift based optimization techniques. Primarily, we show that existing theoretical results in the field of stochastic network optimization can be directly applied to a CSMA based wireless sensor network using our novel receiver capacity model. We back this claim by implementing our algorithm on the Tmote sky class devices. Our experimental evaluation on a 5 node testbed shows that the empirically observed rate allocation on a real sensor network testbed that uses our back pressure algorithm is close to the analytically predicted values, justifying our claims. + +# Information +links.pdf=/static/public/papers/SridharanMoellerKrishnamachari_Wiopt08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ec68ee2bc7fff41f7a2376f4b46bda28b0df37da +type=Conference Papers +year=2008 +paper_id=94bf20ec +ss_title=Making distributed rate control using Lyapunov drifts a reality in wireless sensor networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2008 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops +ss_year=2008 +ss_abstract=We take a top-down approach of formulating the rate control problem, over a collection tree, in a wireless sensor network as a generic convex optimization problem and propose a distributed back pressure algorithm using Lyapunov drift based optimization techniques. Primarily, we show that existing theoretical results in the field of stochastic network optimization can be directly applied to a CSMA based wireless sensor network using our novel receiver capacity model. We back this claim by implementing our algorithm on the Tmote sky class devices. Our experimental evaluation on a 5 node testbed shows that the empirically observed rate allocation on a real sensor network testbed that uses our back pressure algorithm is close to the analytically predicted values, justifying our claims. +ss_paper_id=ec68ee2bc7fff41f7a2376f4b46bda28b0df37da \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_maximizing_network_utilization_with_maxmin_fairness_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_maximizing_network_utilization_with_maxmin_fairness_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..1689302b6e1f604c4321489a9b7229e29647678c --- /dev/null +++ b/database/original_documents/publications_text/2008_maximizing_network_utilization_with_maxmin_fairness_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Maximizing network utilization with max-min fairness in wireless sensor networks +venue=ACM/Kluwer Wireless Networks, ISSN:1572-8196 (Online), Februrary 2008 +authors=['Avinash Sridharan', 'Bhaskar Krishnamachari'] +abstract=The state of the art for optimal data-gathering in wireless sensor networks is to use additive increase algorithms to achieve fair rate allocation while implicity trying to maximize network utilization. We explicitly formulate the problem of maximizing the network utilization subject to a max-min fair rate allocation constraint in the form of two coupled linear programs. We first show how the max-min rate can be computed efficiently for a given network. We then adopt a dual-based approach to maximize the network utilization. The analysis of the dual shows the sub-optimality of previously proposed additive increase algorithms with respect to bandwidth efficiency. Although in theory a dual-based sub-gradient search algorithm can take a long time to converge, we find empirically that setting shadow prices to 1 results in near-optimal solutions within one iteration (within 2% of the optimum in 99.65% of the cases). This results in a fast heuristic distributed algorithm that has a nice intuitive explanation - rates are allocated sequentially after rank ordering flows based on the number of downstream receivers whose bandwidth they consume. + +# Information +links.pdf=/static/public/papers/winet07_maxminduality.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f5c57db9b4149a63b079b710f7f80b8e1d69fef9 +type=Journal Papers +year=2008 +paper_id=a27868a7 +ss_title=Maximizing Network Utilization with Max-Min Fairness in Wireless Sensor Networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops +ss_year=2007 +ss_abstract=The state of the art for optimal data-gathering in wireless sensor networks is to use additive increase algorithms to achieve fair rate allocation while implicity trying to maximize network utilization. We explicitly formulate the problem of maximizing the network utilization subject to a max-min fair rate allocation constraint in the form of two coupled linear programs. We first show how the max-min rate can be computed efficiently for a given network. We then adopt a dual-based approach to maximize the network utilization. The analysis of the dual shows the sub-optimality of previously proposed additive increase algorithms with respect to bandwidth efficiency. Although in theory a dual-based sub-gradient search algorithm can take a long time to converge, we find empirically that setting shadow prices to 1 results in near-optimal solutions within one iteration (within 2% of the optimum in 99.65% of the cases). This results in a fast heuristic distributed algorithm that has a nice intuitive explanation - rates are allocated sequentially after rank ordering flows based on the number of downstream receivers whose bandwidth they consume. +ss_paper_id=f5c57db9b4149a63b079b710f7f80b8e1d69fef9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_migm_mobile_interaction_games_with_motes.txt b/database/original_documents/publications_text/2008_migm_mobile_interaction_games_with_motes.txt new file mode 100644 index 0000000000000000000000000000000000000000..477c57407a109b4a1160d648d71bb1f54d8b3034 --- /dev/null +++ b/database/original_documents/publications_text/2008_migm_mobile_interaction_games_with_motes.txt @@ -0,0 +1,18 @@ +# Publication +title=MIGM: Mobile Interaction Games with Motes +venue=IEEE CCNC, Las Vegas, Nevada, January 2008. +authors=['Yi Wang', 'Shyam Kapadia', 'Bhaskar Krishnamachari'] +abstract=We propose the development of a broad range of exciting mobile interaction games using intermittently-connected wireless devices such as motes. As a concrete application, we describe the implementation of a random walk game, in which players each attempt to hold on to an otherwise itinerant token for as long as possible by running to evade other players in an open field. Besides obtaining the clear entertainment value, we argue that quantifying and analyzing key performance metrics recorded during the game can not only help people to evaluate player ability, but also provide some insights into adversarial behavior in both human and robotic settings. To this end, we present preliminary quantitative results and analysis for the random walk game obtained through real play evaluation. + +# Information +links.pdf=/static/public/papers/WangKapadiaKrishnamachari_CCNC08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/013c87ee7e0dd88727f856d8111d3c95b2295d91 +type=Conference Papers +year=2008 +paper_id=1fda4cce +ss_title=MIGM: Mobile Interaction Games with Motes +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2008 5th IEEE Consumer Communications and Networking Conference +ss_year=2008 +ss_abstract=We propose the development of a broad range of exciting mobile interaction games using intermittently-connected wireless devices such as motes. As a concrete application, we describe the implementation of a random walk game, in which players each attempt to hold on to an otherwise itinerant token for as long as possible by running to evade other players in an open field. Besides obtaining the clear entertainment value, we argue that quantifying and analyzing key performance metrics recorded during the game can not only help people to evaluate player ability, but also provide some insights into adversarial behavior in both human and robotic settings. To this end, we present preliminary quantitative results and analysis for the random walk game obtained through real play evaluation. +ss_paper_id=013c87ee7e0dd88727f856d8111d3c95b2295d91 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_multichannel_scheduling_for_fast_convergecast_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_multichannel_scheduling_for_fast_convergecast_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..093357c7f6aa9fce3bdce9d8e1f6371ef60d0de1 --- /dev/null +++ b/database/original_documents/publications_text/2008_multichannel_scheduling_for_fast_convergecast_in_wireless_sensor_networks.txt @@ -0,0 +1,74 @@ +# Publication +title=Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks +venue=CENG Technical Report, CENG-2008-9 +authors=['Ozlem Durmaz Incel', 'Amitabha Ghosh', 'Bhaskar Krishnamachari', 'Krishna Kant Chintalapudi'] +abstract=We explore the following fundamental question - +how fast can information be collected from a wireless sensor +network? We consider a number of design parameters such +as, power control, time and frequency scheduling, and routing. +There are essentially two factors that hinder efficient data +collection - interference and the half-duplex single-transceiver +radios. We show that while power control helps in reducing the +number of transmission slots to complete a convergecast under a +single frequency channel, scheduling transmissions on different +frequency channels is more efficient in mitigating the effects of +interference (empirically, 6 channels suffice for most 100-node +networks). With these observations, we define a receiver-based +channel assignment problem, and prove it to be NP-complete on +general graphs. We then introduce a greedy channel assignment +algorithm that efficiently eliminates interference, and compare +its performance with other existing schemes via simulations. +Once the interference is completely eliminated, we show that +with half-duplex single-transceiver radios the achievable schedule +length is lower-bounded by max(2nk − 1,N), where nk is the +maximum number of nodes on any subtree and N is the number +of nodes in the network. We modify an existing distributed time +slot assignment algorithm to achieve this bound when a suitable +balanced routing scheme is employed. Through extensive simulations, +we demonstrate that convergecast can be completed within +up to 50% less time slots, in 100-node networks, using multiple +channels as compared to that with single-channel communication. +Finally, we also demonstrate further improvements that are +possible when the sink is equipped with multiple transceivers +or when there are multiple sinks to collect data. + +# Information +links.pdf=/static/public/papers/CENG-2008-9_TechReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6f3df73a032a37906dc96aaaddbb79bc3043d54b +type=Technical Reports and Preprints +year=2008 +paper_id=cd2b2278 +ss_title=Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks +ss_authors=[{'authorId': '6401478', 'name': 'O. D. Incel'}, {'authorId': '2110112916', 'name': 'Amitabha Ghosh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1751888', 'name': 'K. Chintalapudi'}] +ss_venue= +ss_year=2008 +ss_abstract=We explore the following fundamental question - +how fast can information be collected from a wireless sensor +network? We consider a number of design parameters such +as, power control, time and frequency scheduling, and routing. +There are essentially two factors that hinder efficient data +collection - interference and the half-duplex single-transceiver +radios. We show that while power control helps in reducing the +number of transmission slots to complete a convergecast under a +single frequency channel, scheduling transmissions on different +frequency channels is more efficient in mitigating the effects of +interference (empirically, 6 channels suffice for most 100-node +networks). With these observations, we define a receiver-based +channel assignment problem, and prove it to be NP-complete on +general graphs. We then introduce a greedy channel assignment +algorithm that efficiently eliminates interference, and compare +its performance with other existing schemes via simulations. +Once the interference is completely eliminated, we show that +with half-duplex single-transceiver radios the achievable schedule +length is lower-bounded by max(2nk − 1,N), where nk is the +maximum number of nodes on any subtree and N is the number +of nodes in the network. We modify an existing distributed time +slot assignment algorithm to achieve this bound when a suitable +balanced routing scheme is employed. Through extensive simulations, +we demonstrate that convergecast can be completed within +up to 50% less time slots, in 100-node networks, using multiple +channels as compared to that with single-channel communication. +Finally, we also demonstrate further improvements that are +possible when the sink is equipped with multiple transceivers +or when there are multiple sinks to collect data. +ss_paper_id=6f3df73a032a37906dc96aaaddbb79bc3043d54b \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_on_myopic_sensing_for_multichannel_opportunistic_access_structure_optimality_and_performance.txt b/database/original_documents/publications_text/2008_on_myopic_sensing_for_multichannel_opportunistic_access_structure_optimality_and_performance.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e5393e69bded9f9c2eeea205d9ef730d59c57fa --- /dev/null +++ b/database/original_documents/publications_text/2008_on_myopic_sensing_for_multichannel_opportunistic_access_structure_optimality_and_performance.txt @@ -0,0 +1,18 @@ +# Publication +title=On Myopic Sensing for Multi-Channel Opportunistic Access: Structure, Optimality, and Performance +venue=IEEE Transactions on Wireless Communications, Dec 2008, vol. 7, no. 22, pp. 5431 – 5440. +authors=['Qing Zhao', 'Bhaskar Krishnamachari', 'Keqin Liu'] +abstract=We consider a multi-channel opportunistic communication system where the states of these channels evolve as independent and statistically identical Markov chains (the Gilbert- Elliot channel model). A user chooses one channel to sense and access in each slot and collects a reward determined by the state of the chosen channel. The problem is to design a sensing policy for channel selection to maximize the average reward, which can be formulated as a multi-arm restless bandit process. In this paper, we study the structure, optimality, and performance of the myopic sensing policy. We show that the myopic sensing policy has a simple robust structure that reduces channel selection to a round-robin procedure and obviates the need for knowing the channel transition probabilities. The optimality of this simple policy is established for the two-channel case and conjectured for the general case based on numerical results. The performance of the myopic sensing policy is analyzed, which, based on the optimality of myopic sensing, characterizes the maximum throughput of a multi-channel opportunistic communication system and its scaling behavior with respect to the number of channels. These results apply to cognitive radio networks, opportunistic transmission in fading environments, downlink scheduling in centralized networks, and resource-constrained jamming and anti-jamming. + +# Information +links.pdf=/static/public/papers/ZhaoEtal08TWC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c6b346fb0898120b44136990264113f1a5bdeef5 +type=Journal Papers +year=2008 +paper_id=ef1118ac +ss_title=On myopic sensing for multi-channel opportunistic access: structure, optimality, and performance +ss_authors=[{'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '8070370', 'name': 'Keqin Liu'}] +ss_venue=IEEE Transactions on Wireless Communications +ss_year=2007 +ss_abstract=We consider a multi-channel opportunistic communication system where the states of these channels evolve as independent and statistically identical Markov chains (the Gilbert- Elliot channel model). A user chooses one channel to sense and access in each slot and collects a reward determined by the state of the chosen channel. The problem is to design a sensing policy for channel selection to maximize the average reward, which can be formulated as a multi-arm restless bandit process. In this paper, we study the structure, optimality, and performance of the myopic sensing policy. We show that the myopic sensing policy has a simple robust structure that reduces channel selection to a round-robin procedure and obviates the need for knowing the channel transition probabilities. The optimality of this simple policy is established for the two-channel case and conjectured for the general case based on numerical results. The performance of the myopic sensing policy is analyzed, which, based on the optimality of myopic sensing, characterizes the maximum throughput of a multi-channel opportunistic communication system and its scaling behavior with respect to the number of channels. These results apply to cognitive radio networks, opportunistic transmission in fading environments, downlink scheduling in centralized networks, and resource-constrained jamming and anti-jamming. +ss_paper_id=c6b346fb0898120b44136990264113f1a5bdeef5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_on_the_multihop_performance_of_synchronization_mechanisms_in_high_propagation_delay_networks.txt b/database/original_documents/publications_text/2008_on_the_multihop_performance_of_synchronization_mechanisms_in_high_propagation_delay_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..8ece1dcb949d2d8e813693bc75749c94bfd5404c --- /dev/null +++ b/database/original_documents/publications_text/2008_on_the_multihop_performance_of_synchronization_mechanisms_in_high_propagation_delay_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=On the Multi-Hop Performance of Synchronization Mechanisms in High Propagation Delay Networks +venue=IEEE Transactions on Computers, May 2009, vol. 58, no. 5, pp. 577-590. +authors=['Pai-Han Huang', 'Maulik Desai', 'Xiaofan Qiu', 'Bhaskar Krishnamachari'] +abstract=We analyze the single and multihop performance of time synchronization mechanisms for challenging environments characterized by high propagation delays, low duty-cycle operation, and imprecise clocks, such as underwater acoustic sensor networks. We find that receiver-receiver-based schemes are unsuitable for such environments, and therefore focus primarily on sender-receiver schemes. According to our analysis, a one-way dissemination approach provides good clock skew estimation but poor offset estimation while a two-way exchange approach provides accurate offset estimation but imprecise clock skew estimation. In average, using one-way scheme can result in significant cumulative propagation error over multiple hops, and using two-way can lead to high variance of propagation error. We develop and analyze a hybrid one-way dissemination/two-way exchange technique, and verify the performance of our hybrid scheme through trace-based experiments. The results suggest that this hybrid approach can provide bounded average error propagation in multihop settings and significantly lower variance of propagation error. + +# Information +links.pdf=/static/public/papers/Timesync_TC_2008.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d11b9afb4e759b5a0428d17622c8f037475a392a +type=Journal Papers +year=2008 +paper_id=3c99bfb7 +ss_title=On the Multihop Performance of Synchronization Mechanisms in High Propagation Delay Networks +ss_authors=[{'authorId': '3137372', 'name': 'P. Huang'}, {'authorId': '3312308', 'name': 'Maulik Desai'}, {'authorId': '2099988890', 'name': 'Xiaofan Qiu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE transactions on computers +ss_year=2009 +ss_abstract=We analyze the single and multihop performance of time synchronization mechanisms for challenging environments characterized by high propagation delays, low duty-cycle operation, and imprecise clocks, such as underwater acoustic sensor networks. We find that receiver-receiver-based schemes are unsuitable for such environments, and therefore focus primarily on sender-receiver schemes. According to our analysis, a one-way dissemination approach provides good clock skew estimation but poor offset estimation while a two-way exchange approach provides accurate offset estimation but imprecise clock skew estimation. In average, using one-way scheme can result in significant cumulative propagation error over multiple hops, and using two-way can lead to high variance of propagation error. We develop and analyze a hybrid one-way dissemination/two-way exchange technique, and verify the performance of our hybrid scheme through trace-based experiments. The results suggest that this hybrid approach can provide bounded average error propagation in multihop settings and significantly lower variance of propagation error. +ss_paper_id=d11b9afb4e759b5a0428d17622c8f037475a392a \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_optimality_of_myopic_sensing_in_multichannel_opportunistic_access.txt b/database/original_documents/publications_text/2008_optimality_of_myopic_sensing_in_multichannel_opportunistic_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..3377752fedaf56bda5636d727883b1538efcd5b6 --- /dev/null +++ b/database/original_documents/publications_text/2008_optimality_of_myopic_sensing_in_multichannel_opportunistic_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimality of Myopic Sensing in Multi-Channel Opportunistic Access +venue=IEEE International Conference on Communications (ICC), Beijing, China, May 2008. +authors=['Tara Javidi', 'Bhaskar Krishnamachari', 'Qing Zhao', 'Mingyan Liu'] +abstract=We consider opportunistic communications over multiple channels where the state ("good" or "bad") of each channel evolves as independent and identically distributed Markov processes. A user, with limited sensing and access capability, chooses one channel to sense and subsequently access (based on the sensed channel state) in each time slot. A reward is obtained when the user senses and accesses a "good" channel. The objective is to design the optimal channel selection policy that maximizes the expected reward accrued over time. This problem can be generally formulated as a Partially Observable Markov Decision Process (POMDP) or a restless multi-armed bandit process, to which optimal solutions are often intractable. We show in this paper that the myopic policy, with a simple and robust structure, achieves optimality under certain conditions. This result finds applications in opportunistic communications in fading environment, cognitive radio networks for spectrum overlay, and resource-constrained jamming and anti-jamming. + +# Information +links.pdf=/static/public/papers/ICC08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fd14ffcb34ccce4ab11531fdfe9bdb71f86eb8f1 +type=Conference Papers +year=2008 +paper_id=95ee1899 +ss_title=Optimality of Myopic Sensing in Multi-Channel Opportunistic Access +ss_authors=[{'authorId': '47197693', 'name': 'T. Javidi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '39037167', 'name': 'M. Liu'}] +ss_venue=IEEE International Conference on Communications +ss_year=2008 +ss_abstract=We consider opportunistic communications over multiple channels where the state ("good" or "bad") of each channel evolves as independent and identically distributed Markov processes. A user, with limited sensing and access capability, chooses one channel to sense and subsequently access (based on the sensed channel state) in each time slot. A reward is obtained when the user senses and accesses a "good" channel. The objective is to design the optimal channel selection policy that maximizes the expected reward accrued over time. This problem can be generally formulated as a Partially Observable Markov Decision Process (POMDP) or a restless multi-armed bandit process, to which optimal solutions are often intractable. We show in this paper that the myopic policy, with a simple and robust structure, achieves optimality under certain conditions. This result finds applications in opportunistic communications in fading environment, cognitive radio networks for spectrum overlay, and resource-constrained jamming and anti-jamming. +ss_paper_id=fd14ffcb34ccce4ab11531fdfe9bdb71f86eb8f1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_performance_of_a_propagation_delay_tolerant_aloha_protocol_for_underwater_wireless_networks.txt b/database/original_documents/publications_text/2008_performance_of_a_propagation_delay_tolerant_aloha_protocol_for_underwater_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..6dd07a4ea901e60e29ca1abd5df5a491c6444e1e --- /dev/null +++ b/database/original_documents/publications_text/2008_performance_of_a_propagation_delay_tolerant_aloha_protocol_for_underwater_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Performance of a Propagation Delay Tolerant ALOHA Protocol for Underwater Wireless Networks +venue=The 4th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS ’08), Santorini Island, Greece, June 11-14, 2008. +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/Ahn08performance-dcoss.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/65daf49d84dea46a982f3111272e822d0185460d +type=Conference Papers +year=2008 +paper_id=36a48b6a +ss_title=Performance of a Propagation Delay Tolerant ALOHA Protocol for Underwater Wireless Networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Distributed Computing in Sensor Systems +ss_year=2008 +ss_abstract=None +ss_paper_id=65daf49d84dea46a982f3111272e822d0185460d \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_randomized_strategies_for_multiuser_multichannel_opportunitysensing.txt b/database/original_documents/publications_text/2008_randomized_strategies_for_multiuser_multichannel_opportunitysensing.txt new file mode 100644 index 0000000000000000000000000000000000000000..67d51167abbba8dcfa814af0c1e3809844dee528 --- /dev/null +++ b/database/original_documents/publications_text/2008_randomized_strategies_for_multiuser_multichannel_opportunitysensing.txt @@ -0,0 +1,18 @@ +# Publication +title=Randomized Strategies for Multi-user Multi-channel OpportunitySensing +venue=Workshop on Cognitive Radio Networks, IEEE CCNC, Las Vegas, Nevada, January 2008. (InvitedPaper). +authors=['Hua Liu', 'Bhaskar Krishnamachari'] +abstract=We show how the expected network throughput of contending secondary users in an opportunistic spectrum access network can be optimized by making appropriate sensing decisions. We consider both uncoordinated symmetric users that see the same primary user behavior, and also a more general coordinated asymmetric setting. For the uncoordinated symmetric case, we show that when the number of users exceeds the number of channels, the optimal strategy is independent of primary user behavior. For the coordinated asymmetric case, we show that at the optimal operation point each user can adopt a pure strategy. Furthermore, the optimal solution can be obtained by using the Hungarian algorithm for bipartite maximum weight matching. + +# Information +links.pdf=/static/public/papers/LiuKrishnamachari_Crn08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2e0d921f49fdd9c6e4dacd5b5e94a079c3d4bfa6 +type=Conference Papers +year=2008 +paper_id=438b19a1 +ss_title=Randomized Strategies for Multi-User Multi-Channel Opportunity Sensing +ss_authors=[{'authorId': '2145497859', 'name': 'Hua Liu'}, {'authorId': '2080312799', 'name': 'Bhaskar Krishanamachari'}] +ss_venue= +ss_year=2007 +ss_abstract=We show how the expected network throughput of contending secondary users in an opportunistic spectrum access network can be optimized by making appropriate sensing decisions. We consider both uncoordinated symmetric users that see the same primary user behavior, and also a more general coordinated asymmetric setting. For the uncoordinated symmetric case, we show that when the number of users exceeds the number of channels, the optimal strategy is independent of primary user behavior. For the coordinated asymmetric case, we show that at the optimal operation point each user can adopt a pure strategy. Furthermore, the optimal solution can be obtained by using the Hungarian algorithm for bipartite maximum weight matching. +ss_paper_id=2e0d921f49fdd9c6e4dacd5b5e94a079c3d4bfa6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_sequencebased_localization_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_sequencebased_localization_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..b580aaa3738ddc3a2816a3a0a26fa6ebb6d20fd7 --- /dev/null +++ b/database/original_documents/publications_text/2008_sequencebased_localization_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Sequence-Based Localization in Wireless Sensor Networks +venue=IEEE Transactions on Mobile Computing, Vol. 7, no. 1, January 2008. +authors=['Kiran Yedavalli', 'Bhaskar Krishnamachari'] +abstract=The paper treats the problem of localization in Wireless Sensor Network (WSN). In our work, we present and evaluate Wireless Sensor Network Localization System, which supports sensor node localization from data gathering from real-life deployments through modelling and applying different localization methods up to distributed computing in HPC environment. The paper describes extension of WSN Localization System with modules supporting real-life sensor data acquisition. A provided case study demonstrates the localization accuracy obtained for a few example networks generated by simulation models and based on acquired sensor data. INTRODUCTION TO WSN LOCALIZATION The aim of localization is to assign geographic coordinates to each node in the sensor network in the deployment area. Wireless sensor network localization is a complex problem that can be solved in different ways, [Karl and Willig, 2005]. A number of research and commercial location systems for WSNs have been developed. They differ in their assumptions about the network configuration, distribution of calculation processes, mobility and finally the hardware’s capabilities, [Mao et al., 2007], [Awad et al., 2007], [Zhang et al., 2010]. Recently proposed localization techniques consist in identification of approximate location of nodes based on merely partial information on the location of the set of nodes in a sensor network. An anchor is defined as a node that is aware of its own location, either through GPS or manual pre-programming during deployment. Identification of the location of other nodes is up to an algorithm locating non-anchors. Considering hardware’s capabilities of network nodes we can distinguish two classes of methods: range based (distance-based) methods and range free (connectivity based) methods. The former is defined by protocols that use absolute point to point distance estimates (ranges) or angle estimates in location calculation. The latter makes no assumption about the availability or validity of such information, and use only connectivity information to locate the entire sensor network. The popular range free solutions are hop-counting techniques. Distancebased methods require the additional equipment but through that much better resolution can be reached than in case of connectivity based ones. In our works we concentrate on range based methods. The paper is structured as follows: at the beginning we shortly describe the distance-based localization problem. Next, we provide an overview of our software environment for WSN localization and an extension applied to our software in order to acquire data from real-life deployments. Finally, we provide a case study results and conclusions. DISTANCE BASED LOCALIZATION Let us consider a network formed by M sensor devices (anchor nodes) that are aware of their location, either through GPS or manual recording and entering position during deployment, and N sensor devices (nonanchor nodes) that are not aware of their location in a network system. The goal of a localization system is to estimate coordinate vectors of all N non-anchor nodes. In general, distance based localization schemes operate in two stages: • Inter-node distances estimation stage – estimation of true inter-node distances based on inter-node transmissions and measurements. • Position calculation stage – transformation of calculated distances into geographic coordinates of nodes forming the network. Inter-node Distances Estimation Stage In spite of the available hardware, distance based localization systems exploit the following techniques Proceedings 27th European Conference on Modelling and Simulation ©ECMS Webjørn Rekdalsbakken, Robin T. Bye, Houxiang Zhang (Editors) ISBN: 978-0-9564944-6-7 / ISBN: 978-0-9564944-7-4 (CD) Fig. 1. The components of the WSNLS widely described in literature [Benkic et al., 2008], [Karl and Willig, 2005], [Mao et al., 2007]: • Angle of Arrival (AoA), • Time of Arrival (ToA), • Time Difference of Arrival (TDoA), • Received Signal Strength Indicator (RSSI). AoA, ToA and TDoA methods need an additional equipment such as antennas or accurately synchronized clocks. The most popular technique is the RSSI method because of easy configuration, deployment and no additional hardware needed (low cost). The disadvantage of this solution is low quality of measurement accuracy due to high variability of RSSI value [Benkic et al., 2008], [Ramadurai and Sichitiu, 2003]. Nevertheless some authors indicate that new radio transceivers can give RSSI measurements good enough to be a reasonable distance estimator [Barsocchi et al., 2009], [Srinivasan and Levis, 2006]. Position Calculation Stage In the position calculation stage the computed internode distances are used to estimate the geographic coordinates of all non-anchor nodes in a considered network. Position estimation can be done by using different techniques. There are many widely used techniques such as: triangulation, trilateration, multitrilateration and multidimensional scaling. The common idea of other methods is formulating the localization problem as the linear, quadratic or nonconvex nonlinear optimization problem solved by linear, quadratic or nonlinear (often heuristic) solvers. Recently, a popular group consists of hybrid systems that combines more than one technique to estimate location, i.e., results of initial localization are refined using another localization method. All mentioned methods are described and evaluated in literature, see [Akyildiz and Vuran, 2010], [Biswas and Ye, 2004], [Kannan et al., 2005], [Kannan et al., 2006], [Mao and Fidan, 2009], [Mao et al., 2007], [Niewiadomska-Szynkiewicz, 2012], [Niewiadomska-Szynkiewicz et al., 2011]. WIRELESS SENSOR NETWORK LOCALIZATION SYSTEM OVERVIEW The Wireless Sensor Network Localization System (WSNLS) is an integrated software environment for testing various localization schemes on parallel computers or computer clusters. It provides not only a set of solvers for localization WSN nodes but supports the whole localization process from test network defining, radio signal modelling and processing, real-life data acquisition up to parallel execution of localization schemes. An open architecture and object-oriented programming make the software easily extendable with implementations of new approaches for calculating locations of nodes in a network. WSNLS can be used to estimate the geographic coordinates of all devices forming the real life sensor network. Moreover, it can be used for tuning and performance evaluation of various localization solvers that are integrated with the framework before their practical application to a real life network. Since its first realization, described in [Marks, 2012], WSNLS architecture has been improved in many aspects and extended by adding Sensor Data Acquisition Module (SDAM). The system is still composed of a runtime platform (formed by two components, i.e., Distributed Computing Manager and Computational Server) responsible for calculation management and interprocess communication. However in second version of the system, Networks Manager has been reorganized and contains Networks Generator – a component for modeling a network to be simulated and Sensor Data Fig. 2. Dataflow in WSNL system Acquisition Module – component responsible for data gathering from real-life deployments. There are still two components responsible for location calculations, i.e., Distance Estimation Module and Position Calculation Module, database for recording data of all examined networks and results of calculations, and a set of tools to support the interaction with a user (GUI), but all the features of Position Calculation Module are realized by computational servers. The architecture of WSNLS is presented in Fig. 1. DATA FLOW IN WSNLS Since the aim of WSNLS is providing support for the whole localization process – from test network defining up to nodes location estimation – the data processing requires applying specialized methods on three stages as it is shown in Fig. 2. Computational method used on two stages i.e. distance estimation methods and position calculation methods are described in more details in [Marks, 2012], [Marks and NiewiadomskaSzynkiewicz, 2011]. However the first stage in presented dataflow relies on topology estimation methods, which were partially unavailable in first version of Wireless Sensor Network Localization System. Topology estimation methods Topology estimation methods provide a means for gathering information about network topology. This information can be obtained by using appropriate modelling or by data acquisition from real-life deployments. In general the proper modeling of low-power links is very difficult since the links characterization depends on radio chips (e.g., TR1000, CC1000, CC2420, etc), operational environments (indoor, outdoor) and many other parameters such as traffic load or radio channel – [Baccour et al., 2012]. In our software we decided to provide models based on Link Layer Model for MATLAB provided by [Zuniga and Krishnamachari, 2004], where we focus on wireless channel modeling and no radio modulation and encoding are considered. Much better solution, of course applicable only for institution which have at least laboratory WSN deployments, is to acquire data directly from real Wireless Sensor Networks. More information about real-life data acquisition is provided in section Sensor Data Acquisition Module. Distance estimation methods Distance estimation methods transform RSSI measurements into internode distances estimations. At present Distance Estimation Module has registered three approaches to distance estimation: Ordinary Least Square Method (OLS), Weighted Least Square Method (WLS) and Geometric Combined Least Square Method (GCLS). More information about distance estimation stage can be found in [Marks and Niewiadomska-Szynkiewicz, 2011]. Position calculation methods Position calculation methods estimate the coordi + +# Information +links.pdf=/static/public/papers/YedavalliKrishnamachari_TMC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0c97316657de8fb4272aab79b5fa8f79baf0e7f5 +type=Journal Papers +year=2008 +paper_id=b2e285ed +ss_title=Real Life Data Acquisition In Wireless Sensor Network Localization System +ss_authors=[{'authorId': '27514738', 'name': 'M. Marks'}] +ss_venue=European Conference on Modelling and Simulation +ss_year=2013 +ss_abstract=The paper treats the problem of localization in Wireless Sensor Network (WSN). In our work, we present and evaluate Wireless Sensor Network Localization System, which supports sensor node localization from data gathering from real-life deployments through modelling and applying different localization methods up to distributed computing in HPC environment. The paper describes extension of WSN Localization System with modules supporting real-life sensor data acquisition. A provided case study demonstrates the localization accuracy obtained for a few example networks generated by simulation models and based on acquired sensor data. INTRODUCTION TO WSN LOCALIZATION The aim of localization is to assign geographic coordinates to each node in the sensor network in the deployment area. Wireless sensor network localization is a complex problem that can be solved in different ways, [Karl and Willig, 2005]. A number of research and commercial location systems for WSNs have been developed. They differ in their assumptions about the network configuration, distribution of calculation processes, mobility and finally the hardware’s capabilities, [Mao et al., 2007], [Awad et al., 2007], [Zhang et al., 2010]. Recently proposed localization techniques consist in identification of approximate location of nodes based on merely partial information on the location of the set of nodes in a sensor network. An anchor is defined as a node that is aware of its own location, either through GPS or manual pre-programming during deployment. Identification of the location of other nodes is up to an algorithm locating non-anchors. Considering hardware’s capabilities of network nodes we can distinguish two classes of methods: range based (distance-based) methods and range free (connectivity based) methods. The former is defined by protocols that use absolute point to point distance estimates (ranges) or angle estimates in location calculation. The latter makes no assumption about the availability or validity of such information, and use only connectivity information to locate the entire sensor network. The popular range free solutions are hop-counting techniques. Distancebased methods require the additional equipment but through that much better resolution can be reached than in case of connectivity based ones. In our works we concentrate on range based methods. The paper is structured as follows: at the beginning we shortly describe the distance-based localization problem. Next, we provide an overview of our software environment for WSN localization and an extension applied to our software in order to acquire data from real-life deployments. Finally, we provide a case study results and conclusions. DISTANCE BASED LOCALIZATION Let us consider a network formed by M sensor devices (anchor nodes) that are aware of their location, either through GPS or manual recording and entering position during deployment, and N sensor devices (nonanchor nodes) that are not aware of their location in a network system. The goal of a localization system is to estimate coordinate vectors of all N non-anchor nodes. In general, distance based localization schemes operate in two stages: • Inter-node distances estimation stage – estimation of true inter-node distances based on inter-node transmissions and measurements. • Position calculation stage – transformation of calculated distances into geographic coordinates of nodes forming the network. Inter-node Distances Estimation Stage In spite of the available hardware, distance based localization systems exploit the following techniques Proceedings 27th European Conference on Modelling and Simulation ©ECMS Webjørn Rekdalsbakken, Robin T. Bye, Houxiang Zhang (Editors) ISBN: 978-0-9564944-6-7 / ISBN: 978-0-9564944-7-4 (CD) Fig. 1. The components of the WSNLS widely described in literature [Benkic et al., 2008], [Karl and Willig, 2005], [Mao et al., 2007]: • Angle of Arrival (AoA), • Time of Arrival (ToA), • Time Difference of Arrival (TDoA), • Received Signal Strength Indicator (RSSI). AoA, ToA and TDoA methods need an additional equipment such as antennas or accurately synchronized clocks. The most popular technique is the RSSI method because of easy configuration, deployment and no additional hardware needed (low cost). The disadvantage of this solution is low quality of measurement accuracy due to high variability of RSSI value [Benkic et al., 2008], [Ramadurai and Sichitiu, 2003]. Nevertheless some authors indicate that new radio transceivers can give RSSI measurements good enough to be a reasonable distance estimator [Barsocchi et al., 2009], [Srinivasan and Levis, 2006]. Position Calculation Stage In the position calculation stage the computed internode distances are used to estimate the geographic coordinates of all non-anchor nodes in a considered network. Position estimation can be done by using different techniques. There are many widely used techniques such as: triangulation, trilateration, multitrilateration and multidimensional scaling. The common idea of other methods is formulating the localization problem as the linear, quadratic or nonconvex nonlinear optimization problem solved by linear, quadratic or nonlinear (often heuristic) solvers. Recently, a popular group consists of hybrid systems that combines more than one technique to estimate location, i.e., results of initial localization are refined using another localization method. All mentioned methods are described and evaluated in literature, see [Akyildiz and Vuran, 2010], [Biswas and Ye, 2004], [Kannan et al., 2005], [Kannan et al., 2006], [Mao and Fidan, 2009], [Mao et al., 2007], [Niewiadomska-Szynkiewicz, 2012], [Niewiadomska-Szynkiewicz et al., 2011]. WIRELESS SENSOR NETWORK LOCALIZATION SYSTEM OVERVIEW The Wireless Sensor Network Localization System (WSNLS) is an integrated software environment for testing various localization schemes on parallel computers or computer clusters. It provides not only a set of solvers for localization WSN nodes but supports the whole localization process from test network defining, radio signal modelling and processing, real-life data acquisition up to parallel execution of localization schemes. An open architecture and object-oriented programming make the software easily extendable with implementations of new approaches for calculating locations of nodes in a network. WSNLS can be used to estimate the geographic coordinates of all devices forming the real life sensor network. Moreover, it can be used for tuning and performance evaluation of various localization solvers that are integrated with the framework before their practical application to a real life network. Since its first realization, described in [Marks, 2012], WSNLS architecture has been improved in many aspects and extended by adding Sensor Data Acquisition Module (SDAM). The system is still composed of a runtime platform (formed by two components, i.e., Distributed Computing Manager and Computational Server) responsible for calculation management and interprocess communication. However in second version of the system, Networks Manager has been reorganized and contains Networks Generator – a component for modeling a network to be simulated and Sensor Data Fig. 2. Dataflow in WSNL system Acquisition Module – component responsible for data gathering from real-life deployments. There are still two components responsible for location calculations, i.e., Distance Estimation Module and Position Calculation Module, database for recording data of all examined networks and results of calculations, and a set of tools to support the interaction with a user (GUI), but all the features of Position Calculation Module are realized by computational servers. The architecture of WSNLS is presented in Fig. 1. DATA FLOW IN WSNLS Since the aim of WSNLS is providing support for the whole localization process – from test network defining up to nodes location estimation – the data processing requires applying specialized methods on three stages as it is shown in Fig. 2. Computational method used on two stages i.e. distance estimation methods and position calculation methods are described in more details in [Marks, 2012], [Marks and NiewiadomskaSzynkiewicz, 2011]. However the first stage in presented dataflow relies on topology estimation methods, which were partially unavailable in first version of Wireless Sensor Network Localization System. Topology estimation methods Topology estimation methods provide a means for gathering information about network topology. This information can be obtained by using appropriate modelling or by data acquisition from real-life deployments. In general the proper modeling of low-power links is very difficult since the links characterization depends on radio chips (e.g., TR1000, CC1000, CC2420, etc), operational environments (indoor, outdoor) and many other parameters such as traffic load or radio channel – [Baccour et al., 2012]. In our software we decided to provide models based on Link Layer Model for MATLAB provided by [Zuniga and Krishnamachari, 2004], where we focus on wireless channel modeling and no radio modulation and encoding are considered. Much better solution, of course applicable only for institution which have at least laboratory WSN deployments, is to acquire data directly from real Wireless Sensor Networks. More information about real-life data acquisition is provided in section Sensor Data Acquisition Module. Distance estimation methods Distance estimation methods transform RSSI measurements into internode distances estimations. At present Distance Estimation Module has registered three approaches to distance estimation: Ordinary Least Square Method (OLS), Weighted Least Square Method (WLS) and Geometric Combined Least Square Method (GCLS). More information about distance estimation stage can be found in [Marks and Niewiadomska-Szynkiewicz, 2011]. Position calculation methods Position calculation methods estimate the coordi +ss_paper_id=0c97316657de8fb4272aab79b5fa8f79baf0e7f5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_the_impact_of_spatial_correlation_on_routing_with_compression_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2008_the_impact_of_spatial_correlation_on_routing_with_compression_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd6bc7b674dae7c4843f27d2ee49e38df176a60f --- /dev/null +++ b/database/original_documents/publications_text/2008_the_impact_of_spatial_correlation_on_routing_with_compression_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=The Impact of Spatial Correlation on Routing with Compression in Wireless Sensor Networks +venue=ACM Transactions on Sensor Networks, Volume 4, Number 4, August 2008. +authors=['Sundeep Pattem', 'Bhaskar Krishnamachari', 'Ramesh Govindan'] +abstract=The efficacy of data aggregation in sensor networks is a function of the degree of spatial correlation in the sensed phenomenon. The recent literature has examined a variety of schemes that achieve greater data aggregation by routing data with regard to the underlying spatial correlation. A well known conclusion from these papers is that the nature of optimal routing with compression depends on the correlation level. In this article we show the existence of a simple, practical, and static correlation-unaware clustering scheme that satisfies a min-max near-optimality condition. The implication for system design is that a static correlation-unaware scheme can perform as well as sophisticated adaptive schemes for joint routing and compression. + +# Information +links.pdf=/static/public/papers/PattemKrishnamachariGovindan_TOSN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d9cdfc2ef098a2017d8406fbb5c0b7b9f127cfaa +type=Journal Papers +year=2008 +paper_id=9cacc2d3 +ss_title=The impact of spatial correlation on routing with compression in wireless sensor networks +ss_authors=[{'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1747970', 'name': 'R. Govindan'}] +ss_venue=TOSN +ss_year=2008 +ss_abstract=The efficacy of data aggregation in sensor networks is a function of the degree of spatial correlation in the sensed phenomenon. The recent literature has examined a variety of schemes that achieve greater data aggregation by routing data with regard to the underlying spatial correlation. A well known conclusion from these papers is that the nature of optimal routing with compression depends on the correlation level. In this article we show the existence of a simple, practical, and static correlation-unaware clustering scheme that satisfies a min-max near-optimality condition. The implication for system design is that a static correlation-unaware scheme can perform as well as sophisticated adaptive schemes for joint routing and compression. +ss_paper_id=d9cdfc2ef098a2017d8406fbb5c0b7b9f127cfaa \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_the_power_of_choice_in_random_walks_an_empirical_study.txt b/database/original_documents/publications_text/2008_the_power_of_choice_in_random_walks_an_empirical_study.txt new file mode 100644 index 0000000000000000000000000000000000000000..91e84ae3d9d663b1ce13c633393ecacbd4d16598 --- /dev/null +++ b/database/original_documents/publications_text/2008_the_power_of_choice_in_random_walks_an_empirical_study.txt @@ -0,0 +1,18 @@ +# Publication +title=The Power of Choice in Random Walks: An Empirical Study +venue=Elsevier Computer Networks Journal Special Issue on Wireless Performance,Vol. 52, No. 1, 2008 (invited from the best papers of MSWiM ’06) +authors=['Chen Avin', 'Bhaskar Krishnamachari'] +abstract=In recent years random-walk-based algorithms have been proposed for a variety of networking tasks. These proposals include searching, routing, self-stabilization, and query processing in wireless networks, peer-to-peer networks and other distributed systems. This approach is gaining popularity because random walks present locality, simplicity, low-overhead and inherent robustness to structural changes. In this work we propose and investigate an enhanced algorithm that we refer to as random walks with choice. In this algorithm, instead of selecting just one neighbor at each step, the walk moves to the next node after examining a small number of neighbors sampled at random. Our empirical results on random geometric graphs, the model best suited for wireless networks, suggest a significant improvement in important metrics such as the cover time and load-balancing properties of random walks. We also systematically investigate random walks with choice on networks with a square grid topology. For this case, our simulations indicate that there is an unbounded improvement in cover time even with a choice of only two neighbors. We also observe a large reduction in the variance of the cover time, and a significant improvement in visit load balancing. + +# Information +links.pdf=/static/public/papers/AvinKrishnamachari_Elsevier.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3a57d8441e3862a33dfb273eadaf09f3e480111b +type=Journal Papers +year=2008 +paper_id=be7d6836 +ss_title=The power of choice in random walks: an empirical study +ss_authors=[{'authorId': '145707494', 'name': 'C. Avin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems +ss_year=2006 +ss_abstract=In recent years random-walk-based algorithms have been proposed for a variety of networking tasks. These proposals include searching, routing, self-stabilization, and query processing in wireless networks, peer-to-peer networks and other distributed systems. This approach is gaining popularity because random walks present locality, simplicity, low-overhead and inherent robustness to structural changes. In this work we propose and investigate an enhanced algorithm that we refer to as random walks with choice. In this algorithm, instead of selecting just one neighbor at each step, the walk moves to the next node after examining a small number of neighbors sampled at random. Our empirical results on random geometric graphs, the model best suited for wireless networks, suggest a significant improvement in important metrics such as the cover time and load-balancing properties of random walks. We also systematically investigate random walks with choice on networks with a square grid topology. For this case, our simulations indicate that there is an unbounded improvement in cover time even with a choice of only two neighbors. We also observe a large reduction in the variance of the cover time, and a significant improvement in visit load balancing. +ss_paper_id=3a57d8441e3862a33dfb273eadaf09f3e480111b \ No newline at end of file diff --git a/database/original_documents/publications_text/2008_wireless_medium_access_for_concurrent_communication.txt b/database/original_documents/publications_text/2008_wireless_medium_access_for_concurrent_communication.txt new file mode 100644 index 0000000000000000000000000000000000000000..59b13925e03cf8c8cb4bec8187b357cdc52b826b --- /dev/null +++ b/database/original_documents/publications_text/2008_wireless_medium_access_for_concurrent_communication.txt @@ -0,0 +1,18 @@ +# Publication +title=Wireless Medium Access for Concurrent Communication +venue=USC-ISI Technical Report ISI-TR-652, May 2008 +authors=['Dongjin Son', 'Bhaskar Krishnamachari', 'John Heidemann'] +abstract=Most wireless medium access control (MAC) protocols today prevent nearby concurrent communication due to concern that it would corrupt ongoing communication. While recent work has demonstrated that channel capture allows successful concurrent communication, MAC protocols to date have not exploited this approach to improve performance. In this paper we conduct experiments with 802.15.4 radios to model concurrent communication, showing that concurrent communication is possible for nearly all topologies with appropriate power selection. From these experiments, we define a new MAC protocol, gain-adaptive power control (GAPC), with the goal of enabling concurrent communication when possible. Unlike prior power-adaptive MAC protocols, GAPC keeps a small power reserve and uses channel capture to support concurrent communication. We develop a fully distributed algorithm to allocate this reserve to boost minimum needed transmit powers, adapting the gain to overcome noise due to other transmissions or a varying environment. We show that this power reserve is essential to achieve significant performance advantage from concurrent communication. Finally, we quantify the benefits of concurrent communication, comparing GAPC performance to MACs which channel access that is optimal (Oracle-based); uses non-adaptive, RTS-CTS-based CSMA; or uses simple minimum-transmit power. The GAPC heuristic allows concurrent communication in 73% of cases of optimal in our evaluation. When communicating with neighbors, we show that GAPC can allow 2.6× more successful receptions than CSMA, and 3×more than CSMA with RTS/CTS. For multihop communication, GAPC completes a fixed-size transfer faster as well, with CSMA requiring 1.7× longer, or 1.2× longer with RTS/CTS, even ignoring control overhead. Our study shows embracing concurrent communication can significantly improve wireless throughput. This research is supported by the National Science Foundation (NSF) through the following grants: CNS-0347621 (CAREEER), CNS-0325875 (NSF-ITR), CNS-0627028 (NeTs-NOSS), CCF-0430061 (Design Automation of Compute-Intensive Networked Embedded Systems), NeTS-NOSS-045517 (Sensor Networks for Undersea Seismic Experimentation), CNS-9626702 (Sensor-Internet Sharing and Search). + +# Information +links.pdf=/static/public/papers/SonKrishnamachariHeidemann_USC-ISI-TR-652_08.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2997c1fd1a29461dc80b560e905080b13099c1b6 +type=Technical Reports and Preprints +year=2008 +paper_id=28af99cd +ss_title=Wireless Medium Access for Concurrent Communication +ss_authors=[{'authorId': '1760388', 'name': 'Dongjin Son'}, {'authorId': '46351573', 'name': 'J. Heidemann'}] +ss_venue= +ss_year=2008 +ss_abstract=Most wireless medium access control (MAC) protocols today prevent nearby concurrent communication due to concern that it would corrupt ongoing communication. While recent work has demonstrated that channel capture allows successful concurrent communication, MAC protocols to date have not exploited this approach to improve performance. In this paper we conduct experiments with 802.15.4 radios to model concurrent communication, showing that concurrent communication is possible for nearly all topologies with appropriate power selection. From these experiments, we define a new MAC protocol, gain-adaptive power control (GAPC), with the goal of enabling concurrent communication when possible. Unlike prior power-adaptive MAC protocols, GAPC keeps a small power reserve and uses channel capture to support concurrent communication. We develop a fully distributed algorithm to allocate this reserve to boost minimum needed transmit powers, adapting the gain to overcome noise due to other transmissions or a varying environment. We show that this power reserve is essential to achieve significant performance advantage from concurrent communication. Finally, we quantify the benefits of concurrent communication, comparing GAPC performance to MACs which channel access that is optimal (Oracle-based); uses non-adaptive, RTS-CTS-based CSMA; or uses simple minimum-transmit power. The GAPC heuristic allows concurrent communication in 73% of cases of optimal in our evaluation. When communicating with neighbors, we show that GAPC can allow 2.6× more successful receptions than CSMA, and 3×more than CSMA with RTS/CTS. For multihop communication, GAPC completes a fixed-size transfer faster as well, with CSMA requiring 1.7× longer, or 1.2× longer with RTS/CTS, even ignoring control overhead. Our study shows embracing concurrent communication can significantly improve wireless throughput. This research is supported by the National Science Foundation (NSF) through the following grants: CNS-0347621 (CAREEER), CNS-0325875 (NSF-ITR), CNS-0627028 (NeTs-NOSS), CCF-0430061 (Design Automation of Compute-Intensive Networked Embedded Systems), NeTS-NOSS-045517 (Sensor Networks for Undersea Seismic Experimentation), CNS-9626702 (Sensor-Internet Sharing and Search). +ss_paper_id=2997c1fd1a29461dc80b560e905080b13099c1b6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_a_framework_for_multirobot_node_coverage_in_sensor_networks.txt b/database/original_documents/publications_text/2009_a_framework_for_multirobot_node_coverage_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..00d54e16d879ff823ff925b3ece181d51b56da48 --- /dev/null +++ b/database/original_documents/publications_text/2009_a_framework_for_multirobot_node_coverage_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=A Framework for Multi-Robot Node Coverage in Sensor Networks +venue=Annals of Math and Artificial Intelligence (AMAI), Special Issue on Multi-Robot Coverage, Search, and Exploration, 2009. +authors=['Andrea Gasparri', 'Bhaskar Krishnamachari', 'Gaurav S Sukhatme'] +abstract=None + +# Information +links.pdf=/static/public/papers/GasparriKrishnamachariSukhatme_ArtifIntell2008.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/28052d530f97de4506ce48d78f1412ddeffc52d1 +type=Journal Papers +year=2009 +paper_id=30ac7f08 +ss_title=A framework for multi-robot node coverage in sensor networks +ss_authors=[{'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1732493', 'name': 'G. Sukhatme'}] +ss_venue=Annals of Mathematics and Artificial Intelligence +ss_year=2008 +ss_abstract=None +ss_paper_id=28052d530f97de4506ce48d78f1412ddeffc52d1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_a_framework_of_energy_efficient_mobile_sensing_for_automatic_human_state_recognition.txt b/database/original_documents/publications_text/2009_a_framework_of_energy_efficient_mobile_sensing_for_automatic_human_state_recognition.txt new file mode 100644 index 0000000000000000000000000000000000000000..3833de8f302daa1e5a4e5ff28f62f39706c81fc0 --- /dev/null +++ b/database/original_documents/publications_text/2009_a_framework_of_energy_efficient_mobile_sensing_for_automatic_human_state_recognition.txt @@ -0,0 +1,18 @@ +# Publication +title=A Framework of Energy Efficient Mobile Sensing for Automatic Human State Recognition +venue=The 7th Annual International Conference on Mobile Systems, Applications and Services (MobiSys’09), June 22-25, 2009, Kraków, Poland. +authors=['Yi Wang', 'Jialiu Lin', 'Murali Annavaram', 'Quinn A Jacobson', 'Jason Hong', 'Bhaskar Krishnamachari', 'Norman Sadeh'] +abstract=Urban sensing, participatory sensing, and user activity recognition can provide rich contextual information for mobile applications such as social networking and location-based services. However, continuously capturing this contextual information on mobile devices consumes huge amount of energy. In this paper, we present a novel design framework for an Energy Efficient Mobile Sensing System (EEMSS). EEMSS uses hierarchical sensor management strategy to recognize user states as well as to detect state transitions. By powering only a minimum set of sensors and using appropriate sensor duty cycles EEMSS significantly improves device battery life. We present the design, implementation, and evaluation of EEMSS that automatically recognizes a set of users' daily activities in real time using sensors on an off-the-shelf high-end smart phone. Evaluation of EEMSS with 10 users over one week shows that our approach increases the device battery life by more than 75% while maintaining both high accuracy and low latency in identifying transitions between end-user activities. + +# Information +links.pdf=/static/public/papers/WangLinAnnavaramJacobsonHongKrishnamachariSadeh_mobisys09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/05a8d344c5ee924b8137f532d6900e3de6b6833d +type=Conference Papers +year=2009 +paper_id=d07c05c2 +ss_title=A framework of energy efficient mobile sensing for automatic user state recognition +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1745461', 'name': 'Jialiu Lin'}, {'authorId': '145599558', 'name': 'M. Annavaram'}, {'authorId': None, 'name': 'Quinn Jacobson'}, {'authorId': '2110688724', 'name': 'Jason I. Hong'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2464164', 'name': 'N. Sadeh'}] +ss_venue=ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services +ss_year=2009 +ss_abstract=Urban sensing, participatory sensing, and user activity recognition can provide rich contextual information for mobile applications such as social networking and location-based services. However, continuously capturing this contextual information on mobile devices consumes huge amount of energy. In this paper, we present a novel design framework for an Energy Efficient Mobile Sensing System (EEMSS). EEMSS uses hierarchical sensor management strategy to recognize user states as well as to detect state transitions. By powering only a minimum set of sensors and using appropriate sensor duty cycles EEMSS significantly improves device battery life. We present the design, implementation, and evaluation of EEMSS that automatically recognizes a set of users' daily activities in real time using sensors on an off-the-shelf high-end smart phone. Evaluation of EEMSS with 10 users over one week shows that our approach increases the device battery life by more than 75% while maintaining both high accuracy and low latency in identifying transitions between end-user activities. +ss_paper_id=05a8d344c5ee924b8137f532d6900e3de6b6833d \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_backpressure_routing_made_practical.txt b/database/original_documents/publications_text/2009_backpressure_routing_made_practical.txt new file mode 100644 index 0000000000000000000000000000000000000000..129f3bf48e7af82cde84361e6020397bad64914d --- /dev/null +++ b/database/original_documents/publications_text/2009_backpressure_routing_made_practical.txt @@ -0,0 +1,18 @@ +# Publication +title=Backpressure Routing Made Practical +venue=USC CENG Technical Report, CENG-2009-10 +authors=['Scott Moeller', 'Avinash Sridharan', 'Bhaskar Krishnamachari', 'Omprakash Gnawali'] +abstract=Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is a considerable theoretical literature on backpressure routing, it has not been implemented on practical systems to date due to concerns about packet looping and large packet delays. Addressing these concerns, we present the Backpressure Collection Protocol (BCP) for sensor networks, the first ever implementation of dynamic backpressure routing in wireless networks. In particular, we demonstrate for the first time that replacing the traditional FIFO queue service in backpressure routing with LIFO queues reduces the average end-to-end packet delays for delivered packets drastically (98% under low load). Under static network settings, BCP shows a more than 60% improvement in max-min rate over the state of the art Collection Tree Protocol (CTP). We also empirically demonstrate the superior delivery performance of BCP in network settings of extreme external interference. + +# Information +links.pdf=/static/public/papers/CENG-2009-10_BCP.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e4c866264137765ac8f1c52b149ec2c5a6f2b78a +type=Technical Reports and Preprints +year=2009 +paper_id=f18a2665 +ss_title=Backpressure Routing Made Practical +ss_authors=[{'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1689033', 'name': 'O. Gnawali'}] +ss_venue=2010 INFOCOM IEEE Conference on Computer Communications Workshops +ss_year=2010 +ss_abstract=Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is a considerable theoretical literature on backpressure routing, it has not been implemented on practical systems to date due to concerns about packet looping and large packet delays. Addressing these concerns, we present the Backpressure Collection Protocol (BCP) for sensor networks, the first ever implementation of dynamic backpressure routing in wireless networks. In particular, we demonstrate for the first time that replacing the traditional FIFO queue service in backpressure routing with LIFO queues reduces the average end-to-end packet delays for delivered packets drastically (98% under low load). Under static network settings, BCP shows a more than 60% improvement in max-min rate over the state of the art Collection Tree Protocol (CTP). We also empirically demonstrate the superior delivery performance of BCP in network settings of extreme external interference. +ss_paper_id=e4c866264137765ac8f1c52b149ec2c5a6f2b78a \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_bargaining_to_improve_channel_sharing_between_selfish_cognitive_radios.txt b/database/original_documents/publications_text/2009_bargaining_to_improve_channel_sharing_between_selfish_cognitive_radios.txt new file mode 100644 index 0000000000000000000000000000000000000000..4eb48a0969f331068ef8c50be3a8107b2800f4b5 --- /dev/null +++ b/database/original_documents/publications_text/2009_bargaining_to_improve_channel_sharing_between_selfish_cognitive_radios.txt @@ -0,0 +1,18 @@ +# Publication +title=Bargaining to Improve Channel Sharing between Selfish Cognitive Radios +venue=IEEE Globecom 2009 +authors=['Hua Liu', 'Allen B MacKenzie', 'Bhaskar Krishnamachari'] +abstract=We consider a problem where two selfish cognitive radio users try to share two channels on which they each have potentially different valuations. We first formulate the problem as a non-cooperative simultaneous game, and identify its equilibria. For cases where the resulting Nash equilibria are not efficient, we then propose a novel coordinated channel access mechanism that can be implemented with low overhead in a decentralized fashion. This mechanism, based on the Nash bargaining solution, guarantees full utilization of the spectrum resources while improving the utility of each user compared to the non-cooperative setting. We quantify the resulting gains. Finally, we prove that risk-averse users that are willing to accept offered information at face value have no incentive to lie to each other about their valuations for the non-cooperative game. However, we find that truthfulness is not guaranteed in the bargaining process, suggesting as an open problem the design of an incentive compatible mechanism for bargaining. + +# Information +links.pdf=/static/public/papers/NashBargaining_CameraReady.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1bd68d311da1374cb204791631d6c47522d4fb32 +type=Conference Papers +year=2009 +paper_id=3ed40553 +ss_title=Bargaining to Improve Channel Sharing between Selfish Cognitive Radios +ss_authors=[{'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '1740708', 'name': 'A. B. Mackenzie'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Global Communications Conference +ss_year=2009 +ss_abstract=We consider a problem where two selfish cognitive radio users try to share two channels on which they each have potentially different valuations. We first formulate the problem as a non-cooperative simultaneous game, and identify its equilibria. For cases where the resulting Nash equilibria are not efficient, we then propose a novel coordinated channel access mechanism that can be implemented with low overhead in a decentralized fashion. This mechanism, based on the Nash bargaining solution, guarantees full utilization of the spectrum resources while improving the utility of each user compared to the non-cooperative setting. We quantify the resulting gains. Finally, we prove that risk-averse users that are willing to accept offered information at face value have no incentive to lie to each other about their valuations for the non-cooperative game. However, we find that truthfulness is not guaranteed in the bargaining process, suggesting as an open problem the design of an incentive compatible mechanism for bargaining. +ss_paper_id=1bd68d311da1374cb204791631d6c47522d4fb32 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_compressed_sensing_and_routing_in_sensor_networks.txt b/database/original_documents/publications_text/2009_compressed_sensing_and_routing_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..6bbf2b2db8072dc189f5c86baec5c4c778ca2a9d --- /dev/null +++ b/database/original_documents/publications_text/2009_compressed_sensing_and_routing_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Compressed Sensing and Routing in Sensor Networks +venue=USC CENG Technical Report, CENG-2009-4 +authors=['Sungwon Lee', 'Sundeep Pattem', 'Maheswaran Sathiamoorthy', 'Bhaskar Krishnamachari', 'Antonio Ortega'] +abstract=None + +# Information +links.pdf=/static/public/papers/CENG-2009-4_CSplusR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bafac5b6b7fe0d5192b710f371e2fbb330a8c765 +type=Technical Reports and Preprints +year=2009 +paper_id=7d0919d1 +ss_title=Novel Energy-Efficient Opportunistic Routing Protocol for Marine Wireless Sensor Networks Based on Compressed Sensing and Power Control +ss_authors=[{'authorId': '144922818', 'name': 'J. Xian'}, {'authorId': '35250883', 'name': 'Huafeng Wu'}, {'authorId': '26411201', 'name': 'Xiaojun Mei'}, {'authorId': '2145793746', 'name': 'Yuanyuan Zhang'}, {'authorId': '2109444276', 'name': 'Xinqiang Chen'}, {'authorId': '2125113038', 'name': 'Qiannan Zhang'}, {'authorId': '2087343723', 'name': 'Linian Liang'}] +ss_venue=Journal of Ocean University of China +ss_year=2022 +ss_abstract=None +ss_paper_id=bafac5b6b7fe0d5192b710f371e2fbb330a8c765 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_energyefficient_graphbased_wavelets_for_distributed_coding_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2009_energyefficient_graphbased_wavelets_for_distributed_coding_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..d771cf428f32ea70862b60d329059321f03a8b83 --- /dev/null +++ b/database/original_documents/publications_text/2009_energyefficient_graphbased_wavelets_for_distributed_coding_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-Efficient Graph-Based Wavelets for Distributed Coding in Wireless Sensor Networks +venue=34th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), April 2009 +authors=['Godwin Shen', 'Sundeep Pattem', 'Antonio Ortega'] +abstract=This work presents a class of unidirectional lifting-based wavelet transforms for an arbitrary communication graph in a wireless sensor network. These transforms are unidirectional in the sense that they are computed as data is forwarded towards the sink on a routing tree. We derive a set of conditions under which a lifting transform is unidirectional, then find the full set of those transforms. Among this set, we construct a unidirectional transform that allows nodes to transform their own data using data forwarded to them from their descendants in the tree and data broadcasted to them from their neighbors not in the tree. This provides a higher quality data representation than existing methods for a fixed communication cost. + +# Information +links.pdf=/static/public/papers/ShenPattemOrtega_ICASSP09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/34bbaa101417fc799e727b310e01261dc68a1f91 +type=Conference Papers +year=2009 +paper_id=1c38a0c9 +ss_title=Energy-efficient graph-based wavelets for distributed coding in Wireless Sensor Networks +ss_authors=[{'authorId': '1953396', 'name': 'G. Shen'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '145029825', 'name': 'Antonio Ortega'}] +ss_venue=IEEE International Conference on Acoustics, Speech, and Signal Processing +ss_year=2009 +ss_abstract=This work presents a class of unidirectional lifting-based wavelet transforms for an arbitrary communication graph in a wireless sensor network. These transforms are unidirectional in the sense that they are computed as data is forwarded towards the sink on a routing tree. We derive a set of conditions under which a lifting transform is unidirectional, then find the full set of those transforms. Among this set, we construct a unidirectional transform that allows nodes to transform their own data using data forwarded to them from their descendants in the tree and data broadcasted to them from their neighbors not in the tree. This provides a higher quality data representation than existing methods for a fixed communication cost. +ss_paper_id=34bbaa101417fc799e727b310e01261dc68a1f91 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_explicit_and_precise_rate_control_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2009_explicit_and_precise_rate_control_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..5d2f66e33d14339953fb28c4807e01f75ece8340 --- /dev/null +++ b/database/original_documents/publications_text/2009_explicit_and_precise_rate_control_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Explicit and Precise Rate Control for Wireless Sensor Networks +venue=ACM Sensys, November, 2009 +authors=['Avinash Sridharan', 'Bhaskar Krishnamachari'] +abstract=The state of the art congestion control algorithms for wireless sensor networks respond to coarse-grained feedback regarding available capacity in the network with an additive increase multiplicative decrease mechanism to set source rates. Providing precise feedback is challenging in wireless networks because link capacities vary with traffic on interfering links. We address this challenge by applying a receiver capacity model that associates capacities with nodes instead of links, and use it to develop and implement the first explicit and precise distributed rate-based congestion control protocol for wireless sensor networks --- the wireless rate control protocol (WRCP). Apart from congestion control, WRCP has been designed to achieve lexicographic max-min fairness. Through extensive experimental evaluation on the USC Tutornet wireless sensor network testbed, we show that WRCP offers substantial improvements over the state of the art in flow completion times as well as in end-to-end packet delays. + +# Information +links.pdf=/static/public/papers/WRCP_sensys09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6f283629fc3a0d7ed6f813d9338224f3734a09fb +type=Conference Papers +year=2009 +paper_id=674eb08b +ss_title=Explicit and precise rate control for wireless sensor networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM International Conference on Embedded Networked Sensor Systems +ss_year=2009 +ss_abstract=The state of the art congestion control algorithms for wireless sensor networks respond to coarse-grained feedback regarding available capacity in the network with an additive increase multiplicative decrease mechanism to set source rates. Providing precise feedback is challenging in wireless networks because link capacities vary with traffic on interfering links. We address this challenge by applying a receiver capacity model that associates capacities with nodes instead of links, and use it to develop and implement the first explicit and precise distributed rate-based congestion control protocol for wireless sensor networks --- the wireless rate control protocol (WRCP). Apart from congestion control, WRCP has been designed to achieve lexicographic max-min fairness. Through extensive experimental evaluation on the USC Tutornet wireless sensor network testbed, we show that WRCP offers substantial improvements over the state of the art in flow completion times as well as in end-to-end packet delays. +ss_paper_id=6f283629fc3a0d7ed6f813d9338224f3734a09fb \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_fast_flooding_using_cooperative_transmissions_in_wireless_networks.txt b/database/original_documents/publications_text/2009_fast_flooding_using_cooperative_transmissions_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..482ff4a6d078b3603f06b97b51346f20ad58023e --- /dev/null +++ b/database/original_documents/publications_text/2009_fast_flooding_using_cooperative_transmissions_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Fast Flooding using Cooperative Transmissions in Wireless Networks +venue=IEEE International Conference on Communication (ICC), Dresden, Germany, June 14-18, 2009 +authors=['Marjan Baghaie A', 'Bhaskar Krishnamachari'] +abstract=Physical layer cooperation can be a powerful tool for enhancing the performance of multi-hop wireless networks. In this paper, we analyze the time to complete a cooperative broadcast to flood some information from one node to all nodes in a wireless network. We show that with cooperation the total time to complete the broadcast grows only logarithmically with the network diameter (unlike in traditional systems where time to flood increases linearly with the diameter). Simulation results validate the analysis, and show that the improvements in flooding time are more pronounced for higher density networks. We further compare the energy costs of cooperative and traditional flooding, and show that the improvements in flooding time with cooperation do not come at the expense of higher energy costs. These results, albeit based on an idealized form of cooperation, provide a strong motivation to develop and test practical schemes for cooperative flooding in multi-hop wireless networks. + +# Information +links.pdf=/static/public/papers/BaghaieKrishnamachari_ICC2009.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/181c23782db4b828def88a1f07811a7d7f22cc66 +type=Conference Papers +year=2009 +paper_id=3f65dc4a +ss_title=Fast Flooding using Cooperative Transmissions in Wireless Networks +ss_authors=[{'authorId': '2402697', 'name': 'M. Baghaie'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE International Conference on Communications +ss_year=2009 +ss_abstract=Physical layer cooperation can be a powerful tool for enhancing the performance of multi-hop wireless networks. In this paper, we analyze the time to complete a cooperative broadcast to flood some information from one node to all nodes in a wireless network. We show that with cooperation the total time to complete the broadcast grows only logarithmically with the network diameter (unlike in traditional systems where time to flood increases linearly with the diameter). Simulation results validate the analysis, and show that the improvements in flooding time are more pronounced for higher density networks. We further compare the energy costs of cooperative and traditional flooding, and show that the improvements in flooding time with cooperation do not come at the expense of higher energy costs. These results, albeit based on an idealized form of cooperation, provide a strong motivation to develop and test practical schemes for cooperative flooding in multi-hop wireless networks. +ss_paper_id=181c23782db4b828def88a1f07811a7d7f22cc66 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_feasibility_of_the_receiver_capacity_model_for_multihop_wireless_networks.txt b/database/original_documents/publications_text/2009_feasibility_of_the_receiver_capacity_model_for_multihop_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..a12fa16b46b0bbe18f8154d3c2f15c44f52f1173 --- /dev/null +++ b/database/original_documents/publications_text/2009_feasibility_of_the_receiver_capacity_model_for_multihop_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Feasibility of the Receiver Capacity Model for Multi-Hop Wireless Networks +venue=7t International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Seoul, Korea, June 2009 +authors=['Avinash Sridharan', 'Bhaskar Krishnamachari'] +abstract=The receiver capacity model is a simple model to capture flow dynamics in a multi-hop wireless network, by presenting linear constraints to define the feasible rate region of the network, taking into account interference. The model associates with each receiver in the network a notion of constant receiver capacity. Receiver capacity is defined as the maximum possible sum rate of all flows that the receiver can send, receive, and overhear. As has been shown in prior work by the authors, the linear constraints presented by this model make it particularly useful in approximating the true rate region, and designing distributed protocols for multi-hop wireless networks. It is well known that if we use only local constraints to define the rate region, the constraints have to be bounded by some fraction of the interference free link rate, in order to ensure that the rate satisfying these constraints can be feasibly scheduled in any graph. The key challenge in using this model is therefore to estimate the fraction of the link rate that the receiver capacity should be set to, in order to present a feasible rate vector. In this work we answer this question from a theoretical standpoint, and show that as long as the receiver capacity is set to ⅓ the interference free link rate, all rate vectors that satisfy the constraints of the receiver capacity model can be feasibly scheduled. + +# Information +links.pdf=/static/public/papers/WiOpt09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f05cfc578568eb38aa10b4c5f7cd592154072474 +type=Conference Papers +year=2009 +paper_id=3d266c3a +ss_title=Feasibility of the receiver capacity model for multi-hop wireless networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks +ss_year=2009 +ss_abstract=The receiver capacity model is a simple model to capture flow dynamics in a multi-hop wireless network, by presenting linear constraints to define the feasible rate region of the network, taking into account interference. The model associates with each receiver in the network a notion of constant receiver capacity. Receiver capacity is defined as the maximum possible sum rate of all flows that the receiver can send, receive, and overhear. As has been shown in prior work by the authors, the linear constraints presented by this model make it particularly useful in approximating the true rate region, and designing distributed protocols for multi-hop wireless networks. It is well known that if we use only local constraints to define the rate region, the constraints have to be bounded by some fraction of the interference free link rate, in order to ensure that the rate satisfying these constraints can be feasibly scheduled in any graph. The key challenge in using this model is therefore to estimate the fraction of the link rate that the receiver capacity should be set to, in order to present a feasible rate vector. In this work we answer this question from a theoretical standpoint, and show that as long as the receiver capacity is set to ⅓ the interference free link rate, all rate vectors that satisfy the constraints of the receiver capacity model can be feasibly scheduled. +ss_paper_id=f05cfc578568eb38aa10b4c5f7cd592154072474 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_findings_from_an_empirical_study_of_finegrained_human_social_contacts.txt b/database/original_documents/publications_text/2009_findings_from_an_empirical_study_of_finegrained_human_social_contacts.txt new file mode 100644 index 0000000000000000000000000000000000000000..6a12bc2e49f25170ed3e05ed0f6f6dd517e0c992 --- /dev/null +++ b/database/original_documents/publications_text/2009_findings_from_an_empirical_study_of_finegrained_human_social_contacts.txt @@ -0,0 +1,18 @@ +# Publication +title=Findings from an Empirical Study of Fine‐grained Human Social Contacts +venue=The Sixth International Conference on Wireless On-demand Network Systems and Services, February 2-4, 2009. Snowbird, Utah, USA +authors=['Yi Wang', 'Bhaskar Krishnamachari', 'Thomas Valente'] +abstract=An interaction based human contact study experiment has been conducted on 25 undergraduate students at USC, each carrying a wireless device (Tmote) for a week duration. Each mote transmits contact packets every 0.1 second to advertise its presence and a node receiving the packets will record the contact information. Data is processed off-line and a contact graph has been generated based on the strength of pairwise contact in order to visualize the grouping effect. All groups are identified and it has been found out that although most groups have small sizes and infrequent meetings, there exist large groups that have encountered several times in one week duration. The inter-contact and contact time distributions are found to be similar to findings from previous studies done in different settings. The inter-group contact time and group contact time distributions are also found to be power law and exponential in different time scales. Moreover, the contact arrival process is found to be self similar for data from both our experiment and the Haggle project [4]. + +# Information +links.pdf=/static/public/papers/Wang_Krishnamachari_Valente_wons09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/da6557eceb65adc948715033924b11819d3620c8 +type=Conference Papers +year=2009 +paper_id=1154225e +ss_title=Findings from an empirical study of fine-grained human social contacts +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2225668', 'name': 'T. Valente'}] +ss_venue=2009 Sixth International Conference on Wireless On-Demand Network Systems and Services +ss_year=2009 +ss_abstract=An interaction based human contact study experiment has been conducted on 25 undergraduate students at USC, each carrying a wireless device (Tmote) for a week duration. Each mote transmits contact packets every 0.1 second to advertise its presence and a node receiving the packets will record the contact information. Data is processed off-line and a contact graph has been generated based on the strength of pairwise contact in order to visualize the grouping effect. All groups are identified and it has been found out that although most groups have small sizes and infrequent meetings, there exist large groups that have encountered several times in one week duration. The inter-contact and contact time distributions are found to be similar to findings from previous studies done in different settings. The inter-group contact time and group contact time distributions are also found to be power law and exponential in different time scales. Moreover, the contact arrival process is found to be self similar for data from both our experiment and the Haggle project [4]. +ss_paper_id=da6557eceb65adc948715033924b11819d3620c8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_implementing_backpressurebased_rate_control_in_wireless_networks.txt b/database/original_documents/publications_text/2009_implementing_backpressurebased_rate_control_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..012879af78f1661fae8c7379981239361df9bb93 --- /dev/null +++ b/database/original_documents/publications_text/2009_implementing_backpressurebased_rate_control_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Implementing Backpressure-based Rate Control in Wireless Networks +venue=Information Theory and Applications (ITA) Workshop , San Diego, Feb 2009 +authors=['Avinash Sridharan', 'Scott Moeller', 'Bhaskar Krishnamachari'] +abstract=From a theoretical standpoint, backpressure-based techniques present elegant cross-layer rate control solutions that use only local queue information. It is only recently that attempts are being made to design real world wireless protocols using these techniques. To aid this effort, we undertake a comprehensive experimental evaluation of backpressure mechanisms for multihop wireless networks, in particular, the first such study in the context of wireless sensor networks. Our evaluation yields two key insights into the design of such protocols. First, for wireless sensor networks, we show that a simple backpressure scheduling policy which allows nodes to transmit so long as they have a positive queue differential (irrespective of its size) gives performance comparable to more sophisticated heuristics. The advantage of this approach is that no changes are required to the underlying MAC. Second, we show that the performance of backpressure based protocols is highly sensitive to a parameter setting that depends upon current traffic conditions. Therefore, practical backpressure protocols must provide for automatic parameter adaptation. + +# Information +links.pdf=/static/public/papers/brcp_ita.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/830944c21a06f02e8f4dfd879af81e9f22e01706 +type=Conference Papers +year=2009 +paper_id=e7d10390 +ss_title=Implementing backpressure-based rate control in wireless networks +ss_authors=[{'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145416466', 'name': 'Ming Hsieh'}] +ss_venue=Information Theory and Applications Workshop +ss_year=2009 +ss_abstract=From a theoretical standpoint, backpressure-based techniques present elegant cross-layer rate control solutions that use only local queue information. It is only recently that attempts are being made to design real world wireless protocols using these techniques. To aid this effort, we undertake a comprehensive experimental evaluation of backpressure mechanisms for multihop wireless networks, in particular, the first such study in the context of wireless sensor networks. Our evaluation yields two key insights into the design of such protocols. First, for wireless sensor networks, we show that a simple backpressure scheduling policy which allows nodes to transmit so long as they have a positive queue differential (irrespective of its size) gives performance comparable to more sophisticated heuristics. The advantage of this approach is that no changes are required to the underlying MAC. Second, we show that the performance of backpressure based protocols is highly sensitive to a parameter setting that depends upon current traffic conditions. Therefore, practical backpressure protocols must provide for automatic parameter adaptation. +ss_paper_id=830944c21a06f02e8f4dfd879af81e9f22e01706 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_joint_raterouting_control_for_fair_and_efficient_data_gathering_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2009_joint_raterouting_control_for_fair_and_efficient_data_gathering_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..23df472a93fe34ad615e4cbe6c902b4bc17ca651 --- /dev/null +++ b/database/original_documents/publications_text/2009_joint_raterouting_control_for_fair_and_efficient_data_gathering_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Joint Rate-Routing Control for Fair and Efficient Data Gathering in Wireless Sensor Networks +venue=the International Conference on Sensor Networks and Applications (SNA-2009), November 4 – 6, 2009 San Francisco, CA, USA +authors=['Ying Chen', 'Bhaskar Krishnamachari'] +abstract=In wireless sensor networks, fair and efficient rate allocation is an essential mechanism to avoid congestion collapse and system degradation. While most prior work in this context has focused on a static tree, we consider the joint optimization of routing and rate allocation in this work. We formulate LP problems to obtain max-min fairness and sum-rate efficiency. We show the tradeoff between fairness and efficiency in this setting, and develop distributed algorithms based on Lagrange duality to achieve these objectives. + +# Information +links.pdf=/static/public/papers/YingChen_JointRateRouting_SNA09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6d4b49efa464514efc39012cc6982c08db26cd77 +type=Conference Papers +year=2009 +paper_id=9b5148f8 +ss_title=Joint Rate-Routing Control for Fair and Efficient Data Gathering in Wireless Sensor Networks +ss_authors=[{'authorId': '47558464', 'name': 'Ying Chen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Sensor Networks and Applications +ss_year=2009 +ss_abstract=In wireless sensor networks, fair and efficient rate allocation is an essential mechanism to avoid congestion collapse and system degradation. While most prior work in this context has focused on a static tree, we consider the joint optimization of routing and rate allocation in this work. We formulate LP problems to obtain max-min fairness and sum-rate efficiency. We show the tradeoff between fairness and efficiency in this setting, and develop distributed algorithms based on Lagrange duality to achieve these objectives. +ss_paper_id=6d4b49efa464514efc39012cc6982c08db26cd77 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_multichannel_scheduling_algorithms_for_fast_aggregated_convergecast_in_sensor_networks.txt b/database/original_documents/publications_text/2009_multichannel_scheduling_algorithms_for_fast_aggregated_convergecast_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..a1fab502e3b03a060e0dac8d3e34bba28b8fe296 --- /dev/null +++ b/database/original_documents/publications_text/2009_multichannel_scheduling_algorithms_for_fast_aggregated_convergecast_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Multi-Channel Scheduling Algorithms for Fast Aggregated Convergecast in Sensor Networks +venue=IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), October 2009, Macau, China +authors=['Amitabha Ghosh', 'Ozlem Durmaz Incel', 'VS Anil Kumar', 'Bhaskar Krishnamachari'] +abstract=Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm known as convergecast, we consider scenarios where data packets are aggregated at each hop en route to a sink node along a tree-based routing topology and focus on maximizing the data collection rate at the sink by employing TDMA scheduling and multiple frequency channels. Our key result in the paper lies in proving that minimizing the schedule length for an arbitrary network in the presence of multiple frequencies is NP-hard, and in designing approximation algorithms with worst-case provable performance guarantees for geometric networks. In particular, we design a constant factor approximation for networks modeled as unit disk graphs (UDG) where every node has a uniform transmission range, and a O(Δ(T)log n) approximation for general disk graphs where nodes have different transmission ranges; n is the number of nodes in the network and Δ(T) is the maximum node degree on a given routing tree T. We also prove that a constant factor approximation is achievable on UDG even for unknown routing topologies so long as the maximum node degree in the tree is bounded by a constant. We also show that finding the minimum number of frequencies required to remove all the interfering links in an arbitrary network in NP-hard. We give an upper bound on the maximum number of such frequencies required and propose a polynomial time algorithm that minimizes the schedule length under this scenario. Finally, we evaluate our algorithms through simulations and show various trends in performance for different network parameters. + +# Information +links.pdf=/static/public/papers/MASS-2009.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e4c0f83bb40f393cb2e5b2ed65c6773b2bab92c9 +type=Conference Papers +year=2009 +paper_id=b0a579c3 +ss_title=Multi-channel scheduling algorithms for fast aggregated convergecast in sensor networks +ss_authors=[{'authorId': '144942535', 'name': 'Amitava Ghosh'}, {'authorId': '2915257', 'name': 'Özlem Durmaz Incel'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '3271584', 'name': 'A. Vullikanti'}] +ss_venue=IEEE International Conference on Mobile Adhoc and Sensor Systems +ss_year=2008 +ss_abstract=Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm known as convergecast, we consider scenarios where data packets are aggregated at each hop en route to a sink node along a tree-based routing topology and focus on maximizing the data collection rate at the sink by employing TDMA scheduling and multiple frequency channels. Our key result in the paper lies in proving that minimizing the schedule length for an arbitrary network in the presence of multiple frequencies is NP-hard, and in designing approximation algorithms with worst-case provable performance guarantees for geometric networks. In particular, we design a constant factor approximation for networks modeled as unit disk graphs (UDG) where every node has a uniform transmission range, and a O(Δ(T)log n) approximation for general disk graphs where nodes have different transmission ranges; n is the number of nodes in the network and Δ(T) is the maximum node degree on a given routing tree T. We also prove that a constant factor approximation is achievable on UDG even for unknown routing topologies so long as the maximum node degree in the tree is bounded by a constant. We also show that finding the minimum number of frequencies required to remove all the interfering links in an arbitrary network in NP-hard. We give an upper bound on the maximum number of such frequencies required and propose a polynomial time algorithm that minimizes the schedule length under this scenario. Finally, we evaluate our algorithms through simulations and show various trends in performance for different network parameters. +ss_paper_id=e4c0f83bb40f393cb2e5b2ed65c6773b2bab92c9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_optimality_of_myopic_sensing_in_multichannel_opportunistic_access.txt b/database/original_documents/publications_text/2009_optimality_of_myopic_sensing_in_multichannel_opportunistic_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f75fae35d622f045d39e6eee59342fe22fc0790 --- /dev/null +++ b/database/original_documents/publications_text/2009_optimality_of_myopic_sensing_in_multichannel_opportunistic_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimality of Myopic Sensing in Multi-Channel Opportunistic Access +venue=IEEE Transactions on Information Theory, 2009. +authors=['Sahand H A Ahmad', 'Mingyan Liu', 'Tara Javidi', 'Qing Zhao', 'Bhaskar Krishnamachari'] +abstract=We consider opportunistic communications over multiple channels where the state ("good" or "bad") of each channel evolves as independent and identically distributed Markov processes. A user, with limited sensing and access capability, chooses one channel to sense and subsequently access (based on the sensed channel state) in each time slot. A reward is obtained when the user senses and accesses a "good" channel. The objective is to design the optimal channel selection policy that maximizes the expected reward accrued over time. This problem can be generally formulated as a Partially Observable Markov Decision Process (POMDP) or a restless multi-armed bandit process, to which optimal solutions are often intractable. We show in this paper that the myopic policy, with a simple and robust structure, achieves optimality under certain conditions. This result finds applications in opportunistic communications in fading environment, cognitive radio networks for spectrum overlay, and resource-constrained jamming and anti-jamming. + +# Information +links.pdf=/static/public/papers/AhmadEtal09IT.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fd14ffcb34ccce4ab11531fdfe9bdb71f86eb8f1 +type=Journal Papers +year=2009 +paper_id=cbfcaabc +ss_title=Optimality of Myopic Sensing in Multi-Channel Opportunistic Access +ss_authors=[{'authorId': '47197693', 'name': 'T. Javidi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '39037167', 'name': 'M. Liu'}] +ss_venue=IEEE International Conference on Communications +ss_year=2008 +ss_abstract=We consider opportunistic communications over multiple channels where the state ("good" or "bad") of each channel evolves as independent and identically distributed Markov processes. A user, with limited sensing and access capability, chooses one channel to sense and subsequently access (based on the sensed channel state) in each time slot. A reward is obtained when the user senses and accesses a "good" channel. The objective is to design the optimal channel selection policy that maximizes the expected reward accrued over time. This problem can be generally formulated as a Partially Observable Markov Decision Process (POMDP) or a restless multi-armed bandit process, to which optimal solutions are often intractable. We show in this paper that the myopic policy, with a simple and robust structure, achieves optimality under certain conditions. This result finds applications in opportunistic communications in fading environment, cognitive radio networks for spectrum overlay, and resource-constrained jamming and anti-jamming. +ss_paper_id=fd14ffcb34ccce4ab11531fdfe9bdb71f86eb8f1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_scaling_laws_for_datacentric_storage_and_querying_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2009_scaling_laws_for_datacentric_storage_and_querying_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..d62c39994d740816fbd0bd5cc6d73c2d07a82fba --- /dev/null +++ b/database/original_documents/publications_text/2009_scaling_laws_for_datacentric_storage_and_querying_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Scaling Laws for Data-Centric Storage and Querying in Wireless Sensor Networks +venue=IEEE/ACM Transactions on Networking, Aug 2009, Volume 17, Issue 4, pages 1242-1255. +authors=['Joon Ahn', 'Bhaskar Krishnamachari'] +abstract=We use a constrained optimization framework to derive fundamental scaling laws for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We find that the scalability of a sensor network's performance depends upon whether or not the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads. Let m be the number of events sensed by a network over a finite period of deployment, q the number of queries for each event, and N the size of the network. Our key finding is that q1/2•m must be O(N1/4)for unstructured net-works, and q2/3•m must be O(N1/2)for structured networks, to ensure scalable network performance. These conditions determine (i) whether or not the energy requirement per node grows without bound with the network size for a fixed-duration deployment, (ii) whether or not there exists a maximum network size that can be operated for a specified duration on a fixed energy budget, and (iii) whether the network lifetime increases or decreases with the size of the network for a fixed energy budget. We discuss the practical implications of these results for the design of hierarchical two-tier wireless sensor networks. + +# Information +links.pdf=/static/public/papers/AhnKrishnamachari_TON.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d5f9a989511c960d3f9ff13a96ef611c152a1c51 +type=Journal Papers +year=2009 +paper_id=3bf9f64e +ss_title=Fundamental scaling laws for energy-efficient storage and querying in wireless sensor networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM Interational Symposium on Mobile Ad Hoc Networking and Computing +ss_year=2006 +ss_abstract=We use a constrained optimization framework to derive fundamental scaling laws for both unstructured sensor networks (which use blind sequential search for querying) and structured sensor networks (which use efficient hash-based querying). We find that the scalability of a sensor network's performance depends upon whether or not the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads. Let m be the number of events sensed by a network over a finite period of deployment, q the number of queries for each event, and N the size of the network. Our key finding is that q1/2•m must be O(N1/4)for unstructured net-works, and q2/3•m must be O(N1/2)for structured networks, to ensure scalable network performance. These conditions determine (i) whether or not the energy requirement per node grows without bound with the network size for a fixed-duration deployment, (ii) whether or not there exists a maximum network size that can be operated for a specified duration on a fixed energy budget, and (iii) whether the network lifetime increases or decreases with the size of the network for a fixed energy budget. We discuss the practical implications of these results for the design of hierarchical two-tier wireless sensor networks. +ss_paper_id=d5f9a989511c960d3f9ff13a96ef611c152a1c51 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_senzip_an_architecture_for_distributed_enroute_compression_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2009_senzip_an_architecture_for_distributed_enroute_compression_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..18135cd84d6d8ed7c225dfffc37dbc1ee92a6d1d --- /dev/null +++ b/database/original_documents/publications_text/2009_senzip_an_architecture_for_distributed_enroute_compression_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=SenZip: An Architecture for Distributed En-Route Compression in Wireless Sensor Networks +venue=Workshop on Sensor Networks for Earth and Space Science Applications (ESSA), April 2009 +authors=['Sundeep Pattem', 'Godwin Shen', 'Ying Chen', 'Bhaskar Krishnamachari', 'Antonio Ortega'] +abstract=In-network compression is essential for extending the lifetime of data gathering sensor networks. The progress made in designing distributed schemes for en-route compression has not been followed by their adoption in deployments. This can be attributed to the lack of development of software that permits code-reuse and interoperability, while also retaining the flexibility to incorporate future developments. To address this gap, we propose SenZip, an architectural view of compression as a service that interacts with standard networking components. SenZip is designed for achieving completely distributed en-route compression and its utility is illustrated by presenting (a) details of how it helps map specific algorithms to software modules, and (b) results from mote experiments for data gathering with two different compression schemes, DPCM and 2D wavelets. + +# Information +links.pdf=/static/public/papers/PattemShenChenKrishnamachariOrtega_ESSA09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1b54213cc43ad131bb264b72beba5cd1f57f2858 +type=Conference Papers +year=2009 +paper_id=5b7016e6 +ss_title=SenZip: An Architecture for Distributed En-route Compression in Wireless Sensor Networks +ss_authors=[{'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '1953396', 'name': 'G. Shen'}, {'authorId': '47558464', 'name': 'Ying Chen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145029825', 'name': 'Antonio Ortega'}] +ss_venue= +ss_year=2009 +ss_abstract=In-network compression is essential for extending the lifetime of data gathering sensor networks. The progress made in designing distributed schemes for en-route compression has not been followed by their adoption in deployments. This can be attributed to the lack of development of software that permits code-reuse and interoperability, while also retaining the flexibility to incorporate future developments. To address this gap, we propose SenZip, an architectural view of compression as a service that interacts with standard networking components. SenZip is designed for achieving completely distributed en-route compression and its utility is illustrated by presenting (a) details of how it helps map specific algorithms to software modules, and (b) results from mote experiments for data gathering with two different compression schemes, DPCM and 2D wavelets. +ss_paper_id=1b54213cc43ad131bb264b72beba5cd1f57f2858 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_spatiallylocalized_compressed_sensing_and_routing_in_multihop_sensor_networks.txt b/database/original_documents/publications_text/2009_spatiallylocalized_compressed_sensing_and_routing_in_multihop_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a8973e5be600c175680c0827b2af0850267a6c1 --- /dev/null +++ b/database/original_documents/publications_text/2009_spatiallylocalized_compressed_sensing_and_routing_in_multihop_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Spatially-Localized Compressed Sensing and Routing in Multi-Hop Sensor Networks +venue=3rd International Conference on Geosensor Networks (GSN), July 2009 +authors=['Sungwon Lee', 'Sundeep Pattem', 'Maheswaran Sathiamoorthy', 'Bhaskar Krishnamachari', 'Antonio Ortega'] +abstract=None + +# Information +links.pdf=/static/public/papers/LeePattemSathiamoorthyKrishnamachariOrtega_GSN09.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/14fca520005aabc617dbbec87bae8e9bc0f4c199 +type=Conference Papers +year=2009 +paper_id=6087bc9d +ss_title=Spatially-Localized Compressed Sensing and Routing in Multi-hop Sensor Networks +ss_authors=[{'authorId': '2108097798', 'name': 'Sungwon Lee'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145029825', 'name': 'Antonio Ortega'}] +ss_venue=GeoSensor Networks +ss_year=2009 +ss_abstract=None +ss_paper_id=14fca520005aabc617dbbec87bae8e9bc0f4c199 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_spatiotemporal_variations_of_vehicle_traffic_in_vanets_facts_and_implications.txt b/database/original_documents/publications_text/2009_spatiotemporal_variations_of_vehicle_traffic_in_vanets_facts_and_implications.txt new file mode 100644 index 0000000000000000000000000000000000000000..b44f85df4b7c34cc385cbfc4ef6b48637f490901 --- /dev/null +++ b/database/original_documents/publications_text/2009_spatiotemporal_variations_of_vehicle_traffic_in_vanets_facts_and_implications.txt @@ -0,0 +1,20 @@ +# Publication +title=Spatio-temporal variations of vehicle traffic in VANETs: facts and implications +venue=Vehicular Ad Hoc Networks, 2009 +authors=['Fan Bai', 'Bhaskar Krishnamachari'] +abstract=Via statistical analysis of several sets of empirical data collected from realistic scenarios, we realize that exponential model is a good fit for highway vehicle traffic. This model provides a single parameter (the exponent of vehicle density λs) to describe traffic variation. We reveal that highway traffic drastically varies over time (of different scales), across geographic locations and over technology adoption phases. Considering multi-hop geocast and single-hop broadcast, we show via both mathematical analysis and simulations the performance of path availability in the former, and packet delivery ratio in the latter, with respect to short- and long-term traffic variation. + Therefore, we argue that the critical challenge in vehicular networking is dealing with traffic variation over the small scale (due to differences in vehicular density over space and time) and over the long term (due to market penetration). + +# Information +links.pdf=None +links.semantic_scholar=https://www.semanticscholar.org/paper/28d3baf645f5ce3ea90a8c62b0ca71f5132903ee +type=Conference Papers +year=2009 +paper_id=55e5d410 +ss_title=Spatio-temporal variations of vehicle traffic in VANETs: facts and implications +ss_authors=[{'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Workshop on VehiculAr Inter-NETworking +ss_year=2009 +ss_abstract=Via statistical analysis of several sets of empirical data collected from realistic scenarios, we realize that exponential model is a good fit for highway vehicle traffic. This model provides a single parameter (the exponent of vehicle density λs) to describe traffic variation. We reveal that highway traffic drastically varies over time (of different scales), across geographic locations and over technology adoption phases. Considering multi-hop geocast and single-hop broadcast, we show via both mathematical analysis and simulations the performance of path availability in the former, and packet delivery ratio in the latter, with respect to short- and long-term traffic variation. + Therefore, we argue that the critical challenge in vehicular networking is dealing with traffic variation over the small scale (due to differences in vehicular density over space and time) and over the long term (due to market penetration). +ss_paper_id=28d3baf645f5ce3ea90a8c62b0ca71f5132903ee \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_static_replication_strategies_for_content_availability_in_vehicular_adhoc_networks.txt b/database/original_documents/publications_text/2009_static_replication_strategies_for_content_availability_in_vehicular_adhoc_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..319729a67fa00b9bfe8a73316a1ad8baa9e47e02 --- /dev/null +++ b/database/original_documents/publications_text/2009_static_replication_strategies_for_content_availability_in_vehicular_adhoc_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Static Replication Strategies for Content Availability in Vehicular Ad-hoc Networks +venue=Mobile Networks and Applications, October 2009, Volume 14, Issue 5, pages 590-610. +authors=['Shyam Kapadia', 'Bhaskar Krishnamachari', 'Shahram Ghandeharizadeh'] +abstract=None + +# Information +links.pdf=/static/public/papers/KapadiaKrishnamachariGhandeharizadeh_MNA2008.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/13c8313ad4277127bf48615c276a868486772b4d +type=Journal Papers +year=2009 +paper_id=ef8a6e26 +ss_title=Static Replication Strategies for Content Availability in Vehicular Ad-hoc Networks +ss_authors=[{'authorId': '1730357', 'name': 'S. Kapadia'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143903870', 'name': 'Shahram Ghandeharizadeh'}] +ss_venue=Mob. Networks Appl. +ss_year=2009 +ss_abstract=None +ss_paper_id=13c8313ad4277127bf48615c276a868486772b4d \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_the_tradeoff_between_energy_efficiency_and_user_state_estimation_accuracy_in_mobile_sensing.txt b/database/original_documents/publications_text/2009_the_tradeoff_between_energy_efficiency_and_user_state_estimation_accuracy_in_mobile_sensing.txt new file mode 100644 index 0000000000000000000000000000000000000000..1c582ca32737cefe3af73d71df66f7762874dbc3 --- /dev/null +++ b/database/original_documents/publications_text/2009_the_tradeoff_between_energy_efficiency_and_user_state_estimation_accuracy_in_mobile_sensing.txt @@ -0,0 +1,18 @@ +# Publication +title=The Tradeoff between Energy Efficiency and User State Estimation Accuracy in Mobile Sensing +venue=The First Annual International Conference on Mobile Computing, Applications, and Services (MobiCASE), October 2009, San Diego, USA +authors=['Yi Wang', 'Bhaskar Krishnamachari', 'Qing Zhao', 'Murali Annavaram'] +abstract=None + +# Information +links.pdf=/static/public/papers/MobiCASE2009_Wang_Krishnamachari_zhao_Annavaram.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c5fb3a63148e0994a4f2c49e7a1429f38a728b3e +type=Conference Papers +year=2009 +paper_id=828c5ca6 +ss_title=The Tradeoff between Energy Efficiency and User State Estimation Accuracy in Mobile Sensing +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=Mobile Computing, Applications, and Services +ss_year=2009 +ss_abstract=None +ss_paper_id=c5fb3a63148e0994a4f2c49e7a1429f38a728b3e \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_tokenbased_data_collection_protocols_for_multihop_underwater_acoustic_sensor_networks_short_paper.txt b/database/original_documents/publications_text/2009_tokenbased_data_collection_protocols_for_multihop_underwater_acoustic_sensor_networks_short_paper.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c3ffedce4db4d70579f8f4ceb34e4b211310b75 --- /dev/null +++ b/database/original_documents/publications_text/2009_tokenbased_data_collection_protocols_for_multihop_underwater_acoustic_sensor_networks_short_paper.txt @@ -0,0 +1,18 @@ +# Publication +title=Token-based data collection protocols for multi-hop underwater acoustic sensor networks: short paper +venue=in Proceedings of the Fourth ACM International Workshop on UnderWater Networks (WUWNet ’09), 2009. +authors=['Ping Wang', 'Lin Zhang', 'Bhaskar Krishnamachari', 'Victor OK Li'] +abstract=We propose two novel token-based data collection protocols for multi-hop underwater acoustic sensor networks (UW-ASNs). The proposed protocols, namely the tree-based protocol and the ring-based protocol, use tokens to guarantee contention-free medium access for each transmission and reliable collection of data from each node. For the tree-based protocol, we propose a depth-first traversal of a Minimal Spanning Tree (MST) rooted at the sink node, providing a constant factor two approximation for the optimal total data collection delay. For the ring-based protocol, we formulate the problem as a Traveling Salesman Problem (TSP), and use the Christofides Heuristic algorithm to prove a constant factor 1.5 approximation to the optimal solution. We also argue that the tree-based protocol is more suitable for large-scale networks, and the ring-based protocol for small-scale networks. + +# Information +links.pdf=/static/public/papers/token_WUWNet.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/26be34bc8e04c2e01a00c9be638e9afe41530500 +type=Conference Papers +year=2009 +paper_id=8cc5146a +ss_title=Token-based data collection protocols for multi-hop underwater acoustic sensor networks: short paper +ss_authors=[{'authorId': '2152209822', 'name': 'Ping Wang'}, {'authorId': '2143835235', 'name': 'Lin Zhang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144354165', 'name': 'V. Li'}] +ss_venue=Workshop/Conference on Underwater Networks & Systems +ss_year=2009 +ss_abstract=We propose two novel token-based data collection protocols for multi-hop underwater acoustic sensor networks (UW-ASNs). The proposed protocols, namely the tree-based protocol and the ring-based protocol, use tokens to guarantee contention-free medium access for each transmission and reliable collection of data from each node. For the tree-based protocol, we propose a depth-first traversal of a Minimal Spanning Tree (MST) rooted at the sink node, providing a constant factor two approximation for the optimal total data collection delay. For the ring-based protocol, we formulate the problem as a Traveling Salesman Problem (TSP), and use the Christofides Heuristic algorithm to prove a constant factor 1.5 approximation to the optimal solution. We also argue that the tree-based protocol is more suitable for large-scale networks, and the ring-based protocol for small-scale networks. +ss_paper_id=26be34bc8e04c2e01a00c9be638e9afe41530500 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_using_heterogeneity_to_enhance_random_walkbased_queries.txt b/database/original_documents/publications_text/2009_using_heterogeneity_to_enhance_random_walkbased_queries.txt new file mode 100644 index 0000000000000000000000000000000000000000..4df19cb97ca4848daff874f2d62b806391dc5691 --- /dev/null +++ b/database/original_documents/publications_text/2009_using_heterogeneity_to_enhance_random_walkbased_queries.txt @@ -0,0 +1,18 @@ +# Publication +title=Using Heterogeneity to Enhance Random Walk-based Queries +venue=Journal of Signal Processing Systems, December 2009, Volume 57, Issue 3, pages 401-414. +authors=['Marco Zuniga', 'Chen Avin', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/ZunigaAvinKrishnamachari_SignalProcessing2008.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/13aaf0ff0b3193a41a381a182cfa353b9d75a904 +type=Journal Papers +year=2009 +paper_id=791889ce +ss_title=Using Heterogeneity to Enhance Random Walk-based Queries +ss_authors=[{'authorId': '145662238', 'name': 'M. Zúñiga'}, {'authorId': '145707494', 'name': 'C. Avin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Journal of Signal Processing Systems +ss_year=2009 +ss_abstract=None +ss_paper_id=13aaf0ff0b3193a41a381a182cfa353b9d75a904 \ No newline at end of file diff --git a/database/original_documents/publications_text/2009_using_local_geometry_and_position_control_for_tunable_sensor_network_configuration.txt b/database/original_documents/publications_text/2009_using_local_geometry_and_position_control_for_tunable_sensor_network_configuration.txt new file mode 100644 index 0000000000000000000000000000000000000000..cde3292a69530114123e0a1a1545fb487eab62bc --- /dev/null +++ b/database/original_documents/publications_text/2009_using_local_geometry_and_position_control_for_tunable_sensor_network_configuration.txt @@ -0,0 +1,18 @@ +# Publication +title=Using Local Geometry and Position Control for Tunable Sensor Network Configuration +venue=IEEE Transactions on Mobile Computing, Volume 8, Issue 2, February 2009. +authors=['Sameera Poduri', 'Sundeep Pattem', 'Bhaskar Krishnamachari', 'Gaurav S Sukhatme'] +abstract=We study how control over positions of nodes can be leveraged for obtaining desired levels of network connectivity and sensing coverage. To this end, we propose Neighbor-Every-Theta (NET) graphs defined as each node having at least one neighbor in every theta angle sector of its communication range. For θ < π, NET graphs are guaranteed to have an edge-connectivity of at least b 2π θ c even with an irregular communication range. This family of graphs can tunably achieve coverage-connectivity tradeoffs based on a single parameter θ. Since the required condition is purely local and geometric, it can be integrated with distributed deployment of mobile sensor networks. Simulation results from our implementation of a virtual potential fields based algorithm on a large group of robots substantiate the analysis and provide algorithm performance evaluation. We also illustrate how the NET condition can be used in conjunction with power control algorithms to obtain k-connected topologies efficiently. Lastly, we extend NET graphs to 3D, prove connectivity properties and provide an efficient algorithm to check for the NET condition at each node. This algorithm can be used for implementing generic network configuration algorithms in 3D. + +# Information +links.pdf=/static/public/papers/PoduriPattemKrishnamachariSukhatme_TMC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f94771d218a4329564f2e6d001feb8fca28ab6e3 +type=Journal Papers +year=2009 +paper_id=038bb22b +ss_title=Using Local Geometry and Position Control for Tunable Sensor Network Configuration +ss_authors=[{'authorId': '2975120', 'name': 'Sameera Poduri'}, {'authorId': '1697016', 'name': 'S. Pattem'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1732493', 'name': 'G. Sukhatme'}] +ss_venue= +ss_year=2007 +ss_abstract=We study how control over positions of nodes can be leveraged for obtaining desired levels of network connectivity and sensing coverage. To this end, we propose Neighbor-Every-Theta (NET) graphs defined as each node having at least one neighbor in every theta angle sector of its communication range. For θ < π, NET graphs are guaranteed to have an edge-connectivity of at least b 2π θ c even with an irregular communication range. This family of graphs can tunably achieve coverage-connectivity tradeoffs based on a single parameter θ. Since the required condition is purely local and geometric, it can be integrated with distributed deployment of mobile sensor networks. Simulation results from our implementation of a virtual potential fields based algorithm on a large group of robots substantiate the analysis and provide algorithm performance evaluation. We also illustrate how the NET condition can be used in conjunction with power control algorithms to obtain k-connected topologies efficiently. Lastly, we extend NET graphs to 3D, prove connectivity properties and provide an efficient algorithm to check for the NET condition at each node. This algorithm can be used for implementing generic network configuration algorithms in 3D. +ss_paper_id=f94771d218a4329564f2e6d001feb8fca28ab6e3 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_channel_selection_in_multichannel_cognitive_radio_networks_with_perfect_sensing.txt b/database/original_documents/publications_text/2010_channel_selection_in_multichannel_cognitive_radio_networks_with_perfect_sensing.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd5c3899c62d57163fe77792e409009cc4e3f1d9 --- /dev/null +++ b/database/original_documents/publications_text/2010_channel_selection_in_multichannel_cognitive_radio_networks_with_perfect_sensing.txt @@ -0,0 +1,18 @@ +# Publication +title=Channel Selection in Multi-channel Cognitive Radio Networks with Perfect Sensing +venue=DySPAN, April, 2010 +authors=['Xin Liu', 'Bhaskar Krishnamachari', 'Hua Liu'] +abstract=We present a clustered-OFDM-based opportunistic-multichannel-ALOHA cognitive radio (COCR) for low-cost low-load ad-hoc-based wireless systems like sensor networks, We implement COCR on the basis of opportunistic channel selection and analyze its spectrum efficiency, analytically as well as numerically, under the perfect or imperfect spectrum sensing. Via simulation, we show that the proposed scheme is superior to conventional opportunistic-multichannel-CSMA CR (OMC-CSMA CR) with random channel selection in terms of spectrum utilization ratio especially at a small offered-load (). The maximum spectrum utilization ratio (=max{}) of COCR is 0.8, about 90% of that of conventional OMC-CSMA CR and about 230% of that of conventional opportunistic-multichannel-ALOHA CR (OMC-ALOHA CR). + +# Information +links.pdf=/static/public/papers/Dyspan10_Cognitive.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d2069c7498fd2b1af2f57a92e7ca0008b109095e +type=Conference Papers +year=2010 +paper_id=475f5c12 +ss_title=Spectrum Utilization of Clustered-OFDM-based Opportunistic-Multichannel-ALOHA Cognitive Radio +ss_authors=[{'authorId': '39977703', 'name': 'S. Choe'}] +ss_venue= +ss_year=2012 +ss_abstract=We present a clustered-OFDM-based opportunistic-multichannel-ALOHA cognitive radio (COCR) for low-cost low-load ad-hoc-based wireless systems like sensor networks, We implement COCR on the basis of opportunistic channel selection and analyze its spectrum efficiency, analytically as well as numerically, under the perfect or imperfect spectrum sensing. Via simulation, we show that the proposed scheme is superior to conventional opportunistic-multichannel-CSMA CR (OMC-CSMA CR) with random channel selection in terms of spectrum utilization ratio especially at a small offered-load (). The maximum spectrum utilization ratio (=max{}) of COCR is 0.8, about 90% of that of conventional OMC-CSMA CR and about 230% of that of conventional opportunistic-multichannel-ALOHA CR (OMC-ALOHA CR). +ss_paper_id=d2069c7498fd2b1af2f57a92e7ca0008b109095e \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_combinatorial_network_optimization_with_unknown_variables_multiarmed_bandits_with_linear_rewards.txt b/database/original_documents/publications_text/2010_combinatorial_network_optimization_with_unknown_variables_multiarmed_bandits_with_linear_rewards.txt new file mode 100644 index 0000000000000000000000000000000000000000..579367c43561926ba74c3d65f9347c75de1ed644 --- /dev/null +++ b/database/original_documents/publications_text/2010_combinatorial_network_optimization_with_unknown_variables_multiarmed_bandits_with_linear_rewards.txt @@ -0,0 +1,18 @@ +# Publication +title=Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards +venue=CENG-2010-9. (A journal version of this technical report is under submission in IEEE/ACM Transactions on Networking) +authors=['Yi Gai', 'Bhaskar Krishnamachari', 'Rahul Jain'] +abstract=We formulate the following combinatorial multi-armed bandit (MAB) problem: There are N random variables with unknown mean that are each instantiated in an i.i.d. fashion over time. At each time multiple random variables can be selected, subject to an arbitrary constraint on weights associated with the selected variables. All of the selected individual random variables are observed at that time, and a linearly weighted combination of these selected variables is yielded as the reward. The goal is to find a policy that minimizes regret, defined as the difference between the reward obtained by a genie that knows the mean of each random variable, and that obtained by the given policy. This formulation is broadly applicable and useful for stochastic online versions of many interesting tasks in networks that can be formulated as tractable combinatorial optimization problems with linear objective functions, such as maximum weighted matching, shortest path, and minimum spanning tree computations. Prior work on multi-armed bandits with multiple plays cannot be applied to this formulation because of the general nature of the constraint. On the other hand, the mapping of all feasible combinations to arms allows for the use of prior work on MAB with single-play, but results in regret, storage, and computation growing exponentially in the number of unknown variables. We present new efficient policies for this problem that are shown to achieve regret that grows logarithmically with time, and polynomially in the number of unknown variables. Furthermore, these policies only require storage that grows linearly in the number of unknown parameters. For problems where the underlying deterministic problem is tractable, these policies further require only polynomial computation. For computationally intractable problems, we also present results on a different notion of regret that is suitable when a polynomial-time approximation algorithm is used. + +# Information +links.pdf=http://arxiv.org/abs/1011.4748 +links.semantic_scholar=https://www.semanticscholar.org/paper/a04a3a35148f8a0fb13b991b72f7c05731c32d24 +type=Technical Reports and Preprints +year=2010 +paper_id=ea0ae14c +ss_title=Combinatorial Network Optimization With Unknown Variables: Multi-Armed Bandits With Linear Rewards and Individual Observations +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '49037170', 'name': 'Rahul Jain'}] +ss_venue=IEEE/ACM Transactions on Networking +ss_year=2010 +ss_abstract=We formulate the following combinatorial multi-armed bandit (MAB) problem: There are N random variables with unknown mean that are each instantiated in an i.i.d. fashion over time. At each time multiple random variables can be selected, subject to an arbitrary constraint on weights associated with the selected variables. All of the selected individual random variables are observed at that time, and a linearly weighted combination of these selected variables is yielded as the reward. The goal is to find a policy that minimizes regret, defined as the difference between the reward obtained by a genie that knows the mean of each random variable, and that obtained by the given policy. This formulation is broadly applicable and useful for stochastic online versions of many interesting tasks in networks that can be formulated as tractable combinatorial optimization problems with linear objective functions, such as maximum weighted matching, shortest path, and minimum spanning tree computations. Prior work on multi-armed bandits with multiple plays cannot be applied to this formulation because of the general nature of the constraint. On the other hand, the mapping of all feasible combinations to arms allows for the use of prior work on MAB with single-play, but results in regret, storage, and computation growing exponentially in the number of unknown variables. We present new efficient policies for this problem that are shown to achieve regret that grows logarithmically with time, and polynomially in the number of unknown variables. Furthermore, these policies only require storage that grows linearly in the number of unknown parameters. For problems where the underlying deterministic problem is tractable, these policies further require only polynomial computation. For computationally intractable problems, we also present results on a different notion of regret that is suitable when a polynomial-time approximation algorithm is used. +ss_paper_id=a04a3a35148f8a0fb13b991b72f7c05731c32d24 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_design_and_analysis_of_a_propagation_delay_tolerant_aloha_protocol_for_underwater_networks.txt b/database/original_documents/publications_text/2010_design_and_analysis_of_a_propagation_delay_tolerant_aloha_protocol_for_underwater_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee659e850dc58fbc6f2514cfa234fbdaea6774f2 --- /dev/null +++ b/database/original_documents/publications_text/2010_design_and_analysis_of_a_propagation_delay_tolerant_aloha_protocol_for_underwater_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks +venue=Elsevier Ad Hoc Networks Journal +authors=['Joon Ahn', 'Affan', 'Syed', 'Bhaskar Krishnamachari', 'John Heidemann'] +abstract=None + +# Information +links.pdf=/static/public/papers/ahn10design-TR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/248038e37617fc7633af10f4a1bb4e123d48166e +type=Journal Papers +year=2010 +paper_id=efc9bf26 +ss_title=Design and analysis of a propagation delay tolerant ALOHA protocol for underwater networks +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '2032257', 'name': 'A. Syed'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '46351573', 'name': 'J. Heidemann'}] +ss_venue=Ad hoc networks +ss_year=2011 +ss_abstract=None +ss_paper_id=248038e37617fc7633af10f4a1bb4e123d48166e \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_determining_localized_tree_construction_schemes_based_on_sensor_network_lifetime.txt b/database/original_documents/publications_text/2010_determining_localized_tree_construction_schemes_based_on_sensor_network_lifetime.txt new file mode 100644 index 0000000000000000000000000000000000000000..a333269319ca35e72189ee6dbf97bae4d37e7674 --- /dev/null +++ b/database/original_documents/publications_text/2010_determining_localized_tree_construction_schemes_based_on_sensor_network_lifetime.txt @@ -0,0 +1,18 @@ +# Publication +title=Determining Localized Tree Construction Schemes Based on Sensor Network Lifetime +venue=EURASIP Journal on Wireless Communications and Networking Volume 2010 (2010), Article ID 350198, 13 pages. +authors=['Jae-Joon Lee', 'Bhaskar Krishnamachari', 'C-C Jay Kuo'] +abstract=The communication energy consumption in a data-gathering tree depends on the number of descendants to the node of concern as well as the link quality between communicating nodes. In this paper, we examine the network lifetime of several localized tree construction schemes by incorporating the communication overhead due to imperfect link quality. Our study is conducted based on empirical data obtained from a real-world deployment, which is further supported by mathematical analysis. For the case of a sparse node density, a large network size and a low link threshold, we show that the link-quality-based scheme provides the longer network lifetime than the minimum hop routing schemes. We present a lower bound on the number of nodes per hop and the link quality threshold of the radio range, which work together to result in a superior localized scheme for longer network lifetime. + +# Information +links.pdf=/static/public/papers/LocalizedTreeConstruction_JaeJoonLeeKrishnamachariKuo_Journal.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/da307cfc73a322a75f65030dc505db918fa483b2 +type=Journal Papers +year=2010 +paper_id=30494954 +ss_title=Determining Localized Tree Construction Schemes Based on Sensor Network Lifetime +ss_authors=[{'authorId': '2108395405', 'name': 'Jae-Joon Lee'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=EURASIP Journal on Wireless Communications and Networking +ss_year=2010 +ss_abstract=The communication energy consumption in a data-gathering tree depends on the number of descendants to the node of concern as well as the link quality between communicating nodes. In this paper, we examine the network lifetime of several localized tree construction schemes by incorporating the communication overhead due to imperfect link quality. Our study is conducted based on empirical data obtained from a real-world deployment, which is further supported by mathematical analysis. For the case of a sparse node density, a large network size and a low link threshold, we show that the link-quality-based scheme provides the longer network lifetime than the minimum hop routing schemes. We present a lower bound on the number of nodes per hop and the link quality threshold of the radio range, which work together to result in a superior localized scheme for longer network lifetime. +ss_paper_id=da307cfc73a322a75f65030dc505db918fa483b2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_dynamic_multichannel_access_with_imperfect_channel_state_detection.txt b/database/original_documents/publications_text/2010_dynamic_multichannel_access_with_imperfect_channel_state_detection.txt new file mode 100644 index 0000000000000000000000000000000000000000..303e1f9c56a9bc0029a9e04244202bf1bc53acdd --- /dev/null +++ b/database/original_documents/publications_text/2010_dynamic_multichannel_access_with_imperfect_channel_state_detection.txt @@ -0,0 +1,18 @@ +# Publication +title=Dynamic Multichannel Access with Imperfect Channel State Detection +venue=IEEE Transactions on Signal Processing, vol. 58, No. 5, pp. 2795 – 2808, May, 2010. +authors=['Keqin Liu', 'Qing Zhao', 'Bhaskar Krishnamachari'] +abstract=A restless multi-armed bandit problem that arises in multichannel opportunistic communications is considered, where channels are modeled as independent and identical Gilbert-Elliot channels and channel state detection is subject to errors. A simple structure of the myopic policy is established under a certain condition on the false alarm probability of the channel state detector. It is shown that myopic actions can be obtained by maintaining a simple channel ordering without knowing the underlying Markovian model. The optimality of the myopic policy is proved for the case of two channels and conjectured for general cases. Lower and upper bounds on the performance of the myopic policy are obtained in closed-form, which characterize the scaling behavior of the achievable throughput of the multichannel opportunistic system. The approximation factor of the myopic policy is also analyzed to bound its worst-case performance loss with respect to the optimal performance. + +# Information +links.pdf=/static/public/papers/LiuEtal10TSP.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/af6afe1886e5bd6827e1483d5fa9debc07002a5f +type=Journal Papers +year=2010 +paper_id=fbeef6ae +ss_title=Dynamic Multichannel Access With Imperfect Channel State Detection +ss_authors=[{'authorId': '8070370', 'name': 'Keqin Liu'}, {'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Signal Processing +ss_year=2010 +ss_abstract=A restless multi-armed bandit problem that arises in multichannel opportunistic communications is considered, where channels are modeled as independent and identical Gilbert-Elliot channels and channel state detection is subject to errors. A simple structure of the myopic policy is established under a certain condition on the false alarm probability of the channel state detector. It is shown that myopic actions can be obtained by maintaining a simple channel ordering without knowing the underlying Markovian model. The optimality of the myopic policy is proved for the case of two channels and conjectured for general cases. Lower and upper bounds on the performance of the myopic policy are obtained in closed-form, which characterize the scaling behavior of the achievable throughput of the multichannel opportunistic system. The approximation factor of the myopic policy is also analyzed to bound its worst-case performance loss with respect to the optimal performance. +ss_paper_id=af6afe1886e5bd6827e1483d5fa9debc07002a5f \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_energy_routing_on_the_future_grid_a_stochastic_network_optimization_approach.txt b/database/original_documents/publications_text/2010_energy_routing_on_the_future_grid_a_stochastic_network_optimization_approach.txt new file mode 100644 index 0000000000000000000000000000000000000000..0867f435191b51f373d60c86941199254d5cafe3 --- /dev/null +++ b/database/original_documents/publications_text/2010_energy_routing_on_the_future_grid_a_stochastic_network_optimization_approach.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy Routing on the Future Grid: A Stochastic Network Optimization Approach +venue=IEEE International Conference on Power Systems (POWERCON 2010) +authors=['M Baghaie', 'S Moeller', 'B Krishnamachari'] +abstract=Population expansion and broad deployment of wind and solar renewable power generation has highlighted concerns over the long-standing strategy for grid deployment, expansion and upgrade. Due to their stochastic and often volatile nature, these renewable sources are difficult to integrate into the grid in its current power-on-demand paradigm. In this work, we propose a novel stochastic framework, leveraging distributed storage, that alleviates many of the problems of the current grid. Our proposed energy routing algorithm is distributed, agile to failures, and provably maximizes the carrying capacity of the existing power-line resources. We evaluate the performance of our proposed solution using analytical performance guarantees and sample simulation results. We hope the the result of our work provides a strong motivation for further development and application of large scale distributed storage. + +# Information +links.pdf=/static/public/papers/powerCon10.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/8995d6214bbcba8f9efd4bc2e27d0a4e542c6ed1 +type=Conference Papers +year=2010 +paper_id=70b3a4b8 +ss_title=Energy routing on the future grid: A stochastic network optimization approach +ss_authors=[{'authorId': '2402697', 'name': 'M. Baghaie'}, {'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2010 International Conference on Power System Technology +ss_year=2010 +ss_abstract=Population expansion and broad deployment of wind and solar renewable power generation has highlighted concerns over the long-standing strategy for grid deployment, expansion and upgrade. Due to their stochastic and often volatile nature, these renewable sources are difficult to integrate into the grid in its current power-on-demand paradigm. In this work, we propose a novel stochastic framework, leveraging distributed storage, that alleviates many of the problems of the current grid. Our proposed energy routing algorithm is distributed, agile to failures, and provably maximizes the carrying capacity of the existing power-line resources. We evaluate the performance of our proposed solution using analytical performance guarantees and sample simulation results. We hope the the result of our work provides a strong motivation for further development and application of large scale distributed storage. +ss_paper_id=8995d6214bbcba8f9efd4bc2e27d0a4e542c6ed1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_energy_savings_through_dynamic_base_station_switching_in_cellular_wireless_access_networks.txt b/database/original_documents/publications_text/2010_energy_savings_through_dynamic_base_station_switching_in_cellular_wireless_access_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e0d000e7d4a302bab1129c28fa822a01afc07ab --- /dev/null +++ b/database/original_documents/publications_text/2010_energy_savings_through_dynamic_base_station_switching_in_cellular_wireless_access_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy Savings through Dynamic Base Station Switching in Cellular Wireless Access Networks +venue=IEEE GLOBECOM, December 2010 +authors=['Eunsung Oh', 'Bhaskar Krishnamachari'] +abstract=Reducing the energy consumption of cellular wireless access networks is not only beneficial for the global environment but also makes commercial sense for telecommunication operators. Since access networks are designed to support peak time traffic, the utilization of base stations can be very inefficient during off-peak time because the traffic profile is time varying. We study the dynamic switching of base stations (BS) to reduce the energy consumption considering the time varying characteristic of the traffic profile. We show via analysis that the mean and variance of traffic profile and the BS density are the dominant factors that determine the amount of energy saving that can be achieved. Simulations using ideal and real traffic profiles are used to quantify the potential savings from dynamic BS switching in a realistic setting. + +# Information +links.pdf=/static/public/papers/oh2010energy.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3200c3069b18cbce58b29fbf1a9d78aaa59ad176 +type=Conference Papers +year=2010 +paper_id=4a2d64f7 +ss_title=Energy Savings through Dynamic Base Station Switching in Cellular Wireless Access Networks +ss_authors=[{'authorId': '1977686', 'name': 'Eunsung Oh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2010 IEEE Global Telecommunications Conference GLOBECOM 2010 +ss_year=2010 +ss_abstract=Reducing the energy consumption of cellular wireless access networks is not only beneficial for the global environment but also makes commercial sense for telecommunication operators. Since access networks are designed to support peak time traffic, the utilization of base stations can be very inefficient during off-peak time because the traffic profile is time varying. We study the dynamic switching of base stations (BS) to reduce the energy consumption considering the time varying characteristic of the traffic profile. We show via analysis that the mean and variance of traffic profile and the BS density are the dominant factors that determine the amount of energy saving that can be achieved. Simulations using ideal and real traffic profiles are used to quantify the potential savings from dynamic BS switching in a realistic setting. +ss_paper_id=3200c3069b18cbce58b29fbf1a9d78aaa59ad176 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_energyaware_hierarchical_cell_configuration_from_deployment_to_operation.txt b/database/original_documents/publications_text/2010_energyaware_hierarchical_cell_configuration_from_deployment_to_operation.txt new file mode 100644 index 0000000000000000000000000000000000000000..077d4773e61ff4e4181b6c6d2b98f2c197ecd308 --- /dev/null +++ b/database/original_documents/publications_text/2010_energyaware_hierarchical_cell_configuration_from_deployment_to_operation.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-Aware Hierarchical Cell Configuration: from Deployment to Operation +venue=CENG-2010-10. +authors=['Kyuho Son', 'Eunsung Oh', 'Bhaskar Krishnamachari'] +abstract=This paper develops an energy-aware hierarchical cell configuration framework that encompasses both deployment and operation in downlink cellular networks. Specifically, we first formulate a general problem pertaining to total energy consumption minimization while satisfying the requirement of area spectral efficiency (ASE), and then decompose it into deployment problem at peak time and operation problem at off-peak time. For the deployment problem, we start from an observation about various topologies including the real deployment of BSs that there is a strong correlation between the area covered by an additional micro BS and the increment of ASE. Under such an assumption, we prove the submodularity of ASE function with respect to micro BS deployment and propose a greedy algorithm that is shown to be a constant-factor approximation of optimal deployment. Although the greedy algorithm can be also applied as an offline centralized solution for the operation problem, we further propose online distributed algorithms with low complexity and signaling overhead to have more practical solutions. Extensive simulations based on the acquired real BS topologies and traffic profiles show that the proposed algorithms can significantly reduce the energy consumption. + +# Information +links.pdf=/static/public/papers/73138.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/32681caa999f9d8e2226250d4e542f300a1d4730 +type=Technical Reports and Preprints +year=2010 +paper_id=1d1c3c64 +ss_title=Energy-aware hierarchical cell configuration: From deployment to operation +ss_authors=[{'authorId': '1714987', 'name': 'K. Son'}, {'authorId': '1977686', 'name': 'Eunsung Oh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Conference on Computer Communications Workshops +ss_year=2011 +ss_abstract=This paper develops an energy-aware hierarchical cell configuration framework that encompasses both deployment and operation in downlink cellular networks. Specifically, we first formulate a general problem pertaining to total energy consumption minimization while satisfying the requirement of area spectral efficiency (ASE), and then decompose it into deployment problem at peak time and operation problem at off-peak time. For the deployment problem, we start from an observation about various topologies including the real deployment of BSs that there is a strong correlation between the area covered by an additional micro BS and the increment of ASE. Under such an assumption, we prove the submodularity of ASE function with respect to micro BS deployment and propose a greedy algorithm that is shown to be a constant-factor approximation of optimal deployment. Although the greedy algorithm can be also applied as an offline centralized solution for the operation problem, we further propose online distributed algorithms with low complexity and signaling overhead to have more practical solutions. Extensive simulations based on the acquired real BS topologies and traffic profiles show that the proposed algorithms can significantly reduce the energy consumption. +ss_paper_id=32681caa999f9d8e2226250d4e542f300a1d4730 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_exploiting_the_wisdom_of_the_crowd_localized_distributed_informationcentric_vanets.txt b/database/original_documents/publications_text/2010_exploiting_the_wisdom_of_the_crowd_localized_distributed_informationcentric_vanets.txt new file mode 100644 index 0000000000000000000000000000000000000000..1e25ca9ce1ed1ac76d6e904d07a48a2108c93593 --- /dev/null +++ b/database/original_documents/publications_text/2010_exploiting_the_wisdom_of_the_crowd_localized_distributed_informationcentric_vanets.txt @@ -0,0 +1,18 @@ +# Publication +title=Exploiting the wisdom of the crowd: localized, distributed information-centric VANETs +venue=IEEE Communications Magazine, vol. 48, no. 5, May 2010. +authors=['Fan Bai', 'Bhaskar Krishnamachari'] +abstract=Beyond the initial focus on vehicular safety application, there is considerable scope for the development of other information-rich applications, which can provide convenience and comfort features to drivers and passengers. We argue that an Internet-like end-to-end networking framework might not always be the best fit for the unique nature of vehicular application - spatially and temporally localized, dynamic, and data-intensive. In this research challenge article, we propose a top-down framework called Information- Centric Networking on Wheels to develop a generic network architecture supporting futuristic information-rich VANET applications, ranging from location-based services to real-time audio/video transfer. The key design philosophy of our proposed framework is that VANET communication is scoped by three key characteristics of information relevance: space, time, and user interest. Using this philosophy, we advocate the development of protocols for information dissemination and management that allow for localized in-network operations. An important feature of the proposed IC NoW framework is that protocols and applications are implemented in a distributed manner using local decision rule sets, taking into account fresh local information. We also pay special attention to ensure the proposed framework is easy to interface with existing cellular infrastructure, whenever needed. This framework enables modular design, facilitating easy application development and creating a smooth migration path during the deployment evolution path. + +# Information +links.pdf=http://portal.acm.org/citation.cfm?id=1825522 +links.semantic_scholar=https://www.semanticscholar.org/paper/8d00e6504b46b030c0fc91b07b2e08f5a33f1f82 +type=Journal Papers +year=2010 +paper_id=ed49628f +ss_title=Exploiting the wisdom of the crowd: localized, distributed information-centric VANETs [Topics in Automotive Networking] +ss_authors=[{'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Communications Magazine +ss_year=2010 +ss_abstract=Beyond the initial focus on vehicular safety application, there is considerable scope for the development of other information-rich applications, which can provide convenience and comfort features to drivers and passengers. We argue that an Internet-like end-to-end networking framework might not always be the best fit for the unique nature of vehicular application - spatially and temporally localized, dynamic, and data-intensive. In this research challenge article, we propose a top-down framework called Information- Centric Networking on Wheels to develop a generic network architecture supporting futuristic information-rich VANET applications, ranging from location-based services to real-time audio/video transfer. The key design philosophy of our proposed framework is that VANET communication is scoped by three key characteristics of information relevance: space, time, and user interest. Using this philosophy, we advocate the development of protocols for information dissemination and management that allow for localized in-network operations. An important feature of the proposed IC NoW framework is that protocols and applications are implemented in a distributed manner using local decision rule sets, taking into account fresh local information. We also pay special attention to ensure the proposed framework is easy to interface with existing cellular infrastructure, whenever needed. This framework enables modular design, facilitating easy application development and creating a smooth migration path during the deployment evolution path. +ss_paper_id=8d00e6504b46b030c0fc91b07b2e08f5a33f1f82 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_handling_inelastic_trafc_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2010_handling_inelastic_trafc_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..bbc9bbf6a22c61d51d3a99072bb59e25d9050043 --- /dev/null +++ b/database/original_documents/publications_text/2010_handling_inelastic_trafc_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Handling Inelastic Traffic in Wireless Sensor Networks +venue=IEEE Journal on Selected areas in communications (JSAC), 2010. +authors=['Jiong Jin', 'Avinash Sridharan', 'Bhaskar Krishnamachari', 'Marimuthu Palaniswami'] +abstract=The capabilities of sensor networking devices are increasing at a rapid pace. It is therefore not impractical to assume that future sensing operations will involve real time (inelastic) traffic, such as audio and video surveillance, which have strict bandwidth constraints. This in turn implies that future sensor networks will have to cater for a mix of elastic (having no bandwidth constraint requirements) and inelastic traffic. Current state of the art rate control protocols for wireless sensor networks, are however designed with focus on elastic traffic. In this work, by adapting a recently developed theory of utilityproportional rate control for wired networks to a wireless setting, and combining it with a stochastic optimization framework that results in an elegant queue backpressure-based algorithm, we have designed the first-ever rate control protocol that can efficiently handle a mix of elastic and inelastic traffic in a wireless sensor network. We implement this novel protocol in a real world sensor network stack, the TinyOS-2.x communication stack for IEEE 802.15.4 radios and evaluate the real-world performance of this protocol through comprehensive experiments on 20 and 40-node subnetworks of USC's 94-node Tutornet wireless sensor network testbed. + +# Information +links.pdf=/static/public/papers/JinSridharanKrishnamachariPalaniswami_JSAC2010.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6f3e2cb7ff1e0c8c233eedb20abaec99751bdaee +type=Journal Papers +year=2010 +paper_id=c8e4f2a5 +ss_title=Handling inelastic traffic in wireless sensor networks +ss_authors=[{'authorId': '38152929', 'name': 'Jiong Jin'}, {'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145389998', 'name': 'M. Palaniswami'}] +ss_venue=IEEE Journal on Selected Areas in Communications +ss_year=2010 +ss_abstract=The capabilities of sensor networking devices are increasing at a rapid pace. It is therefore not impractical to assume that future sensing operations will involve real time (inelastic) traffic, such as audio and video surveillance, which have strict bandwidth constraints. This in turn implies that future sensor networks will have to cater for a mix of elastic (having no bandwidth constraint requirements) and inelastic traffic. Current state of the art rate control protocols for wireless sensor networks, are however designed with focus on elastic traffic. In this work, by adapting a recently developed theory of utilityproportional rate control for wired networks to a wireless setting, and combining it with a stochastic optimization framework that results in an elegant queue backpressure-based algorithm, we have designed the first-ever rate control protocol that can efficiently handle a mix of elastic and inelastic traffic in a wireless sensor network. We implement this novel protocol in a real world sensor network stack, the TinyOS-2.x communication stack for IEEE 802.15.4 radios and evaluate the real-world performance of this protocol through comprehensive experiments on 20 and 40-node subnetworks of USC's 94-node Tutornet wireless sensor network testbed. +ss_paper_id=6f3e2cb7ff1e0c8c233eedb20abaec99751bdaee \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_learning_multiuser_channel_allocations_in_cognitive_radio_networks_a_combinatorial_multiarmed_bandit_formulation.txt b/database/original_documents/publications_text/2010_learning_multiuser_channel_allocations_in_cognitive_radio_networks_a_combinatorial_multiarmed_bandit_formulation.txt new file mode 100644 index 0000000000000000000000000000000000000000..891c6df202a08155443720d4e7e84db12dcaa0c1 --- /dev/null +++ b/database/original_documents/publications_text/2010_learning_multiuser_channel_allocations_in_cognitive_radio_networks_a_combinatorial_multiarmed_bandit_formulation.txt @@ -0,0 +1,18 @@ +# Publication +title=Learning Multiuser Channel Allocations in Cognitive Radio Networks: A Combinatorial Multi-Armed Bandit Formulation +venue=DySPAN, April, 2010 +authors=['Yi Gai', 'Bhaskar Krishnamachari', 'Rahul Jain'] +abstract=We consider the following fundamental problem in the context of channelized dynamic spectrum access. There are $M$ secondary users and $N \ge M$ orthogonal channels. Each secondary user requires a single channel for operation that does not conflict with the channels assigned to the other users. Due to geographic dispersion, each secondary user can potentially see different primary user occupancy behavior on each channel. Time is divided into discrete decision rounds. The throughput obtainable from spectrum opportunities on each user-channel combination over a decision period is modeled as an arbitrarily-distributed non-negative random variable with bounded support but unknown mean, i.i.d. over time. The objective is to search for an allocation of channels for all users that maximizes the expected sum throughput. We formulate this problem as a combinatorial multi-armed bandit (MAB), in which each arm corresponds to a matching of the users to channels. Unlike most prior work on multi-armed bandits, this combinatorial formulation results in dependent arms. Moreover, the number of arms grows super-exponentially as the permutation $P(N,M)$. We present a novel matching-learning algorithm with polynomial storage and polynomial computation per decision period for this problem, and prove that it results in a regret (the gap between the expected sum-throughput obtained by a genie-aided perfect allocation and that obtained by this algorithm) that is uniformly upper-bounded for all time $n$ by a function that grows as $O(M^4 N log n)$, i.e. polynomial in the number of unknown parameters and logarithmic in time. We also discuss how our results provide a non-trivial generalization of known theoretical results on multi-armed bandits. + +# Information +links.pdf=/static/public/papers/GaiKrishnamachariJain_DySPAN10.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/343955e4fc655b4373d9926bca92ded2b27f4b23 +type=Conference Papers +year=2010 +paper_id=88588c74 +ss_title=Learning Multiuser Channel Allocations in Cognitive Radio Networks: A Combinatorial Multi-Armed Bandit Formulation +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '49037170', 'name': 'Rahul Jain'}] +ss_venue=International Symposium on Dynamic Spectrum Access Networks +ss_year=2010 +ss_abstract=We consider the following fundamental problem in the context of channelized dynamic spectrum access. There are $M$ secondary users and $N \ge M$ orthogonal channels. Each secondary user requires a single channel for operation that does not conflict with the channels assigned to the other users. Due to geographic dispersion, each secondary user can potentially see different primary user occupancy behavior on each channel. Time is divided into discrete decision rounds. The throughput obtainable from spectrum opportunities on each user-channel combination over a decision period is modeled as an arbitrarily-distributed non-negative random variable with bounded support but unknown mean, i.i.d. over time. The objective is to search for an allocation of channels for all users that maximizes the expected sum throughput. We formulate this problem as a combinatorial multi-armed bandit (MAB), in which each arm corresponds to a matching of the users to channels. Unlike most prior work on multi-armed bandits, this combinatorial formulation results in dependent arms. Moreover, the number of arms grows super-exponentially as the permutation $P(N,M)$. We present a novel matching-learning algorithm with polynomial storage and polynomial computation per decision period for this problem, and prove that it results in a regret (the gap between the expected sum-throughput obtained by a genie-aided perfect allocation and that obtained by this algorithm) that is uniformly upper-bounded for all time $n$ by a function that grows as $O(M^4 N log n)$, i.e. polynomial in the number of unknown parameters and logarithmic in time. We also discuss how our results provide a non-trivial generalization of known theoretical results on multi-armed bandits. +ss_paper_id=343955e4fc655b4373d9926bca92ded2b27f4b23 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_link_scheduling_in_a_single_broadcast_domain_underwater_networks.txt b/database/original_documents/publications_text/2010_link_scheduling_in_a_single_broadcast_domain_underwater_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..345f378a29103ee35c8690a4c50a14e44a2026f9 --- /dev/null +++ b/database/original_documents/publications_text/2010_link_scheduling_in_a_single_broadcast_domain_underwater_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Link Scheduling in a Single Broadcast Domain Underwater Networks +venue=IEEE SUTC, June 2010 +authors=['Pai-Han Huang', 'Ying Chen', 'Anil Kumar', 'Bhaskar Krishnamachari'] +abstract=Due to the high propagation latency and high power consumption of acoustic communications, scheduling techniques designed for terrestrial radio-based systems, may not be suitable for underwater acoustic sensor networks (UWASN). In this paper, we consider how to time schedule each link in a single broadcast domain. We show that, unlike its terrestrial RF counterpart, this problem is NP-complete, and the hard-to-approximate ratio is presented. Due to the intractability and inflexibility of centralized scheduling policies, and the high communication energy overhead of reservation-based strategies, we further investigate the performance of an ALOHA-like access scheme, which is distributed, randomized and requires no topology knowledge. According to our analysis, although the random scheduling policy that picks transmission times uniformly in a given interval is throughput optimal for terrestrial radio-based systems, it performs poorly in underwater acoustic networks. We thereby seek for the throughput-optimal, distributed random policy by solving a nonlinear optimization problem. We present an extensive comparison between this policy and the uniform one, with respect to different packet lengths, scheduling length, and network density. We show that the optimal solution offers substantial improvements in throughput, particularly for long packets. + +# Information +links.pdf=/static/public/papers/Underwater_SUTC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/daab0e962cf3b9d248f72067daabac9f867d09a5 +type=Conference Papers +year=2010 +paper_id=0882042e +ss_title=Link Scheduling in a Single Broadcast Domain Underwater Networks +ss_authors=[{'authorId': '3137372', 'name': 'P. Huang'}, {'authorId': '47558464', 'name': 'Ying Chen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2206558137', 'name': 'V. Kumar'}] +ss_venue=2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing +ss_year=2010 +ss_abstract=Due to the high propagation latency and high power consumption of acoustic communications, scheduling techniques designed for terrestrial radio-based systems, may not be suitable for underwater acoustic sensor networks (UWASN). In this paper, we consider how to time schedule each link in a single broadcast domain. We show that, unlike its terrestrial RF counterpart, this problem is NP-complete, and the hard-to-approximate ratio is presented. Due to the intractability and inflexibility of centralized scheduling policies, and the high communication energy overhead of reservation-based strategies, we further investigate the performance of an ALOHA-like access scheme, which is distributed, randomized and requires no topology knowledge. According to our analysis, although the random scheduling policy that picks transmission times uniformly in a given interval is throughput optimal for terrestrial radio-based systems, it performs poorly in underwater acoustic networks. We thereby seek for the throughput-optimal, distributed random policy by solving a nonlinear optimization problem. We present an extensive comparison between this policy and the uniform one, with respect to different packet lengths, scheduling length, and network density. We show that the optimal solution offers substantial improvements in throughput, particularly for long packets. +ss_paper_id=daab0e962cf3b9d248f72067daabac9f867d09a5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_markovoptimal_policy_for_user_state_estimation_in_mobile_devices.txt b/database/original_documents/publications_text/2010_markovoptimal_policy_for_user_state_estimation_in_mobile_devices.txt new file mode 100644 index 0000000000000000000000000000000000000000..0574c8c48ae7fbfa16c5af875e2142f4438fc160 --- /dev/null +++ b/database/original_documents/publications_text/2010_markovoptimal_policy_for_user_state_estimation_in_mobile_devices.txt @@ -0,0 +1,18 @@ +# Publication +title=Markov-optimal Policy for User State Estimation in Mobile Devices +venue=IPSN, April, 2010 +authors=['Yi Wang', 'Bhaskar Krishnamachari', 'Qing Zhao', 'Murali Annavaram'] +abstract=Mobile device based human-centric sensing and user state recognition provide rich contextual information for various mobile applications and services. However, continuously capturing this contextual information consumes significant amount of energy and drains mobile device battery quickly. In this paper, we propose a computationally efficient algorithm to obtain the optimal sensor sampling policy under the assumption that the user state transition is Markovian. This Markov-optimal policy minimizes user state estimation error while satisfying a given energy consumption budget. We first compare the Markov-optimal policy with uniform periodic sensing for Markovian user state transitions and show that the improvements obtained depend upon the underlying state transition probabilities. We then apply the algorithm to two different sets of real experimental traces pertaining to user motion change and inter-user contacts and show that the Markov-optimal policy leads to an approximately 20% improvement over the naive uniform sensing policy. + +# Information +links.pdf=/static/public/papers/IPSN10_Wang_Krishnamachari_Zhao_Annavaram.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7479eab032e493d84f8d1d6b0c24f4a4af9fe915 +type=Conference Papers +year=2010 +paper_id=0f8f3b35 +ss_title=Markov-optimal sensing policy for user state estimation in mobile devices +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=International Symposium on Information Processing in Sensor Networks +ss_year=2010 +ss_abstract=Mobile device based human-centric sensing and user state recognition provide rich contextual information for various mobile applications and services. However, continuously capturing this contextual information consumes significant amount of energy and drains mobile device battery quickly. In this paper, we propose a computationally efficient algorithm to obtain the optimal sensor sampling policy under the assumption that the user state transition is Markovian. This Markov-optimal policy minimizes user state estimation error while satisfying a given energy consumption budget. We first compare the Markov-optimal policy with uniform periodic sensing for Markovian user state transitions and show that the improvements obtained depend upon the underlying state transition probabilities. We then apply the algorithm to two different sets of real experimental traces pertaining to user motion change and inter-user contacts and show that the Markov-optimal policy leads to an approximately 20% improvement over the naive uniform sensing policy. +ss_paper_id=7479eab032e493d84f8d1d6b0c24f4a4af9fe915 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_on_the_combinatorial_multiarmed_bandit_problem_with_markovian_rewards.txt b/database/original_documents/publications_text/2010_on_the_combinatorial_multiarmed_bandit_problem_with_markovian_rewards.txt new file mode 100644 index 0000000000000000000000000000000000000000..f14e03795e4f035f7d5bb1b51be465e4e26f0d69 --- /dev/null +++ b/database/original_documents/publications_text/2010_on_the_combinatorial_multiarmed_bandit_problem_with_markovian_rewards.txt @@ -0,0 +1,18 @@ +# Publication +title=On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards +venue=arXiv:1012.3005. +authors=['Yi Gai', 'Bhaskar Krishnamachari', 'Mingyan Liu'] +abstract=We consider a combinatorial generalization of the classical multi-armed bandit problem that is defined as follows. There is a given bipartite graph of M users and N¡YM resources. For each user-resource pair (i,j), there is an associated state that evolves as an aperiodic irreducible finite-state Markov chain with unknown parameters, with transitions occurring each time the particular user i is allocated resource j. The user i receives a reward that depends on the corresponding state each time it is allocated the resource j. The system objective is to learn the best matching of users to resources so that the long-term sum of the rewards received by all users is maximized. This corresponds to minimizing regret, defined here as the gap between the expected total reward that can be obtained by the best-possible static matching and the expected total reward that can be achieved by a given algorithm. We present a polynomial-storage and polynomial-complexity-per-step matching-learning algorithm for this problem. We show that this algorithm can achieve a regret that is uniformly arbitrarily close to logarithmic in time and polynomial in the number of users and resources. This formulation is broadly applicable to scheduling and switching problems in communication networks including cognitive radio networks and significantly extends prior results in the area. + +# Information +links.pdf=http://arxiv.org/abs/1012.3005 +links.semantic_scholar=https://www.semanticscholar.org/paper/d3fae2ae133b0f96b7b5a2720281a1edfa5751c7 +type=Technical Reports and Preprints +year=2010 +paper_id=f435306f +ss_title=On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '39037167', 'name': 'M. Liu'}] +ss_venue=Global Communications Conference +ss_year=2010 +ss_abstract=We consider a combinatorial generalization of the classical multi-armed bandit problem that is defined as follows. There is a given bipartite graph of M users and N¡YM resources. For each user-resource pair (i,j), there is an associated state that evolves as an aperiodic irreducible finite-state Markov chain with unknown parameters, with transitions occurring each time the particular user i is allocated resource j. The user i receives a reward that depends on the corresponding state each time it is allocated the resource j. The system objective is to learn the best matching of users to resources so that the long-term sum of the rewards received by all users is maximized. This corresponds to minimizing regret, defined here as the gap between the expected total reward that can be obtained by the best-possible static matching and the expected total reward that can be achieved by a given algorithm. We present a polynomial-storage and polynomial-complexity-per-step matching-learning algorithm for this problem. We show that this algorithm can achieve a regret that is uniformly arbitrarily close to logarithmic in time and polynomial in the number of users and resources. This formulation is broadly applicable to scheduling and switching problems in communication networks including cognitive radio networks and significantly extends prior results in the area. +ss_paper_id=d3fae2ae133b0f96b7b5a2720281a1edfa5751c7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_performance_of_round_robin_policies_for_dynamic_multichannel_access.txt b/database/original_documents/publications_text/2010_performance_of_round_robin_policies_for_dynamic_multichannel_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..45e036ba40566688df317a1774407cb7de74c297 --- /dev/null +++ b/database/original_documents/publications_text/2010_performance_of_round_robin_policies_for_dynamic_multichannel_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Performance of Round Robin Policies for Dynamic Multichannel Access +venue=Proc. of Information Theory and Applications Workshop (ITA), January 2010 +authors=['Changmian Wang', 'Bhaskar Krishnamachari', 'Qing Zhao', 'Geir E Øien'] +abstract=We consider two simple round-robin sensing policies for dynamic multi-channel access in cognitive radio networks-one in which channel switching takes place when the primary user is sensed to be present, and one in which a channel switching takes place when the primary user is sensed to be absent. Prior work has shown that these policies are each optimal under certain conditions when the primary user occupancy on each channel can be described as an independent two-state Markov chain. In this work, we consider a very general case where the primary user occupancy on each channel is an arbitrary stationary and ergodic two-state process, and derive bounds on their performance. The bounds provide insights into conditions under which these extremely simple policies perform well. + +# Information +links.pdf=/static/public/papers/WangEtal10ITA.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e1764bf146f8c71853c7ea6e7c93150caad20985 +type=Conference Papers +year=2010 +paper_id=44d800f2 +ss_title=Performance of round robin policies for dynamic multichannel access +ss_authors=[{'authorId': '34991524', 'name': 'Changmian Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}, {'authorId': '1762458', 'name': 'G. Øien'}] +ss_venue=Information Theory and Applications Workshop +ss_year=2010 +ss_abstract=We consider two simple round-robin sensing policies for dynamic multi-channel access in cognitive radio networks-one in which channel switching takes place when the primary user is sensed to be present, and one in which a channel switching takes place when the primary user is sensed to be absent. Prior work has shown that these policies are each optimal under certain conditions when the primary user occupancy on each channel can be described as an independent two-state Markov chain. In this work, we consider a very general case where the primary user occupancy on each channel is an arbitrary stationary and ergodic two-state process, and derive bounds on their performance. The bounds provide insights into conditions under which these extremely simple policies perform well. +ss_paper_id=e1764bf146f8c71853c7ea6e7c93150caad20985 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_routing_without_routes_the_backpressure_collection_protocol.txt b/database/original_documents/publications_text/2010_routing_without_routes_the_backpressure_collection_protocol.txt new file mode 100644 index 0000000000000000000000000000000000000000..24e7646875722663691582619b38997279d5da02 --- /dev/null +++ b/database/original_documents/publications_text/2010_routing_without_routes_the_backpressure_collection_protocol.txt @@ -0,0 +1,18 @@ +# Publication +title=Routing Without Routes: The Backpressure Collection Protocol +venue=IPSN, April, 2010, Winner of IP Track Best Paper Award +authors=['Scott Moeller', 'Avinash Sridharan', 'Bhaskar Krishnamachari', 'Omprakash Gnawali'] +abstract=Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is a considerable theoretical literature on backpressure routing, it has not been implemented on practical systems to date due to concerns about packet looping, the effect of link losses, large packet delays, and scalability. Addressing these concerns, we present the Backpressure Collection Protocol (BCP) for sensor networks, the first ever implementation of dynamic backpressure routing in wireless networks. In particular, we demonstrate for the first time that replacing the traditional FIFO queue service in backpressure routing with LIFO queues reduces the average end-to-end packet delays for delivered packets drastically (75% under high load, 98% under low load). Further, we improve backpressure scalability by introducing a new concept of floating queues into the backpressure framework. Under static network settings, BCP shows a more than 60% improvement in max-min rate over the state of the art Collection Tree Protocol (CTP). We also empirically demonstrate the superior delivery performance of BCP in highly dynamic network settings, including conditions of extreme external interference and highly mobile sinks. + +# Information +links.pdf=/static/public/papers/IPSN10_Moeller_Sridharan_Krishnamachari_Gnawali.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/828eae509109392fbabf96cd32d146786c227228 +type=Conference Papers +year=2010 +paper_id=8a732b68 +ss_title=Routing without routes: the backpressure collection protocol +ss_authors=[{'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '2075075', 'name': 'A. Sridharan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1689033', 'name': 'O. Gnawali'}] +ss_venue=International Symposium on Information Processing in Sensor Networks +ss_year=2010 +ss_abstract=Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is a considerable theoretical literature on backpressure routing, it has not been implemented on practical systems to date due to concerns about packet looping, the effect of link losses, large packet delays, and scalability. Addressing these concerns, we present the Backpressure Collection Protocol (BCP) for sensor networks, the first ever implementation of dynamic backpressure routing in wireless networks. In particular, we demonstrate for the first time that replacing the traditional FIFO queue service in backpressure routing with LIFO queues reduces the average end-to-end packet delays for delivered packets drastically (75% under high load, 98% under low load). Further, we improve backpressure scalability by introducing a new concept of floating queues into the backpressure framework. Under static network settings, BCP shows a more than 60% improvement in max-min rate over the state of the art Collection Tree Protocol (CTP). We also empirically demonstrate the superior delivery performance of BCP in highly dynamic network settings, including conditions of extreme external interference and highly mobile sinks. +ss_paper_id=828eae509109392fbabf96cd32d146786c227228 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_subcarrier_allocation_in_multiuser_ofdm_systems_complexity_and_approximability.txt b/database/original_documents/publications_text/2010_subcarrier_allocation_in_multiuser_ofdm_systems_complexity_and_approximability.txt new file mode 100644 index 0000000000000000000000000000000000000000..0e22a5aa147238ada145f17cbfcb3e2b15a8f725 --- /dev/null +++ b/database/original_documents/publications_text/2010_subcarrier_allocation_in_multiuser_ofdm_systems_complexity_and_approximability.txt @@ -0,0 +1,18 @@ +# Publication +title=Subcarrier Allocation in Multiuser OFDM Systems: Complexity and Approximability +venue=IEEE WCNC, April 2010 +authors=['Pai-Han Huang', 'Yi Gai', 'Ashwin Sridharan', 'Bhaskar Krishnamachari'] +abstract=We consider a number of related problem formulations pertaining to adaptive subcarrier allocation in multiuser Orthogonal Frequency-Division Multiplexing (OFDM) systems, and prove that they are NP-hard. Thus there exist no known algorithms that can provide optimal solutions for all instances of these problems in polynomial time. We further prove that these problems are hard to approximate in polynomial time. Finally, we discuss qualitatively the settings under which worst case performance is likely to be observed. + +# Information +links.pdf=/static/public/papers/Subcarrier_WCNC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1e6a7e2509b663cea08f9d91f28affa6397b6fc5 +type=Conference Papers +year=2010 +paper_id=bfaa4e2b +ss_title=Subcarrier Allocation in Multiuser OFDM Systems: Complexity and Approximability +ss_authors=[{'authorId': '3137372', 'name': 'P. Huang'}, {'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '8357650', 'name': 'Ashwin Sridharan'}] +ss_venue=2010 IEEE Wireless Communication and Networking Conference +ss_year=2010 +ss_abstract=We consider a number of related problem formulations pertaining to adaptive subcarrier allocation in multiuser Orthogonal Frequency-Division Multiplexing (OFDM) systems, and prove that they are NP-hard. Thus there exist no known algorithms that can provide optimal solutions for all instances of these problems in polynomial time. We further prove that these problems are hard to approximate in polynomial time. Finally, we discuss qualitatively the settings under which worst case performance is likely to be observed. +ss_paper_id=1e6a7e2509b663cea08f9d91f28affa6397b6fc5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2010_the_factor_inferring_protocol_performance_using_interlink_reception_correlation.txt b/database/original_documents/publications_text/2010_the_factor_inferring_protocol_performance_using_interlink_reception_correlation.txt new file mode 100644 index 0000000000000000000000000000000000000000..962ea986e66d95fe1f62cb72bdfacdb519b79cef --- /dev/null +++ b/database/original_documents/publications_text/2010_the_factor_inferring_protocol_performance_using_interlink_reception_correlation.txt @@ -0,0 +1,18 @@ +# Publication +title=The κ-factor: Inferring Protocol Performance Using Inter-Link Reception Correlation +venue=16th Annual International Conference on Mobile Computing and Networking (Mobicom), September 2010 +authors=['Kannan Srinivasan', 'Mayank Jain', 'Jung Il Choi', 'Tahir Azim', 'Edward S Kim', 'Philip Levis', 'Bhaskar Krishnamachari'] +abstract=This paper explores metrics that capture to what degree packet reception on different links is correlated. Specifically, it explores metrics that shed light on when and why opportunistic routing and network coding protocols perform well (or badly). It presents a new metric, κ that, unlike existing widely used metrics, has no bias based on the packet reception ratios of links. This lack of bias makes κ a better predictor of performance of opportunistic routing and network coding protocols. Comparing Deluge and Rateless Deluge, Deluge's network coding counterpart, we find that κ can predict which of the two is best suited for a given environment. For example, irrespective of the packet reception ratios of the links, if the average κ of the link pairs is very high (close to 1.0), then using a protocol that does not code works better than using a network coding protocol. Measuring κ on several 802.15.4 and 802.11 testbeds, we find that it varies significantly across network topologies and link layers. κ can be a metric for quantifying what kind of a network is present and help decide which protocols to use for that network. + +# Information +links.pdf=http://anrg.usc.edu/www/papers/TheKappaFactor_Srinivasan.PDF +links.semantic_scholar=https://www.semanticscholar.org/paper/f5aab8425ebba2556103d5dd939063a616e8cf01 +type=Conference Papers +year=2010 +paper_id=a76ffd24 +ss_title=The κ factor: inferring protocol performance using inter-link reception correlation +ss_authors=[{'authorId': '9169035', 'name': 'K. Srinivasan'}, {'authorId': '2150987347', 'name': 'Mayank Jain'}, {'authorId': '1810457', 'name': 'J. Choi'}, {'authorId': '34948637', 'name': 'T. Azim'}, {'authorId': '2117008247', 'name': 'Edward S. Kim'}, {'authorId': '1721681', 'name': 'P. Levis'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM/IEEE International Conference on Mobile Computing and Networking +ss_year=2010 +ss_abstract=This paper explores metrics that capture to what degree packet reception on different links is correlated. Specifically, it explores metrics that shed light on when and why opportunistic routing and network coding protocols perform well (or badly). It presents a new metric, κ that, unlike existing widely used metrics, has no bias based on the packet reception ratios of links. This lack of bias makes κ a better predictor of performance of opportunistic routing and network coding protocols. Comparing Deluge and Rateless Deluge, Deluge's network coding counterpart, we find that κ can predict which of the two is best suited for a given environment. For example, irrespective of the packet reception ratios of the links, if the average κ of the link pairs is very high (close to 1.0), then using a protocol that does not code works better than using a network coding protocol. Measuring κ on several 802.15.4 and 802.11 testbeds, we find that it varies significantly across network topologies and link layers. κ can be a metric for quantifying what kind of a network is present and help decide which protocols to use for that network. +ss_paper_id=f5aab8425ebba2556103d5dd939063a616e8cf01 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_a_packet_droppingbased_incentive_mechanism_for_mm1_queues_with_selfish_users.txt b/database/original_documents/publications_text/2011_a_packet_droppingbased_incentive_mechanism_for_mm1_queues_with_selfish_users.txt new file mode 100644 index 0000000000000000000000000000000000000000..68bd0665908967a3c6004ec029668b0480a15c2e --- /dev/null +++ b/database/original_documents/publications_text/2011_a_packet_droppingbased_incentive_mechanism_for_mm1_queues_with_selfish_users.txt @@ -0,0 +1,18 @@ +# Publication +title=A Packet Dropping-Based Incentive Mechanism for M/M/1 Queues with Selfish Users +venue=the 30th IEEE International Conference on Computer Communications (IEEE INFOCOM 2011), China, April, 2011.(Acceptance rate: 15.9% = 291/1823 ) +authors=['Yi Gai', 'Hua Liu', 'Bhaskar Krishnamachari'] +abstract=We study a novel game theoretic incentive mechanism design problem for network congestion control in the context of selfish users sending data through a single store-and-forward router (a.k.a. “server” in this work). The scenario is modeled as an M/M/1 queueing game with each user (a.k.a. “player”) aiming to optimize a tradeoff between throughput and delay in a selfish distributed manner. We first show that the original game has an inefficient unique Nash Equilibrium (NE). In order to improve the outcome efficiency, we propose an incentivizing packet dropping scheme that can be easily implemented at the server. We then show that if the packet dropping scheme is a function of the sum of arrival rates, we have a modified M/M/1 queueing game that is an ordinal potential game with a unique NE. In particular, for a linear packet dropping scheme, which is similar to the Random Early Detection (RED) algorithm used with TCP, we show that there exists a unique Nash Equilibrium. For this scheme, the social welfare (expressed either as the summation of utilities of all players or log summation of utilities of all players) at the equilibrium point can be arbitrarily close to the social welfare at the global optimal point. Finally, we show that the simple best response dynamic converges to this unique efficient Nash Equilibrium. + +# Information +links.pdf=/static/public/papers/GaiLiuKrishnamachari_Infocom2011.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f6cb8d1c23ffcc143a5b36c98a419e1e4440996a +type=Conference Papers +year=2011 +paper_id=becc4f8d +ss_title=A packet dropping-based incentive mechanism for M/M/1 queues with selfish users +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2011 Proceedings IEEE INFOCOM +ss_year=2011 +ss_abstract=We study a novel game theoretic incentive mechanism design problem for network congestion control in the context of selfish users sending data through a single store-and-forward router (a.k.a. “server” in this work). The scenario is modeled as an M/M/1 queueing game with each user (a.k.a. “player”) aiming to optimize a tradeoff between throughput and delay in a selfish distributed manner. We first show that the original game has an inefficient unique Nash Equilibrium (NE). In order to improve the outcome efficiency, we propose an incentivizing packet dropping scheme that can be easily implemented at the server. We then show that if the packet dropping scheme is a function of the sum of arrival rates, we have a modified M/M/1 queueing game that is an ordinal potential game with a unique NE. In particular, for a linear packet dropping scheme, which is similar to the Random Early Detection (RED) algorithm used with TCP, we show that there exists a unique Nash Equilibrium. For this scheme, the social welfare (expressed either as the summation of utilities of all players or log summation of utilities of all players) at the equilibrium point can be arbitrarily close to the social welfare at the global optimal point. Finally, we show that the simple best response dynamic converges to this unique efficient Nash Equilibrium. +ss_paper_id=f6cb8d1c23ffcc143a5b36c98a419e1e4440996a \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_base_station_operation_and_user_association_mechanisms_for_energydelay_tradeoffs_in_green_cellular_networks.txt b/database/original_documents/publications_text/2011_base_station_operation_and_user_association_mechanisms_for_energydelay_tradeoffs_in_green_cellular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..dc83de743a98814ef7b2da721503949d0de8c7af --- /dev/null +++ b/database/original_documents/publications_text/2011_base_station_operation_and_user_association_mechanisms_for_energydelay_tradeoffs_in_green_cellular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Base Station Operation and User Association Mechanisms for Energy-Delay Tradeoffs in Green Cellular Networks +venue=IEEE Journal on Selected Area in Communications: Special Issue on Energy-Efficient Wireless Communications, vol. 29, no. 8, pp.1525-1536, Sept. 2011.” +authors=['Kyuho Son', 'Hongseok Kim', 'Yung Yi', 'Bhaskar Krishnamachari'] +abstract=Energy-efficiency, one of the major design goals in wireless cellular networks, has received much attention lately, due to increased awareness of environmental and economic issues for network operators. In this paper, we develop a theoretical framework for BS energy saving that encompasses dynamic BS operation and the related problem of user association together. Specifically, we formulate a total cost minimization that allows for a flexible tradeoff between flow-level performance and energy consumption. For the user association problem, we propose an optimal energy-efficient user association policy and further present a distributed implementation with provable convergence. For the BS operation problem (i.e., BS switching on/off), which is a challenging combinatorial problem, we propose simple greedy-on and greedy-off algorithms that are inspired by the mathematical background of submodularity maximization problem. Moreover, we propose other heuristic algorithms based on the distances between BSs or the utilizations of BSs that do not impose any additional signaling overhead and thus are easy to implement in practice. Extensive simulations under various practical configurations demonstrate that the proposed user association and BS operation algorithms can significantly reduce energy consumption. + +# Information +links.pdf=/static/public/papers/JSAC2011_GreenBS.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4fda3112a78c3b3ceb21b4c54b8dd6e1b5f08be8 +type=Journal Papers +year=2011 +paper_id=31d723de +ss_title=Base Station Operation and User Association Mechanisms for Energy-Delay Tradeoffs in Green Cellular Networks +ss_authors=[{'authorId': '1714987', 'name': 'K. Son'}, {'authorId': '2486748', 'name': 'Hongseok Kim'}, {'authorId': '1725687', 'name': 'Yung Yi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Journal on Selected Areas in Communications +ss_year=2011 +ss_abstract=Energy-efficiency, one of the major design goals in wireless cellular networks, has received much attention lately, due to increased awareness of environmental and economic issues for network operators. In this paper, we develop a theoretical framework for BS energy saving that encompasses dynamic BS operation and the related problem of user association together. Specifically, we formulate a total cost minimization that allows for a flexible tradeoff between flow-level performance and energy consumption. For the user association problem, we propose an optimal energy-efficient user association policy and further present a distributed implementation with provable convergence. For the BS operation problem (i.e., BS switching on/off), which is a challenging combinatorial problem, we propose simple greedy-on and greedy-off algorithms that are inspired by the mathematical background of submodularity maximization problem. Moreover, we propose other heuristic algorithms based on the distances between BSs or the utilizations of BSs that do not impose any additional signaling overhead and thus are easy to implement in practice. Extensive simulations under various practical configurations demonstrate that the proposed user association and BS operation algorithms can significantly reduce energy consumption. +ss_paper_id=4fda3112a78c3b3ceb21b4c54b8dd6e1b5f08be8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_decentralized_online_learning_algorithms_for_opportunistic_spectrum_access.txt b/database/original_documents/publications_text/2011_decentralized_online_learning_algorithms_for_opportunistic_spectrum_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..f198e8e22bfb42314f10e533f0120fb9016fcba7 --- /dev/null +++ b/database/original_documents/publications_text/2011_decentralized_online_learning_algorithms_for_opportunistic_spectrum_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Decentralized Online Learning Algorithms for Opportunistic Spectrum Access +venue=the IEEE Global Communications Conference (GLOBECOM 2011), Houston, USA, December, 2011. +authors=['Yi Gai', 'Bhaskar Krishnamachari'] +abstract=The fundamental problem of multiple secondary users contending for opportunistic spectrum access over multiple channels in cognitive radio networks has been formulated recently as a decentralized multi-armed bandit (D-MAB) problem. In a D-MAB problem there are M users and N arms (channels) that each offer i.i.d. stochastic rewards with unknown means so long as they are accessed without collision. The goal is to design a decentralized online learning policy that incurs minimal regret, defined as the difference between the total expected rewards accumulated by a model-aware genie, and that obtained by all users applying the policy. We make two contributions in this paper. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the K-th-ranked user to learn to access the arm offering the K-th highest mean reward. For this problem, we present the first distributed policy that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present a distributed policy that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed policies in the literature. Both of our distributed policies make use of an innovative modification of the well known UCB1 policy for the classic multi-armed bandit problem that allows a single user to learn how to play the arm that yields the K-th largest mean reward. + +# Information +links.pdf=/static/public/papers/Globecom2011DecentralizedMAB.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/28df3f3d406879ecfa2034d9f1bd69bc3e52dcd2 +type=Conference Papers +year=2011 +paper_id=b92b047f +ss_title=Decentralized Online Learning Algorithms for Opportunistic Spectrum Access +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Global Communications Conference +ss_year=2011 +ss_abstract=The fundamental problem of multiple secondary users contending for opportunistic spectrum access over multiple channels in cognitive radio networks has been formulated recently as a decentralized multi-armed bandit (D-MAB) problem. In a D-MAB problem there are M users and N arms (channels) that each offer i.i.d. stochastic rewards with unknown means so long as they are accessed without collision. The goal is to design a decentralized online learning policy that incurs minimal regret, defined as the difference between the total expected rewards accumulated by a model-aware genie, and that obtained by all users applying the policy. We make two contributions in this paper. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the K-th-ranked user to learn to access the arm offering the K-th highest mean reward. For this problem, we present the first distributed policy that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present a distributed policy that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed policies in the literature. Both of our distributed policies make use of an innovative modification of the well known UCB1 policy for the classic multi-armed bandit problem that allows a single user to learn how to play the arm that yields the K-th largest mean reward. +ss_paper_id=28df3f3d406879ecfa2034d9f1bd69bc3e52dcd2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_delay_constrained_minimum_energy_broadcast_in_cooperative_wireless_networks.txt b/database/original_documents/publications_text/2011_delay_constrained_minimum_energy_broadcast_in_cooperative_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..b9228b1be583b1356c2ecbc2e7e9219ae4eb144e --- /dev/null +++ b/database/original_documents/publications_text/2011_delay_constrained_minimum_energy_broadcast_in_cooperative_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Delay Constrained Minimum Energy Broadcast in Cooperative Wireless Networks +venue=the 30th IEEE International Conference on Computer Communications (IEEE INFOCOM 2011), China, April, 2011.(Acceptance rate: 15.9% = 291/1823 ) +authors=['Marjan Baghaie', 'Bhaskar Krishnamachari'] +abstract=We formulate the problem of delay constrained energy-efficient broadcast in cooperative multihop wireless networks. We show that this important problem is not only NP-complete, but also o(log(n)) inapproximable. We derive approximation results and an analytical lower-bound for this problem. We break this NP hard problem into three parts: ordering, scheduling and power control. We show that when the ordering is given, the joint scheduling and power-control problem can be solved in polynomial time by a novel algorithm that combines dynamic programming and linear programming to yield the minimum energy broadcast for a given delay constraint. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. We use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of our cooperative algorithm with a smart non-cooperative algorithm. + +# Information +links.pdf=/static/public/papers/infocom11.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3100ad41506220100ed426f967f9598021763c00 +type=Conference Papers +year=2011 +paper_id=501fe3a7 +ss_title=Delay constrained minimum energy broadcast in cooperative wireless networks +ss_authors=[{'authorId': '2402697', 'name': 'M. Baghaie'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2011 Proceedings IEEE INFOCOM +ss_year=2011 +ss_abstract=We formulate the problem of delay constrained energy-efficient broadcast in cooperative multihop wireless networks. We show that this important problem is not only NP-complete, but also o(log(n)) inapproximable. We derive approximation results and an analytical lower-bound for this problem. We break this NP hard problem into three parts: ordering, scheduling and power control. We show that when the ordering is given, the joint scheduling and power-control problem can be solved in polynomial time by a novel algorithm that combines dynamic programming and linear programming to yield the minimum energy broadcast for a given delay constraint. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. We use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of our cooperative algorithm with a smart non-cooperative algorithm. +ss_paper_id=3100ad41506220100ed426f967f9598021763c00 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt b/database/original_documents/publications_text/2011_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..6463468662c69644c250ef1d69cdb23f6d6f0535 --- /dev/null +++ b/database/original_documents/publications_text/2011_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt @@ -0,0 +1,19 @@ +# Publication +title=Distributed Storage Codes Reduce Latency in Vehicular Networks +venue=CENG-2011-3. +authors=['Maheswaran Sathiamoorthy', 'Alexandros G Dimakis', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through realistic trace-based simulations. We find that coding offers substantial benefits over simple replication when the file sizes are large compared to the average download bandwidth available per encounter. Our simulations, based on a large real vehicle trace from Beijing combined with a realistic radio link quality model for a IEEE 802.11p dedicated short range communication (DSRC) radio, demonstrate that coding provides significant cost reduction in vehicular networks. + +# Information +links.pdf=http://ceng.usc.edu/ +links.code=http://ceng.usc.edu/ +links.semantic_scholar=https://www.semanticscholar.org/paper/404ad4dab5f81633b8b7a71f859bb734300950b2 +type=Technical Reports and Preprints +year=2011 +paper_id=99b7f786 +ss_title=Distributed storage codes reduce latency in vehicular networks +ss_authors=[{'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1718469', 'name': 'A. Dimakis'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2012 +ss_abstract=We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through realistic trace-based simulations. We find that coding offers substantial benefits over simple replication when the file sizes are large compared to the average download bandwidth available per encounter. Our simulations, based on a large real vehicle trace from Beijing combined with a realistic radio link quality model for a IEEE 802.11p dedicated short range communication (DSRC) radio, demonstrate that coding provides significant cost reduction in vehicular networks. +ss_paper_id=404ad4dab5f81633b8b7a71f859bb734300950b2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_energyaware_hierarchical_cell_configuration_from_deployment_to_operation.txt b/database/original_documents/publications_text/2011_energyaware_hierarchical_cell_configuration_from_deployment_to_operation.txt new file mode 100644 index 0000000000000000000000000000000000000000..aaab9937f79e937b670f5dd0fb4c259ef37b4e5d --- /dev/null +++ b/database/original_documents/publications_text/2011_energyaware_hierarchical_cell_configuration_from_deployment_to_operation.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-Aware Hierarchical Cell Configuration: from Deployment to Operation +venue=in Proc. IEEE INFOCOM 2011 Workshop on Green Communications and Networking, Shanghai, China, Apr. 2011, pp. 289-294. +authors=['Kyuho Son', 'Eunsung Oh', 'Bhaskar Krishnamachari'] +abstract=This paper develops an energy-aware hierarchical cell configuration framework that encompasses both deployment and operation in downlink cellular networks. Specifically, we first formulate a general problem pertaining to total energy consumption minimization while satisfying the requirement of area spectral efficiency (ASE), and then decompose it into deployment problem at peak time and operation problem at off-peak time. For the deployment problem, we start from an observation about various topologies including the real deployment of BSs that there is a strong correlation between the area covered by an additional micro BS and the increment of ASE. Under such an assumption, we prove the submodularity of ASE function with respect to micro BS deployment and propose a greedy algorithm that is shown to be a constant-factor approximation of optimal deployment. Although the greedy algorithm can be also applied as an offline centralized solution for the operation problem, we further propose online distributed algorithms with low complexity and signaling overhead to have more practical solutions. Extensive simulations based on the acquired real BS topologies and traffic profiles show that the proposed algorithms can significantly reduce the energy consumption. + +# Information +links.pdf=/static/public/papers/INFOCOM-GCN2011.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/32681caa999f9d8e2226250d4e542f300a1d4730 +type=Conference Papers +year=2011 +paper_id=264f1321 +ss_title=Energy-aware hierarchical cell configuration: From deployment to operation +ss_authors=[{'authorId': '1714987', 'name': 'K. Son'}, {'authorId': '1977686', 'name': 'Eunsung Oh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Conference on Computer Communications Workshops +ss_year=2011 +ss_abstract=This paper develops an energy-aware hierarchical cell configuration framework that encompasses both deployment and operation in downlink cellular networks. Specifically, we first formulate a general problem pertaining to total energy consumption minimization while satisfying the requirement of area spectral efficiency (ASE), and then decompose it into deployment problem at peak time and operation problem at off-peak time. For the deployment problem, we start from an observation about various topologies including the real deployment of BSs that there is a strong correlation between the area covered by an additional micro BS and the increment of ASE. Under such an assumption, we prove the submodularity of ASE function with respect to micro BS deployment and propose a greedy algorithm that is shown to be a constant-factor approximation of optimal deployment. Although the greedy algorithm can be also applied as an offline centralized solution for the operation problem, we further propose online distributed algorithms with low complexity and signaling overhead to have more practical solutions. Extensive simulations based on the acquired real BS topologies and traffic profiles show that the proposed algorithms can significantly reduce the energy consumption. +ss_paper_id=32681caa999f9d8e2226250d4e542f300a1d4730 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_lifobackpressure_achieves_near_optimal_utilitydelay_tradeoff.txt b/database/original_documents/publications_text/2011_lifobackpressure_achieves_near_optimal_utilitydelay_tradeoff.txt new file mode 100644 index 0000000000000000000000000000000000000000..b37eb0e7b0a5e3d6843cfbfd3cd0c525bf4cccb0 --- /dev/null +++ b/database/original_documents/publications_text/2011_lifobackpressure_achieves_near_optimal_utilitydelay_tradeoff.txt @@ -0,0 +1,18 @@ +# Publication +title=LIFO-Backpressure achieves near optimal utility-delay tradeoff +venue=“WiOpt 2011: 70-77” +authors=['Longbo Huang', 'Scott Moeller', 'Michael J Neely', 'Bhaskar Krishnamachari'] +abstract=There has been considerable work developing a stochastic network utility maximization framework using Backpressure algorithms, also known as MaxWeight. A key open problem has been the development of utility-optimal algorithms that are also delay-efficient. In this paper, we show that the Backpressure algorithm, when combined with the last-in-first-out (LIFO) queueing discipline (called LIFO-Backpressure), is able to achieve a utility that is within O(1/V) of the optimal value, for any scalar V ≥ 1, while maintaining an average delay of O([log(V)]2) for all but a tiny fraction of the network traffic. This result holds for a general class of problems with Markovian dynamics. Remarkably, the performance of LIFO-Backpressure can be achieved by simply changing the queueing discipline; it requires no other modifications of the original Backpressure algorithm. We validate the results through empirical measurements from a sensor network testbed, which show a good match between theory and practice. Because some packets may stay in the queues for a very long time under LIFO-Backpressure, we further develop the LIFOp-Backpressure algorithm, which generalizes LIFOp-Backpressure by allowing interleaving between first-in-first-out (FIFO) and LIFO. We show that LIFOp Backpressure also achieves the same O(1/V) close-to-optimal utility performance and guarantees an average delay of O([log(V)]2) for the packets that are served during the LIFO period. + +# Information +links.pdf=/static/public/papers/qla-lifo-wiopt11-ea-v13.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b5db0a1471202d8da2ef93089aee3a34e428afd1 +type=Conference Papers +year=2011 +paper_id=a1b96c87 +ss_title=LIFO-Backpressure Achieves Near-Optimal Utility-Delay Tradeoff +ss_authors=[{'authorId': None, 'name': 'Longbo Huang'}, {'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '1705088', 'name': 'M. Neely'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE/ACM Transactions on Networking +ss_year=2010 +ss_abstract=There has been considerable work developing a stochastic network utility maximization framework using Backpressure algorithms, also known as MaxWeight. A key open problem has been the development of utility-optimal algorithms that are also delay-efficient. In this paper, we show that the Backpressure algorithm, when combined with the last-in-first-out (LIFO) queueing discipline (called LIFO-Backpressure), is able to achieve a utility that is within O(1/V) of the optimal value, for any scalar V ≥ 1, while maintaining an average delay of O([log(V)]2) for all but a tiny fraction of the network traffic. This result holds for a general class of problems with Markovian dynamics. Remarkably, the performance of LIFO-Backpressure can be achieved by simply changing the queueing discipline; it requires no other modifications of the original Backpressure algorithm. We validate the results through empirical measurements from a sensor network testbed, which show a good match between theory and practice. Because some packets may stay in the queues for a very long time under LIFO-Backpressure, we further develop the LIFOp-Backpressure algorithm, which generalizes LIFOp-Backpressure by allowing interleaving between first-in-first-out (FIFO) and LIFO. We show that LIFOp Backpressure also achieves the same O(1/V) close-to-optimal utility performance and guarantees an average delay of O([log(V)]2) for the packets that are served during the LIFO period. +ss_paper_id=b5db0a1471202d8da2ef93089aee3a34e428afd1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_load_balancing_by_network_curvature_control.txt b/database/original_documents/publications_text/2011_load_balancing_by_network_curvature_control.txt new file mode 100644 index 0000000000000000000000000000000000000000..b118df08ee4a477abe09aadc5339ee8865fe5edb --- /dev/null +++ b/database/original_documents/publications_text/2011_load_balancing_by_network_curvature_control.txt @@ -0,0 +1,18 @@ +# Publication +title=Load Balancing by Network Curvature Control +venue=“Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844, Vol. VI (2011), No. 1 (March), pp. 134-149” +authors=['M Lou', 'E Jonckheere', 'F Bonahon', 'Y Baryshnikov', 'B Krishnamachari'] +abstract=The traditional heavy-tailed interpretation of congestion is chal- lenged in this paper. A counter example shows that a network with uniform degree can have significant traffic congestion when the degree is larger than 6. A profound understanding of what causes congestion is reestablished, based on the network curvature theorem. A load balancing algorithm based on curvature control is presented with network applications. + +# Information +links.pdf=/static/public/papers/loadbalancing_lou.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/36923573e8b29ae3b13887ff8406ff8d24ad720d +type=Journal Papers +year=2011 +paper_id=fd533ec7 +ss_title=Load Balancing by Network Curvature Control +ss_authors=[{'authorId': '38929192', 'name': 'M. Lou'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}, {'authorId': '2979846', 'name': 'F. Bonahon'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1753404', 'name': 'yuliy baryshnikov'}] +ss_venue=International Journal of Computers Communications & Control +ss_year=2011 +ss_abstract=The traditional heavy-tailed interpretation of congestion is chal- lenged in this paper. A counter example shows that a network with uniform degree can have significant traffic congestion when the degree is larger than 6. A profound understanding of what causes congestion is reestablished, based on the network curvature theorem. A load balancing algorithm based on curvature control is presented with network applications. +ss_paper_id=36923573e8b29ae3b13887ff8406ff8d24ad720d \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_multichannel_scheduling_and_spanning_trees_throughputdelay_tradeoff_for_fast_data_collection_in_sensor_networks.txt b/database/original_documents/publications_text/2011_multichannel_scheduling_and_spanning_trees_throughputdelay_tradeoff_for_fast_data_collection_in_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..ad82912ace15eaaac388c596363b3aef248faba9 --- /dev/null +++ b/database/original_documents/publications_text/2011_multichannel_scheduling_and_spanning_trees_throughputdelay_tradeoff_for_fast_data_collection_in_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Multi-Channel Scheduling and Spanning Trees: Throughput-Delay Tradeoff for Fast Data Collection in Sensor Networks +venue=IEEE/ACM Transactions on Networking, 2011. [An error in one of the illustrative figures of this paper is corrected here]. +authors=['Amitabha Ghosh', 'Ozlem Durmaz Incel', 'V S Anil Kumar', 'Bhaskar Krishnamachari'] +abstract=We investigate the tradeoff between two mutually conflicting performance objectives-throughput and delay-for fast, periodic data collection in tree-based sensor networks arbitrarily deployed in 2-D. Two primary factors that affect the data collection rate (throughput) and timeliness (delay) are: 1) efficiency of the link scheduling protocol, and 2) structure of the routing tree in terms of its node degrees and radius. In this paper, we utilize multiple frequency channels and design an efficient link scheduling protocol that gives a constant factor approximation on the optimal throughput in delivering aggregated data from all the nodes to the sink. To minimize the maximum delay subject to a given throughput bound, we also design an (α, β)-bicriteria approximation algorithm to construct a Bounded-Degree Minimum-Radius Spanning Tree, with the radius of the tree at most β times the minimum possible radius for a given degree bound Δ*, and the degree of any node at most Δ* + α , where α and β are positive constants. Lastly, we evaluate the efficiency of our algorithms on different types of spanning trees and show that multichannel scheduling, combined with optimal routing topologies, can achieve the best of both worlds in terms of maximizing the aggregated data collection rate and minimizing the maximum packet delay. + +# Information +links.pdf=/static/public/papers/TON-2011-accepted.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/211abe54c99982fd9d0cc6ddb980a39a93d8d958 +type=Journal Papers +year=2011 +paper_id=48917990 +ss_title=Multichannel Scheduling and Spanning Trees: Throughput–Delay Tradeoff for Fast Data Collection in Sensor Networks +ss_authors=[{'authorId': '144942535', 'name': 'Amitava Ghosh'}, {'authorId': '2915257', 'name': 'Özlem Durmaz Incel'}, {'authorId': '2011494', 'name': 'V. S. A. Kumar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE/ACM Transactions on Networking +ss_year=2011 +ss_abstract=We investigate the tradeoff between two mutually conflicting performance objectives-throughput and delay-for fast, periodic data collection in tree-based sensor networks arbitrarily deployed in 2-D. Two primary factors that affect the data collection rate (throughput) and timeliness (delay) are: 1) efficiency of the link scheduling protocol, and 2) structure of the routing tree in terms of its node degrees and radius. In this paper, we utilize multiple frequency channels and design an efficient link scheduling protocol that gives a constant factor approximation on the optimal throughput in delivering aggregated data from all the nodes to the sink. To minimize the maximum delay subject to a given throughput bound, we also design an (α, β)-bicriteria approximation algorithm to construct a Bounded-Degree Minimum-Radius Spanning Tree, with the radius of the tree at most β times the minimum possible radius for a given degree bound Δ*, and the degree of any node at most Δ* + α , where α and β are positive constants. Lastly, we evaluate the efficiency of our algorithms on different types of spanning trees and show that multichannel scheduling, combined with optimal routing topologies, can achieve the best of both worlds in terms of maximizing the aggregated data collection rate and minimizing the maximum packet delay. +ss_paper_id=211abe54c99982fd9d0cc6ddb980a39a93d8d958 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_on_a_restless_multiarmed_bandit_problem_with_nonidentical_arms.txt b/database/original_documents/publications_text/2011_on_a_restless_multiarmed_bandit_problem_with_nonidentical_arms.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a73c6c5caaa818b70fa291fd011cad7d91fc746 --- /dev/null +++ b/database/original_documents/publications_text/2011_on_a_restless_multiarmed_bandit_problem_with_nonidentical_arms.txt @@ -0,0 +1,18 @@ +# Publication +title=On a Restless Multi-Armed Bandit Problem with Non-Identical Arms +venue=In Proceedings of the Allerton Conference on Communication, Control, and Computing, 2011 +authors=['Naumaan Nayyar', 'Yi Gai', 'Bhaskar Krishnamachari'] +abstract=We consider the following learning problem motivated by opportunistic spectrum access in cognitive radio networks. There are N independent Gilbert-Elliott channels with possibly non-identical transition matrices. It is desired to have an online policy to maximize the long-term expected discounted reward from accessing one channel at each time dynamically. While there is a stream of recent results on this problem when the channels are identical, much less is known for the harder case of non-identical channels. We provide the first characterization of the structure of the optimal policy for this problem when the channels can be non-identical, in the Bayesian case (when the transition matrices are known). We also provide the first provably efficient learning algorithm for a non-Bayesian version of this problem (when the transition matrices are unknown). Specifically, for the special case of two positively correlated channels, we use the structure we identify to develop a novel mapping to a different multi-armed bandit with countably-infinite arms, in which each arm corresponds to a threshold-based policy. Using this mapping, we propose a policy that achieves near-logarithmic regret for this problem with respect to an ∊-optimal solution. + +# Information +links.pdf=/static/public/papers/Allerton2011.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ac4561c92f0f724bbae278e82c14b4d862b1e4f0 +type=Conference Papers +year=2011 +paper_id=09fa1c17 +ss_title=On a restless multi-armed bandit problem with non-identical arms +ss_authors=[{'authorId': '40511871', 'name': 'N. Nayyar'}, {'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Allerton Conference on Communication, Control, and Computing +ss_year=2011 +ss_abstract=We consider the following learning problem motivated by opportunistic spectrum access in cognitive radio networks. There are N independent Gilbert-Elliott channels with possibly non-identical transition matrices. It is desired to have an online policy to maximize the long-term expected discounted reward from accessing one channel at each time dynamically. While there is a stream of recent results on this problem when the channels are identical, much less is known for the harder case of non-identical channels. We provide the first characterization of the structure of the optimal policy for this problem when the channels can be non-identical, in the Bayesian case (when the transition matrices are known). We also provide the first provably efficient learning algorithm for a non-Bayesian version of this problem (when the transition matrices are unknown). Specifically, for the special case of two positively correlated channels, we use the structure we identify to develop a novel mapping to a different multi-armed bandit with countably-infinite arms, in which each arm corresponds to a threshold-based policy. Using this mapping, we propose a policy that achieves near-logarithmic regret for this problem with respect to an ∊-optimal solution. +ss_paper_id=ac4561c92f0f724bbae278e82c14b4d862b1e4f0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_on_hardness_of_multiflow_transmission_in_delay_constrained_cooperative_wireless_networks.txt b/database/original_documents/publications_text/2011_on_hardness_of_multiflow_transmission_in_delay_constrained_cooperative_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..9289f339e6157a7922907d53d42afed558efb925 --- /dev/null +++ b/database/original_documents/publications_text/2011_on_hardness_of_multiflow_transmission_in_delay_constrained_cooperative_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=On Hardness of Multiflow Transmission in Delay Constrained Cooperative Wireless Networks +venue=IEEE Global Communications Conference (GLOBECOM 2011), Houston, USA, December, 2011. +authors=['Marjan Baghaie', 'Dorit S Hochbaum', 'Bhaskar Krishnamachari'] +abstract=We consider the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of $k$-flows, and formally prove that the problem not only NP-hard but it is $o(n^{1/7-\epsilon})$ inapproxmiable. To our knowledge, the results in this paper provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and offer a polynomial time algorithm for jointly optimizing routing, scheduling and power control. + +# Information +links.pdf=/static/public/papers/MarjanGlobecom.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a8a334e13b5f8947f5a1ba5636f68a7fba50e916 +type=Conference Papers +year=2011 +paper_id=53efb6b6 +ss_title=On Hardness of Multiflow Transmission in Delay Constrained Cooperative Wireless Networks +ss_authors=[{'authorId': '2402697', 'name': 'M. Baghaie'}, {'authorId': '1717379', 'name': 'D. Hochbaum'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Global Communications Conference +ss_year=2011 +ss_abstract=We consider the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of $k$-flows, and formally prove that the problem not only NP-hard but it is $o(n^{1/7-\epsilon})$ inapproxmiable. To our knowledge, the results in this paper provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and offer a polynomial time algorithm for jointly optimizing routing, scheduling and power control. +ss_paper_id=a8a334e13b5f8947f5a1ba5636f68a7fba50e916 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_on_the_combinatorial_multiarmed_bandit_problem_with_markovian_rewards.txt b/database/original_documents/publications_text/2011_on_the_combinatorial_multiarmed_bandit_problem_with_markovian_rewards.txt new file mode 100644 index 0000000000000000000000000000000000000000..fb9b9d367b40d9f4d2077baddb47e0602c84c93e --- /dev/null +++ b/database/original_documents/publications_text/2011_on_the_combinatorial_multiarmed_bandit_problem_with_markovian_rewards.txt @@ -0,0 +1,18 @@ +# Publication +title=On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards +venue=the IEEE Global Communications Conference (GLOBECOM 2011), Houston, USA, December, 2011. +authors=['Yi Gai', 'Bhaskar Krishnamachari', 'Mingyan Liu'] +abstract=We consider a combinatorial generalization of the classical multi-armed bandit problem that is defined as follows. There is a given bipartite graph of M users and N¡YM resources. For each user-resource pair (i,j), there is an associated state that evolves as an aperiodic irreducible finite-state Markov chain with unknown parameters, with transitions occurring each time the particular user i is allocated resource j. The user i receives a reward that depends on the corresponding state each time it is allocated the resource j. The system objective is to learn the best matching of users to resources so that the long-term sum of the rewards received by all users is maximized. This corresponds to minimizing regret, defined here as the gap between the expected total reward that can be obtained by the best-possible static matching and the expected total reward that can be achieved by a given algorithm. We present a polynomial-storage and polynomial-complexity-per-step matching-learning algorithm for this problem. We show that this algorithm can achieve a regret that is uniformly arbitrarily close to logarithmic in time and polynomial in the number of users and resources. This formulation is broadly applicable to scheduling and switching problems in communication networks including cognitive radio networks and significantly extends prior results in the area. + +# Information +links.pdf=/static/public/papers/Globecom2011RestedMAB.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d3fae2ae133b0f96b7b5a2720281a1edfa5751c7 +type=Conference Papers +year=2011 +paper_id=3302b0ee +ss_title=On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '39037167', 'name': 'M. Liu'}] +ss_venue=Global Communications Conference +ss_year=2010 +ss_abstract=We consider a combinatorial generalization of the classical multi-armed bandit problem that is defined as follows. There is a given bipartite graph of M users and N¡YM resources. For each user-resource pair (i,j), there is an associated state that evolves as an aperiodic irreducible finite-state Markov chain with unknown parameters, with transitions occurring each time the particular user i is allocated resource j. The user i receives a reward that depends on the corresponding state each time it is allocated the resource j. The system objective is to learn the best matching of users to resources so that the long-term sum of the rewards received by all users is maximized. This corresponds to minimizing regret, defined here as the gap between the expected total reward that can be obtained by the best-possible static matching and the expected total reward that can be achieved by a given algorithm. We present a polynomial-storage and polynomial-complexity-per-step matching-learning algorithm for this problem. We show that this algorithm can achieve a regret that is uniformly arbitrarily close to logarithmic in time and polynomial in the number of users and resources. This formulation is broadly applicable to scheduling and switching problems in communication networks including cognitive radio networks and significantly extends prior results in the area. +ss_paper_id=d3fae2ae133b0f96b7b5a2720281a1edfa5751c7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_the_nonbayesian_restless_multiarmed_bandit_a_case_of_nearlogarithmic_regret.txt b/database/original_documents/publications_text/2011_the_nonbayesian_restless_multiarmed_bandit_a_case_of_nearlogarithmic_regret.txt new file mode 100644 index 0000000000000000000000000000000000000000..1604aabcd8b03dfedf74702dbee8b024a1998acf --- /dev/null +++ b/database/original_documents/publications_text/2011_the_nonbayesian_restless_multiarmed_bandit_a_case_of_nearlogarithmic_regret.txt @@ -0,0 +1,18 @@ +# Publication +title=The Non-Bayesian Restless Multi-Armed Bandit: a Case of Near-Logarithmic Regret +venue=International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2011. +authors=['Wenhan Dai', 'Yi Gai', 'Bhaskar Krishnamachari', 'Qing Zhao'] +abstract=In the classic Bayesian restless multi-armed bandit (RMAB) problem, there are N arms, with rewards on all arms evolving at each time as Markov chains with known parameters. A player seeks to activate K ≥ 1 arms at each time in order to maximize the expected total reward obtained over multiple plays. RMAB is a challenging problem that is known to be PSPACE-hard in general. We consider in this work the even harder non-Bayesian RMAB, in which the parameters of the Markov chain are assumed to be unknown a priori. We develop an original approach to this problem that is applicable when the corresponding Bayesian problem has the structure that, depending on the known parameter values, the optimal solution is one of a prescribed finite set of policies. In such settings, we propose to learn the optimal policy for the non-Bayesian RMAB by employing a suitable meta-policy which treats each policy from this finite set as an arm in a different non-Bayesian multi-armed bandit problem for which a single-arm selection policy is optimal. We demonstrate this approach by developing a novel sensing policy for opportunistic spectrum access over unknown dynamic channels. We prove that our policy achieves near-logarithmic regret (the difference in expected reward compared to a model-aware genie), which leads to the same average reward that can be achieved by the optimal policy under a known model. This is the first such result in the literature for a non-Bayesian RMAB. + +# Information +links.pdf=/static/public/papers/ICASSP2011.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c0e7ca4eb68c306bd9511b112ffcccdc6c4ee233 +type=Conference Papers +year=2011 +paper_id=57282527 +ss_title=The non-Bayesian restless multi-armed bandit: A case of near-logarithmic regret +ss_authors=[{'authorId': '1779848', 'name': 'Wenhan Dai'}, {'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1730925', 'name': 'Qing Zhao'}] +ss_venue=IEEE International Conference on Acoustics, Speech, and Signal Processing +ss_year=2010 +ss_abstract=In the classic Bayesian restless multi-armed bandit (RMAB) problem, there are N arms, with rewards on all arms evolving at each time as Markov chains with known parameters. A player seeks to activate K ≥ 1 arms at each time in order to maximize the expected total reward obtained over multiple plays. RMAB is a challenging problem that is known to be PSPACE-hard in general. We consider in this work the even harder non-Bayesian RMAB, in which the parameters of the Markov chain are assumed to be unknown a priori. We develop an original approach to this problem that is applicable when the corresponding Bayesian problem has the structure that, depending on the known parameter values, the optimal solution is one of a prescribed finite set of policies. In such settings, we propose to learn the optimal policy for the non-Bayesian RMAB by employing a suitable meta-policy which treats each policy from this finite set as an arm in a different non-Bayesian multi-armed bandit problem for which a single-arm selection policy is optimal. We demonstrate this approach by developing a novel sensing policy for opportunistic spectrum access over unknown dynamic channels. We prove that our policy achieves near-logarithmic regret (the difference in expected reward compared to a model-aware genie), which leads to the same average reward that can be achieved by the optimal policy under a known model. This is the first such result in the literature for a non-Bayesian RMAB. +ss_paper_id=c0e7ca4eb68c306bd9511b112ffcccdc6c4ee233 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_the_saturation_throughput_region_of_ppersistent_csma.txt b/database/original_documents/publications_text/2011_the_saturation_throughput_region_of_ppersistent_csma.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b5a9844935cb991bd48d2cf19eaf488946c9a57 --- /dev/null +++ b/database/original_documents/publications_text/2011_the_saturation_throughput_region_of_ppersistent_csma.txt @@ -0,0 +1,18 @@ +# Publication +title=The Saturation Throughput Region of p-Persistent CSMA +venue=Information Theory and Applications Workshop (ITA), UCSD, San Diego, CA, February 2011. +authors=['Yi Gai', 'Shankar Ganesan', 'Bhaskar Krishnamachari'] +abstract=Many modern wireless data networks employ Carrier Sense Multiple Access (CSMA) for efficient medium access. The p-persistent CSMA protocol is an analytically tractable version of CSMA that has been used successfully to model practical medium access protocols such as the IEEE 802.11 Distributed Coordination Function (DCF). We present a closed-form expression to characterize the access probabilities at the boundary of the saturation throughput region of p-persistent CSMA. This expression is a non-trivial generalization of the elegant result, obtained by J. Massey and P. Mathys in 1985, that the boundary of the saturation throughput region for slotted Aloha corresponds to the users adopting independent access probabilities that sum up to 1. We also present a closed form expression for the throughput values obtained at the boundary of the saturation throughput region of p-persistent CSMA for the case of 2 users. + +# Information +links.pdf=/static/public/papers/CSMARegion_ITA11.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7eef56853f45d42b5aa8a96d580c85fc9fb156e0 +type=Conference Papers +year=2011 +paper_id=9d2009d2 +ss_title=The saturation throughput region of p-persistent CSMA +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1829178', 'name': 'Shankar Ganesan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Information Theory and Applications Workshop +ss_year=2011 +ss_abstract=Many modern wireless data networks employ Carrier Sense Multiple Access (CSMA) for efficient medium access. The p-persistent CSMA protocol is an analytically tractable version of CSMA that has been used successfully to model practical medium access protocols such as the IEEE 802.11 Distributed Coordination Function (DCF). We present a closed-form expression to characterize the access probabilities at the boundary of the saturation throughput region of p-persistent CSMA. This expression is a non-trivial generalization of the elegant result, obtained by J. Massey and P. Mathys in 1985, that the boundary of the saturation throughput region for slotted Aloha corresponds to the users adopting independent access probabilities that sum up to 1. We also present a closed form expression for the throughput values obtained at the boundary of the saturation throughput region of p-persistent CSMA for the case of 2 users. +ss_paper_id=7eef56853f45d42b5aa8a96d580c85fc9fb156e0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2011_towards_dynamic_energyefficient_operation_of_cellular_network_infrastructure.txt b/database/original_documents/publications_text/2011_towards_dynamic_energyefficient_operation_of_cellular_network_infrastructure.txt new file mode 100644 index 0000000000000000000000000000000000000000..e772ecc511a88fafe3f5f28786a5c7fd50f6b9a2 --- /dev/null +++ b/database/original_documents/publications_text/2011_towards_dynamic_energyefficient_operation_of_cellular_network_infrastructure.txt @@ -0,0 +1,18 @@ +# Publication +title=Towards Dynamic Energy-Efficient Operation of Cellular Network Infrastructure +venue=IEEE communications magazine, vol. 49, no. 6, pp. 56-61, June 2011. [A few numbers in the paper are clarified and corrected here.] +authors=['Eunsung Oh', 'Bhaskar Krishnamachari', 'Xin Liu', 'Zhisheng Niu'] +abstract=The operation of cellular network infrastructure incurs significant electrical energy consumption. From the perspective of cellular network operators, reducing this consumption is not only a matter of showing environmental responsibility, but also of substantially reducing their operational expenditure. We discuss how dynamic operation of cellular base stations, in which redundant base stations are switched off during periods of low traffic such as at night, can provide significant energy savings. We quantitatively estimate these potential savings through a first-order analysis based on real cellular traffic traces and information regarding base station locations in a part of Manchester, United Kingdom. We also discuss a number of open issues pertinent to implementing such energy-efficient dynamic base station operation schemes, such as various approaches to ensure coverage, and interoperator coordination. + +# Information +links.pdf=/static/public/papers/Comm.Magazine.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/dcfe6b90d6c29b4d16bea761ef15d9c19763478c +type=Journal Papers +year=2011 +paper_id=9180282a +ss_title=Toward dynamic energy-efficient operation of cellular network infrastructure +ss_authors=[{'authorId': '1977686', 'name': 'Eunsung Oh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2120099632', 'name': 'Xin Liu'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Communications Magazine +ss_year=2011 +ss_abstract=The operation of cellular network infrastructure incurs significant electrical energy consumption. From the perspective of cellular network operators, reducing this consumption is not only a matter of showing environmental responsibility, but also of substantially reducing their operational expenditure. We discuss how dynamic operation of cellular base stations, in which redundant base stations are switched off during periods of low traffic such as at night, can provide significant energy savings. We quantitatively estimate these potential savings through a first-order analysis based on real cellular traffic traces and information regarding base station locations in a part of Manchester, United Kingdom. We also discuss a number of open issues pertinent to implementing such energy-efficient dynamic base station operation schemes, such as various approaches to ensure coverage, and interoperator coordination. +ss_paper_id=dcfe6b90d6c29b4d16bea761ef15d9c19763478c \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_a_competitive_rate_allocation_game.txt b/database/original_documents/publications_text/2012_a_competitive_rate_allocation_game.txt new file mode 100644 index 0000000000000000000000000000000000000000..8095119097effe3beda019105b50f2c4e92f4be2 --- /dev/null +++ b/database/original_documents/publications_text/2012_a_competitive_rate_allocation_game.txt @@ -0,0 +1,18 @@ +# Publication +title=A Competitive Rate Allocation Game +venue=3rd International Conference on Game Theory for Networks, 2012. +authors=['Yanting Wu', 'George Rabanca', 'Bhaskar Krishnamachari', 'Amotz Bar-Noy'] +abstract=None + +# Information +links.pdf=/static/public/papers/YW-gameNets2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a3c2d0a53d4868005b98b0538e0787854a6cc221 +type=Conference Papers +year=2012 +paper_id=fbc4305b +ss_title=A Competitive Rate Allocation Game +ss_authors=[{'authorId': '2134150909', 'name': 'Yanting Wu'}, {'authorId': '2178407', 'name': 'George Rabanca'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1397925673', 'name': 'A. Bar-Noy'}] +ss_venue=International ICST Conference on Game Theory for Networks +ss_year=2012 +ss_abstract=None +ss_paper_id=a3c2d0a53d4868005b98b0538e0787854a6cc221 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_backpressure_with_adaptive_redundancy_bwar.txt b/database/original_documents/publications_text/2012_backpressure_with_adaptive_redundancy_bwar.txt new file mode 100644 index 0000000000000000000000000000000000000000..fe33072b0308d78ac2baf06e5e9d3d35554fd3cb --- /dev/null +++ b/database/original_documents/publications_text/2012_backpressure_with_adaptive_redundancy_bwar.txt @@ -0,0 +1,18 @@ +# Publication +title=Backpressure with Adaptive Redundancy (BWAR) +venue=IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL, USA, March, 2012. +authors=['Majed Alresaini', 'Maheswaran Sathiamoorthy', 'Bhaskar Krishnamachari', 'Michael J Neely'] +abstract=Backpressure scheduling and routing, in which packets are preferentially transmitted over links with high queue differentials, offers the promise of throughput-optimal operation for a wide range of communication networks. However, when the traffic load is low, due to the corresponding low queue occupancy, backpressure scheduling/routing experiences long delays. This is particularly of concern in intermittent encounter-based mobile networks which are already delay-limited due to the sparse and highly dynamic network connectivity. While state of the art mechanisms for such networks have proposed the use of redundant transmissions to improve delay, they do not work well when the traffic load is high. We propose in this paper a novel hybrid approach that we refer to as backpressure with adaptive redundancy (BWAR), which provides the best of both worlds. This approach is highly robust and distributed and does not require any prior knowledge of network load conditions. We evaluate BWAR through both mathematical analysis and simulations based on a cell-partitioned model. We prove theoretically that BWAR does not perform worse than traditional backpressure in terms of the maximum throughput, while yielding a better delay bound. The simulations confirm that BWAR outperforms traditional backpressure at low load, while outperforming a state of the art encounter-routing scheme (Spray and Wait) at high load. + +# Information +links.pdf=/static/public/papers/BWARInfocomCamera.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3703057e98300267980cc080b7d2994458580795 +type=Conference Papers +year=2012 +paper_id=cb2607f8 +ss_title=Backpressure with Adaptive Redundancy (BWAR) +ss_authors=[{'authorId': '3075475', 'name': 'Majed Alresaini'}, {'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1705088', 'name': 'M. Neely'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2011 +ss_abstract=Backpressure scheduling and routing, in which packets are preferentially transmitted over links with high queue differentials, offers the promise of throughput-optimal operation for a wide range of communication networks. However, when the traffic load is low, due to the corresponding low queue occupancy, backpressure scheduling/routing experiences long delays. This is particularly of concern in intermittent encounter-based mobile networks which are already delay-limited due to the sparse and highly dynamic network connectivity. While state of the art mechanisms for such networks have proposed the use of redundant transmissions to improve delay, they do not work well when the traffic load is high. We propose in this paper a novel hybrid approach that we refer to as backpressure with adaptive redundancy (BWAR), which provides the best of both worlds. This approach is highly robust and distributed and does not require any prior knowledge of network load conditions. We evaluate BWAR through both mathematical analysis and simulations based on a cell-partitioned model. We prove theoretically that BWAR does not perform worse than traditional backpressure in terms of the maximum throughput, while yielding a better delay bound. The simulations confirm that BWAR outperforms traditional backpressure at low load, while outperforming a state of the art encounter-routing scheme (Spray and Wait) at high load. +ss_paper_id=3703057e98300267980cc080b7d2994458580795 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_combinatorial_network_optimization_with_unknown_variables_multiarmed_bandits_with_linear_rewards_and_individual_observations.txt b/database/original_documents/publications_text/2012_combinatorial_network_optimization_with_unknown_variables_multiarmed_bandits_with_linear_rewards_and_individual_observations.txt new file mode 100644 index 0000000000000000000000000000000000000000..876a72acacba1eeea8033f4960a1b33adb28a1e5 --- /dev/null +++ b/database/original_documents/publications_text/2012_combinatorial_network_optimization_with_unknown_variables_multiarmed_bandits_with_linear_rewards_and_individual_observations.txt @@ -0,0 +1,18 @@ +# Publication +title=Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards and Individual Observations +venue=“IEEE/ACM Transactions on Networking, vol. 20, no. 5, 2012.” +authors=['Yi Gai', 'Bhaskar Krishnamachari', 'Rahul Jain'] +abstract=We formulate the following combinatorial multi-armed bandit (MAB) problem: There are N random variables with unknown mean that are each instantiated in an i.i.d. fashion over time. At each time multiple random variables can be selected, subject to an arbitrary constraint on weights associated with the selected variables. All of the selected individual random variables are observed at that time, and a linearly weighted combination of these selected variables is yielded as the reward. The goal is to find a policy that minimizes regret, defined as the difference between the reward obtained by a genie that knows the mean of each random variable, and that obtained by the given policy. This formulation is broadly applicable and useful for stochastic online versions of many interesting tasks in networks that can be formulated as tractable combinatorial optimization problems with linear objective functions, such as maximum weighted matching, shortest path, and minimum spanning tree computations. Prior work on multi-armed bandits with multiple plays cannot be applied to this formulation because of the general nature of the constraint. On the other hand, the mapping of all feasible combinations to arms allows for the use of prior work on MAB with single-play, but results in regret, storage, and computation growing exponentially in the number of unknown variables. We present new efficient policies for this problem that are shown to achieve regret that grows logarithmically with time, and polynomially in the number of unknown variables. Furthermore, these policies only require storage that grows linearly in the number of unknown parameters. For problems where the underlying deterministic problem is tractable, these policies further require only polynomial computation. For computationally intractable problems, we also present results on a different notion of regret that is suitable when a polynomial-time approximation algorithm is used. + +# Information +links.pdf=/static/public/papers/TON-Jan2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a04a3a35148f8a0fb13b991b72f7c05731c32d24 +type=Journal Papers +year=2012 +paper_id=5dffcaf1 +ss_title=Combinatorial Network Optimization With Unknown Variables: Multi-Armed Bandits With Linear Rewards and Individual Observations +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '49037170', 'name': 'Rahul Jain'}] +ss_venue=IEEE/ACM Transactions on Networking +ss_year=2010 +ss_abstract=We formulate the following combinatorial multi-armed bandit (MAB) problem: There are N random variables with unknown mean that are each instantiated in an i.i.d. fashion over time. At each time multiple random variables can be selected, subject to an arbitrary constraint on weights associated with the selected variables. All of the selected individual random variables are observed at that time, and a linearly weighted combination of these selected variables is yielded as the reward. The goal is to find a policy that minimizes regret, defined as the difference between the reward obtained by a genie that knows the mean of each random variable, and that obtained by the given policy. This formulation is broadly applicable and useful for stochastic online versions of many interesting tasks in networks that can be formulated as tractable combinatorial optimization problems with linear objective functions, such as maximum weighted matching, shortest path, and minimum spanning tree computations. Prior work on multi-armed bandits with multiple plays cannot be applied to this formulation because of the general nature of the constraint. On the other hand, the mapping of all feasible combinations to arms allows for the use of prior work on MAB with single-play, but results in regret, storage, and computation growing exponentially in the number of unknown variables. We present new efficient policies for this problem that are shown to achieve regret that grows logarithmically with time, and polynomially in the number of unknown variables. Furthermore, these policies only require storage that grows linearly in the number of unknown parameters. For problems where the underlying deterministic problem is tractable, these policies further require only polynomial computation. For computationally intractable problems, we also present results on a different notion of regret that is suitable when a polynomial-time approximation algorithm is used. +ss_paper_id=a04a3a35148f8a0fb13b991b72f7c05731c32d24 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt b/database/original_documents/publications_text/2012_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c2d7608fe0eb1c40bbc9c5bc1bbaaab8b0a9708a --- /dev/null +++ b/database/original_documents/publications_text/2012_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt @@ -0,0 +1,19 @@ +# Publication +title=Distributed Storage Codes Reduce Latency in Vehicular Networks +venue=IEEE International Conference on Computer Communications (IEEE INFOCOM Mini-conference 2012), Orlando, FL, USA, March, 2012. +authors=['Maheswaran Sathiamoorthy', 'Alexandros G Dimakis', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through realistic trace-based simulations. We find that coding offers substantial benefits over simple replication when the file sizes are large compared to the average download bandwidth available per encounter. Our simulations, based on a large real vehicle trace from Beijing combined with a realistic radio link quality model for a IEEE 802.11p dedicated short range communication (DSRC) radio, demonstrate that coding provides significant cost reduction in vehicular networks. + +# Information +links.pdf=/static/public/papers/VANETCodingMiniCamera.pdf +links.code=http://anrg.usc.edu/www/papers/VANETCodingMiniCamera.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/404ad4dab5f81633b8b7a71f859bb734300950b2 +type=Conference Papers +year=2012 +paper_id=5bafc6ae +ss_title=Distributed storage codes reduce latency in vehicular networks +ss_authors=[{'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1718469', 'name': 'A. Dimakis'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2012 +ss_abstract=We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through realistic trace-based simulations. We find that coding offers substantial benefits over simple replication when the file sizes are large compared to the average download bandwidth available per encounter. Our simulations, based on a large real vehicle trace from Beijing combined with a realistic radio link quality model for a IEEE 802.11p dedicated short range communication (DSRC) radio, demonstrate that coding provides significant cost reduction in vehicular networks. +ss_paper_id=404ad4dab5f81633b8b7a71f859bb734300950b2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_efficient_online_learning_for_opportunistic_spectrum_access.txt b/database/original_documents/publications_text/2012_efficient_online_learning_for_opportunistic_spectrum_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..313b35fbb8e5f1816c5f94570e14891aa2caa6fc --- /dev/null +++ b/database/original_documents/publications_text/2012_efficient_online_learning_for_opportunistic_spectrum_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Efficient Online Learning for Opportunistic Spectrum Access +venue=IEEE International Conference on Computer Communications (IEEE INFOCOM Mini-conference 2012), Orlando, FL, USA, March, 2012. +authors=['Wenhan Dai', 'Yi Gai', 'Bhaskar Krishnamachari'] +abstract=The problem of opportunistic spectrum access in cognitive radio networks has been recently formulated as a non-Bayesian restless multi-armed bandit problem. In this problem, there are N arms (corresponding to channels) and one player (corresponding to a secondary user). The state of each arm evolves as a finite-state Markov chain with unknown parameters. At each time slot, the player can select K <; N arms to play and receives state-dependent rewards (corresponding to the throughput obtained given the activity of primary users). The objective is to maximize the expected total rewards (i.e., total throughput) obtained over multiple plays. The performance of an algorithm for such a multi-armed bandit problem is measured in terms of regret, defined as the difference in expected reward compared to a model-aware genie who always plays the best K arms. In this paper, we propose a new continuous exploration and exploitation (CEE) algorithm for this problem. When no information is available about the dynamics of the arms, CEE is the first algorithm to guarantee near-logarithmic regret uniformly over time. When some bounds corresponding to the stationary state distributions and the state-dependent rewards are known, we show that CEE can be easily modified to achieve logarithmic regret over time. In contrast, prior algorithms require additional information concerning bounds on the second eigenvalues of the transition matrices in order to guarantee logarithmic regret. Finally, we show through numerical simulations that CEE is more efficient than prior algorithms. + +# Information +links.pdf=/static/public/papers/WenhanDaiInfocom2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c8ea887968c7a2118be0f54fa2a188b677efdcb0 +type=Conference Papers +year=2012 +paper_id=bdc66cf1 +ss_title=Efficient online learning for opportunistic spectrum access +ss_authors=[{'authorId': '1779848', 'name': 'Wenhan Dai'}, {'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2011 +ss_abstract=The problem of opportunistic spectrum access in cognitive radio networks has been recently formulated as a non-Bayesian restless multi-armed bandit problem. In this problem, there are N arms (corresponding to channels) and one player (corresponding to a secondary user). The state of each arm evolves as a finite-state Markov chain with unknown parameters. At each time slot, the player can select K <; N arms to play and receives state-dependent rewards (corresponding to the throughput obtained given the activity of primary users). The objective is to maximize the expected total rewards (i.e., total throughput) obtained over multiple plays. The performance of an algorithm for such a multi-armed bandit problem is measured in terms of regret, defined as the difference in expected reward compared to a model-aware genie who always plays the best K arms. In this paper, we propose a new continuous exploration and exploitation (CEE) algorithm for this problem. When no information is available about the dynamics of the arms, CEE is the first algorithm to guarantee near-logarithmic regret uniformly over time. When some bounds corresponding to the stationary state distributions and the state-dependent rewards are known, we show that CEE can be easily modified to achieve logarithmic regret over time. In contrast, prior algorithms require additional information concerning bounds on the second eigenvalues of the transition matrices in order to guarantee logarithmic regret. Finally, we show through numerical simulations that CEE is more efficient than prior algorithms. +ss_paper_id=c8ea887968c7a2118be0f54fa2a188b677efdcb0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_energyefficient_deployment_strategies_in_structural_health_monitoring_using_wireless_sensor_networks.txt b/database/original_documents/publications_text/2012_energyefficient_deployment_strategies_in_structural_health_monitoring_using_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..f8de68a26595a299ca8045d68aa6461ae43e995c --- /dev/null +++ b/database/original_documents/publications_text/2012_energyefficient_deployment_strategies_in_structural_health_monitoring_using_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-efficient deployment strategies in structural health monitoring using wireless sensor networks +venue=“Journal of Structural Control and Health Monitoring, May 2012 (in press)”. +authors=['Tat Fu', 'Amitabha Ghosh', 'Erik Johnson', 'Bhaskar Krishnamachari'] +abstract=Structural health monitoring using wireless sensor networks has drawn considerable attention in recent years. The ease of deployment of tiny wireless devices that are coupled with sensors and actuators enhances the data collection process and makes prognostic and preventive maintenance of an infrastructure much easier. In this paper, the deployment problem is considered for finding node locations to reliably diagnose the health of a structure while consuming minimum energy during data collection. A simple shear structure is considered and modal analysis is performed. The example verifies the expectation that placing nodes further apart from each other reduces the mode shape errors but increases the energy consumption during data collection. A min–max, energy‐balanced routing tree and an optimal grid separation formulation are proposed that minimize the energy consumption as well as provide fine grain measurements. Copyright © 2012 John Wiley & Sons, Ltd. + +# Information +links.pdf=/static/public/papers/SHM_Amitabha.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0e7283d4b15c3448cba31848cde2c747480326b9 +type=Journal Papers +year=2012 +paper_id=0408792f +ss_title=Energy‐efficient deployment strategies in structural health monitoring using wireless sensor networks +ss_authors=[{'authorId': '2607138', 'name': 'T. Fu'}, {'authorId': '2110112916', 'name': 'Amitabha Ghosh'}, {'authorId': '2148465933', 'name': 'E. A. Johnson'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2013 +ss_abstract=Structural health monitoring using wireless sensor networks has drawn considerable attention in recent years. The ease of deployment of tiny wireless devices that are coupled with sensors and actuators enhances the data collection process and makes prognostic and preventive maintenance of an infrastructure much easier. In this paper, the deployment problem is considered for finding node locations to reliably diagnose the health of a structure while consuming minimum energy during data collection. A simple shear structure is considered and modal analysis is performed. The example verifies the expectation that placing nodes further apart from each other reduces the mode shape errors but increases the energy consumption during data collection. A min–max, energy‐balanced routing tree and an optimal grid separation formulation are proposed that minimize the energy consumption as well as provide fine grain measurements. Copyright © 2012 John Wiley & Sons, Ltd. +ss_paper_id=0e7283d4b15c3448cba31848cde2c747480326b9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_fast_data_collection_in_treebased_wireless_sensor_networks.txt b/database/original_documents/publications_text/2012_fast_data_collection_in_treebased_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..ba9bd380c884fa12478e9f5db563419f7a54db6f --- /dev/null +++ b/database/original_documents/publications_text/2012_fast_data_collection_in_treebased_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Fast Data Collection in Tree-Based Wireless Sensor Networks +venue=“IEEE Transactions on Mobile Computing, vol. 11, no. 1, pp. 86–99, Jan 2012.” +authors=['Ozlem Durmaz Incel', 'Amitabha Ghosh', 'Bhaskar Krishnamachari', 'Krishnakant Chintalapudi'] +abstract=In wireless sensor networks converge cast is the fundamental operation and namely the collection of data from a set of sensors toward a common sink over a treebased routing topology. In many applications, it is crucial to provide a guarantee on the delivery time as well as increase the rate of such data collection. For instance, in safety and mission-critical applications where sensor nodes are deployed to detect oil/gas leak or structural damage, the actuators and controllers need to receive data from all the sensors within a specific deadline, failure of which might lead to unpredictable and catastrophic events. This falls under the category of one-shot data collection. On the other hand, applications such as permafrost monitoring require periodic and fast data delivery over long periods of time, which falls under the category of continuous data collection. In this paper we are concentrated on system modeling with throughput estimation and a clear study about the impact interference and routing trees. + +# Information +links.pdf=/static/public/papers/TMC-Jan2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d6fe8b147d8ee7be50b99d9277ecdd126823cf54 +type=Journal Papers +year=2012 +paper_id=dbbacfd3 +ss_title=System Modeling And Analysis On Energy Optimized Data Collection +ss_authors=[{'authorId': '69921145', 'name': 'K. Indraneel'}, {'authorId': '46574584', 'name': 'S. M. Kumar'}] +ss_venue= +ss_year=2013 +ss_abstract=In wireless sensor networks converge cast is the fundamental operation and namely the collection of data from a set of sensors toward a common sink over a treebased routing topology. In many applications, it is crucial to provide a guarantee on the delivery time as well as increase the rate of such data collection. For instance, in safety and mission-critical applications where sensor nodes are deployed to detect oil/gas leak or structural damage, the actuators and controllers need to receive data from all the sensors within a specific deadline, failure of which might lead to unpredictable and catastrophic events. This falls under the category of one-shot data collection. On the other hand, applications such as permafrost monitoring require periodic and fast data delivery over long periods of time, which falls under the category of continuous data collection. In this paper we are concentrated on system modeling with throughput estimation and a clear study about the impact interference and routing trees. +ss_paper_id=d6fe8b147d8ee7be50b99d9277ecdd126823cf54 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_funding_games_the_truth_but_not_the_whole_truth.txt b/database/original_documents/publications_text/2012_funding_games_the_truth_but_not_the_whole_truth.txt new file mode 100644 index 0000000000000000000000000000000000000000..666dbcbcfc1acc37252f5f5e25c6c01c5f671ef5 --- /dev/null +++ b/database/original_documents/publications_text/2012_funding_games_the_truth_but_not_the_whole_truth.txt @@ -0,0 +1,18 @@ +# Publication +title=Funding Games: the Truth but not the Whole Truth +venue=WINE 2012, Liverpool, UK, December, 2012. +authors=['Amotz Bar-Noy', 'Yi Gai', 'Matthew P Johnson', 'Bhaskar Krishnamachari', 'George Rabanca'] +abstract=None + +# Information +links.pdf=http://arxiv.org/abs/1107.2432 +links.semantic_scholar=https://www.semanticscholar.org/paper/1ff3826cebbe337b5cc507d9b92b9e306d392e93 +type=Conference Papers +year=2012 +paper_id=5ff5f44c +ss_title=Funding Games: The Truth but Not the Whole Truth +ss_authors=[{'authorId': '1397925673', 'name': 'A. Bar-Noy'}, {'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '2213714978', 'name': 'Matthew P. Johnson'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2178407', 'name': 'George Rabanca'}] +ss_venue=Workshop on Internet and Network Economics +ss_year=2011 +ss_abstract=None +ss_paper_id=1ff3826cebbe337b5cc507d9b92b9e306d392e93 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_heat_diffusion_algorithm_for_resource_allocation_and_routing_in_multihop_wireless_networks.txt b/database/original_documents/publications_text/2012_heat_diffusion_algorithm_for_resource_allocation_and_routing_in_multihop_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..2bd87fbea3b4111e9226ef9db1e9e69c9f7c8d22 --- /dev/null +++ b/database/original_documents/publications_text/2012_heat_diffusion_algorithm_for_resource_allocation_and_routing_in_multihop_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Heat diffusion algorithm for resource allocation and routing in multihop wireless networks +venue=GLOBECOM 2012: 5693-5698. +authors=['Reza Banirazi', 'Edmond A Jonckheere', 'Bhaskar Krishnamachari'] +abstract=We propose a new scheduling and routing approach, the Heat Diffusion (HD) protocol, using combinatorial analogue of the heat equation in mathematical physics. The algorithm holds for systems subject to time-varying network conditions with general packet arrivals and random topology states, including ad-hoc networks with mobility. Compared to the well-known backpressure policy, the HD protocol is generalized in form and optimized in performance, which considers link penalties and node capacities in the routing. It mitigates the packet looping behavior of backpressure and attempts to communicate less over links of higher costs and with the nodes of lower capacities. While HD policy shows benefits over backpressure, it is developed using the same underlying control laws. Therefore, it can easily leverage all the theoretical works that have been done in improving the original backpressure. For the same reason, it provides a relatively easy path-way to modify existing applications of backpressure to the optimized versions using HD protocol. + +# Information +links.pdf=/static/public/papers/p5915-banirazi.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f767d9e6e9416dd83b347f35923643fcc76266fd +type=Conference Papers +year=2012 +paper_id=a471d817 +ss_title=Heat diffusion algorithm for resource allocation and routing in multihop wireless networks +ss_authors=[{'authorId': '2799433', 'name': 'Reza Banirazi'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Global Communications Conference +ss_year=2012 +ss_abstract=We propose a new scheduling and routing approach, the Heat Diffusion (HD) protocol, using combinatorial analogue of the heat equation in mathematical physics. The algorithm holds for systems subject to time-varying network conditions with general packet arrivals and random topology states, including ad-hoc networks with mobility. Compared to the well-known backpressure policy, the HD protocol is generalized in form and optimized in performance, which considers link penalties and node capacities in the routing. It mitigates the packet looping behavior of backpressure and attempts to communicate less over links of higher costs and with the nodes of lower capacities. While HD policy shows benefits over backpressure, it is developed using the same underlying control laws. Therefore, it can easily leverage all the theoretical works that have been done in improving the original backpressure. For the same reason, it provides a relatively easy path-way to modify existing applications of backpressure to the optimized versions using HD protocol. +ss_paper_id=f767d9e6e9416dd83b347f35923643fcc76266fd \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_lifobackpressure_achieves_near_optimal_utilitydelay_tradeoff.txt b/database/original_documents/publications_text/2012_lifobackpressure_achieves_near_optimal_utilitydelay_tradeoff.txt new file mode 100644 index 0000000000000000000000000000000000000000..cf6496bf79577d26ff055d257661adc751c99bea --- /dev/null +++ b/database/original_documents/publications_text/2012_lifobackpressure_achieves_near_optimal_utilitydelay_tradeoff.txt @@ -0,0 +1,18 @@ +# Publication +title=LIFO-Backpressure achieves near optimal utility-delay tradeoff +venue=“IEEE/ACM Transactions on Networking, accepted, 2012.” +authors=['Longbo Huang', 'Scott Moeller', 'Michael J Neely', 'Bhaskar Krishnamachari'] +abstract=There has been considerable work developing a stochastic network utility maximization framework using Backpressure algorithms, also known as MaxWeight. A key open problem has been the development of utility-optimal algorithms that are also delay-efficient. In this paper, we show that the Backpressure algorithm, when combined with the last-in-first-out (LIFO) queueing discipline (called LIFO-Backpressure), is able to achieve a utility that is within O(1/V) of the optimal value, for any scalar V ≥ 1, while maintaining an average delay of O([log(V)]2) for all but a tiny fraction of the network traffic. This result holds for a general class of problems with Markovian dynamics. Remarkably, the performance of LIFO-Backpressure can be achieved by simply changing the queueing discipline; it requires no other modifications of the original Backpressure algorithm. We validate the results through empirical measurements from a sensor network testbed, which show a good match between theory and practice. Because some packets may stay in the queues for a very long time under LIFO-Backpressure, we further develop the LIFOp-Backpressure algorithm, which generalizes LIFOp-Backpressure by allowing interleaving between first-in-first-out (FIFO) and LIFO. We show that LIFOp Backpressure also achieves the same O(1/V) close-to-optimal utility performance and guarantees an average delay of O([log(V)]2) for the packets that are served during the LIFO period. + +# Information +links.pdf=/static/public/papers/qla-lifo-journal.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b5db0a1471202d8da2ef93089aee3a34e428afd1 +type=Journal Papers +year=2012 +paper_id=f38e0ad3 +ss_title=LIFO-Backpressure Achieves Near-Optimal Utility-Delay Tradeoff +ss_authors=[{'authorId': None, 'name': 'Longbo Huang'}, {'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '1705088', 'name': 'M. Neely'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE/ACM Transactions on Networking +ss_year=2010 +ss_abstract=There has been considerable work developing a stochastic network utility maximization framework using Backpressure algorithms, also known as MaxWeight. A key open problem has been the development of utility-optimal algorithms that are also delay-efficient. In this paper, we show that the Backpressure algorithm, when combined with the last-in-first-out (LIFO) queueing discipline (called LIFO-Backpressure), is able to achieve a utility that is within O(1/V) of the optimal value, for any scalar V ≥ 1, while maintaining an average delay of O([log(V)]2) for all but a tiny fraction of the network traffic. This result holds for a general class of problems with Markovian dynamics. Remarkably, the performance of LIFO-Backpressure can be achieved by simply changing the queueing discipline; it requires no other modifications of the original Backpressure algorithm. We validate the results through empirical measurements from a sensor network testbed, which show a good match between theory and practice. Because some packets may stay in the queues for a very long time under LIFO-Backpressure, we further develop the LIFOp-Backpressure algorithm, which generalizes LIFOp-Backpressure by allowing interleaving between first-in-first-out (FIFO) and LIFO. We show that LIFOp Backpressure also achieves the same O(1/V) close-to-optimal utility performance and guarantees an average delay of O([log(V)]2) for the packets that are served during the LIFO period. +ss_paper_id=b5db0a1471202d8da2ef93089aee3a34e428afd1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_minimum_latency_data_diffusion_in_intermittently_connected_mobile_networks.txt b/database/original_documents/publications_text/2012_minimum_latency_data_diffusion_in_intermittently_connected_mobile_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..108f79e60e09f671f28a2d88b7d9d9cef68707d6 --- /dev/null +++ b/database/original_documents/publications_text/2012_minimum_latency_data_diffusion_in_intermittently_connected_mobile_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Minimum Latency Data Diffusion in Intermittently Connected Mobile Networks +venue=2012 IEEE 75th Vehicular Technology Conference: VTC2012-Spring, 6-9 May 2012, Yokohama, Japan +authors=['Maheswaran Sathiamoorthy', 'Wei Gao', 'Bhaskar Krishnamachari', 'Guohong Cao'] +abstract=We consider the problem of diffusing cached content in an intermittently connected mobile network, starting from a given initial configuration to a desirable goal state where all nodes interested in particular contents have a copy of their desired contents. The goal is to minimize the time taken for the diffusion process to terminate at a goal state. Due to bandwidth and storage constraints, whenever two nodes encounter each other, they must decide which content if any to transfer to each other. While most prior work on this topic has focused on practically realizable heuristics for this problem, we take a more formal approach. Our main contribution is to show that, assuming global state information is available, this problem can be formulated as a stochastic shortest path problem, which is a kind of Markov decision process (MDP). Using this formulation, we numerically explore some small-scale examples for which we are able to obtain the optimal solution. The results show that the optimal diffusion strategy is very much a function of the underlying encounter graph. + +# Information +links.pdf=/static/public/papers/VTCMahesh2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f6d75786051229a9427ef9ee60a065df6b8cb0b4 +type=Conference Papers +year=2012 +paper_id=7cd8f891 +ss_title=Minimum Latency Data Diffusion in Intermittently Connected Mobile Networks +ss_authors=[{'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '145816343', 'name': 'Wei Gao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1740564', 'name': 'G. Cao'}] +ss_venue=IEEE Vehicular Technology Conference +ss_year=2012 +ss_abstract=We consider the problem of diffusing cached content in an intermittently connected mobile network, starting from a given initial configuration to a desirable goal state where all nodes interested in particular contents have a copy of their desired contents. The goal is to minimize the time taken for the diffusion process to terminate at a goal state. Due to bandwidth and storage constraints, whenever two nodes encounter each other, they must decide which content if any to transfer to each other. While most prior work on this topic has focused on practically realizable heuristics for this problem, we take a more formal approach. Our main contribution is to show that, assuming global state information is available, this problem can be formulated as a stochastic shortest path problem, which is a kind of Markov decision process (MDP). Using this formulation, we numerically explore some small-scale examples for which we are able to obtain the optimal solution. The results show that the optimal diffusion strategy is very much a function of the underlying encounter graph. +ss_paper_id=f6d75786051229a9427ef9ee60a065df6b8cb0b4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_online_learning_algorithms_for_stochastic_waterfilling.txt b/database/original_documents/publications_text/2012_online_learning_algorithms_for_stochastic_waterfilling.txt new file mode 100644 index 0000000000000000000000000000000000000000..58bb993f53a901586185db097ccf6bdde1aabca6 --- /dev/null +++ b/database/original_documents/publications_text/2012_online_learning_algorithms_for_stochastic_waterfilling.txt @@ -0,0 +1,24 @@ +# Publication +title=Online Learning Algorithms for Stochastic Water-Filling +venue=Information Theory and Applications Workshop (ITA 2012), San Diego, USA, February, 2012. +authors=['Yi Gai', 'Bhaskar Krishnamachari'] +abstract=The formulations and theories of multi-armed bandit (MAB) problems provide fundamental tools for optimal sequential decision making and learning in uncertain environments. They have been widely applied to resource allocation, scheduling, and routing in communication networks, particularly in recent years, as the field is seeing an increasing focus on adaptive online learning algorithms to enhance system performance in stochastic, dynamic, and distributed environments. This dissertation addresses several key problems in this domain. +Our first focus is about MAB with linear rewards. As they are fundamentally about combinatorial optimization in unknown environments, one would indeed expect to find even broader use of multi-armed bandits. However, a barrier to their wider application in practice has been the limitation of the basic formulation and corresponding policies, which generally treat each arm as an independent entity. They are inadequate to deal with many combinatorial problems of practical interest in which there are large numbers of arms. In such settings, it is important to consider and exploit any structure in terms of dependencies between the arms. In this dissertation, we show that when the dependencies take a linear form, they can be handled tractably with algorithms that have provably good performance in terms of regret as well as storage and computation. We develop a new class of learning algorithms for different problem settings including i.i.d. rewards, rested Markovian rewards, and restless Markovian rewards, to improve the cost of learning, compared to prior work, for large-scale stochastic network optimization problems. +We then consider the problem of optimal power allocation over parallel channels with stochastically time-varying gain-to-noise ratios for maximizing information rate (stochastic water-filling) with both linear and non-linear multi-armed bandit formulations and propose new efficient online learning algorithms for these. +Finally, we focus on learning in decentralized settings. The desired objective is to develop decentralized online learning algorithms running at each user to make a selection among multiple choices, where there is no information exchange, such that the sum-throughput of all distributed users is maximized. We make two contributions in this problem. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the K-th ranked user to learn to access the arm offering the K-th highest mean reward. For this problem, we present the first distributed algorithm that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present a distributed algorithm that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed algorithms in the literature. + +# Information +links.pdf=/static/public/papers/ITA2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fe349855491b17739a5d2e745371fddad8ec1404 +type=Conference Papers +year=2012 +paper_id=d4a61203 +ss_title=Online learning algorithms for network optimization with unknown variables +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '3171751', 'name': 'Yi Gai'}] +ss_venue= +ss_year=2012 +ss_abstract=The formulations and theories of multi-armed bandit (MAB) problems provide fundamental tools for optimal sequential decision making and learning in uncertain environments. They have been widely applied to resource allocation, scheduling, and routing in communication networks, particularly in recent years, as the field is seeing an increasing focus on adaptive online learning algorithms to enhance system performance in stochastic, dynamic, and distributed environments. This dissertation addresses several key problems in this domain. +Our first focus is about MAB with linear rewards. As they are fundamentally about combinatorial optimization in unknown environments, one would indeed expect to find even broader use of multi-armed bandits. However, a barrier to their wider application in practice has been the limitation of the basic formulation and corresponding policies, which generally treat each arm as an independent entity. They are inadequate to deal with many combinatorial problems of practical interest in which there are large numbers of arms. In such settings, it is important to consider and exploit any structure in terms of dependencies between the arms. In this dissertation, we show that when the dependencies take a linear form, they can be handled tractably with algorithms that have provably good performance in terms of regret as well as storage and computation. We develop a new class of learning algorithms for different problem settings including i.i.d. rewards, rested Markovian rewards, and restless Markovian rewards, to improve the cost of learning, compared to prior work, for large-scale stochastic network optimization problems. +We then consider the problem of optimal power allocation over parallel channels with stochastically time-varying gain-to-noise ratios for maximizing information rate (stochastic water-filling) with both linear and non-linear multi-armed bandit formulations and propose new efficient online learning algorithms for these. +Finally, we focus on learning in decentralized settings. The desired objective is to develop decentralized online learning algorithms running at each user to make a selection among multiple choices, where there is no information exchange, such that the sum-throughput of all distributed users is maximized. We make two contributions in this problem. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the K-th ranked user to learn to access the arm offering the K-th highest mean reward. For this problem, we present the first distributed algorithm that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present a distributed algorithm that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed algorithms in the literature. +ss_paper_id=fe349855491b17739a5d2e745371fddad8ec1404 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_online_learning_for_combinatorial_network_optimization_with_restless_markovian_rewards.txt b/database/original_documents/publications_text/2012_online_learning_for_combinatorial_network_optimization_with_restless_markovian_rewards.txt new file mode 100644 index 0000000000000000000000000000000000000000..ac6453cb145a7167912d3385186b7c63ca07fb06 --- /dev/null +++ b/database/original_documents/publications_text/2012_online_learning_for_combinatorial_network_optimization_with_restless_markovian_rewards.txt @@ -0,0 +1,18 @@ +# Publication +title=Online Learning for Combinatorial Network Optimization with Restless Markovian Rewards +venue=the 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, June, 2012. +authors=['Yi Gai', 'Bhaskar Krishnamachari', 'Mingyan Liu'] +abstract=Combinatorial network optimization algorithms that compute optimal structures taking into account edge weights form the foundation for many network protocols. Examples include shortest path routing, minimal spanning tree computation, maximum weighted matching on bipartite graphs, etc. We present CLRMR, the first online learning algorithm that efficiently solves the stochastic version of these problems where the underlying edge weights vary as independent Markov chains with unknown dynamics. The performance of an online learning algorithm is characterized in terms of regret, defined as the cumulative difference in rewards between a suitably-defined genie, and that obtained by the given algorithm. We prove that, compared to a genie that knows the Markov transition matrices and uses the single-best structure at all times, CLRMR yields regret that is polynomial in the number of edges and nearly-logarithmic in time. + +# Information +links.pdf=/static/public/papers/SECON2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/be0b3a83028e9a9c8b2ee9593bb0c13424bd4f41 +type=Conference Papers +year=2012 +paper_id=51e16c5e +ss_title=Online learning for combinatorial network optimization with restless Markovian rewards +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '39037167', 'name': 'M. Liu'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2011 +ss_abstract=Combinatorial network optimization algorithms that compute optimal structures taking into account edge weights form the foundation for many network protocols. Examples include shortest path routing, minimal spanning tree computation, maximum weighted matching on bipartite graphs, etc. We present CLRMR, the first online learning algorithm that efficiently solves the stochastic version of these problems where the underlying edge weights vary as independent Markov chains with unknown dynamics. The performance of an online learning algorithm is characterized in terms of regret, defined as the cumulative difference in rewards between a suitably-defined genie, and that obtained by the given algorithm. We prove that, compared to a genie that knows the Markov transition matrices and uses the single-best structure at all times, CLRMR yields regret that is polynomial in the number of edges and nearly-logarithmic in time. +ss_paper_id=be0b3a83028e9a9c8b2ee9593bb0c13424bd4f41 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_online_learning_to_optimize_transmission_over_an_unknown_gilbertelliott_channel.txt b/database/original_documents/publications_text/2012_online_learning_to_optimize_transmission_over_an_unknown_gilbertelliott_channel.txt new file mode 100644 index 0000000000000000000000000000000000000000..f0aac98429a327d9a1bf50cc516de6ecbd4e5f62 --- /dev/null +++ b/database/original_documents/publications_text/2012_online_learning_to_optimize_transmission_over_an_unknown_gilbertelliott_channel.txt @@ -0,0 +1,18 @@ +# Publication +title=Online Learning to Optimize Transmission over an Unknown Gilbert-Elliott Channel +venue=10th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2012. +authors=['Yanting Wu', 'Bhaskar Krishnamachari'] +abstract=This paper studies the optimal transmission policy for a Gilbert-Elliott Channel. The transmitter has two actions: sending aggressively or sending conservatively, with rewards depending on the action chosen and the underlying channel state. The aim is to compute the scheduling policy to determine which actions to choose at each time slot in order to maximize the expected total discounted reward. We first establish the threshold structure of the optimal policy when the underlying channel statistics are known. We then consider the more challenging case when the statistics are unknown. For this problem, we map different threshold policies to arms of a suitably defined multiarmed bandit problem. To tractably handle the complexity introduced by countably infinite arms and the infinite time horizon, we weaken our objective a little: finding a (OPT − (∈ + δ))-approximate policy instead. We present the UCB-P algorithm, which can achieve this objective with logarithmic-time regret. + +# Information +links.pdf=/static/public/papers/YW-wiopt2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/504d5112a45b7996e8263a9c66d47603004c940f +type=Conference Papers +year=2012 +paper_id=3872934b +ss_title=Online learning to optimize transmission over an unknown Gilbert-Elliott Channel +ss_authors=[{'authorId': '2134150909', 'name': 'Yanting Wu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks +ss_year=2012 +ss_abstract=This paper studies the optimal transmission policy for a Gilbert-Elliott Channel. The transmitter has two actions: sending aggressively or sending conservatively, with rewards depending on the action chosen and the underlying channel state. The aim is to compute the scheduling policy to determine which actions to choose at each time slot in order to maximize the expected total discounted reward. We first establish the threshold structure of the optimal policy when the underlying channel statistics are known. We then consider the more challenging case when the statistics are unknown. For this problem, we map different threshold policies to arms of a suitably defined multiarmed bandit problem. To tractably handle the complexity introduced by countably infinite arms and the infinite time horizon, we weaken our objective a little: finding a (OPT − (∈ + δ))-approximate policy instead. We present the UCB-P algorithm, which can achieve this objective with logarithmic-time regret. +ss_paper_id=504d5112a45b7996e8263a9c66d47603004c940f \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_optimality_of_myopic_policy_for_a_class_of_monotone_affine_restless_multiarmed_bandits.txt b/database/original_documents/publications_text/2012_optimality_of_myopic_policy_for_a_class_of_monotone_affine_restless_multiarmed_bandits.txt new file mode 100644 index 0000000000000000000000000000000000000000..44f1b5815fd6c10548e10de1ba7895ada64db293 --- /dev/null +++ b/database/original_documents/publications_text/2012_optimality_of_myopic_policy_for_a_class_of_monotone_affine_restless_multiarmed_bandits.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandits +venue=51st IEEE Conference on Decision and Control (CDC) 2012 +authors=['Parisa Mansourifard', 'Tara Javidi', 'Bhaskar Krishnamachari'] +abstract=We formulate a general class of restless multi-armed bandits with n independent and stochastically identical arms. Each arm is in a real-valued state s ∈ [s0, smax]. Selecting an arm with state s yields an immediate reward with expectation R(s). The state of the arm that is selected stochastically jumps from its current value s to either smax or s0 with probability p(s) or 1 - p(s) respectively. The state of the arms that are not selected evolve according to a function τ (s). We assume that τ (s), p(s), and R(s) are all monotonically increasing affine functions, and τ (s) is a contraction mapping. We then derive a condition on τ (s) under which the simple myopic policy, which selects at each time the arm with the highest immediate reward, is optimal. This extends and generalizes recent results in the literature pertaining to arms evolving as two-state Markov chains. + +# Information +links.pdf=/static/public/papers/parisa_CDC2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/89e5e5112f10d318ba49826b0f7cc24a6ed5dd65 +type=Conference Papers +year=2012 +paper_id=b3ad161e +ss_title=Optimality of myopic policy for a class of monotone affine restless multi-armed bandits +ss_authors=[{'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '47197693', 'name': 'T. Javidi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Conference on Decision and Control +ss_year=2012 +ss_abstract=We formulate a general class of restless multi-armed bandits with n independent and stochastically identical arms. Each arm is in a real-valued state s ∈ [s0, smax]. Selecting an arm with state s yields an immediate reward with expectation R(s). The state of the arm that is selected stochastically jumps from its current value s to either smax or s0 with probability p(s) or 1 - p(s) respectively. The state of the arms that are not selected evolve according to a function τ (s). We assume that τ (s), p(s), and R(s) are all monotonically increasing affine functions, and τ (s) is a contraction mapping. We then derive a condition on τ (s) under which the simple myopic policy, which selects at each time the arm with the highest immediate reward, is optimal. This extends and generalizes recent results in the literature pertaining to arms evolving as two-state Markov chains. +ss_paper_id=89e5e5112f10d318ba49826b0f7cc24a6ed5dd65 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_rate_control_for_heterogeneous_wireless_sensor_networks_characterization_algorithms_and_performance.txt b/database/original_documents/publications_text/2012_rate_control_for_heterogeneous_wireless_sensor_networks_characterization_algorithms_and_performance.txt new file mode 100644 index 0000000000000000000000000000000000000000..3e9dfef64f297f0dcddf813b038ba5debc61a550 --- /dev/null +++ b/database/original_documents/publications_text/2012_rate_control_for_heterogeneous_wireless_sensor_networks_characterization_algorithms_and_performance.txt @@ -0,0 +1,18 @@ +# Publication +title=Rate Control for Heterogeneous Wireless Sensor Networks: Characterization, Algorithms and Performance +venue=“Computer Networks 2012”. +authors=['Jiong Jin', 'Marimuthu Palaniswami', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/RateControlWSN_ComputerNetworks.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ecd86fa03c0593e2564ca501773cf1d7f87c9186 +type=Journal Papers +year=2012 +paper_id=9c26750b +ss_title=Rate control for heterogeneous wireless sensor networks: Characterization, algorithms and performance +ss_authors=[{'authorId': '38152929', 'name': 'Jiong Jin'}, {'authorId': '145389998', 'name': 'M. Palaniswami'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Comput. Networks +ss_year=2012 +ss_abstract=None +ss_paper_id=ecd86fa03c0593e2564ca501773cf1d7f87c9186 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_risa_distributed_road_information_sharing_architecture.txt b/database/original_documents/publications_text/2012_risa_distributed_road_information_sharing_architecture.txt new file mode 100644 index 0000000000000000000000000000000000000000..5d004731140eef437b6702e7b0fcb3b3736cd7d3 --- /dev/null +++ b/database/original_documents/publications_text/2012_risa_distributed_road_information_sharing_architecture.txt @@ -0,0 +1,18 @@ +# Publication +title=RISA: Distributed Road Information Sharing Architecture +venue=IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL, USA, March, 2012. +authors=['Joon Ahn', 'Yi Wang', 'Bo Yu', 'Fan Bai', 'Bhaskar Krishnamachari'] +abstract=With the advent of the new IEEE 802.11p DSRC/WAVE radios, Vehicle-to-Vehicle (V2V) communications is poised for a dramatic leap. A canonical application for these future vehicular networks is the detection and notification of anomalous road events (e.g., potholes, bumps, icy road patches, etc.). We present the Road Information Sharing Architecture (RISA), the first distributed approach to road condition detection and dissemination for vehicular networks. RISA provides for the in-network aggregation and dissemination of event information detected by multiple vehicles in a timely manner for improved information reliability and bandwidth efficiency. RISA uses a novel Time-Decay Sequential Hypothesis Testing (TD-SHT) approach in which event information from multiple sources is combined with time-varying beliefs. We describe our implementation of RISA which has been deployed and tested on a fleet of vehicles on-site at the GM Warren Technical Center in Michigan. We further provide a comprehensive evaluation of the aggregation mechanism using emulation of the RISA code on real vehicular mobility traces. + +# Information +links.pdf=/static/public/papers/JoonInfocom2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3ae55e161e009213d6bb5581fb1df7447d0a50aa +type=Conference Papers +year=2012 +paper_id=3ea31b29 +ss_title=RISA: Distributed Road Information Sharing Architecture +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '145938565', 'name': 'Bo Yu'}, {'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2012 +ss_abstract=With the advent of the new IEEE 802.11p DSRC/WAVE radios, Vehicle-to-Vehicle (V2V) communications is poised for a dramatic leap. A canonical application for these future vehicular networks is the detection and notification of anomalous road events (e.g., potholes, bumps, icy road patches, etc.). We present the Road Information Sharing Architecture (RISA), the first distributed approach to road condition detection and dissemination for vehicular networks. RISA provides for the in-network aggregation and dissemination of event information detected by multiple vehicles in a timely manner for improved information reliability and bandwidth efficiency. RISA uses a novel Time-Decay Sequential Hypothesis Testing (TD-SHT) approach in which event information from multiple sources is combined with time-varying beliefs. We describe our implementation of RISA which has been deployed and tested on a fleet of vehicles on-site at the GM Warren Technical Center in Michigan. We further provide a comprehensive evaluation of the aggregation mechanism using emulation of the RISA code on real vehicular mobility traces. +ss_paper_id=3ae55e161e009213d6bb5581fb1df7447d0a50aa \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_semimarkov_state_estimation_and_policy_optimization_for_energy_efficient_mobile_sensing.txt b/database/original_documents/publications_text/2012_semimarkov_state_estimation_and_policy_optimization_for_energy_efficient_mobile_sensing.txt new file mode 100644 index 0000000000000000000000000000000000000000..81ef682ad6a6c6109130ab7492139f4dbb4f7445 --- /dev/null +++ b/database/original_documents/publications_text/2012_semimarkov_state_estimation_and_policy_optimization_for_energy_efficient_mobile_sensing.txt @@ -0,0 +1,18 @@ +# Publication +title=Semi-Markov State Estimation and Policy Optimization for Energy Efficient Mobile Sensing +venue=the 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, June, 2012. +authors=['Yi Wang', 'Bhaskar Krishnamachari', 'Murali Annavaram'] +abstract=User/environmental context detection on mobile devices benefits end-users by providing information support to various kinds of applications. A pervasive question, however, is how the sensors on the mobile device should be sampled energy efficiently without sacrificing too much detection accuracy. In this paper, we formulate the user state sensing problem as the intermittent sampling of a semi-Markov process, a model that provides general and flexible capturing of realistic data with any type of state sojourn distributions. We propose (a) a semi-Markov state estimation mechanism that selects the most likely user state while observations are missing, and (b) a semi-Markov optimal sensing policy us* which minimizes the expected state estimation error while maintaining a given energy budget. Their performance are shown to significantly outperform Markov algorithms on simulated two-state processes and real user state traces pertaining to different types of state distributions. Finally, in order to evaluate the performance of us*, we implement a client-server based basic human activity recognition system on N95 smartphones and desktops which automatically computes user-specific optimal sensing policy based on historically collected data. We show that us* improves the estimation accuracy by 27.8% and 48.6% respectively over Markov-optimal policy and uniform sampling through a set of experiments. + +# Information +links.pdf=/static/public/papers/WangKrishnamachariAnnavaram_SECON2012.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d4b8d1958f27efe34b637b11387565d155460e29 +type=Conference Papers +year=2012 +paper_id=4121fb5b +ss_title=Semi-Markov state estimation and policy optimization for energy efficient mobile sensing +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2012 +ss_abstract=User/environmental context detection on mobile devices benefits end-users by providing information support to various kinds of applications. A pervasive question, however, is how the sensors on the mobile device should be sampled energy efficiently without sacrificing too much detection accuracy. In this paper, we formulate the user state sensing problem as the intermittent sampling of a semi-Markov process, a model that provides general and flexible capturing of realistic data with any type of state sojourn distributions. We propose (a) a semi-Markov state estimation mechanism that selects the most likely user state while observations are missing, and (b) a semi-Markov optimal sensing policy us* which minimizes the expected state estimation error while maintaining a given energy budget. Their performance are shown to significantly outperform Markov algorithms on simulated two-state processes and real user state traces pertaining to different types of state distributions. Finally, in order to evaluate the performance of us*, we implement a client-server based basic human activity recognition system on N95 smartphones and desktops which automatically computes user-specific optimal sensing policy based on historically collected data. We show that us* improves the estimation accuracy by 27.8% and 48.6% respectively over Markov-optimal policy and uniform sampling through a set of experiments. +ss_paper_id=d4b8d1958f27efe34b637b11387565d155460e29 \ No newline at end of file diff --git a/database/original_documents/publications_text/2012_speedbalance_speedscalingaware_optimal_load_balancing_for_green_cellular_networks.txt b/database/original_documents/publications_text/2012_speedbalance_speedscalingaware_optimal_load_balancing_for_green_cellular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..da319baa7777bad3b5d6f4e6f6e7e3e58011c7d9 --- /dev/null +++ b/database/original_documents/publications_text/2012_speedbalance_speedscalingaware_optimal_load_balancing_for_green_cellular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=SpeedBalance: Speed-Scaling-Aware Optimal Load Balancing for Green Cellular Networks +venue=IEEE International Conference on Computer Communications (IEEE INFOCOM Mini-conference 2012), Orlando, FL, USA, March, 2012. +authors=['Kyuho Son', 'Bhaskar Krishnamachari'] +abstract=This paper considers a component-level deceleration technique in BS operation, called speed-scaling, that is more conservative than entirely shutting down BSs, yet can conserve dynamic power effectively during periods of low load while ensuring full coverage at all times. By formulating a total cost minimization that allows for a flexible tradeoff between delay and energy, we first study how to adaptively vary the processing speed based on incoming load. We then investigate how this speed-scaling affects the design of network protocol, specifically, with respect to user association. Based on our investigation, we propose and analyze a distributed algorithm, called SpeedBalance, that can yield significant energy savings. + +# Information +links.pdf=/static/public/papers/SpeedBalanceCamera.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9e3359de5eb8fa932fe3bbfa54c24ccb23a5e1fe +type=Conference Papers +year=2012 +paper_id=e9ffefeb +ss_title=SpeedBalance: Speed-scaling-aware optimal load balancing for green cellular networks +ss_authors=[{'authorId': '1714987', 'name': 'K. Son'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2012 +ss_abstract=This paper considers a component-level deceleration technique in BS operation, called speed-scaling, that is more conservative than entirely shutting down BSs, yet can conserve dynamic power effectively during periods of low load while ensuring full coverage at all times. By formulating a total cost minimization that allows for a flexible tradeoff between delay and energy, we first study how to adaptively vary the processing speed based on incoming load. We then investigate how this speed-scaling affects the design of network protocol, specifically, with respect to user association. Based on our investigation, we propose and analyze a distributed algorithm, called SpeedBalance, that can yield significant energy savings. +ss_paper_id=9e3359de5eb8fa932fe3bbfa54c24ccb23a5e1fe \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_an_environmentaware_sequencebased_localization_algorithm_for_supporting_building_emergency_response_operations.txt b/database/original_documents/publications_text/2013_an_environmentaware_sequencebased_localization_algorithm_for_supporting_building_emergency_response_operations.txt new file mode 100644 index 0000000000000000000000000000000000000000..072f882f9d7b069485c9e81ff926ecee86aa9300 --- /dev/null +++ b/database/original_documents/publications_text/2013_an_environmentaware_sequencebased_localization_algorithm_for_supporting_building_emergency_response_operations.txt @@ -0,0 +1,18 @@ +# Publication +title=An Environment-Aware Sequence-Based Localization Algorithm for Supporting Building Emergency Response Operations +venue=2013 ASCE International Workshop on Computing in Civil Engineering (IWCCE) Technical Committee. +authors=['Nan Li', 'Burcin Becerik-Gerber', 'Bhaskar Krishnamachari', 'Lucio Soibelman'] +abstract=Building emergencies are big threats to the safety of building occupants and first responders. When emergencies occur, unfamiliar environments are difficult and dangerous for first responders to search and rescue, sometimes leading to secondary casualties. One way to reduce such hazards is to provide first responders with timely access to accurate location information. Despite its importance, access to the location information at emergency scenes is far from being automated and efficient. This paper identifies a set of requirements for indoor localization during emergency response operations through a nationwide survey, and proposes an environmentaware sequence-based localization algorithm that is free of signal path loss models or collection of prior data, and mitigates signal multipath effects. The algorithm enables efficient on-scene ad-hoc sensor network deployment and optimizes sensing space division by strategically selecting sensor node locations. Building information is integrated, in order to enable building-specific space divisions and to support contextbased visualization of localization results. Proposed algorithm is evaluated through a building-size simulation. Room-level accuracy of up to 87.3% was reported, and up to 15.0% of deployment effort was reduced compared with using randomly selected sensor locations. The algorithm also showed good computational speed, with negligible time required for refreshing location estimation results in simulation. INTRODUCTION Building emergencies, including flooding, building collapses, terrorist attacks and especially structure fires, are big threats to the safety of building occupants and first responders. For example, public fire departments across the U.S. attended 484,500 fires in buildings in 2011, which caused 2,460 deaths and 15,635 injuries (Karter 2012). When emergencies occur, unfamiliar environments are difficult and dangerous for first responders to search and rescue, sometimes leading to secondary casualties. With the increasing number of complex buildings, and less live-fire training, first responders are twice as likely to die inside structures as they were 20 years ago, and the leading cause of these line-of-duty deaths is getting lost, being trapped or disoriented (Brouwer 2007). One way to reduce such hazards is to provide firefighters with timely access to accurate location information. It is also of critical importance for an incident commander to know the locations of deployed first responders in real time, so that decision-making process is faster and more informed. + +# Information +links.pdf=/static/public/papers/NanLi_SeqLocal.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/33930f43028adb65e59c4dbcd3d0ad036c38327f +type=Conference Papers +year=2013 +paper_id=169928d9 +ss_title=An Environment-Aware Sequence-Based Localization Algorithm for Supporting Building Emergency Response Operations +ss_authors=[{'authorId': '2157949440', 'name': 'Nan Li'}, {'authorId': '1403066874', 'name': 'B. Becerik-Gerber'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '3170605', 'name': 'L. Soibelman'}] +ss_venue= +ss_year=2013 +ss_abstract=Building emergencies are big threats to the safety of building occupants and first responders. When emergencies occur, unfamiliar environments are difficult and dangerous for first responders to search and rescue, sometimes leading to secondary casualties. One way to reduce such hazards is to provide first responders with timely access to accurate location information. Despite its importance, access to the location information at emergency scenes is far from being automated and efficient. This paper identifies a set of requirements for indoor localization during emergency response operations through a nationwide survey, and proposes an environmentaware sequence-based localization algorithm that is free of signal path loss models or collection of prior data, and mitigates signal multipath effects. The algorithm enables efficient on-scene ad-hoc sensor network deployment and optimizes sensing space division by strategically selecting sensor node locations. Building information is integrated, in order to enable building-specific space divisions and to support contextbased visualization of localization results. Proposed algorithm is evaluated through a building-size simulation. Room-level accuracy of up to 87.3% was reported, and up to 15.0% of deployment effort was reduced compared with using randomly selected sensor locations. The algorithm also showed good computational speed, with negligible time required for refreshing location estimation results in simulation. INTRODUCTION Building emergencies, including flooding, building collapses, terrorist attacks and especially structure fires, are big threats to the safety of building occupants and first responders. For example, public fire departments across the U.S. attended 484,500 fires in buildings in 2011, which caused 2,460 deaths and 15,635 injuries (Karter 2012). When emergencies occur, unfamiliar environments are difficult and dangerous for first responders to search and rescue, sometimes leading to secondary casualties. With the increasing number of complex buildings, and less live-fire training, first responders are twice as likely to die inside structures as they were 20 years ago, and the leading cause of these line-of-duty deaths is getting lost, being trapped or disoriented (Brouwer 2007). One way to reduce such hazards is to provide firefighters with timely access to accurate location information. It is also of critical importance for an incident commander to know the locations of deployed first responders in real time, so that decision-making process is faster and more informed. +ss_paper_id=33930f43028adb65e59c4dbcd3d0ad036c38327f \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_bayesian_congestion_control_over_a_markovian_network_bandwidth_process.txt b/database/original_documents/publications_text/2013_bayesian_congestion_control_over_a_markovian_network_bandwidth_process.txt new file mode 100644 index 0000000000000000000000000000000000000000..8f1ec9d50cb9e65af85772ba874d5eb7b54da765 --- /dev/null +++ b/database/original_documents/publications_text/2013_bayesian_congestion_control_over_a_markovian_network_bandwidth_process.txt @@ -0,0 +1,18 @@ +# Publication +title=Bayesian Congestion Control over a Markovian Network Bandwidth Process +venue=Asilomar conference 2013 (invited). +authors=['Parisa Mansourifard', 'Bhaskar Krishnamachari', 'Tara Javidi'] +abstract=We formulate a Bayesian congestion control problem in which a source must select the transmission rate over a network whose available bandwidth is modeled as a time-homogeneous finite-state Markov Chain. The decision to transmit at a rate below the instantaneous available bandwidth results in an under-utilization of the resource while transmission at rates higher than the available bandwidth results in a linear penalty. The trade-off is further complicated by the asymmetry in the information acquisition process: transmission rates that happen to be larger than the instantaneous available bandwidth result in perfect observation of the state of the bandwidth process. In contrast, when transmission rate is below the instantaneous available bandwidth, only a (potentially rather loose) lower bound on the available bandwidth is revealed. We show that the problem of maximizing the throughput of the source while avoiding congestion loss can be expressed as a Partially Observable Markov Decision Process (POMDP). We prove structural results providing bounds on the optimal actions. The obtained bounds yield tractable sub-optimal solutions that are shown via simulations to perform well. + +# Information +links.pdf=/static/public/papers/BCCMNBP-long.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2d557fb8bed0bf37fadb1814d2906ee9f56b5450 +type=Conference Papers +year=2013 +paper_id=05131905 +ss_title=Bayesian congestion control over a Markovian network bandwidth process +ss_authors=[{'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '47197693', 'name': 'T. Javidi'}] +ss_venue=Asilomar Conference on Signals, Systems and Computers +ss_year=2013 +ss_abstract=We formulate a Bayesian congestion control problem in which a source must select the transmission rate over a network whose available bandwidth is modeled as a time-homogeneous finite-state Markov Chain. The decision to transmit at a rate below the instantaneous available bandwidth results in an under-utilization of the resource while transmission at rates higher than the available bandwidth results in a linear penalty. The trade-off is further complicated by the asymmetry in the information acquisition process: transmission rates that happen to be larger than the instantaneous available bandwidth result in perfect observation of the state of the bandwidth process. In contrast, when transmission rate is below the instantaneous available bandwidth, only a (potentially rather loose) lower bound on the available bandwidth is revealed. We show that the problem of maximizing the throughput of the source while avoiding congestion loss can be expressed as a Partially Observable Markov Decision Process (POMDP). We prove structural results providing bounds on the optimal actions. The obtained bounds yield tractable sub-optimal solutions that are shown via simulations to perform well. +ss_paper_id=2d557fb8bed0bf37fadb1814d2906ee9f56b5450 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_dawn_a_density_adaptive_routing_for_deadlinebased_data_collection_in_vehicular_delay_tolerant_networks.txt b/database/original_documents/publications_text/2013_dawn_a_density_adaptive_routing_for_deadlinebased_data_collection_in_vehicular_delay_tolerant_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..2b72303635c9980fd328b1668b94ab273ee58eeb --- /dev/null +++ b/database/original_documents/publications_text/2013_dawn_a_density_adaptive_routing_for_deadlinebased_data_collection_in_vehicular_delay_tolerant_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=DAWN: A density adaptive routing for deadline-based data collection in vehicular delay tolerant networks +venue=“Tsinghua Science and Technology , vol.18, no.3, pp.230,241, June 2013.” +authors=['Qiao Fu', 'Bhaskar Krishnamachari', 'Lin Zhang'] +abstract=Vehicular Delay Tolerant Networks (DTN) use moving vehicles to sample and relay sensory data for urban areas, making it a promising low-cost solution for the urban sensing and infotainment applications. However, routing in the DTN in real vehicle fleet is a great challenge due to uneven and fluctuant node density caused by vehicle mobility patterns. Moreover, the high vehicle density in urban areas makes the wireless channel capacity an impactful factor to network performance. In this paper, we propose a local capacity constrained density adaptive routing algorithm for large scale vehicular DTN in urban areas which targets to increase the packet delivery ratio within deadline, namely Density Adaptive routing With Node deadline awareness (DAWN). DAWN enables the mobile nodes awareness of their neighbor density, to which the nodes' transmission manners are adapted so as to better utilize the limited capacity and increase the data delivery probability within delay constraint based only on local information. Through simulations on Manhattan Grid Mobility Model and the real GPS traces of 4960 taxi cabs for 30 days in the Beijing city, DAWN is demonstrated to outperform other classical DTN routing schemes in performance of delivery ratio and coverage within delay constraint. These simulations suggest that DAWN is practically useful for the vehicular DTN in urban areas. + +# Information +links.pdf=/static/public/papers/DAWN_Fu.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f2522a476808342902d745bb8b5b8e4953ea0ea8 +type=Journal Papers +year=2013 +paper_id=1f89ab33 +ss_title=DAWN: A density adaptive routing for deadline-based data collection in vehicular delay tolerant networks +ss_authors=[{'authorId': '2113771386', 'name': 'Qiao Fu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2143835544', 'name': 'Lin Zhang'}] +ss_venue= +ss_year=2013 +ss_abstract=Vehicular Delay Tolerant Networks (DTN) use moving vehicles to sample and relay sensory data for urban areas, making it a promising low-cost solution for the urban sensing and infotainment applications. However, routing in the DTN in real vehicle fleet is a great challenge due to uneven and fluctuant node density caused by vehicle mobility patterns. Moreover, the high vehicle density in urban areas makes the wireless channel capacity an impactful factor to network performance. In this paper, we propose a local capacity constrained density adaptive routing algorithm for large scale vehicular DTN in urban areas which targets to increase the packet delivery ratio within deadline, namely Density Adaptive routing With Node deadline awareness (DAWN). DAWN enables the mobile nodes awareness of their neighbor density, to which the nodes' transmission manners are adapted so as to better utilize the limited capacity and increase the data delivery probability within delay constraint based only on local information. Through simulations on Manhattan Grid Mobility Model and the real GPS traces of 4960 taxi cabs for 30 days in the Beijing city, DAWN is demonstrated to outperform other classical DTN routing schemes in performance of delivery ratio and coverage within delay constraint. These simulations suggest that DAWN is practically useful for the vehicular DTN in urban areas. +ss_paper_id=f2522a476808342902d745bb8b5b8e4953ea0ea8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt b/database/original_documents/publications_text/2013_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..323c028968fb4349db1769091af6e69fb0ef3896 --- /dev/null +++ b/database/original_documents/publications_text/2013_distributed_storage_codes_reduce_latency_in_vehicular_networks.txt @@ -0,0 +1,19 @@ +# Publication +title=Distributed Storage Codes Reduce Latency in Vehicular Networks +venue=IEEE Transactions on Mobile Computing, vol.13, no.9, pp.2016-2027, Sept. 2014. +authors=['Maheswaran Sathiamoorthy', 'Alexandros G Dimakis', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through realistic trace-based simulations. We find that coding offers substantial benefits over simple replication when the file sizes are large compared to the average download bandwidth available per encounter. Our simulations, based on a large real vehicle trace from Beijing combined with a realistic radio link quality model for a IEEE 802.11p dedicated short range communication (DSRC) radio, demonstrate that coding provides significant cost reduction in vehicular networks. + +# Information +links.pdf=/static/public/papers/VANETCodingTMC_Sathiamoorthy.pdf +links.code=http://anrg.usc.edu/www/papers/VANETCodingTMC_Sathiamoorthy.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/404ad4dab5f81633b8b7a71f859bb734300950b2 +type=Journal Papers +year=2013 +paper_id=b9bcabb3 +ss_title=Distributed storage codes reduce latency in vehicular networks +ss_authors=[{'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1718469', 'name': 'A. Dimakis'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=2012 Proceedings IEEE INFOCOM +ss_year=2012 +ss_abstract=We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through realistic trace-based simulations. We find that coding offers substantial benefits over simple replication when the file sizes are large compared to the average download bandwidth available per encounter. Our simulations, based on a large real vehicle trace from Beijing combined with a realistic radio link quality model for a IEEE 802.11p dedicated short range communication (DSRC) radio, demonstrate that coding provides significant cost reduction in vehicular networks. +ss_paper_id=404ad4dab5f81633b8b7a71f859bb734300950b2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_dynamic_base_station_switchingonoff_strategies_for_green_cellular_networks.txt b/database/original_documents/publications_text/2013_dynamic_base_station_switchingonoff_strategies_for_green_cellular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..0bcc57cceccf36543ac785ba4b1a9668aadbad6c --- /dev/null +++ b/database/original_documents/publications_text/2013_dynamic_base_station_switchingonoff_strategies_for_green_cellular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Dynamic Base Station Switching-on/off Strategies for Green Cellular Networks +venue=IEEE Trans. on Wireless Communications, vol. 12, no. 5, pp. 2126-2136, May 2013. +authors=['Eunsung Oh', 'Kyuho Son', 'Bhaskar Krishnamachari'] +abstract=In this paper, we investigate dynamic base station (BS) switching to reduce energy consumption in wireless cellular networks. Specifically, we formulate a general energy minimization problem pertaining to BS switching that is known to be a difficult combinatorial problem and requires high computational complexity as well as large signaling overhead. We propose a practically implementable switching-on/off based energy saving (SWES) algorithm that can be operated in a distributed manner with low computational complexity. A key design principle of the proposed algorithm is to turn off a BS one by one that will minimally affect the network by using a newly introduced notion of network-impact, which takes into account the additional load increments brought to its neighboring BSs. In order to further reduce the signaling and implementation overhead over the air and backhaul, we propose three other heuristic versions of SWES that use the approximate values of network-impact as their decision metrics. We describe how the proposed algorithms can be implemented in practice at the protocol-level and also estimate the amount of energy savings through a first-order analysis in a simple setting. Extensive simulations demonstrate that the SWES algorithms can significantly reduce the total energy consumption, e.g., we estimate up to 50-80% potential savings based on a real traffic profile from a metropolitan urban area. + +# Information +links.pdf=/static/public/papers/EungsungOh_GreenCellular.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7b3105f8c30c4924e05b76f2518c8477f4a6fa07 +type=Journal Papers +year=2013 +paper_id=4a16aaa0 +ss_title=Dynamic Base Station Switching-On/Off Strategies for Green Cellular Networks +ss_authors=[{'authorId': '1977686', 'name': 'Eunsung Oh'}, {'authorId': '1714987', 'name': 'K. Son'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Wireless Communications +ss_year=2013 +ss_abstract=In this paper, we investigate dynamic base station (BS) switching to reduce energy consumption in wireless cellular networks. Specifically, we formulate a general energy minimization problem pertaining to BS switching that is known to be a difficult combinatorial problem and requires high computational complexity as well as large signaling overhead. We propose a practically implementable switching-on/off based energy saving (SWES) algorithm that can be operated in a distributed manner with low computational complexity. A key design principle of the proposed algorithm is to turn off a BS one by one that will minimally affect the network by using a newly introduced notion of network-impact, which takes into account the additional load increments brought to its neighboring BSs. In order to further reduce the signaling and implementation overhead over the air and backhaul, we propose three other heuristic versions of SWES that use the approximate values of network-impact as their decision metrics. We describe how the proposed algorithms can be implemented in practice at the protocol-level and also estimate the amount of energy savings through a first-order analysis in a simple setting. Extensive simulations demonstrate that the SWES algorithms can significantly reduce the total energy consumption, e.g., we estimate up to 50-80% potential savings based on a real traffic profile from a metropolitan urban area. +ss_paper_id=7b3105f8c30c4924e05b76f2518c8477f4a6fa07 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_evaluation_of_an_environmentaware_sequencebased_localization_algorithm_for_building_fire_emergency_scenarios.txt b/database/original_documents/publications_text/2013_evaluation_of_an_environmentaware_sequencebased_localization_algorithm_for_building_fire_emergency_scenarios.txt new file mode 100644 index 0000000000000000000000000000000000000000..1f448238eb52469b72c1ee21cda7b272696111b6 --- /dev/null +++ b/database/original_documents/publications_text/2013_evaluation_of_an_environmentaware_sequencebased_localization_algorithm_for_building_fire_emergency_scenarios.txt @@ -0,0 +1,18 @@ +# Publication +title=Evaluation of An Environment-Aware Sequence-Based Localization Algorithm For Building Fire Emergency Scenarios +venue=Proc. 30th International Conference on Applications of IT in the AEC Industry (CIB W78 2013), Oct 9-12, 2013, Beijing, China. +authors=['Nan Li', 'Burcin Becerik-Gerber', 'Bhaskar Krishnamachari', 'Lucio Soibelman'] +abstract=Real-time access to indoor localization information is critical to the success of building emergency response operations. It enables first responders not only to locate themselves to avoid getting lost or disoriented, but also to quickly find and rescue trapped occupants. The environment-aware sequence-based localization (EASBL) is an algorithm proposed by the authors for indoor localization at emergency scenes. With an integration of metaheuristics, the algorithm instructs the establishment of an on-scene ad-hoc sensor network, by reducing the deployment effort and by improving quality of sensing space divisions. Building information is utilized to enable building-specific space divisions and to support context-based visualization of localization results. In this paper, the EASBL is evaluated by using a simulated real-life building fire emergency scenario. Spatial information of a burning building is extracted from a building information model. Results show that tabu search outperforms genetic algorithm and simulated annealing in terms of both the convergence speed and the fitness of solutions. The EASBL algorithm is resistant to partial loss of deployed sensor nodes, and simulations show that over 80% of its accuracy can be retained when almost half of the deployed sensors are lost. The results also reveal that the computational complexity in improving the space division quality increases disproportionally faster than the number of candidate locations for sensor node deployment increases. It suggests that dividing emergency scenes into sub areas and performing indoor localization independently within each sub area may be necessary at large scenes. + +# Information +links.pdf=/static/public/papers/NanLi_92.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/989df702fcbee34b0c5f9ecfa23dab77976ea534 +type=Conference Papers +year=2013 +paper_id=773a9b62 +ss_title=EVALUATION OF AN ENVIRONMENT-AWARE SEQUENCE-BASED LOCALIZATION ALGORITHM FOR BUILDING FIRE EMERGENCY SCENARIOS +ss_authors=[{'authorId': '2157949440', 'name': 'Nan Li'}, {'authorId': '1403066874', 'name': 'B. Becerik-Gerber'}, {'authorId': '3170605', 'name': 'L. Soibelman'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2013 +ss_abstract=Real-time access to indoor localization information is critical to the success of building emergency response operations. It enables first responders not only to locate themselves to avoid getting lost or disoriented, but also to quickly find and rescue trapped occupants. The environment-aware sequence-based localization (EASBL) is an algorithm proposed by the authors for indoor localization at emergency scenes. With an integration of metaheuristics, the algorithm instructs the establishment of an on-scene ad-hoc sensor network, by reducing the deployment effort and by improving quality of sensing space divisions. Building information is utilized to enable building-specific space divisions and to support context-based visualization of localization results. In this paper, the EASBL is evaluated by using a simulated real-life building fire emergency scenario. Spatial information of a burning building is extracted from a building information model. Results show that tabu search outperforms genetic algorithm and simulated annealing in terms of both the convergence speed and the fitness of solutions. The EASBL algorithm is resistant to partial loss of deployed sensor nodes, and simulations show that over 80% of its accuracy can be retained when almost half of the deployed sensors are lost. The results also reveal that the computational complexity in improving the space division quality increases disproportionally faster than the number of candidate locations for sensor node deployment increases. It suggests that dividing emergency scenes into sub areas and performing indoor localization independently within each sub area may be necessary at large scenes. +ss_paper_id=989df702fcbee34b0c5f9ecfa23dab77976ea534 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_online_learning_for_personalized_roomlevel_thermal_control_a_multiarmed_bandit_framework.txt b/database/original_documents/publications_text/2013_online_learning_for_personalized_roomlevel_thermal_control_a_multiarmed_bandit_framework.txt new file mode 100644 index 0000000000000000000000000000000000000000..a52cc7dc8b3e91b68b53abd10d01fd9822703b2d --- /dev/null +++ b/database/original_documents/publications_text/2013_online_learning_for_personalized_roomlevel_thermal_control_a_multiarmed_bandit_framework.txt @@ -0,0 +1,18 @@ +# Publication +title=Online Learning for Personalized Room-Level Thermal Control: A Multi-Armed Bandit Framework +venue=BuildSys 2013 Workshop, Rome, Italy. +authors=['Parisa Mansourifard', 'Farrokh Jazizadeh', 'Bhaskar Krishnamachari', 'Burcin Becerik-Gerber'] +abstract=We consider the problem of automatically learning the optimal thermal control in a room in order to maximize the expected average satisfaction among occupants providing stochastic feedback on their comfort through a participatory sensing application. Not assuming any prior knowledge or modeling of user comfort, we first apply the classic UCB1 online learning policy for multi-armed bandits (MAB), that combines exploration (testing out certain temperatures to understand better the user preferences) with exploitation (spending more time setting temperatures that maximize average-satisfaction) for the case when the total occupancy is constant. When occupancy is time-varying, the number of possible scenarios (i.e., which particular set of occupants are present in the room) becomes exponentially large, posing a combinatorial challenge. However, we show that LLR, a recently-developed combinatorial MAB online learning algorithm that requires recording and computation of only a polynomial number of quantities can be applied to this setting, yielding a regret (cumulative gap in average satisfaction with respect to a distribution aware genie) that grows only polynomially in the number of users, and logarithmically with time. This in turn indicates that difference in unit-time satisfaction obtained by the learning policy compared to the optimal tends to 0. We quantify the performance of these online learning algorithms using real data collected from users of a participatory sensing iPhone app in a multi-occupancy room in an office building in Southern California. + +# Information +links.pdf=/static/public/papers/OLPRTC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ec8e2fdf1c8884fc3fe0e22b16cdde3d5d9379c7 +type=Conference Papers +year=2013 +paper_id=98e21c7c +ss_title=Online Learning for Personalized Room-Level Thermal Control: A Multi-Armed Bandit Framework +ss_authors=[{'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '2080729', 'name': 'F. Jazizadeh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1403066874', 'name': 'B. Becerik-Gerber'}] +ss_venue=BuildSys@SenSys +ss_year=2013 +ss_abstract=We consider the problem of automatically learning the optimal thermal control in a room in order to maximize the expected average satisfaction among occupants providing stochastic feedback on their comfort through a participatory sensing application. Not assuming any prior knowledge or modeling of user comfort, we first apply the classic UCB1 online learning policy for multi-armed bandits (MAB), that combines exploration (testing out certain temperatures to understand better the user preferences) with exploitation (spending more time setting temperatures that maximize average-satisfaction) for the case when the total occupancy is constant. When occupancy is time-varying, the number of possible scenarios (i.e., which particular set of occupants are present in the room) becomes exponentially large, posing a combinatorial challenge. However, we show that LLR, a recently-developed combinatorial MAB online learning algorithm that requires recording and computation of only a polynomial number of quantities can be applied to this setting, yielding a regret (cumulative gap in average satisfaction with respect to a distribution aware genie) that grows only polynomially in the number of users, and logarithmically with time. This in turn indicates that difference in unit-time satisfaction obtained by the learning policy compared to the optimal tends to 0. We quantify the performance of these online learning algorithms using real data collected from users of a participatory sensing iPhone app in a multi-occupancy room in an office building in Southern California. +ss_paper_id=ec8e2fdf1c8884fc3fe0e22b16cdde3d5d9379c7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_optimal_power_allocation_policy_over_two_identical_gilbertelliott_channels.txt b/database/original_documents/publications_text/2013_optimal_power_allocation_policy_over_two_identical_gilbertelliott_channels.txt new file mode 100644 index 0000000000000000000000000000000000000000..f67de0149b1f9a4aaa7c5c14ab6a38a8eeb06f55 --- /dev/null +++ b/database/original_documents/publications_text/2013_optimal_power_allocation_policy_over_two_identical_gilbertelliott_channels.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Power Allocation Policy over Two Identical Gilbert-Elliott Channels +venue=IEEE ICC 2013. +authors=['Wei Jiang', 'Junhua Tang', 'Bhaskar Krishnamachari'] +abstract=We study the fundamental problem of optimal power allocation over two identical Gilbert-Elliott (Binary Markov) communication channels. Our goal is to maximize the expected discounted number of bits transmitted over an infinite time span by judiciously choosing one of the four actions for each time slot: 1) allocating power equally to both channels, 2) allocating all the power to channel 1, 3) allocating all the power to channel 2, and 4) allocating no power to any of the channels. As the channel state is unknown when power allocation decision is made, we model this problem as a partially observable Markov decision process(POMDP), and derive the optimal policy which gives the optimal action to take under different possible channel states. Two different structures of the optimal policy are derived analytically and verified by linear programming simulation. We also illustrate how to construct the optimal policy by the combination of threshold calculation and linear programming simulation once system parameters are known. + +# Information +links.pdf=/static/public/papers/ICCfull.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9bae8fd6dcc4f217ee7263b711e64d67979a2be8 +type=Conference Papers +year=2013 +paper_id=3c57a404 +ss_title=Optimal power allocation policy over two identical Gilbert-Elliott channels +ss_authors=[{'authorId': '30401303', 'name': 'Wei Jiang'}, {'authorId': '1728747', 'name': 'Junhua Tang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2013 IEEE International Conference on Communications (ICC) +ss_year=2012 +ss_abstract=We study the fundamental problem of optimal power allocation over two identical Gilbert-Elliott (Binary Markov) communication channels. Our goal is to maximize the expected discounted number of bits transmitted over an infinite time span by judiciously choosing one of the four actions for each time slot: 1) allocating power equally to both channels, 2) allocating all the power to channel 1, 3) allocating all the power to channel 2, and 4) allocating no power to any of the channels. As the channel state is unknown when power allocation decision is made, we model this problem as a partially observable Markov decision process(POMDP), and derive the optimal policy which gives the optimal action to take under different possible channel states. Two different structures of the optimal policy are derived analytically and verified by linear programming simulation. We also illustrate how to construct the optimal policy by the combination of threshold calculation and linear programming simulation once system parameters are known. +ss_paper_id=9bae8fd6dcc4f217ee7263b711e64d67979a2be8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_optimizing_content_dissemination_in_vehicular_networks_with_radio_heterogeneity.txt b/database/original_documents/publications_text/2013_optimizing_content_dissemination_in_vehicular_networks_with_radio_heterogeneity.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c3f3f27e6e243cd779993e6d1455938c7b33ffb --- /dev/null +++ b/database/original_documents/publications_text/2013_optimizing_content_dissemination_in_vehicular_networks_with_radio_heterogeneity.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimizing Content Dissemination in Vehicular Networks with Radio Heterogeneity +venue=IEEE Transactions on Mobile Computing, vol.13, no.6, pp.1312-1325, June 2014. +authors=['Joon Ahn', 'Maheswaran Sathiamoorthy', 'Bhaskar Krishnamachari', 'Fan Bai', 'Lin Zhang'] +abstract=Disseminating shared information to many vehicles could incur significant access fees if it relies only on unicast cellular communications. We consider the problem of efficient content dissemination over a vehicular network, in which vehicles are equipped with two kinds of radios: a high-cost low-bandwidth, long-range cellular radio, and a free high-bandwidth short-range radio. We formulate and solve an optimization problem to maximize content dissemination from the infrastructure to vehicles within a predetermined deadline while minimizing the cost associated with communicating over the cellular connection. We examine numerically the tradeoffs between cost, delay and system utility in the optimum regime. We find that, in the optimum regime, (a) system utility is more sensitive to the cost budget when the allowed delay for the dissemination is not large, (b) the system requires relatively smaller cost budget as more vehicles participate and more delay is allowed, (c) when the cost is very important, it is better not to spread the content if it needs small delay. We also develop a polynomial-time algorithm to obtain the optimal discrete solution needed in practice. Finally, we verify our analysis using real GPS traces of 632 taxis in Beijing, China. + +# Information +links.pdf=/static/public/papers/JoonAhn_TMC13.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d9eac8dcd00a9e42f6182765faca10a9d068a330 +type=Journal Papers +year=2013 +paper_id=a6b5508c +ss_title=Optimizing Content Dissemination in Vehicular Networks with Radio Heterogeneity +ss_authors=[{'authorId': '2111115072', 'name': 'Joon Ahn'}, {'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '2143835235', 'name': 'Lin Zhang'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2014 +ss_abstract=Disseminating shared information to many vehicles could incur significant access fees if it relies only on unicast cellular communications. We consider the problem of efficient content dissemination over a vehicular network, in which vehicles are equipped with two kinds of radios: a high-cost low-bandwidth, long-range cellular radio, and a free high-bandwidth short-range radio. We formulate and solve an optimization problem to maximize content dissemination from the infrastructure to vehicles within a predetermined deadline while minimizing the cost associated with communicating over the cellular connection. We examine numerically the tradeoffs between cost, delay and system utility in the optimum regime. We find that, in the optimum regime, (a) system utility is more sensitive to the cost budget when the allowed delay for the dissemination is not large, (b) the system requires relatively smaller cost budget as more vehicles participate and more delay is allowed, (c) when the cost is very important, it is better not to spread the content if it needs small delay. We also develop a polynomial-time algorithm to obtain the optimal discrete solution needed in practice. Finally, we verify our analysis using real GPS traces of 632 taxis in Beijing, China. +ss_paper_id=d9eac8dcd00a9e42f6182765faca10a9d068a330 \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_power_allocation_over_two_identical_gilbertelliot_channels.txt b/database/original_documents/publications_text/2013_power_allocation_over_two_identical_gilbertelliot_channels.txt new file mode 100644 index 0000000000000000000000000000000000000000..323ffb8eabfc8502dc254c3972dfd300c004b05d --- /dev/null +++ b/database/original_documents/publications_text/2013_power_allocation_over_two_identical_gilbertelliot_channels.txt @@ -0,0 +1,18 @@ +# Publication +title=Power Allocation over Two identical Gilbert-Elliot Channels +venue=IEEE ICC 2013 – Wireless Communications Symposium. +authors=['Junhua Tang', 'Parisa Mansourifard', 'Bhaskar Krishnamachari'] +abstract=We study the problem of power allocation over two identical Gilbert-Elliot communication channels. Our goal is to maximize the expected discounted number of bits transmitted over an infinite time horizon. This is achieved by choosing among three possible strategies: (1) betting on channel 1 by allocating all the power to this channel, which results in high data rate if channel 1 happens to be in good state, and zero bits transmitted if channel 1 is in bad state (even if channel 2 is in good state) (2) betting on channel 2 by allocating all the power to the second channel, and (3) a balanced strategy whereby each channel is allocated half the total power, with the effect that each channel can transmit a low data rate if it is in good state. We assume that each channel's state is only revealed upon transmission of data on that channel. We model this problem as a partially observable Markov decision processes (MDP), and derive key threshold properties of the optimal policy. Further, we show that by formulating and solving a relevant linear program the thresholds can be determined numerically when system parameters are known. + +# Information +links.pdf=/static/public/papers/TangMansourifardKrishnamachari_ICC2013.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ac62dc8d422e88f7e819e53d4f753154ddddcf7f +type=Conference Papers +year=2013 +paper_id=49d065e1 +ss_title=Power allocation over two identical Gilbert-Elliott channels +ss_authors=[{'authorId': '1728747', 'name': 'Junhua Tang'}, {'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2013 IEEE International Conference on Communications (ICC) +ss_year=2012 +ss_abstract=We study the problem of power allocation over two identical Gilbert-Elliot communication channels. Our goal is to maximize the expected discounted number of bits transmitted over an infinite time horizon. This is achieved by choosing among three possible strategies: (1) betting on channel 1 by allocating all the power to this channel, which results in high data rate if channel 1 happens to be in good state, and zero bits transmitted if channel 1 is in bad state (even if channel 2 is in good state) (2) betting on channel 2 by allocating all the power to the second channel, and (3) a balanced strategy whereby each channel is allocated half the total power, with the effect that each channel can transmit a low data rate if it is in good state. We assume that each channel's state is only revealed upon transmission of data on that channel. We model this problem as a partially observable Markov decision processes (MDP), and derive key threshold properties of the optimal policy. Further, we show that by formulating and solving a relevant linear program the thresholds can be determined numerically when system parameters are known. +ss_paper_id=ac62dc8d422e88f7e819e53d4f753154ddddcf7f \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_robotic_message_ferrying_for_wireless_networks_using_coarsegrained_backpressure_control.txt b/database/original_documents/publications_text/2013_robotic_message_ferrying_for_wireless_networks_using_coarsegrained_backpressure_control.txt new file mode 100644 index 0000000000000000000000000000000000000000..3d119661fa327905839f1ac123879d3c7c9ebb92 --- /dev/null +++ b/database/original_documents/publications_text/2013_robotic_message_ferrying_for_wireless_networks_using_coarsegrained_backpressure_control.txt @@ -0,0 +1,18 @@ +# Publication +title=Robotic Message Ferrying for Wireless Networks using Coarse-Grained Backpressure Control +venue=IEEE GLOBECOM 2013 Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicles. (Revision Notes) +authors=['Shangxing Wang', 'Andrea Gasparri', 'Bhaskar Krishnamachari'] +abstract=We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a homogeneous network. + +# Information +links.pdf=/static/public/papers/WIUAV_2013_final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/782f5c311c6509cd9c27e2a86115d3ca7f6157ec +type=Conference Papers +year=2013 +paper_id=280028c1 +ss_title=Robotic Message Ferrying for Wireless Networks Using Coarse-Grained Backpressure Control +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2013 +ss_abstract=We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a homogeneous network. +ss_paper_id=782f5c311c6509cd9c27e2a86115d3ca7f6157ec \ No newline at end of file diff --git a/database/original_documents/publications_text/2013_short_paper_dynamic_online_storage_allocation_for_multicontent_dissemination_in_twotier_hybrid_mobile_vehicular_networks.txt b/database/original_documents/publications_text/2013_short_paper_dynamic_online_storage_allocation_for_multicontent_dissemination_in_twotier_hybrid_mobile_vehicular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..10de38f802a3d096f471ae01e5a6f292b5cef9fc --- /dev/null +++ b/database/original_documents/publications_text/2013_short_paper_dynamic_online_storage_allocation_for_multicontent_dissemination_in_twotier_hybrid_mobile_vehicular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Short Paper: Dynamic Online Storage Allocation for Multi-Content Dissemination in Two-Tier Hybrid Mobile Vehicular Networks +venue=IEEE Vehicular Networking Conference, 2013. +authors=['Keyvan Rezaei Moghadam', 'Maheswaran Sathiamoorthy', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=We present a two-tier hybrid mobile network architecture. In this architecture, the data plane consists of store and forward routing through an intermittently connected mobile network, and the control plane consists of an always-on infrastructure-based wireless network. This architecture aims to enhance bandwidth utilization while providing efficient centralized control. For such an architecture, we formulate and address, from a theoretical perspective, the fundamental problem of disseminating multiple files through storage limited nodes. Given a deadline, we investigate how best to utilize the intermediate nodes (called helper nodes) to disseminate content with the help of the control plane. We examine the formulated optimal policy through theoretical and numerical analysis. The analysis shows interesting counter intuitive facts about the optimal policy. + +# Information +links.pdf=/static/public/papers/ShortPaper_DynamicOnlineStorage_acked.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9a178b089313b562c64f0c50d1cd4fe103220c17 +type=Conference Papers +year=2013 +paper_id=672e7543 +ss_title=Short paper: Dynamic online storage allocation for multi-content dissemination in two-tier hybrid mobile vehicular networks +ss_authors=[{'authorId': '2729952', 'name': 'K. R. Moghadam'}, {'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=IEEE Vehicular Networking Conference +ss_year=2013 +ss_abstract=We present a two-tier hybrid mobile network architecture. In this architecture, the data plane consists of store and forward routing through an intermittently connected mobile network, and the control plane consists of an always-on infrastructure-based wireless network. This architecture aims to enhance bandwidth utilization while providing efficient centralized control. For such an architecture, we formulate and address, from a theoretical perspective, the fundamental problem of disseminating multiple files through storage limited nodes. Given a deadline, we investigate how best to utilize the intermediate nodes (called helper nodes) to disseminate content with the help of the control plane. We examine the formulated optimal policy through theoretical and numerical analysis. The analysis shows interesting counter intuitive facts about the optimal policy. +ss_paper_id=9a178b089313b562c64f0c50d1cd4fe103220c17 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_areabased_dissemination_in_vehicular_networks.txt b/database/original_documents/publications_text/2014_areabased_dissemination_in_vehicular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..ddbe63feb9408a0c2d83e9ee823f51f44b1fd154 --- /dev/null +++ b/database/original_documents/publications_text/2014_areabased_dissemination_in_vehicular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Area-Based Dissemination in Vehicular Networks +venue=Workshop on Cellular Offloading to Opportunistic Networks (CARTOON), IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014. +authors=['Quynh Nguyen', 'Bhaskar Krishnamachari'] +abstract=Pure opportunistic dissemination of content in a vehicular network can incur high delays if the number of vehicles is relatively low. We consider in this paper an area based approach to information broadcast in which vehicle to vehicle (V2V) communications is supplemented with vehicle to infrastructure (V2I) communications in order to improve the delay performance. We show how area-based dissemination can analyzed mathematically using a Markovian model. We also investigate through trace-based simulations how different area partitioning approaches affect the total dissemination time. + +# Information +links.pdf=/static/public/papers/finalCARTOON.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/48473b48a6ff9489f7787ef97d23e4ac975c746a +type=Conference Papers +year=2014 +paper_id=61dd2b6f +ss_title=Area-Based Dissemination in Vehicular Networks +ss_authors=[{'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems +ss_year=2014 +ss_abstract=Pure opportunistic dissemination of content in a vehicular network can incur high delays if the number of vehicles is relatively low. We consider in this paper an area based approach to information broadcast in which vehicle to vehicle (V2V) communications is supplemented with vehicle to infrastructure (V2I) communications in order to improve the delay performance. We show how area-based dissemination can analyzed mathematically using a Markovian model. We also investigate through trace-based simulations how different area partitioning approaches affect the total dissemination time. +ss_paper_id=48473b48a6ff9489f7787ef97d23e4ac975c746a \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_dirichlets_principle_on_multiclass_multihop_wireless_networks_minimum_cost_routing_subject_to_stability.txt b/database/original_documents/publications_text/2014_dirichlets_principle_on_multiclass_multihop_wireless_networks_minimum_cost_routing_subject_to_stability.txt new file mode 100644 index 0000000000000000000000000000000000000000..9022f6dc7567534eec1baddc92dc3be4cf1ac095 --- /dev/null +++ b/database/original_documents/publications_text/2014_dirichlets_principle_on_multiclass_multihop_wireless_networks_minimum_cost_routing_subject_to_stability.txt @@ -0,0 +1,18 @@ +# Publication +title=Dirichlet’s Principle on Multiclass Multihop Wireless Networks: Minimum Cost Routing Subject to Stability +venue=The 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2014. +authors=['Reza Banirazi', 'Edmond Jonckheere', 'Bhaskar Krishnamachari'] +abstract=Minimum cost routing is considered on multiclass multihop wireless networks influenced by stochastic arrivals, inter-channel interference, and time-varying topology. Endowing each air link with a cost factor, possibly time-varying and different for different classes, we define the Dirichlet routing cost as the square of the link packet transmissions weighted by the link cost-factors. Our recently-proposed Heat-Diffusion (HD) routing protocol [3] is extended to minimize this cost, while ensuring queue stability for all stabilizable traffic demands, and without requiring any information about network topology or packet arrivals. This is the first time in literature that such a multiclass routing penalty can be minimized at network layer subject to queue stability. Further, when all links are of unit cost factor, our protocol here reduces to the one in our recent paper [4], leading to minimum average network delay among all routing protocols that act based only on current queue congestion and current channel states. Our approach is based on mapping a communication network into an electrical network by showing that the fluid limit of wireless network under our routing protocol follows Ohm's law on a nonlinear resistive network. + +# Information +links.pdf=/static/public/papers/DirichletRouting_MSWiM14.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a3ae5f5457fc60bdce8f5ae5fa59551cbd9811cc +type=Conference Papers +year=2014 +paper_id=b8cc173d +ss_title=Dirichlet's principle on multiclass multihop wireless networks: minimum cost routing subject to stability +ss_authors=[{'authorId': '2799433', 'name': 'Reza Banirazi'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems +ss_year=2014 +ss_abstract=Minimum cost routing is considered on multiclass multihop wireless networks influenced by stochastic arrivals, inter-channel interference, and time-varying topology. Endowing each air link with a cost factor, possibly time-varying and different for different classes, we define the Dirichlet routing cost as the square of the link packet transmissions weighted by the link cost-factors. Our recently-proposed Heat-Diffusion (HD) routing protocol [3] is extended to minimize this cost, while ensuring queue stability for all stabilizable traffic demands, and without requiring any information about network topology or packet arrivals. This is the first time in literature that such a multiclass routing penalty can be minimized at network layer subject to queue stability. Further, when all links are of unit cost factor, our protocol here reduces to the one in our recent paper [4], leading to minimum average network delay among all routing protocols that act based only on current queue congestion and current channel states. Our approach is based on mapping a communication network into an electrical network by showing that the fluid limit of wireless network under our routing protocol follows Ohm's law on a nonlinear resistive network. +ss_paper_id=a3ae5f5457fc60bdce8f5ae5fa59551cbd9811cc \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_distributed_hole_detection_algorithms_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2014_distributed_hole_detection_algorithms_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b061c345c3891af50886b8872285acb0635b5e3 --- /dev/null +++ b/database/original_documents/publications_text/2014_distributed_hole_detection_algorithms_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Hole Detection Algorithms for Wireless Sensor Networks +venue=IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014 [An error in two of the illustrative figures of this paper is corrected here]. +authors=['Pradipta Ghosh', 'Jie Gao', 'Andrea Gasparri', 'Bhaskar Krishnamachari'] +abstract=We present two novel distributed algorithms for hole detection in a wireless sensor network (WSN) based on the distributed Delaunay triangulation of the underlying communication graph. The first, which we refer to as the distance-vector hole determination (DVHD) algorithm, is based on traditional distance vector routing for multi-hop networks and shortest path lengths between node pairs. The second, which we refer to as the Gaussian curvature-based hole determination (GCHD) algorithm, applies the Gauss-Bonnet theorem on the Delaunay graph to calculate the number of holes based on the graph's Gaussian curvature. We present a detailed comparative performance analysis of both methods based on simulations, showing that while DVHD is conceptually simpler, the GCHD algorithm shows better performance with respect to run-time and message count per node. + +# Information +links.pdf=/static/public/papers/MASS2014_HoleDetection.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/551e0b039908c840ccfc9ddbfd59f60d23156bdf +type=Conference Papers +year=2014 +paper_id=8a99b9a0 +ss_title=Distributed Hole Detection Algorithms for Wireless Sensor Networks +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2110618947', 'name': 'Jie Gao'}, {'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems +ss_year=2014 +ss_abstract=We present two novel distributed algorithms for hole detection in a wireless sensor network (WSN) based on the distributed Delaunay triangulation of the underlying communication graph. The first, which we refer to as the distance-vector hole determination (DVHD) algorithm, is based on traditional distance vector routing for multi-hop networks and shortest path lengths between node pairs. The second, which we refer to as the Gaussian curvature-based hole determination (GCHD) algorithm, applies the Gauss-Bonnet theorem on the Delaunay graph to calculate the number of holes based on the graph's Gaussian curvature. We present a detailed comparative performance analysis of both methods based on simulations, showing that while DVHD is conceptually simpler, the GCHD algorithm shows better performance with respect to run-time and message count per node. +ss_paper_id=551e0b039908c840ccfc9ddbfd59f60d23156bdf \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_distributed_stochastic_online_learning_policies_for_opportunistic_spectrum_access.txt b/database/original_documents/publications_text/2014_distributed_stochastic_online_learning_policies_for_opportunistic_spectrum_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..f9586b83d12aa61404b8c5612278c8f4430e1f34 --- /dev/null +++ b/database/original_documents/publications_text/2014_distributed_stochastic_online_learning_policies_for_opportunistic_spectrum_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Stochastic Online Learning Policies for Opportunistic Spectrum Access +venue=IEEE Transactions on Signal Processing. +authors=['Yi Gai', 'Bhaskar Krishnamachari'] +abstract=The fundamental problem of multiple secondary users contending for opportunistic spectrum access over multiple channels in cognitive radio networks has been formulated recently as a decentralized multi-armed bandit (D-MAB) problem. In a D-MAB problem there are M users and N arms (channels) that each offer i.i.d. stochastic rewards with unknown means so long as they are accessed without collision. The goal is to design distributed online learning policies that incur minimal regret. We consider two related problem formulations in this paper. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the K-th-ranked user to learn to access the arm offering the K-th highest mean reward. For this problem, we present DLP, the first distributed policy that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present DLF, a distributed policy that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed policies in the literature. Both of our distributed policies make use of an innovative modification of the well-known UCB1 policy for the classic multi-armed bandit problem that allows a single user to learn how to play the arm that yields the K K-th largest mean reward. + +# Information +links.pdf=/static/public/papers/DMAB_final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/496b6e3a8aa4a4fea48224e99bc7d44e2ce0ae19 +type=Journal Papers +year=2014 +paper_id=ea0b5e37 +ss_title=Distributed Stochastic Online Learning Policies for Opportunistic Spectrum Access +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Signal Processing +ss_year=2014 +ss_abstract=The fundamental problem of multiple secondary users contending for opportunistic spectrum access over multiple channels in cognitive radio networks has been formulated recently as a decentralized multi-armed bandit (D-MAB) problem. In a D-MAB problem there are M users and N arms (channels) that each offer i.i.d. stochastic rewards with unknown means so long as they are accessed without collision. The goal is to design distributed online learning policies that incur minimal regret. We consider two related problem formulations in this paper. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the K-th-ranked user to learn to access the arm offering the K-th highest mean reward. For this problem, we present DLP, the first distributed policy that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present DLF, a distributed policy that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed policies in the literature. Both of our distributed policies make use of an innovative modification of the well-known UCB1 policy for the classic multi-armed bandit problem that allows a single user to learn how to play the arm that yields the K K-th largest mean reward. +ss_paper_id=496b6e3a8aa4a4fea48224e99bc7d44e2ce0ae19 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_energyefficient_design_of_heterogeneous_cellular_networks_from_deployment_to_operation.txt b/database/original_documents/publications_text/2014_energyefficient_design_of_heterogeneous_cellular_networks_from_deployment_to_operation.txt new file mode 100644 index 0000000000000000000000000000000000000000..ff7ab6976e6053e800339eba8b428a37b1757a34 --- /dev/null +++ b/database/original_documents/publications_text/2014_energyefficient_design_of_heterogeneous_cellular_networks_from_deployment_to_operation.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy-efficient Design of Heterogeneous Cellular Networks from Deployment to Operation +venue=Computer Networks (COMNET): Special Issue on Green Communications, 2014. +authors=['Kyuho Son', 'Eunsung Oh', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/Kyuho14.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0da0affdfc944756315c9d49a10c49c2533f92e7 +type=Journal Papers +year=2014 +paper_id=74b9ff6f +ss_title=Energy-efficient design of heterogeneous cellular networks from deployment to operation +ss_authors=[{'authorId': '1714987', 'name': 'K. Son'}, {'authorId': '1977686', 'name': 'Eunsung Oh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Comput. Networks +ss_year=2015 +ss_abstract=None +ss_paper_id=0da0affdfc944756315c9d49a10c49c2533f92e7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_evaluation_of_seed_selection_strategies_for_vehicle_to_vehicle_epidemic_information_dissemination.txt b/database/original_documents/publications_text/2014_evaluation_of_seed_selection_strategies_for_vehicle_to_vehicle_epidemic_information_dissemination.txt new file mode 100644 index 0000000000000000000000000000000000000000..4761e223e3265e85fb30025ae636107be22a58f8 --- /dev/null +++ b/database/original_documents/publications_text/2014_evaluation_of_seed_selection_strategies_for_vehicle_to_vehicle_epidemic_information_dissemination.txt @@ -0,0 +1,18 @@ +# Publication +title=Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination +venue=Workshop on Cellular Offloading to Opportunistic Networks (CARTOON), IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014. +authors=['Richard Kershaw', 'Bhaskar Krishnamachari'] +abstract=We consider the problem of how to identify a set of seed nodes in order to disseminate content efficiently in a vehicular network. We consider several relevant dimensions including proximity, encounters, speed, etc. and identify and taxonomize a number of candidate strategies. We comparatively evaluate these strategies using a set of real vehicular traces (Taxis in Beijing). We conclude that identifying seeds based on their speed, while eliminating redundant and isolated nodes, is the most effective approach, performing significantly better than the previously random seed strategy. + +# Information +links.pdf=/static/public/papers/SeedSelection.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/42ce1aa4272766fe2c6d87fed8474abf34afbc18 +type=Conference Papers +year=2014 +paper_id=6a23e7ce +ss_title=Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination +ss_authors=[{'authorId': '2070697530', 'name': 'Richard Kershaw'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems +ss_year=2014 +ss_abstract=We consider the problem of how to identify a set of seed nodes in order to disseminate content efficiently in a vehicular network. We consider several relevant dimensions including proximity, encounters, speed, etc. and identify and taxonomize a number of candidate strategies. We comparatively evaluate these strategies using a set of real vehicular traces (Taxis in Beijing). We conclude that identifying seeds based on their speed, while eliminating redundant and isolated nodes, is the most effective approach, performing significantly better than the previously random seed strategy. +ss_paper_id=42ce1aa4272766fe2c6d87fed8474abf34afbc18 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_exploiting_the_use_of_unmanned_aerial_vehicles_to_provide_resilience_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2014_exploiting_the_use_of_unmanned_aerial_vehicles_to_provide_resilience_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..38874c2660ac8ca8b6e4b2687163c33c32654318 --- /dev/null +++ b/database/original_documents/publications_text/2014_exploiting_the_use_of_unmanned_aerial_vehicles_to_provide_resilience_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor networks +venue=IEEE Communications Magazine, vol. 52, no. 12, December 2014 +authors=['Jo Ueyama', 'Heitor Freitas', 'Bruno S Faical', 'Geraldo P R Filho', 'Pedro Fini', 'Gustavo Pessin', 'Pedro H Gomes', 'Leandro A Villas'] +abstract=A wireless sensor network is liable to suffer faults for several reasons, which include faulty nodes or even the fact that nodes have been destroyed by a natural disaster, such as a flood. These faults can give rise to serious problems if WSNs do not have a reconfiguration mechanism at execution. It should be noted that many WSNs designed to detect natural disasters are deployed in inhospitable places and depend on multihop communication to allow the data to reach a sink node. As a result, a fault in a single node can leave a part of the system inoperable until the node recovers from this failure. In light of this, this article outlines a solution that entails employing unmanned aerial vehicles to reduce the problems arising from faults in a sensor network when monitoring natural disasters like floods and landslides. In the solution put forward, UAVs can be transported to the site of the disaster to mitigate problems caused by faults (e.g., by serving as routers or even acting as a data mule). Experiments conducted with real UAVs and with our WSN-based prototype for flood detection (already deployed in São Carlos, State of São Paulo, Brazil, have proven that this is a viable approach. + +# Information +links.pdf=/static/public/papers/Pedro-UAV-Comm-Magazine.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/683bedb584e107cbeff86f6c92efec2ca90c5823 +type=Journal Papers +year=2014 +paper_id=e8b502a0 +ss_title=Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor networks +ss_authors=[{'authorId': '2190289', 'name': 'J. Ueyama'}, {'authorId': '3052598', 'name': 'Heitor Freitas'}, {'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '145085809', 'name': 'G. P. Filho'}, {'authorId': '33394669', 'name': 'Pedro H. Fini'}, {'authorId': '2584178', 'name': 'G. Pessin'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '145809763', 'name': 'L. Villas'}] +ss_venue=IEEE Communications Magazine +ss_year=2014 +ss_abstract=A wireless sensor network is liable to suffer faults for several reasons, which include faulty nodes or even the fact that nodes have been destroyed by a natural disaster, such as a flood. These faults can give rise to serious problems if WSNs do not have a reconfiguration mechanism at execution. It should be noted that many WSNs designed to detect natural disasters are deployed in inhospitable places and depend on multihop communication to allow the data to reach a sink node. As a result, a fault in a single node can leave a part of the system inoperable until the node recovers from this failure. In light of this, this article outlines a solution that entails employing unmanned aerial vehicles to reduce the problems arising from faults in a sensor network when monitoring natural disasters like floods and landslides. In the solution put forward, UAVs can be transported to the site of the disaster to mitigate problems caused by faults (e.g., by serving as routers or even acting as a data mule). Experiments conducted with real UAVs and with our WSN-based prototype for flood detection (already deployed in São Carlos, State of São Paulo, Brazil, have proven that this is a viable approach. +ss_paper_id=683bedb584e107cbeff86f6c92efec2ca90c5823 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_harnessing_nonuniform_transmit_power_levels_for_improved_sequence_based_localization.txt b/database/original_documents/publications_text/2014_harnessing_nonuniform_transmit_power_levels_for_improved_sequence_based_localization.txt new file mode 100644 index 0000000000000000000000000000000000000000..b8007f9d516ecabf8bceaae8fb8f559abe44bd2a --- /dev/null +++ b/database/original_documents/publications_text/2014_harnessing_nonuniform_transmit_power_levels_for_improved_sequence_based_localization.txt @@ -0,0 +1,18 @@ +# Publication +title=Harnessing Non-Uniform Transmit Power Levels for Improved Sequence Based Localization +venue=IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2014. +authors=['Suvil Deora', 'Bhaskar Krishnamachari'] +abstract=Sequence-based localization (SBL) is a technique whereby a node is localized based on the ranked sequence of signal strengths obtained from a set of beacon nodes. SBL effectively partitions the area into regions corresponding to unique ranked sequences. Prior work has developed SBL under the assumption that all beacons have the same transmit power. In this work, we consider beacons with unequal transmit power for sequence-based localization and present heuristic algorithms for joint transmit power optimization and beacon placement. We show through comprehensive simulations that a novel enhancement of SBL utilizing optimized non-uniform transmit powers, coupled with careful beacon placement, which we refer to as NU-SBL, can dramatically improve the area partitioning compared to traditional SBL. However, in evaluating these schemes under stochastic fading, we find that the original SBL with optimized location performs nearly as well or slightly better than NU-SBL in many cases. We introduce another scheme, that we refer to as NU-SBL-ZOOM, which further allows the power levels to be optimized non-uniformly so as to focus in on a particular smaller region within the larger localization space. NU-SBL-ZOOM is found to perform much better in terms of both area partitioning as well as location error in the presence of fading. + +# Information +links.pdf=/static/public/papers/Suvil1.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3a3a6fa60bbbe96b34dfea853aa51814cd33d2ce +type=Conference Papers +year=2014 +paper_id=7b55a30b +ss_title=Harnessing Non-Uniform Transmit Power Levels for Improved Sequence Based Localization +ss_authors=[{'authorId': '143644071', 'name': 'S. Deora'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE International Conference on Distributed Computing in Sensor Systems +ss_year=2014 +ss_abstract=Sequence-based localization (SBL) is a technique whereby a node is localized based on the ranked sequence of signal strengths obtained from a set of beacon nodes. SBL effectively partitions the area into regions corresponding to unique ranked sequences. Prior work has developed SBL under the assumption that all beacons have the same transmit power. In this work, we consider beacons with unequal transmit power for sequence-based localization and present heuristic algorithms for joint transmit power optimization and beacon placement. We show through comprehensive simulations that a novel enhancement of SBL utilizing optimized non-uniform transmit powers, coupled with careful beacon placement, which we refer to as NU-SBL, can dramatically improve the area partitioning compared to traditional SBL. However, in evaluating these schemes under stochastic fading, we find that the original SBL with optimized location performs nearly as well or slightly better than NU-SBL in many cases. We introduce another scheme, that we refer to as NU-SBL-ZOOM, which further allows the power levels to be optimized non-uniformly so as to focus in on a particular smaller region within the larger localization space. NU-SBL-ZOOM is found to perform much better in terms of both area partitioning as well as location error in the presence of fading. +ss_paper_id=3a3a6fa60bbbe96b34dfea853aa51814cd33d2ce \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_heatdiffusion_pareto_optimal_dynamic_routing_for_timevarying_wireless_networks.txt b/database/original_documents/publications_text/2014_heatdiffusion_pareto_optimal_dynamic_routing_for_timevarying_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..e6966802ec4023a481faddc53d47db82819795f4 --- /dev/null +++ b/database/original_documents/publications_text/2014_heatdiffusion_pareto_optimal_dynamic_routing_for_timevarying_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Heat-Diffusion: Pareto optimal dynamic routing for time-varying wireless networks +venue=International Conference on Computer Communications (INFOCOM), 2014. +authors=['Reza Banirazi', 'Edmond A Jonckheere', 'Bhaskar Krishnamachari'] +abstract=A new routing policy, named Heat-Diffusion (HD), is developed for multihop wireless networks subject to stochastic arrivals, time-varying topology, and inter-channel interference, using only current queue congestion and current channel states, without requiring the knowledge of topology and arrivals. Besides throughput optimality, HD minimizes a quadratic routing cost defined by endowing each channel with a cost-factor. It also minimizes average total queue congestion, and so average network delay, within the class of routing policies that base decision only on current queue lengths and current channel states. Further, within this class, HD provides a Pareto optimal tradeoff between average delay and average routing cost, meaning that no policy can improve either one without detriment to the other. Finally, HD fluid limit follows graph combinatorial heat equation that opens a new way to study wireless networks using heat calculus, a very active area of pure mathematics. + +# Information +links.pdf=/static/public/papers/1569807599Final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7cac7f437cc477383695b62f036ead301c784d81 +type=Conference Papers +year=2014 +paper_id=e055cb9d +ss_title=Heat-Diffusion: Pareto optimal dynamic routing for time-varying wireless networks +ss_authors=[{'authorId': '2799433', 'name': 'Reza Banirazi'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Conference on Computer Communications +ss_year=2014 +ss_abstract=A new routing policy, named Heat-Diffusion (HD), is developed for multihop wireless networks subject to stochastic arrivals, time-varying topology, and inter-channel interference, using only current queue congestion and current channel states, without requiring the knowledge of topology and arrivals. Besides throughput optimality, HD minimizes a quadratic routing cost defined by endowing each channel with a cost-factor. It also minimizes average total queue congestion, and so average network delay, within the class of routing policies that base decision only on current queue lengths and current channel states. Further, within this class, HD provides a Pareto optimal tradeoff between average delay and average routing cost, meaning that no policy can improve either one without detriment to the other. Finally, HD fluid limit follows graph combinatorial heat equation that opens a new way to study wireless networks using heat calculus, a very active area of pure mathematics. +ss_paper_id=7cac7f437cc477383695b62f036ead301c784d81 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_helper_node_allocation_strategies_for_content_dissemination_in_intermittently_connected_mobile_networks.txt b/database/original_documents/publications_text/2014_helper_node_allocation_strategies_for_content_dissemination_in_intermittently_connected_mobile_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..f1795f1e7f1ea15635943b03a55c98981c0410eb --- /dev/null +++ b/database/original_documents/publications_text/2014_helper_node_allocation_strategies_for_content_dissemination_in_intermittently_connected_mobile_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Helper Node Allocation Strategies for Content Dissemination in Intermittently Connected Mobile Networks +venue=IEEE International Conference on Sensing, Communication, and Networking (SECON), 2014. +authors=['Maheswaran Sathiamoorthy', 'Keyvan Rezaei Moghadam', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=We formulate and address mathematically the fundamental problem of resource allocation in the form of helper nodes in disseminating multiple content in a hybrid intermittently connected mobile network under a general stochastic homogeneous contact process. We consider and solve two variations of the problem - one in which the goal is to maximize the expected demands satisfied and another in which the goal is to minimize the time taken to disseminate the contents. Besides the global optimization perspective, we also examine the problem from a game theoretic perspective in which a central agent auctions the storage to competing content providers, and show how self-interested decisions impact the social welfare. + +# Information +links.pdf=/static/public/papers/HelperAllocationGame_corrected.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a2bb6ce5a7fe25265e2efb5874536efc8d4fd20d +type=Conference Papers +year=2014 +paper_id=480c4f50 +ss_title=Helper node allocation strategies for content dissemination in intermittently connected mobile networks +ss_authors=[{'authorId': '3221924', 'name': 'M. Sathiamoorthy'}, {'authorId': '2729952', 'name': 'K. R. Moghadam'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2014 +ss_abstract=We formulate and address mathematically the fundamental problem of resource allocation in the form of helper nodes in disseminating multiple content in a hybrid intermittently connected mobile network under a general stochastic homogeneous contact process. We consider and solve two variations of the problem - one in which the goal is to maximize the expected demands satisfied and another in which the goal is to minimize the time taken to disseminate the contents. Besides the global optimization perspective, we also examine the problem from a game theoretic perspective in which a central agent auctions the storage to competing content providers, and show how self-interested decisions impact the social welfare. +ss_paper_id=a2bb6ce5a7fe25265e2efb5874536efc8d4fd20d \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_microeconomic_analysis_of_basestation_sharing_in_green_cellular_networks.txt b/database/original_documents/publications_text/2014_microeconomic_analysis_of_basestation_sharing_in_green_cellular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..de7a1bc74d021aa87c74584a844d5eec7ae6030c --- /dev/null +++ b/database/original_documents/publications_text/2014_microeconomic_analysis_of_basestation_sharing_in_green_cellular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Microeconomic Analysis of Base-Station Sharing in Green Cellular Networks +venue=International Conference on Computer Communications (INFOCOM), 2014. +authors=['Bingjie Leng', 'Parisa Mansourifard', 'Bhaskar Krishnamachari'] +abstract=Cellular networks can be operated more energy-efficiently if operators agree to share base-stations during off-peak hours. We apply a micro-economic analysis for a single-cell two-operator scenario to investigate the conditions under which self-interested operators would agree to share resources in this manner. Our analysis yields a comprehensive treatment of the existence and number of Nash Equilibria. We consider the cases when the payment rates are exogenous, as well as when they can be set strategically by the operators. Through numerical solutions we examine the quality of the best and worst Nash Equilibria in comparison with the globally optimized solution. Our results show that there is often a sensitive dependence on key parameters such as energy price, capacity, load, revenues, penalties and payments. + +# Information +links.pdf=/static/public/papers/MABSGCN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/70c33a6eefdecc4b3d6cb405e2f4585daa92762b +type=Conference Papers +year=2014 +paper_id=ab87eca9 +ss_title=Microeconomic analysis of base-station sharing in green cellular networks +ss_authors=[{'authorId': '47817446', 'name': 'Bingjie Leng'}, {'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Conference on Computer Communications +ss_year=2014 +ss_abstract=Cellular networks can be operated more energy-efficiently if operators agree to share base-stations during off-peak hours. We apply a micro-economic analysis for a single-cell two-operator scenario to investigate the conditions under which self-interested operators would agree to share resources in this manner. Our analysis yields a comprehensive treatment of the existence and number of Nash Equilibria. We consider the cases when the payment rates are exogenous, as well as when they can be set strategically by the operators. Through numerical solutions we examine the quality of the best and worst Nash Equilibria in comparison with the globally optimized solution. Our results show that there is often a sensitive dependence on key parameters such as energy price, capacity, load, revenues, penalties and payments. +ss_paper_id=70c33a6eefdecc4b3d6cb405e2f4585daa92762b \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_multichannel_data_collection_for_throughput_maximization_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2014_multichannel_data_collection_for_throughput_maximization_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..4a164e4252fce7572dfe5bba98ecce65201e4791 --- /dev/null +++ b/database/original_documents/publications_text/2014_multichannel_data_collection_for_throughput_maximization_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Multi-Channel Data Collection for Throughput Maximization in Wireless Sensor Networks +venue=IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014. +authors=['Ying Chen', 'Pedro Henrique Gomes', 'Bhaskar Krishnamachari'] +abstract=We present the design and implementation of Multi-Channel Collection (MCC) protocol , a high-rate multi-channel time-scheduled protocol for fair, real-time data collection in Wireless Sensor Networks (WSN). MCC incorporates sophisticated mechanisms for balanced routing tree formation, multiple frequency channel allocation and globally synchronized TDMA scheduling. Through systematic experiments with real WSN hardware (Tmote Sky), we identify the maximum possible throughput for many-to-one (convergecast) data collection as a function of key communication parameters such as packet size, use of acknowledgements, and network topology. Then, we demonstrate that the maximum achievable network throughput can in fact be attained in practice using a carefully designed mix of routing, frequency allocation and time scheduling. Compared to state of the art collection protocols for WSN, we show that MCC offers 33-155% improvement in throughput. We also show how to exploit the time-scheduled nature of this approach for reducing the number of required frequency channels. MCC presents an algorithmic approach for time-frequency scheduling and routing that could be adapted and used in conjunction with relevant emerging standards such as WirelessHART, ISA 100.11a and IEEE 802.15.4e TSCH. + +# Information +links.pdf=/static/public/papers/pedro_MCC_final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f5462de0046d62333a20f1812851453fd782ba8f +type=Conference Papers +year=2014 +paper_id=21b158fa +ss_title=Multi-channel Data Collection for Throughput Maximization in Wireless Sensor Networks +ss_authors=[{'authorId': '47558464', 'name': 'Ying Chen'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems +ss_year=2014 +ss_abstract=We present the design and implementation of Multi-Channel Collection (MCC) protocol , a high-rate multi-channel time-scheduled protocol for fair, real-time data collection in Wireless Sensor Networks (WSN). MCC incorporates sophisticated mechanisms for balanced routing tree formation, multiple frequency channel allocation and globally synchronized TDMA scheduling. Through systematic experiments with real WSN hardware (Tmote Sky), we identify the maximum possible throughput for many-to-one (convergecast) data collection as a function of key communication parameters such as packet size, use of acknowledgements, and network topology. Then, we demonstrate that the maximum achievable network throughput can in fact be attained in practice using a carefully designed mix of routing, frequency allocation and time scheduling. Compared to state of the art collection protocols for WSN, we show that MCC offers 33-155% improvement in throughput. We also show how to exploit the time-scheduled nature of this approach for reducing the number of required frequency channels. MCC presents an algorithmic approach for time-frequency scheduling and routing that could be adapted and used in conjunction with relevant emerging standards such as WirelessHART, ISA 100.11a and IEEE 802.15.4e TSCH. +ss_paper_id=f5462de0046d62333a20f1812851453fd782ba8f \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_online_learning_for_multichannel_opportunistic_access_over_unknown_markovian_channels.txt b/database/original_documents/publications_text/2014_online_learning_for_multichannel_opportunistic_access_over_unknown_markovian_channels.txt new file mode 100644 index 0000000000000000000000000000000000000000..3a7697ee6f02ea2cd83dec9097ff1652cb973c58 --- /dev/null +++ b/database/original_documents/publications_text/2014_online_learning_for_multichannel_opportunistic_access_over_unknown_markovian_channels.txt @@ -0,0 +1,18 @@ +# Publication +title=Online Learning for Multi-Channel Opportunistic Access over Unknown Markovian Channels +venue=IEEE International Conference on Sensing, Communication, and Networking (SECON), 2014. +authors=['Wenhan Dai', 'Yi Gai', 'Bhaskar Krishnamachari'] +abstract=A fundamental theoretical problem in opportunistic spectrum access is the following: a single secondary user must choose a channel to sense and access at each time, with the availability of each channel (due to primary user behavior) described by a Markov Chain. The problem of maximizing the expected channel usage can be formulated as a restless multi-armed bandit. We present in this paper an online learning algorithm with the best known results to date for this problem in the case when channels are homogeneous and the channel statistics are unknown a priori. Specifically, we show that this policy, that we refer to as CSE, achieves a regret (the gap between the rewards accumulated by a model-aware Genie and the policy) that is bounded in finite time by a function that scales as O(log t). By explicitly learning the underlying statistics over time, this novel policy outperforms a previously proposed scheme shown to provide near-logarithmic regret. + +# Information +links.pdf=/static/public/papers/Yi_Online_Learning_MultiChannel_Opportunistic_Access.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1ec1cd2defe7b92e096edc1712c9ccf2d58d248b +type=Conference Papers +year=2014 +paper_id=5dddefc5 +ss_title=Online learning for multi-channel opportunistic access over unknown Markovian channels +ss_authors=[{'authorId': '1779848', 'name': 'Wenhan Dai'}, {'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2014 +ss_abstract=A fundamental theoretical problem in opportunistic spectrum access is the following: a single secondary user must choose a channel to sense and access at each time, with the availability of each channel (due to primary user behavior) described by a Markov Chain. The problem of maximizing the expected channel usage can be formulated as a restless multi-armed bandit. We present in this paper an online learning algorithm with the best known results to date for this problem in the case when channels are homogeneous and the channel statistics are unknown a priori. Specifically, we show that this policy, that we refer to as CSE, achieves a regret (the gap between the rewards accumulated by a model-aware Genie and the policy) that is bounded in finite time by a function that scales as O(log t). By explicitly learning the underlying statistics over time, this novel policy outperforms a previously proposed scheme shown to provide near-logarithmic regret. +ss_paper_id=1ec1cd2defe7b92e096edc1712c9ccf2d58d248b \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_optimizing_mobile_computational_offloading_with_delay_constraints.txt b/database/original_documents/publications_text/2014_optimizing_mobile_computational_offloading_with_delay_constraints.txt new file mode 100644 index 0000000000000000000000000000000000000000..ae7c33ee8516931152b5dd20d2bfe8e9e980810e --- /dev/null +++ b/database/original_documents/publications_text/2014_optimizing_mobile_computational_offloading_with_delay_constraints.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimizing Mobile Computational Offloading with Delay Constraints +venue=IEEE Global Communications Conference (GLOBECOM), 2014. +authors=['Yi-Hsuan Kao', 'Bhaskar Krishnamachari'] +abstract=Computation Offloading, sending computational tasks to more resourceful servers, is becoming a widely-used approach to save limited resources on mobile devices like battery life, storage, processor, etc. Given an application that is partitioned into multiple tasks, the offloading decisions can be made on each of them. However, considering the delay constraint and the extra costs on data transmission and remote computation, it is not trivial to make optimized decisions. Existing works have formulated offloading decision problems as either graph-partitioning or binary integer programming problems. The first approach can solve the problem in polynomial time but is not applicable to delay constraints. The second approach relies on an integer programming solver without a polynomial time guarantee. We provide an algorithm, DTP (Deterministic delay constrained Task Partitioning), to solve the offloading decision problem with delay constraints. DTP gives near-optimal solution and runs in polynomial time in the number of tasks. Going beyond prior work on linear delay constraints that apply only to serial tasks, we generalize the delay constraints to settings where the dependency between tasks can be described by a tree. Furthermore, we provide another algorithm, PTP (Probabilistic delay constrained Task Partitioning), which gives stronger QoS guarantees. Simulation results show that our algorithms are accurate and robust, and scale well with the number of tasks. + +# Information +links.pdf=/static/public/papers/Yi_Hsuan_Globecom_2014.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/800dd3e88073a79bb585b5216f66173404b099d8 +type=Conference Papers +year=2014 +paper_id=1fdbcb2d +ss_title=Optimizing mobile computational offloading with delay constraints +ss_authors=[{'authorId': '2056892379', 'name': 'Yi-Hsuan Kao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE Global Communications Conference +ss_year=2014 +ss_abstract=Computation Offloading, sending computational tasks to more resourceful servers, is becoming a widely-used approach to save limited resources on mobile devices like battery life, storage, processor, etc. Given an application that is partitioned into multiple tasks, the offloading decisions can be made on each of them. However, considering the delay constraint and the extra costs on data transmission and remote computation, it is not trivial to make optimized decisions. Existing works have formulated offloading decision problems as either graph-partitioning or binary integer programming problems. The first approach can solve the problem in polynomial time but is not applicable to delay constraints. The second approach relies on an integer programming solver without a polynomial time guarantee. We provide an algorithm, DTP (Deterministic delay constrained Task Partitioning), to solve the offloading decision problem with delay constraints. DTP gives near-optimal solution and runs in polynomial time in the number of tasks. Going beyond prior work on linear delay constraints that apply only to serial tasks, we generalize the delay constraints to settings where the dependency between tasks can be described by a tree. Furthermore, we provide another algorithm, PTP (Probabilistic delay constrained Task Partitioning), which gives stronger QoS guarantees. Simulation results show that our algorithms are accurate and robust, and scale well with the number of tasks. +ss_paper_id=800dd3e88073a79bb585b5216f66173404b099d8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_riverswarm_topologyaware_distributed_planning_for_obstacle_encirclement_in_connected_robotic_swarms.txt b/database/original_documents/publications_text/2014_riverswarm_topologyaware_distributed_planning_for_obstacle_encirclement_in_connected_robotic_swarms.txt new file mode 100644 index 0000000000000000000000000000000000000000..371ba9df7b4cdea7da9ee1d29a2f0363d4883b32 --- /dev/null +++ b/database/original_documents/publications_text/2014_riverswarm_topologyaware_distributed_planning_for_obstacle_encirclement_in_connected_robotic_swarms.txt @@ -0,0 +1,18 @@ +# Publication +title=RiverSwarm: Topology-Aware Distributed Planning for Obstacle Encirclement in Connected Robotic Swarms +venue=International Workshop on Robotic Sensor Networks (RSN), 2014. +authors=['Pradipta Ghosh', 'Jie Gao', 'Andrea Gasparri', 'Bhaskar Krishnamachari'] +abstract=Distributed motion control of robotic swarms has been receiving increased attention due to their potential for application in many domains including emergency response and remote sensing and exploration. A challenging aspect of motion control for swarms is enabling them to move past large obstacles without losing global connectivity. In this paper we present a novel motion primitive for swarms of robots which allows them to flow past large obstacles while remaining connected. This technique relies on a key result from differential geometry, the GaussBonnet theorem, which allows tracking and counting the number of holes in a given triangulated graph in a distributed manner. + +# Information +links.pdf=/static/public/papers/RiverSwarm.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2ccf7484b7c3b2e7a7fb1a86324430034a6c1e78 +type=Conference Papers +year=2014 +paper_id=9ad60826 +ss_title=RiverSwarm : Topology-Aware Distributed Planning for Obstacle Encirclement in Connected Robotic Swarms +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2110618947', 'name': 'Jie Gao'}, {'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145416466', 'name': 'Ming Hsieh'}] +ss_venue= +ss_year=2014 +ss_abstract=Distributed motion control of robotic swarms has been receiving increased attention due to their potential for application in many domains including emergency response and remote sensing and exploration. A challenging aspect of motion control for swarms is enabling them to move past large obstacles without losing global connectivity. In this paper we present a novel motion primitive for swarms of robots which allows them to flow past large obstacles while remaining connected. This technique relies on a key result from differential geometry, the GaussBonnet theorem, which allows tracking and counting the number of holes in a given triangulated graph in a distributed manner. +ss_paper_id=2ccf7484b7c3b2e7a7fb1a86324430034a6c1e78 \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_route_swarm_wireless_network_optimization_through_mobility.txt b/database/original_documents/publications_text/2014_route_swarm_wireless_network_optimization_through_mobility.txt new file mode 100644 index 0000000000000000000000000000000000000000..ddeb8b16a01efb0b0d721f34f79e6c59ef3a60c4 --- /dev/null +++ b/database/original_documents/publications_text/2014_route_swarm_wireless_network_optimization_through_mobility.txt @@ -0,0 +1,18 @@ +# Publication +title=Route Swarm: Wireless Network Optimization through Mobility +venue=IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014. +authors=['Ryan Williams', 'Andrea Gasparri', 'Bhaskar Krishnamachari'] +abstract=In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. We demonstrate our propositions through simulation under a realistic wireless network regime. + +# Information +links.pdf=/static/public/papers/route_swarm_camera_ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6f91dc51f63e8ce0bd6cf9d22a18e1ec8490345b +type=Conference Papers +year=2014 +paper_id=608c61c4 +ss_title=Route swarm: Wireless network optimization through mobility +ss_authors=[{'authorId': '2110217008', 'name': 'Ryan K. Williams'}, {'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2014 IEEE/RSJ International Conference on Intelligent Robots and Systems +ss_year=2013 +ss_abstract=In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. We demonstrate our propositions through simulation under a realistic wireless network regime. +ss_paper_id=6f91dc51f63e8ce0bd6cf9d22a18e1ec8490345b \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_softwaredefined_networking_paradigms_in_wireless_networks_a_survey.txt b/database/original_documents/publications_text/2014_softwaredefined_networking_paradigms_in_wireless_networks_a_survey.txt new file mode 100644 index 0000000000000000000000000000000000000000..787a099e486b9d6ee870433dc687238a70777f0e --- /dev/null +++ b/database/original_documents/publications_text/2014_softwaredefined_networking_paradigms_in_wireless_networks_a_survey.txt @@ -0,0 +1,18 @@ +# Publication +title=Software-Defined Networking Paradigms in Wireless Networks: A Survey +venue=ACM Comput. Surv. 47, 2, Article 27 (December 2014) +authors=['Nachikethas A Jagadeesan', 'Bhaskar Krishnamachari'] +abstract=Software-defined networking (SDN) has generated tremendous interest from both academia and industry. SDN aims at simplifying network management while enabling researchers to experiment with network protocols on deployed networks. This article is a distillation of the state of the art of SDN in the context of wireless networks. We present an overview of the major design trends and highlight key differences between them. + +# Information +links.pdf=/static/public/papers/wirelessSDN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f3fb2a4511ad531d7e74adf17b24b71384bbd44e +type=Journal Papers +year=2014 +paper_id=c8f6956c +ss_title=Software-Defined Networking Paradigms in Wireless Networks: A Survey +ss_authors=[{'authorId': '2278635', 'name': 'N. Jagadeesan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM Computing Surveys +ss_year=2014 +ss_abstract=Software-defined networking (SDN) has generated tremendous interest from both academia and industry. SDN aims at simplifying network management while enabling researchers to experiment with network protocols on deployed networks. This article is a distillation of the state of the art of SDN in the context of wireless networks. We present an overview of the major design trends and highlight key differences between them. +ss_paper_id=f3fb2a4511ad531d7e74adf17b24b71384bbd44e \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_throughputoptimal_robotic_message_ferrying_for_wireless_networks_using_backpressure_control.txt b/database/original_documents/publications_text/2014_throughputoptimal_robotic_message_ferrying_for_wireless_networks_using_backpressure_control.txt new file mode 100644 index 0000000000000000000000000000000000000000..7b45a4e6bbfb30aa490d753020b46373c6e27c0c --- /dev/null +++ b/database/original_documents/publications_text/2014_throughputoptimal_robotic_message_ferrying_for_wireless_networks_using_backpressure_control.txt @@ -0,0 +1,18 @@ +# Publication +title=Throughput-Optimal Robotic Message Ferrying for Wireless Networks using Backpressure Control +venue=IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), 2014. +authors=['Andrea Gasparri', 'Bhaskar Krishnamachari'] +abstract=We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a homogeneous network. + +# Information +links.pdf=/static/public/papers/camera_ready_fgbp.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/782f5c311c6509cd9c27e2a86115d3ca7f6157ec +type=Conference Papers +year=2014 +paper_id=0c22d211 +ss_title=Robotic Message Ferrying for Wireless Networks Using Coarse-Grained Backpressure Control +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2013 +ss_abstract=We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a homogeneous network. +ss_paper_id=782f5c311c6509cd9c27e2a86115d3ca7f6157ec \ No newline at end of file diff --git a/database/original_documents/publications_text/2014_trustbased_backpressure_routing_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2014_trustbased_backpressure_routing_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c8f0126b44bc6c589195794dc79695a9b652b71e --- /dev/null +++ b/database/original_documents/publications_text/2014_trustbased_backpressure_routing_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Trust-based Backpressure Routing in Wireless Sensor Networks +venue=International Journal of Sensor Networks (IJSNet), 2014. +authors=['Revathi Venkataraman', 'Scott Moeller', 'Bhaskar Krishnamachari', 'Rama Rao T'] +abstract=In this paper, we apply a vector autoregression VAR based trust model over the backpressure collection protocol BCP, a collection mechanism based on dynamic backpressure routing in wireless sensor networks WSNs. The backpressure scheduling is known for being throughput optimal. In the presence of malicious nodes, the throughput optimality no longer holds. This affects the network performance in collection tree applications of sensor networks. We apply an autoregression based scheme to embed trust into the link weights, so that the trusted links are scheduled. We have evaluated our work in a real sensor network testbed and shown that by carefully setting the trust parameters, substantial benefit in terms of throughput can be obtained with minimal overheads. Our results show that even when 50% of network nodes are malicious, VAR trust offers approximately 73% throughput and ensures reliable routing, with a small trade-off in the end-to-end packet delay and energy consumptions. + +# Information +links.pdf=/static/public/papers/IJSNET.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0b823aaff10817f374cb8c8d73175c716bb5479f +type=Journal Papers +year=2014 +paper_id=36fde9a4 +ss_title=Trust-based backpressure routing in wireless sensor networks +ss_authors=[{'authorId': '30575089', 'name': 'R. Venkataraman'}, {'authorId': '145525643', 'name': 'S. Moeller'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145192011', 'name': 'T. Rao'}] +ss_venue=Int. J. Sens. Networks +ss_year=2015 +ss_abstract=In this paper, we apply a vector autoregression VAR based trust model over the backpressure collection protocol BCP, a collection mechanism based on dynamic backpressure routing in wireless sensor networks WSNs. The backpressure scheduling is known for being throughput optimal. In the presence of malicious nodes, the throughput optimality no longer holds. This affects the network performance in collection tree applications of sensor networks. We apply an autoregression based scheme to embed trust into the link weights, so that the trusted links are scheduled. We have evaluated our work in a real sensor network testbed and shown that by carefully setting the trust parameters, substantial benefit in terms of throughput can be obtained with minimal overheads. Our results show that even when 50% of network nodes are malicious, VAR trust offers approximately 73% throughput and ensures reliable routing, with a small trade-off in the end-to-end packet delay and energy consumptions. +ss_paper_id=0b823aaff10817f374cb8c8d73175c716bb5479f \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_a_privacy_mechanism_for_mobilebased_urban_traffic_monitoring.txt b/database/original_documents/publications_text/2015_a_privacy_mechanism_for_mobilebased_urban_traffic_monitoring.txt new file mode 100644 index 0000000000000000000000000000000000000000..cf659cd664376a233981dd8903ad1818ced0c7e8 --- /dev/null +++ b/database/original_documents/publications_text/2015_a_privacy_mechanism_for_mobilebased_urban_traffic_monitoring.txt @@ -0,0 +1,18 @@ +# Publication +title=A Privacy Mechanism For Mobile-Based Urban Traffic Monitoring +venue=Pervasive and Mobile Computing, 2015. +authors=['Chi Wang', 'Hua Liu', 'Kwame-Lante Wright', 'Bhaskar Krishnamachari', 'Murali Annavaram'] +abstract=None + +# Information +links.pdf=/static/public/papers/wang_privacymech.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/721746866567d6bf21b22721685abdd3bfea2191 +type=Journal Papers +year=2015 +paper_id=f053f583 +ss_title=A privacy mechanism for mobile-based urban traffic monitoring +ss_authors=[{'authorId': '2116633737', 'name': 'Chi-Hsien Wang'}, {'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '37763411', 'name': 'Kwame-Lante Wright'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=Pervasive and Mobile Computing +ss_year=2015 +ss_abstract=None +ss_paper_id=721746866567d6bf21b22721685abdd3bfea2191 \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_a_tale_of_two_cities__characterizing_social_community_structures_of_fleet_vehicles_for_modeling_v2v_information_dissemination.txt b/database/original_documents/publications_text/2015_a_tale_of_two_cities__characterizing_social_community_structures_of_fleet_vehicles_for_modeling_v2v_information_dissemination.txt new file mode 100644 index 0000000000000000000000000000000000000000..711643db1d84128dfca63a1e3d7418fe82b6f110 --- /dev/null +++ b/database/original_documents/publications_text/2015_a_tale_of_two_cities__characterizing_social_community_structures_of_fleet_vehicles_for_modeling_v2v_information_dissemination.txt @@ -0,0 +1,18 @@ +# Publication +title=A Tale of Two Cities – Characterizing Social Community Structures of Fleet Vehicles for Modeling V2V Information Dissemination +venue=IEEE International Conference on Sensing, Communication and Networking (SECON), 2015. +authors=['Fan Bai', 'Keyvan Rezaei Moghadam', 'Bhaskar Krishnamachari'] +abstract=We study the presence of social communities in mobility traces from vehicular fleets. By analyzing publicly available sets of fleet vehicle mobility traces obtained from two real-world deployments - consisting of more than 2000 taxis in Shanghai and Beijing respectively, we confirm the existence of small numbers of distinct social communities in vehicular networks, which is in direct contrast to the general belief that vehicular networks are best modeled as a relatively homogeneous system. We examine the spatio-temporal characteristics of social communities, gaining the insight that they are driven primarily by social proximity induced by geographic locality. We then develop a parsimonious multi-community ordinary differential equation (ODE) model, which uses the heterogeneous structure introduced by social communities to model information dissemination. We show through simulations that this approach dramatically outperforms the conventional homogeneous ODE model in capturing the dynamics of the dissemination process. We further demonstrate that the use of the ODE model to optimize seeding of an initial set of vehicles results in improved utility for information dissemination compared to seed-optimization using a homogeneous model. + +# Information +links.pdf=/static/public/papers/tale_Secon_2015.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/95642e11c38e75c5c1bfceb536d7c391a89680fe +type=Conference Papers +year=2015 +paper_id=78ea7e47 +ss_title=A tale of two cities — Characterizing social community structures of fleet vehicles for modeling V2V information dissemination +ss_authors=[{'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '2729952', 'name': 'K. R. Moghadam'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks +ss_year=2015 +ss_abstract=We study the presence of social communities in mobility traces from vehicular fleets. By analyzing publicly available sets of fleet vehicle mobility traces obtained from two real-world deployments - consisting of more than 2000 taxis in Shanghai and Beijing respectively, we confirm the existence of small numbers of distinct social communities in vehicular networks, which is in direct contrast to the general belief that vehicular networks are best modeled as a relatively homogeneous system. We examine the spatio-temporal characteristics of social communities, gaining the insight that they are driven primarily by social proximity induced by geographic locality. We then develop a parsimonious multi-community ordinary differential equation (ODE) model, which uses the heterogeneous structure introduced by social communities to model information dissemination. We show through simulations that this approach dramatically outperforms the conventional homogeneous ODE model in capturing the dynamics of the dissemination process. We further demonstrate that the use of the ODE model to optimize seeding of an initial set of vehicles results in improved utility for information dissemination compared to seed-optimization using a homogeneous model. +ss_paper_id=95642e11c38e75c5c1bfceb536d7c391a89680fe \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_an_algorithmic_approach_for_environmentallyfriendly_traffic_control_in_smart_cities.txt b/database/original_documents/publications_text/2015_an_algorithmic_approach_for_environmentallyfriendly_traffic_control_in_smart_cities.txt new file mode 100644 index 0000000000000000000000000000000000000000..9c5acaac8612ff4ff7c77945c2460bbe01a832dd --- /dev/null +++ b/database/original_documents/publications_text/2015_an_algorithmic_approach_for_environmentallyfriendly_traffic_control_in_smart_cities.txt @@ -0,0 +1,18 @@ +# Publication +title=An Algorithmic Approach for Environmentally-Friendly Traffic Control in Smart Cities +venue=ACM UrbanGIS on Smart Cities and Urban Analytics , SigSpatial, 2015. +authors=['Keyvan R Moghdam', 'Kai Huang', 'Bhaskar Krishnamachari'] +abstract=Traditionally, vehicular traffic control has focused primarily on easing congestion on public roads and thereby reducing the end to end trip delay for drivers. We consider how traffic control could be optimized to additionally address environmental impact, for instance by reducing the amount of traffic in areas of the city with higher residential population. We model the corresponding optimization as a combinatorial graph problem, with an objective incorporates both the average end to end delay for commuters as well as penalties on traffic for each road segment. We present a fully distributed algorithm with a guaranteed constant-factor approximation ratio with respect to the optimal solution. We evaluate the proposed algorithm through numerical simulations. + +# Information +links.pdf=/static/public/papers/SigSpatial_Workshop_4Approx.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bfb6001de24e18fb164d9dca8f7d37472a3c1d4d +type=Conference Papers +year=2015 +paper_id=e1050424 +ss_title=An Algorithmic Approach for Environmentally-Friendly Traffic Control in Smart Cities +ss_authors=[{'authorId': '2729952', 'name': 'K. R. Moghadam'}, {'authorId': '2112767817', 'name': 'Kai-Chen Huang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=UrbanGIS@SIGSPATIAL +ss_year=2015 +ss_abstract=Traditionally, vehicular traffic control has focused primarily on easing congestion on public roads and thereby reducing the end to end trip delay for drivers. We consider how traffic control could be optimized to additionally address environmental impact, for instance by reducing the amount of traffic in areas of the city with higher residential population. We model the corresponding optimization as a combinatorial graph problem, with an objective incorporates both the average end to end delay for commuters as well as penalties on traffic for each road segment. We present a fully distributed algorithm with a guaranteed constant-factor approximation ratio with respect to the optimal solution. We evaluate the proposed algorithm through numerical simulations. +ss_paper_id=bfb6001de24e18fb164d9dca8f7d37472a3c1d4d \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_backpressure_delay_enhancement_for_encounterbased_mobile_networks_while_sustaining_throughput_optimality.txt b/database/original_documents/publications_text/2015_backpressure_delay_enhancement_for_encounterbased_mobile_networks_while_sustaining_throughput_optimality.txt new file mode 100644 index 0000000000000000000000000000000000000000..d49125bfd6f55fd5273d3b60a6e2262d593c3224 --- /dev/null +++ b/database/original_documents/publications_text/2015_backpressure_delay_enhancement_for_encounterbased_mobile_networks_while_sustaining_throughput_optimality.txt @@ -0,0 +1,18 @@ +# Publication +title=Backpressure Delay Enhancement for Encounter-Based Mobile Networks While Sustaining Throughput Optimality +venue=IEEE/ACM Transactions on Networking, vol. PP, no. 99, pp. 1-13, March 2015. +authors=['Majed Alresaini', 'Kwame-Lante Wright', 'Bhaskar Krishnamachari', 'Michael J Neely'] +abstract=Backpressure routing, in which packets are preferentially transmitted over links with high queue differentials, offers the promise of throughput-optimal operation for a wide range of communication networks. However, when traffic load is low, backpressure methods suffer from long delays. This is of particular concern in intermittent encounter-based mobile networks which are already delay-limited due to the sparse and highly dynamic network connectivity. While state of the art mechanisms for such networks have proposed the use of redundant transmissions to improve delay, they do not work well when traffic load is high. In this paper we propose backpressure with adaptive redundancy (BWAR), a novel hybrid approach that provides the best of both worlds. This approach is robust, distributed, and does not require any prior knowledge of network load conditions. We also present variants of BWAR that remove redundant packets via a timeout mechanism, and that improve energy use. These algorithms are evaluated by mathematical analysis and by simulations of real traces of taxis in Beijing, China. The simulations confirm that BWAR outperforms traditional backpressure at low load, while outperforming encounter-routing schemes (Spray and Wait and Spray and Focus) at high load. + +# Information +links.pdf=/static/public/papers/bwar_journal.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/772ec37f0540d99cea67eec79c080953b73d6495 +type=Journal Papers +year=2015 +paper_id=b0cd026d +ss_title=Backpressure Delay Enhancement for Encounter-Based Mobile Networks While Sustaining Throughput Optimality +ss_authors=[{'authorId': '3075475', 'name': 'Majed Alresaini'}, {'authorId': '37763411', 'name': 'Kwame-Lante Wright'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1705088', 'name': 'M. Neely'}] +ss_venue=IEEE/ACM Transactions on Networking +ss_year=2016 +ss_abstract=Backpressure routing, in which packets are preferentially transmitted over links with high queue differentials, offers the promise of throughput-optimal operation for a wide range of communication networks. However, when traffic load is low, backpressure methods suffer from long delays. This is of particular concern in intermittent encounter-based mobile networks which are already delay-limited due to the sparse and highly dynamic network connectivity. While state of the art mechanisms for such networks have proposed the use of redundant transmissions to improve delay, they do not work well when traffic load is high. In this paper we propose backpressure with adaptive redundancy (BWAR), a novel hybrid approach that provides the best of both worlds. This approach is robust, distributed, and does not require any prior knowledge of network load conditions. We also present variants of BWAR that remove redundant packets via a timeout mechanism, and that improve energy use. These algorithms are evaluated by mathematical analysis and by simulations of real traces of taxis in Beijing, China. The simulations confirm that BWAR outperforms traditional backpressure at low load, while outperforming encounter-routing schemes (Spray and Wait and Spray and Focus) at high load. +ss_paper_id=772ec37f0540d99cea67eec79c080953b73d6495 \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_comparative_assessment_of_an_indoor_localization_framework_for_building_emergency_response.txt b/database/original_documents/publications_text/2015_comparative_assessment_of_an_indoor_localization_framework_for_building_emergency_response.txt new file mode 100644 index 0000000000000000000000000000000000000000..2fc8f5682de7aaf572b8016ba201a6e9646db671 --- /dev/null +++ b/database/original_documents/publications_text/2015_comparative_assessment_of_an_indoor_localization_framework_for_building_emergency_response.txt @@ -0,0 +1,18 @@ +# Publication +title=Comparative assessment of an indoor localization framework for building emergency response +venue=Automation in Construction 57, 42–54, 2015 +authors=['Nan Li', 'Burcin Becerik-Gerber', 'Lucio Soibelman', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/Li15.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/604589470784bb702c5efc18d0eecaa84a477bf1 +type=Journal Papers +year=2015 +paper_id=1060a61f +ss_title=Comparative assessment of an indoor localization framework for building emergency response +ss_authors=[{'authorId': '2157949440', 'name': 'Nan Li'}, {'authorId': '1403066874', 'name': 'B. Becerik-Gerber'}, {'authorId': '3170605', 'name': 'L. Soibelman'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2015 +ss_abstract=None +ss_paper_id=604589470784bb702c5efc18d0eecaa84a477bf1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_hermes_latency_optimal_task_assignment_for_resourceconstrained_mobile_computing.txt b/database/original_documents/publications_text/2015_hermes_latency_optimal_task_assignment_for_resourceconstrained_mobile_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..f7be4d763e5b0cc3ba2e854338871895f68699ee --- /dev/null +++ b/database/original_documents/publications_text/2015_hermes_latency_optimal_task_assignment_for_resourceconstrained_mobile_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing +venue=International Conference on Computer Communication (INFOCOM), 2015. +authors=['Yi-Hsuan Kao', 'Bhaskar Krishnamachari', 'Moo-Ryong Ra', 'Fan Bai'] +abstract=With mobile devices increasingly able to connect to cloud servers from anywhere, resource-constrained devices can potentially perform offloading of computational tasks to either save local resource usage or improve performance. It is of interest to find optimal assignments of tasks to local and remote devices that can take into account the application-specific profile, availability of computational resources, and link connectivity, and find a balance between energy consumption costs of mobile devices and latency for delay-sensitive applications. We formulate an NP-hard problem to minimize the application latency while meeting prescribed resource utilization constraints. Different from most of existing works that either rely on the integer programming solver, or on heuristics that offer no theoretical performance guarantees, we propose Hermes, a novel fully polynomial time approximation scheme (FPTAS). We identify for a subset of problem instances, where the application task graphs can be described as serial trees, Hermes provides a solution with latency no more than $(1+\epsilon)$ times of the minimum while incurring complexity that is polynomial in problem size and $\frac{1}{\epsilon}$ . We further propose an online algorithm to learn the unknown dynamic environment and guarantee that the performance gap compared to the optimal strategy is bounded by a logarithmic function with time. Evaluation is done by using real data set collected from several benchmarks, and is shown that Hermes improves the latency by $16$ percent compared to a previously published heuristic and increases CPU computing time by only $0.4$ percent of overall latency. + +# Information +links.pdf=/static/public/papers/1570003575_Kao_v2.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ab33e9ced1913a2dd687e5e8f7af9efc9a8673d9 +type=Conference Papers +year=2015 +paper_id=f61ef44f +ss_title=Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing +ss_authors=[{'authorId': '2056892379', 'name': 'Yi-Hsuan Kao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144977346', 'name': 'Moo-Ryong Ra'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2017 +ss_abstract=With mobile devices increasingly able to connect to cloud servers from anywhere, resource-constrained devices can potentially perform offloading of computational tasks to either save local resource usage or improve performance. It is of interest to find optimal assignments of tasks to local and remote devices that can take into account the application-specific profile, availability of computational resources, and link connectivity, and find a balance between energy consumption costs of mobile devices and latency for delay-sensitive applications. We formulate an NP-hard problem to minimize the application latency while meeting prescribed resource utilization constraints. Different from most of existing works that either rely on the integer programming solver, or on heuristics that offer no theoretical performance guarantees, we propose Hermes, a novel fully polynomial time approximation scheme (FPTAS). We identify for a subset of problem instances, where the application task graphs can be described as serial trees, Hermes provides a solution with latency no more than $(1+\epsilon)$ times of the minimum while incurring complexity that is polynomial in problem size and $\frac{1}{\epsilon}$ . We further propose an online algorithm to learn the unknown dynamic environment and guarantee that the performance gap compared to the optimal strategy is bounded by a logarithmic function with time. Evaluation is done by using real data set collected from several benchmarks, and is shown that Hermes improves the latency by $16$ percent compared to a previously published heuristic and increases CPU computing time by only $0.4$ percent of overall latency. +ss_paper_id=ab33e9ced1913a2dd687e5e8f7af9efc9a8673d9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_optimal_control_for_epidemic_routing_of_two_files_with_different_priorities_in_delay_tolerant_networks.txt b/database/original_documents/publications_text/2015_optimal_control_for_epidemic_routing_of_two_files_with_different_priorities_in_delay_tolerant_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..2e4059824d7f6238abc188c1dd152fc15e8f2fc9 --- /dev/null +++ b/database/original_documents/publications_text/2015_optimal_control_for_epidemic_routing_of_two_files_with_different_priorities_in_delay_tolerant_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Control for Epidemic Routing of Two Files with Different Priorities in Delay Tolerant Networks +venue=American Control Conferece (ACC), 2015. +authors=['Shangxing Wang', 'Arman MHR Khouzani', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=We consider the problem of joint dissemination of multiple contents with different priorities through epidemic routing in a large Delay Tolerant Network (DTN). Specifically, we consider two files a and b to be distributed in a large capacity-limited DTN through opportunistic contacts between the roaming nodes. The goal is to maximize the number of nodes that receive the files within a delay window, but with a priority for file b over file a. This preference can reflect difference in popularity or significance of files, or offering different grades of service. The restriction is the short duration of encounters and limited transmission capacity of nodes, where decisions have to be made on which file to forward upon an opportunity of communication. By formulating this problem as an optimal control problem based on ordinary differential equations and analyzing it through Pontryagin's Minimum Principle, we find that the optimal routing policies follow a simple but a priori counter-intuitive “bang-singular-bang” structure. Through numerical evaluations, we illustrate our findings and provide some intuitions about how the structure of the optimal policy changes with respect to different network settings. + +# Information +links.pdf=/static/public/papers/Shangxing_2015ACC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0fef976f07923eb0f9c59d94def9b2cba81733f9 +type=Conference Papers +year=2015 +paper_id=40f44cca +ss_title=Optimal control for epidemic routing of two files with different priorities in Delay Tolerant Networks +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '144733099', 'name': 'M. Khouzani'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=American Control Conference +ss_year=2015 +ss_abstract=We consider the problem of joint dissemination of multiple contents with different priorities through epidemic routing in a large Delay Tolerant Network (DTN). Specifically, we consider two files a and b to be distributed in a large capacity-limited DTN through opportunistic contacts between the roaming nodes. The goal is to maximize the number of nodes that receive the files within a delay window, but with a priority for file b over file a. This preference can reflect difference in popularity or significance of files, or offering different grades of service. The restriction is the short duration of encounters and limited transmission capacity of nodes, where decisions have to be made on which file to forward upon an opportunity of communication. By formulating this problem as an optimal control problem based on ordinary differential equations and analyzing it through Pontryagin's Minimum Principle, we find that the optimal routing policies follow a simple but a priori counter-intuitive “bang-singular-bang” structure. Through numerical evaluations, we illustrate our findings and provide some intuitions about how the structure of the optimal policy changes with respect to different network settings. +ss_paper_id=0fef976f07923eb0f9c59d94def9b2cba81733f9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_prefetchingbased_data_dissemination_in_vehicular_cloud_systems.txt b/database/original_documents/publications_text/2015_prefetchingbased_data_dissemination_in_vehicular_cloud_systems.txt new file mode 100644 index 0000000000000000000000000000000000000000..0f65dd0d19dfeadfe53b791e630fae8593e0d0a9 --- /dev/null +++ b/database/original_documents/publications_text/2015_prefetchingbased_data_dissemination_in_vehicular_cloud_systems.txt @@ -0,0 +1,18 @@ +# Publication +title=Prefetching-Based Data Dissemination in Vehicular Cloud Systems +venue=IEEE Transactions on Vehicular Technology. +authors=['Ryangsoo Kim', 'Hyuk Lim', 'Bhaskar Krishnamachari'] +abstract=In the last decade, vehicular ad hoc networks (VANETs) have been widely studied as an effective method for providing wireless communication connectivity in vehicular transportation systems. In particular, vehicular cloud systems (VCSs) have received abundant interest for the ability to offer a variety of vehicle information services. We consider the data dissemination problem of providing reliable data delivery services from a cloud data center to vehicles through roadside wireless access points (APs) with local data storage. Due to intermittent wireless connectivity and the limited data storage size of roadside wireless APs, the question of how to use the limited resources of the wireless APs is one of the most pressing issues affecting data dissemination efficiency in VCSs. In this paper, we devise a vehicle route-based data prefetching scheme, which maximizes data dissemination success probability in an average sense when the size of local data storage is limited and wireless connectivity is stochastically unknown. We propose a greedy algorithm and an online learning algorithm for deterministic and stochastic cases, respectively, to decide how to prefetch a set of data of interest from a data center to roadside wireless APs. Experiment results indicate that the proposed algorithms can achieve efficient data dissemination in a variety of vehicular scenarios. + +# Information +links.pdf=/static/public/papers/vcloud_camera_ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3fa5070b648abd22794966e87a9723b48a9b2beb +type=Journal Papers +year=2015 +paper_id=28f72ce1 +ss_title=Prefetching-Based Data Dissemination in Vehicular Cloud Systems +ss_authors=[{'authorId': '2461328', 'name': 'Ryangsoo Kim'}, {'authorId': '143761400', 'name': 'Hyuk Lim'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Vehicular Technology +ss_year=2016 +ss_abstract=In the last decade, vehicular ad hoc networks (VANETs) have been widely studied as an effective method for providing wireless communication connectivity in vehicular transportation systems. In particular, vehicular cloud systems (VCSs) have received abundant interest for the ability to offer a variety of vehicle information services. We consider the data dissemination problem of providing reliable data delivery services from a cloud data center to vehicles through roadside wireless access points (APs) with local data storage. Due to intermittent wireless connectivity and the limited data storage size of roadside wireless APs, the question of how to use the limited resources of the wireless APs is one of the most pressing issues affecting data dissemination efficiency in VCSs. In this paper, we devise a vehicle route-based data prefetching scheme, which maximizes data dissemination success probability in an average sense when the size of local data storage is limited and wireless connectivity is stochastically unknown. We propose a greedy algorithm and an online learning algorithm for deterministic and stochastic cases, respectively, to decide how to prefetch a set of data of interest from a data center to roadside wireless APs. Experiment results indicate that the proposed algorithms can achieve efficient data dissemination in a variety of vehicular scenarios. +ss_paper_id=3fa5070b648abd22794966e87a9723b48a9b2beb \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_sequencebased_tracking_of_continuous_markovian_random_processes_with_asymmetric_cost_and_observation.txt b/database/original_documents/publications_text/2015_sequencebased_tracking_of_continuous_markovian_random_processes_with_asymmetric_cost_and_observation.txt new file mode 100644 index 0000000000000000000000000000000000000000..daca6e29b62d0643a51ffbadb35485a2df0a09e5 --- /dev/null +++ b/database/original_documents/publications_text/2015_sequencebased_tracking_of_continuous_markovian_random_processes_with_asymmetric_cost_and_observation.txt @@ -0,0 +1,18 @@ +# Publication +title=Sequence-Based Tracking of Continuous Markovian Random Processes with Asymmetric Cost and Observation +venue=American Control Conferece (ACC), 2015. +authors=['P Mansourifard', 'B Krishnamachari', 'T Javidi'] +abstract=We study a state-tracking problem in which the background random process is Markovian with unknown real-valued states and known transition probability densities. At each time step the decision-maker chooses a state as an action and accumulates some reward based on the selected state and the actual state. If the selected state is higher than the actual state, the actual state is fully observed in expense of overutilization cost. Otherwise, the decision-maker has to pay underutilization cost and could only observe the actual state partially (that it is higher than the selected state). Thus, the decision-maker faces asymmetries in both cost and observation. The goal is to select the actions in order to maximize the total expected discounted reward over infinite horizon. We model this problem as a Partially Observable Markov Decision Process and formulate it in two different ways: (i) belief-based, and (ii) sequence-based. In the sequence-based formulation, only two parameters matter to define the sequence of actions, the last fully observed state and the time passed from the last observation. We prove key structural properties of the optimal policy including a lower bound on the optimal sequence. Further, for a specific form of processes we present an upper bound on the optimal sequence. Both lower and upper bound sequences have percentile threshold structure and are monotonically increasing with respect to the last fully observed state. + +# Information +links.pdf=/static/public/papers/Mansourifard_ACC2015.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e5db5a682cbea168f8eff86b234c8177d0108115 +type=Conference Papers +year=2015 +paper_id=737e2f3f +ss_paper_id=e5db5a682cbea168f8eff86b234c8177d0108115 +ss_title=Tracking of real-valued Markovian random processes with asymmetric cost and observation +ss_authors=[{'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '47197693', 'name': 'T. Javidi'}] +ss_venue=American Control Conference +ss_year=2015 +ss_abstract=We study a state-tracking problem in which the background random process is Markovian with unknown real-valued states and known transition probability densities. At each time step the decision-maker chooses a state as an action and accumulates some reward based on the selected state and the actual state. If the selected state is higher than the actual state, the actual state is fully observed in expense of overutilization cost. Otherwise, the decision-maker has to pay underutilization cost and could only observe the actual state partially (that it is higher than the selected state). Thus, the decision-maker faces asymmetries in both cost and observation. The goal is to select the actions in order to maximize the total expected discounted reward over infinite horizon. We model this problem as a Partially Observable Markov Decision Process and formulate it in two different ways: (i) belief-based, and (ii) sequence-based. In the sequence-based formulation, only two parameters matter to define the sequence of actions, the last fully observed state and the time passed from the last observation. We prove key structural properties of the optimal policy including a lower bound on the optimal sequence. Further, for a specific form of processes we present an upper bound on the optimal sequence. Both lower and upper bound sequences have percentile threshold structure and are monotonically increasing with respect to the last fully observed state. \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_the_optimism_principle_a_unified_framework_for_optimal_robotic_network_deployment_in_an_unknown_obstructed_environment.txt b/database/original_documents/publications_text/2015_the_optimism_principle_a_unified_framework_for_optimal_robotic_network_deployment_in_an_unknown_obstructed_environment.txt new file mode 100644 index 0000000000000000000000000000000000000000..ceb75f6215eb57c7d17e135632d6134a86916119 --- /dev/null +++ b/database/original_documents/publications_text/2015_the_optimism_principle_a_unified_framework_for_optimal_robotic_network_deployment_in_an_unknown_obstructed_environment.txt @@ -0,0 +1,18 @@ +# Publication +title=​The Optimism Principle: A Unified Framework for Optimal Robotic Network Deployment in An Unknown Obstructed Environment +venue=​IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015. +authors=['Shangxing Wang', 'Bhaskar Krishnamachari', 'Nora Ayanian'] +abstract=We consider the problem of deploying a team of robots in an unknown, obstructed environment to form a multi-hop communication network. As a solution, we present a unified framework, onLinE rObotic Network formAtion (LEONA), that is general enough to permit optimizing the communication network for different utility functions in non-convex environments. LEONA adopts the principle of “optimism in the face of uncertainty” to allow the team of robots to form optimal network configurations efficiently and rapidly without having to map link qualities in the entire area. We demonstrate and evaluate this framework on two specific scenarios concerning the formation of a multi-hop communication path between fixed end-points: one minimizing the total path cost, and another maximizing the bottleneck communication rate. Our simulation-based evaluation shows that the use of the optimism principle can significantly reduce resources spent in exploring and mapping the entire region prior to network optimization. We also present a mathematical modeling of how the searched area scales with various relevant parameters in each case. + +# Information +links.pdf=/static/public/papers/IROS15_1267_FI.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/149045573ec62709a30a86d1eb8cff8a9b1221c2 +type=Conference Papers +year=2015 +paper_id=d9d77991 +ss_title=The optimism principle: A unified framework for optimal robotic network deployment in an unknown obstructed environment +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2247162', 'name': 'Nora Ayanian'}] +ss_venue=IEEE/RJS International Conference on Intelligent RObots and Systems +ss_year=2015 +ss_abstract=We consider the problem of deploying a team of robots in an unknown, obstructed environment to form a multi-hop communication network. As a solution, we present a unified framework, onLinE rObotic Network formAtion (LEONA), that is general enough to permit optimizing the communication network for different utility functions in non-convex environments. LEONA adopts the principle of “optimism in the face of uncertainty” to allow the team of robots to form optimal network configurations efficiently and rapidly without having to map link qualities in the entire area. We demonstrate and evaluate this framework on two specific scenarios concerning the formation of a multi-hop communication path between fixed end-points: one minimizing the total path cost, and another maximizing the bottleneck communication rate. Our simulation-based evaluation shows that the use of the optimism principle can significantly reduce resources spent in exploring and mapping the entire region prior to network optimization. We also present a mathematical modeling of how the searched area scales with various relevant parameters in each case. +ss_paper_id=149045573ec62709a30a86d1eb8cff8a9b1221c2 \ No newline at end of file diff --git a/database/original_documents/publications_text/2015_traffic_matrix_estimation_from_road_sensor_data_a_case_study.txt b/database/original_documents/publications_text/2015_traffic_matrix_estimation_from_road_sensor_data_a_case_study.txt new file mode 100644 index 0000000000000000000000000000000000000000..c4e24fcc6ab919ed032897343d8a0e5b987d4ef0 --- /dev/null +++ b/database/original_documents/publications_text/2015_traffic_matrix_estimation_from_road_sensor_data_a_case_study.txt @@ -0,0 +1,18 @@ +# Publication +title=​Traffic Matrix Estimation from Road Sensor Data: A Case Study +venue=​ACM International Conference on Advances in Geographic Information Systems, SigSpatial 2015. +authors=['Keyvan R Moghdam', 'Quynh Nguyen', 'Bhaskar Krishnamachari', 'Ugur Demiryurek'] +abstract=We present a study which aims to infer the vehicular traffic origin-destination matrix for the Los Angeles Downtown Area, from a unique real-world LA Metro data source which comprises sensor information of traffic counts and speeds obtained in real-time from LA arterial road intersections. We review the possible solution approaches and discuss the one is used here in details. The final results are presented for three different time intervals with different traffic regimes of the same day. + +# Information +links.pdf=/static/public/papers/LATrafficODEstimation_SigSpatial2015.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/14236ef82d9913815e42f458da30473fc7437ee5 +type=Conference Papers +year=2015 +paper_id=c1f554cd +ss_title=Traffic matrix estimation from road sensor data: a case study +ss_authors=[{'authorId': '2729952', 'name': 'K. R. Moghadam'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2478322', 'name': 'Ugur Demiryurek'}] +ss_venue=SIGSPATIAL/GIS +ss_year=2015 +ss_abstract=We present a study which aims to infer the vehicular traffic origin-destination matrix for the Los Angeles Downtown Area, from a unique real-world LA Metro data source which comprises sensor information of traffic counts and speeds obtained in real-time from LA arterial road intersections. We review the possible solution approaches and discuss the one is used here in details. The final results are presented for three different time intervals with different traffic regimes of the same day. +ss_paper_id=14236ef82d9913815e42f458da30473fc7437ee5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_a_packet_dropping_mechanism_for_efficient_operation_of_mm1_queues_with_selfish_users.txt b/database/original_documents/publications_text/2016_a_packet_dropping_mechanism_for_efficient_operation_of_mm1_queues_with_selfish_users.txt new file mode 100644 index 0000000000000000000000000000000000000000..e27d32cca09b88438e3a22ab6529d947a71fa148 --- /dev/null +++ b/database/original_documents/publications_text/2016_a_packet_dropping_mechanism_for_efficient_operation_of_mm1_queues_with_selfish_users.txt @@ -0,0 +1,18 @@ +# Publication +title=A Packet Dropping Mechanism for Efficient Operation of M/M/1 Queues with Selfish Users +venue=Computer Networks, vol. 98, no. 7, pp. 1–13, April 2016. +authors=['Yi Gai', 'Hua Liu', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/1-s2.0-S1389128615004855-main.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d754609aa43a63dcde8705ef36ccfb8b2764ec08 +type=Journal Papers +year=2016 +paper_id=34e1e4ac +ss_title=A packet dropping mechanism for efficient operation of M/M/1 queues with selfish users +ss_authors=[{'authorId': '3171751', 'name': 'Yi Gai'}, {'authorId': '2145497349', 'name': 'Hua Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Comput. Networks +ss_year=2011 +ss_abstract=None +ss_paper_id=d754609aa43a63dcde8705ef36ccfb8b2764ec08 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_an_energy_and_delay_aware_downlink_power_control_strategy_for_solar_powered_base_stations.txt b/database/original_documents/publications_text/2016_an_energy_and_delay_aware_downlink_power_control_strategy_for_solar_powered_base_stations.txt new file mode 100644 index 0000000000000000000000000000000000000000..7dae53270f0f4354752017fbecb24d690cf15f84 --- /dev/null +++ b/database/original_documents/publications_text/2016_an_energy_and_delay_aware_downlink_power_control_strategy_for_solar_powered_base_stations.txt @@ -0,0 +1,18 @@ +# Publication +title=An Energy and Delay Aware Downlink Power Control Strategy for Solar Powered Base Stations +venue=IEEE Communications Letters. +authors=['Vinay Chamola', 'Bhaskar Krishnamachari', 'Biplab Sikdar'] +abstract=Using renewable resources like solar energy to power the base stations (BSs) has emerged as a promising solution for greening cellular networks. One of the key challenges in operating a network of such BSs is to intelligently manage the green energy available to the BSs while ensuring reliable quality of service (QoS). This letter presents a methodology for maximizing the QoS, in terms of the network latency, given the constraints on the energy availability at the solar-powered BSs. In contrast to existing approaches based on user association reconfiguration, our methodology uses a combination of intelligent energy allocation and BS downlink power control. Using a real BS deployment scenario from U.K., we show the efficacy of our algorithm and demonstrate its superior performance compared to existing benchmarks. + +# Information +links.pdf=/static/public/papers/vinay_comms_letter.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/16fa8fb9166542a147e41522344c6b589f85a61c +type=Journal Papers +year=2016 +paper_id=c2df77d5 +ss_title=An Energy and Delay Aware Downlink Power Control Strategy for Solar Powered Base Stations +ss_authors=[{'authorId': '3185174', 'name': 'V. Chamola'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '48440849', 'name': 'B. Sikdar'}] +ss_venue=IEEE Communications Letters +ss_year=2016 +ss_abstract=Using renewable resources like solar energy to power the base stations (BSs) has emerged as a promising solution for greening cellular networks. One of the key challenges in operating a network of such BSs is to intelligently manage the green energy available to the BSs while ensuring reliable quality of service (QoS). This letter presents a methodology for maximizing the QoS, in terms of the network latency, given the constraints on the energy availability at the solar-powered BSs. In contrast to existing approaches based on user association reconfiguration, our methodology uses a combination of intelligent energy allocation and BS downlink power control. Using a real BS deployment scenario from U.K., we show the efficacy of our algorithm and demonstrate its superior performance compared to existing benchmarks. +ss_paper_id=16fa8fb9166542a147e41522344c6b589f85a61c \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_caspar_congestion_avoidance_shortest_path_routing_for_delay_tolerant_networks.txt b/database/original_documents/publications_text/2016_caspar_congestion_avoidance_shortest_path_routing_for_delay_tolerant_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..804af15b102a3336569e9b2b08acc50545c662f9 --- /dev/null +++ b/database/original_documents/publications_text/2016_caspar_congestion_avoidance_shortest_path_routing_for_delay_tolerant_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=CASPaR: Congestion Avoidance Shortest Path Routing for Delay Tolerant Networks +venue=International Conference on Computing, Networking and Communications (ICNC), 2016. +authors=['Michael Stewart', 'Rajgopal Kannan', 'Amit Dvir', 'Bhaskar Krishnamachari'] +abstract=Unlike traditional transmission control protocol/Internet protocol–based networks, delay/disruption tolerant networks may experience connectivity disruptions and guarantee no end-to-end connectivity between source and destination. As the popularity of delay/disruption tolerant networks continues to rise, so does the need for a robust and low-latency routing protocol. A one-copy, shortest path delay/disruption tolerant network routing protocol that addresses congestion avoidance and maximizes total network bandwidth utility is crucial to efficient packet delivery in high-load networks and is the motivation behind the development of the congestion avoidance shortest path routing. Congestion avoidance shortest path routing is designed to either route undeliverable packets “closer” to their destinations or hold onto them when advantageous to do so. Congestion avoidance and bottleneck minimization are integrated into its design. Moreover, congestion avoidance shortest path routing negotiates node queue differentials between neighbors similar to backpressure algorithms and maps shortest paths without any direct knowledge of node connectivity outside of its own neighborhood. Simulation results show that congestion avoidance shortest path routing outperforms well-known protocols in terms of packet delivery probability and latency and is still quite efficient in terms of overhead requirements. Finally, we explore the effectiveness of modeling a variant of congestion avoidance shortest path routing based on the resistance to current flow of electrical circuits in an attempt to further reduce network congestion. Preliminary results indicate a noticeable performance increase when this method is used. + +# Information +links.pdf=/static/public/papers/1570187523.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3127bb200231d5ddba536f86b558d6b1e20c20c1 +type=Conference Papers +year=2016 +paper_id=9779bbaf +ss_title=CASPaR: Congestion avoidance shortest path routing for delay tolerant networks +ss_authors=[{'authorId': '2067666828', 'name': 'Michael F. Stewart'}, {'authorId': '145297301', 'name': 'R. Kannan'}, {'authorId': '2439506', 'name': 'A. Dvir'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Computing, Networking and Communications +ss_year=2016 +ss_abstract=Unlike traditional transmission control protocol/Internet protocol–based networks, delay/disruption tolerant networks may experience connectivity disruptions and guarantee no end-to-end connectivity between source and destination. As the popularity of delay/disruption tolerant networks continues to rise, so does the need for a robust and low-latency routing protocol. A one-copy, shortest path delay/disruption tolerant network routing protocol that addresses congestion avoidance and maximizes total network bandwidth utility is crucial to efficient packet delivery in high-load networks and is the motivation behind the development of the congestion avoidance shortest path routing. Congestion avoidance shortest path routing is designed to either route undeliverable packets “closer” to their destinations or hold onto them when advantageous to do so. Congestion avoidance and bottleneck minimization are integrated into its design. Moreover, congestion avoidance shortest path routing negotiates node queue differentials between neighbors similar to backpressure algorithms and maps shortest paths without any direct knowledge of node connectivity outside of its own neighborhood. Simulation results show that congestion avoidance shortest path routing outperforms well-known protocols in terms of packet delivery probability and latency and is still quite efficient in terms of overhead requirements. Finally, we explore the effectiveness of modeling a variant of congestion avoidance shortest path routing based on the resistance to current flow of electrical circuits in an attempt to further reduce network congestion. Preliminary results indicate a noticeable performance increase when this method is used. +ss_paper_id=3127bb200231d5ddba536f86b558d6b1e20c20c1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_efcient_mechanism_design_for_competitive_carrier_selection_and_rate_allocation.txt b/database/original_documents/publications_text/2016_efcient_mechanism_design_for_competitive_carrier_selection_and_rate_allocation.txt new file mode 100644 index 0000000000000000000000000000000000000000..b14dbe8ba5a0066e48c9d72b491c3aea920334ca --- /dev/null +++ b/database/original_documents/publications_text/2016_efcient_mechanism_design_for_competitive_carrier_selection_and_rate_allocation.txt @@ -0,0 +1,18 @@ +# Publication +title=Efficient Mechanism Design for Competitive Carrier Selection and Rate Allocation +venue=IEEE Transactions on Vehicular Technology, 2016. +authors=['Yanting Wu', 'Bhaskar Krishnamachari', 'George Rabanca', 'Amotz Bar-Noy'] +abstract=This paper investigates a problem where multiple operators (carriers) compete to carry data from a customer (transmitter). To optimally utilize its power and allocate rates, a transmitter needs truthful information on link performance. However, in a scenario where the selection and switching of carriers happens dynamically, it is challenging to regulate carriers' behavior using traditional payment design such as based on byte counting. We propose a payment mechanism based on a convex piecewise-linear function and prove that this simple mechanism provides incentives for carriers to provide truthful information on link performance. We also show that as the number of bits per bid is increased, more accurate information on link performance can be encoded in the bids; consequently, the transmitter's power and rate allocation approaches optimality with perfect information on channel statistics. To validate the performance of the model, we conduct simulations using real base-station locations in London and show that not only customers benefit from this model by having higher throughput, this model is also profitable to operators due to more potential customers and more efficient use of the channels. + +# Information +links.pdf=/static/public/papers/RateAuction.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1037733757a7c9f3196ba61ef55bac0e617a3a00 +type=Journal Papers +year=2016 +paper_id=3cafd716 +ss_title=Efficient Mechanism Design for Competitive Carrier Selection and Rate Allocation +ss_authors=[{'authorId': '2134150909', 'name': 'Yanting Wu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2178407', 'name': 'George Rabanca'}, {'authorId': '1397925673', 'name': 'A. Bar-Noy'}] +ss_venue=IEEE Transactions on Vehicular Technology +ss_year=2016 +ss_abstract=This paper investigates a problem where multiple operators (carriers) compete to carry data from a customer (transmitter). To optimally utilize its power and allocate rates, a transmitter needs truthful information on link performance. However, in a scenario where the selection and switching of carriers happens dynamically, it is challenging to regulate carriers' behavior using traditional payment design such as based on byte counting. We propose a payment mechanism based on a convex piecewise-linear function and prove that this simple mechanism provides incentives for carriers to provide truthful information on link performance. We also show that as the number of bits per bid is increased, more accurate information on link performance can be encoded in the bids; consequently, the transmitter's power and rate allocation approaches optimality with perfect information on channel statistics. To validate the performance of the model, we conduct simulations using real base-station locations in London and show that not only customers benefit from this model by having higher throughput, this model is also profitable to operators due to more potential customers and more efficient use of the channels. +ss_paper_id=1037733757a7c9f3196ba61ef55bac0e617a3a00 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_energy_efficient_data_collection_via_supervised_innetwork_classification_of_sensor_data.txt b/database/original_documents/publications_text/2016_energy_efficient_data_collection_via_supervised_innetwork_classification_of_sensor_data.txt new file mode 100644 index 0000000000000000000000000000000000000000..e373038b51e866b301576c27426d476e3f6c8813 --- /dev/null +++ b/database/original_documents/publications_text/2016_energy_efficient_data_collection_via_supervised_innetwork_classification_of_sensor_data.txt @@ -0,0 +1,18 @@ +# Publication +title=Energy Efficient Data Collection via Supervised In-Network Classification of Sensor Data +venue=IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2016. +authors=['Lorenzo A Rossi', 'Bhaskar Krishnamachari', 'C-C Jay Kuo'] +abstract=In wireless sensor networks, data collection (or gathering) is the task of transmitting rounds of measurements of physical phenomena from the sensor nodes to a sink node. We study how to increase the efficiency of data collection via supervised in-network classification of rounds of measurements. We assume that the end users of the data are interested only in rounds characterized by certain patterns. Hence the wireless sensor network uses classification to select the rounds of measurements that are transmitted to the base station. The energy consumption is potentially reduced by avoiding the transmission of rounds of measurements that are not of interest to the end users. In-network classification requires distributed feature extraction and transmission. Such tasks can be less or more energy expensive than the transmission of measurements without classification. We provide analytical results and simulations on real data to show requirements and key trade-offs for the design of in-network data classification systems that can improve the collection efficiency. Besides, we study the impact of spatial subsampling of the sensor data (a way to further decrease energy consumption) on the classification performance. + +# Information +links.pdf=/static/public/papers/DCOSS2016_LARossi_cr.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/40d5e9fb265ab021581fc88db17b656f2b288a6a +type=Conference Papers +year=2016 +paper_id=02ab2778 +ss_title=Energy Efficient Data Collection via Supervised In-Network Classification of Sensor Data +ss_authors=[{'authorId': '1701017', 'name': 'Lorenzo A. Rossi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9363144', 'name': 'C.-C. Jay Kuo'}] +ss_venue=International Conference on Distributed Computing in Sensor Systems +ss_year=2016 +ss_abstract=In wireless sensor networks, data collection (or gathering) is the task of transmitting rounds of measurements of physical phenomena from the sensor nodes to a sink node. We study how to increase the efficiency of data collection via supervised in-network classification of rounds of measurements. We assume that the end users of the data are interested only in rounds characterized by certain patterns. Hence the wireless sensor network uses classification to select the rounds of measurements that are transmitted to the base station. The energy consumption is potentially reduced by avoiding the transmission of rounds of measurements that are not of interest to the end users. In-network classification requires distributed feature extraction and transmission. Such tasks can be less or more energy expensive than the transmission of measurements without classification. We provide analytical results and simulations on real data to show requirements and key trade-offs for the design of in-network data classification systems that can improve the collection efficiency. Besides, we study the impact of spatial subsampling of the sensor data (a way to further decrease energy consumption) on the classification performance. +ss_paper_id=40d5e9fb265ab021581fc88db17b656f2b288a6a \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_exploiting_iot_technologies_for_enhancing_health_smart_homes_through_patient_identification_and_emotion_recognition.txt b/database/original_documents/publications_text/2016_exploiting_iot_technologies_for_enhancing_health_smart_homes_through_patient_identification_and_emotion_recognition.txt new file mode 100644 index 0000000000000000000000000000000000000000..b42b6ea79be8e82b1fe4fbef21ad7f5a9788b77f --- /dev/null +++ b/database/original_documents/publications_text/2016_exploiting_iot_technologies_for_enhancing_health_smart_homes_through_patient_identification_and_emotion_recognition.txt @@ -0,0 +1,18 @@ +# Publication +title=Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition +venue=Computer Communications, vol. 89-90, no. 1, pp. 178-190, Sept 2016. +authors=['Leandro Y Mano', 'Bruno S Faiçal', 'Luis H V Nakamura', 'Pedro H Gomes', 'Giampaolo L Libralon', 'Rodolfo I Meneguete', 'Geraldo P R Filho', 'Gabriel T Giancristofaro', 'Gustavo Pessin', 'Bhaskar Krishnamachari', 'Jó Ueyama'] +abstract=None + +# Information +links.pdf=/static/public/papers/Mano_ComCom_2016.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bf8c3dea2a0e07894b96aa32d8cee3b3bb64b78e +type=Journal Papers +year=2016 +paper_id=c1aa115a +ss_title=Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition +ss_authors=[{'authorId': '3351236', 'name': 'L. Mano'}, {'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '1897781', 'name': 'L. H. Nakamura'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '3250085', 'name': 'Giampaolo L. Libralon'}, {'authorId': '1766687', 'name': 'R. Meneguette'}, {'authorId': '145085809', 'name': 'G. P. Filho'}, {'authorId': '2568246', 'name': 'Gabriel T. Giancristofaro'}, {'authorId': '2584178', 'name': 'G. Pessin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2190289', 'name': 'J. Ueyama'}] +ss_venue=Computer Communications +ss_year=2016 +ss_abstract=None +ss_paper_id=bf8c3dea2a0e07894b96aa32d8cee3b3bb64b78e \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_finetuning_of_uav_control_rules_for_spraying_pesticides_on_crop_fields_an_approach_for_dynamic_environments.txt b/database/original_documents/publications_text/2016_finetuning_of_uav_control_rules_for_spraying_pesticides_on_crop_fields_an_approach_for_dynamic_environments.txt new file mode 100644 index 0000000000000000000000000000000000000000..4f893da412d4e79b4bac2fb139c661382584a054 --- /dev/null +++ b/database/original_documents/publications_text/2016_finetuning_of_uav_control_rules_for_spraying_pesticides_on_crop_fields_an_approach_for_dynamic_environments.txt @@ -0,0 +1,18 @@ +# Publication +title=Fine-Tuning of UAV Control Rules for Spraying Pesticides on Crop Fields: An Approach for Dynamic Environments +venue=International Journal on Artificial Intelligence Tools, vol. 25, no. 1, February 2016 +authors=['Bruno S Faical', 'Gustavo Pessin', 'Geraldo P R Filho', 'Andre C P L F Carvalho', 'Pedro H Gomes', 'Jo Ueyama'] +abstract=Brazil is an agricultural nation whose process of spraying pesticides is mainly carried out by using aircrafts. However, the use of aircrafts with on-board pilots has often resulted in chemicals being sprayed outside the intended areas. The precision required for spraying on crop fields is often impaired by external factors, like changes in wind speed and direction. To address this problem, ensuring that the pesticides are sprayed accurately, this paper proposes the use of artificial neural networks (ANN) on programmable UAVs. For such, the UAV is programmed to spray chemicals on the target crop field considering dynamic context. To control the UAV ight route planning, we investigated several optimization techniques including Particle Swarm Optimization (PSO). We employ PSO to find near-optimal parameters for static environments and then train a neural network to interpolate PSO solutions in order to improve the UAV route in dynamic environments. Experimental results showed a gain in the spraying precisio... + +# Information +links.pdf=/static/public/papers/2016_Faical_UAV_Control.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/78479e8e81a36672ab4ba8d156bb0e6803f23f7a +type=Journal Papers +year=2016 +paper_id=d793799f +ss_title=Fine-Tuning of UAV Control Rules for Spraying Pesticides on Crop Fields: An Approach for Dynamic Environments +ss_authors=[{'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '2584178', 'name': 'G. Pessin'}, {'authorId': '145085809', 'name': 'G. P. Filho'}, {'authorId': '143618972', 'name': 'A. Carvalho'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '2190289', 'name': 'J. Ueyama'}] +ss_venue=Int. J. Artif. Intell. Tools +ss_year=2016 +ss_abstract=Brazil is an agricultural nation whose process of spraying pesticides is mainly carried out by using aircrafts. However, the use of aircrafts with on-board pilots has often resulted in chemicals being sprayed outside the intended areas. The precision required for spraying on crop fields is often impaired by external factors, like changes in wind speed and direction. To address this problem, ensuring that the pesticides are sprayed accurately, this paper proposes the use of artificial neural networks (ANN) on programmable UAVs. For such, the UAV is programmed to spray chemicals on the target crop field considering dynamic context. To control the UAV ight route planning, we investigated several optimization techniques including Particle Swarm Optimization (PSO). We employ PSO to find near-optimal parameters for static environments and then train a neural network to interpolate PSO solutions in order to improve the UAV route in dynamic environments. Experimental results showed a gain in the spraying precisio... +ss_paper_id=78479e8e81a36672ab4ba8d156bb0e6803f23f7a \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_insights_into_frequency_diversity_from_measurements_on_an_indoor_low_power_wireless_network_testbed.txt b/database/original_documents/publications_text/2016_insights_into_frequency_diversity_from_measurements_on_an_indoor_low_power_wireless_network_testbed.txt new file mode 100644 index 0000000000000000000000000000000000000000..96a407615d009d4d47a71199ce856a6cb5274eb6 --- /dev/null +++ b/database/original_documents/publications_text/2016_insights_into_frequency_diversity_from_measurements_on_an_indoor_low_power_wireless_network_testbed.txt @@ -0,0 +1,18 @@ +# Publication +title=Insights into Frequency Diversity from Measurements on an Indoor Low Power Wireless Network Testbed +venue=Workshop on Low-Layer Implementation and Protocol Design for IoT Applications (IoT-LINK), IEEE Global Communications Conference (GLOBECOM), 2016. +authors=['Pedro Henrique Gomes', 'Ying Chen', 'Thomas Watteyne', 'Bhaskar Krishnamachari'] +abstract=Recent wireless medium access control techniques, such as the Timeslotted Synchronized Channel Hopping (TSCH) and Deterministic & Synchronous Multi-channel Extension (DSME) modes in the IEEE802.15.4-2015 standard, use frequency diversity to cope with external interference and multipath fading. The result is wire-like reliability in a network built from unreliable wireless links. Yet, the impact of using multiple frequencies on the medium access control layer is still not perfectly understood, and virtually all channel hopping solutions use ``blind'' channel hopping, i.e., hopping over all frequencies equivalently. The goal of this work is to improve our understanding of the behavior of the wireless medium when using multiple frequencies, which will enable the design of more efficient protocols in the future. We collect a large dense connectivity dataset over the USC Tutornet Internet of Things Testbed, with dozens of low-power wireless nodes deployed in an office building. This publicly-available dataset offers complete traces of link quality across frequency, time and space. We analyze the data and extract meaningful and practical insights on the wireless medium when using multiple frequencies. + +# Information +links.pdf=/static/public/papers/Pedro-Tutornet-IOTLink2016.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7899be10cc2a4fc9662ba12754ca1f9e591e4dc1 +type=Conference Papers +year=2016 +paper_id=59aecaaf +ss_title=Insights into Frequency Diversity from Measurements on an Indoor Low Power Wireless Network Testbed +ss_authors=[{'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '47558464', 'name': 'Ying Chen'}, {'authorId': '1686537', 'name': 'T. Watteyne'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2016 IEEE Globecom Workshops (GC Wkshps) +ss_year=2016 +ss_abstract=Recent wireless medium access control techniques, such as the Timeslotted Synchronized Channel Hopping (TSCH) and Deterministic & Synchronous Multi-channel Extension (DSME) modes in the IEEE802.15.4-2015 standard, use frequency diversity to cope with external interference and multipath fading. The result is wire-like reliability in a network built from unreliable wireless links. Yet, the impact of using multiple frequencies on the medium access control layer is still not perfectly understood, and virtually all channel hopping solutions use ``blind'' channel hopping, i.e., hopping over all frequencies equivalently. The goal of this work is to improve our understanding of the behavior of the wireless medium when using multiple frequencies, which will enable the design of more efficient protocols in the future. We collect a large dense connectivity dataset over the USC Tutornet Internet of Things Testbed, with dozens of low-power wireless nodes deployed in an office building. This publicly-available dataset offers complete traces of link quality across frequency, time and space. We analyze the data and extract meaningful and practical insights on the wireless medium when using multiple frequencies. +ss_paper_id=7899be10cc2a4fc9662ba12754ca1f9e591e4dc1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_interference_power_bound_analysis_of_a_network_of_wireless_robots.txt b/database/original_documents/publications_text/2016_interference_power_bound_analysis_of_a_network_of_wireless_robots.txt new file mode 100644 index 0000000000000000000000000000000000000000..1feb4d7b48bb72ac7780b3d620d67d98759ad212 --- /dev/null +++ b/database/original_documents/publications_text/2016_interference_power_bound_analysis_of_a_network_of_wireless_robots.txt @@ -0,0 +1,18 @@ +# Publication +title=Interference Power Bound Analysis of a Network of Wireless Robots +venue=USC ANRG Technical Report, ANRG-2016-04, arXiv:1608.08261 [cs.RO]. +authors=['Pradipta Ghosh', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=https://arxiv.org/abs/1608.08261 +links.semantic_scholar=https://www.semanticscholar.org/paper/6608c160c1013947c5be6145ef741754ebec4f15 +type=Technical Reports and Preprints +year=2016 +paper_id=e6516bb2 +ss_title=Interference Power Bound Analysis of a Network of Wireless Robots +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Communication Systems and Networks +ss_year=2016 +ss_abstract=None +ss_paper_id=6608c160c1013947c5be6145ef741754ebec4f15 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_online_learning_of_power_allocation_policies_in_energy_harvesting_communications.txt b/database/original_documents/publications_text/2016_online_learning_of_power_allocation_policies_in_energy_harvesting_communications.txt new file mode 100644 index 0000000000000000000000000000000000000000..2355f7a1a011e3285eac46551a18d432d09c683e --- /dev/null +++ b/database/original_documents/publications_text/2016_online_learning_of_power_allocation_policies_in_energy_harvesting_communications.txt @@ -0,0 +1,18 @@ +# Publication +title=Online Learning of Power Allocation Policies in Energy Harvesting Communications +venue=International Conference on Signal Processing and Communications (SPCOM), 2016. +authors=['Pranav Sakulkar', 'Bhaskar Krishnamachari'] +abstract=We consider the problem of power allocation over a time-varying channel with an unknown distribution in energy harvesting communication systems. In this problem, the transmitter needs to choose its transmit power based on the amount of stored energy in its battery with the goal of maximizing the average rate obtained over time. We model this problem as a Markov decision process (MDP) with the transmitter as the agent, the battery status as the state, the transmit power as the action and the rate obtained as the reward. The average reward maximization problem over the MDP can be solved by a linear program (LP) that uses the transition probabilities for the state-action pairs and their mean rewards to choose a power allocation policy. Since the rewards associated the state-action pairs are unknown, we propose an online learning algorithm called UCLP that learns these rewards and adapts its policy with time. The UCLP algorithm solves the LP at each time-step to choose its policy using the upper confidence bounds on the rewards. We prove that the reward loss or regret incurred by UCLP is upper bounded by a constant. + +# Information +links.pdf=/static/public/papers/UCLP_SPCOM_2016.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/065524527a2d4e8b953cf03d21eb6b23699c2558 +type=Conference Papers +year=2016 +paper_id=8d72e8ff +ss_title=Online learning of power allocation policies in energy harvesting communications +ss_authors=[{'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Signal Processing and Communications +ss_year=2016 +ss_abstract=We consider the problem of power allocation over a time-varying channel with an unknown distribution in energy harvesting communication systems. In this problem, the transmitter needs to choose its transmit power based on the amount of stored energy in its battery with the goal of maximizing the average rate obtained over time. We model this problem as a Markov decision process (MDP) with the transmitter as the agent, the battery status as the state, the transmit power as the action and the rate obtained as the reward. The average reward maximization problem over the MDP can be solved by a linear program (LP) that uses the transition probabilities for the state-action pairs and their mean rewards to choose a power allocation policy. Since the rewards associated the state-action pairs are unknown, we propose an online learning algorithm called UCLP that learns these rewards and adapts its policy with time. The UCLP algorithm solves the LP at each time-step to choose its policy using the upper confidence bounds on the rewards. We prove that the reward loss or regret incurred by UCLP is upper bounded by a constant. +ss_paper_id=065524527a2d4e8b953cf03d21eb6b23699c2558 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_optimal_operation_of_a_green_server_with_bursty_traffic.txt b/database/original_documents/publications_text/2016_optimal_operation_of_a_green_server_with_bursty_traffic.txt new file mode 100644 index 0000000000000000000000000000000000000000..e07b697a0140291678e894583fa28aec3684cb5d --- /dev/null +++ b/database/original_documents/publications_text/2016_optimal_operation_of_a_green_server_with_bursty_traffic.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimal Operation of a Green Server with Bursty Traffic +venue=IEEE Global Communications Conference (GLOBECOM), 2016. +authors=['Bingjie Leng', 'Bhaskar Krishnamachari', 'Xueying Guo', 'Zhisheng Niu'] +abstract=To reduce the energy consumption of various information and communication systems, sleeping mechanism design is considered to be a key problem. Prior work has derived optimal single server sleeping policies only for non-bursty, memoryless Poisson arrivals. In this paper, for the first time, we derive the optimal sleep operation for a single server facing bursty traffic arrivals. Specifically, we model job arrivals as a discrete-time interrupted Bernoulli process (IBP) which models bursty traffic arrivals. Key factors including the switching and working energy consumption costs as well as a delay penalty are accounted for in our model. As the arrival process state (busy or quiet) cannot be directly observed by the server, we formulate the problem as a POMDP (partially observable Markov decision process), and show that it can be tractably solved as a belief-MDP by considering the time interval since the last observed arrival t. We prove that the optimal sleeping policy is hysteretic and the numerical results reveal that the optimal policy is a t-based two- threshold policy, where the sleeping thresholds change with t. The simulation results show that our policy outperforms the previously derived Poisson-optimal policy and that the system cost decreases with the burstiness of traffic. + +# Information +links.pdf=/static/public/papers/OptimalGreenServerOperation_Globecom2016_Bingjie.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f78d0aff9405554004322944d0a9475a32464a50 +type=Conference Papers +year=2016 +paper_id=dc7d5ef6 +ss_title=Optimal Operation of a Green Server with Bursty Traffic +ss_authors=[{'authorId': '47817446', 'name': 'Bingjie Leng'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2589602', 'name': 'Xueying Guo'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=Global Communications Conference +ss_year=2016 +ss_abstract=To reduce the energy consumption of various information and communication systems, sleeping mechanism design is considered to be a key problem. Prior work has derived optimal single server sleeping policies only for non-bursty, memoryless Poisson arrivals. In this paper, for the first time, we derive the optimal sleep operation for a single server facing bursty traffic arrivals. Specifically, we model job arrivals as a discrete-time interrupted Bernoulli process (IBP) which models bursty traffic arrivals. Key factors including the switching and working energy consumption costs as well as a delay penalty are accounted for in our model. As the arrival process state (busy or quiet) cannot be directly observed by the server, we formulate the problem as a POMDP (partially observable Markov decision process), and show that it can be tractably solved as a belief-MDP by considering the time interval since the last observed arrival t. We prove that the optimal sleeping policy is hysteretic and the numerical results reveal that the optimal policy is a t-based two- threshold policy, where the sleeping thresholds change with t. The simulation results show that our policy outperforms the previously derived Poisson-optimal policy and that the system cost decreases with the burstiness of traffic. +ss_paper_id=f78d0aff9405554004322944d0a9475a32464a50 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_optimizing_downloads_over_random_duration_links_in_mobile_networks.txt b/database/original_documents/publications_text/2016_optimizing_downloads_over_random_duration_links_in_mobile_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..03a06ce0aef25720791cdd35a8ee1817391c2c49 --- /dev/null +++ b/database/original_documents/publications_text/2016_optimizing_downloads_over_random_duration_links_in_mobile_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimizing Downloads over Random Duration Links in Mobile Networks +venue=25th International Conference on Computer Communication and Networks, August 2016. +authors=['Amber Bhargava', 'Spencer Congero', 'Timothy Ferrell', 'Alex Jones', 'Leo Linsky', 'Jayashree Mohan', 'Bhaskar Krishnamachari'] +abstract=Short range vehicle to vehicle and device to device communications are of growing interest due to their utility for vehicular safety and infotainment applications as well as for improving the capacity of cellular networks. These mobile systems are characterized by ephemeral, stochastic links. We consider a fundamental problem in this domain -- how to maximize the amount of useful content downloaded by a client from a server over an encounter that lasts a random amount of time. We assume that the distribution of link duration is known or estimated \emph{a priori} based on historical as well as real-time measurements. We present MERLIN (Maximum Expected download over Random LINks), a single-phase file request protocol that is provably optimal. We evaluate MERLIN comprehensively via simulations based on both ideal link duration distributions as well as empirical distributions obtained from real vehicular mobility traces (from Taxis in Shanghai and Buses in Chicago). We also present two Contiki OS-based implementations of MERLIN (with local and remote calculations) evaluated on the Tmote Sky wireless embedded platform. + +# Information +links.pdf=/static/public/papers/Merlin_ICCCN2016_PID1178168.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4f5a8494f6c5412ca751e54af18598e30b6497e8 +type=Conference Papers +year=2016 +paper_id=5158fd2e +ss_title=Optimizing Downloads over Random Duration Links in Mobile Networks +ss_authors=[{'authorId': '49871766', 'name': 'A.S. Bhargava'}, {'authorId': '3457954', 'name': 'Spencer Congero'}, {'authorId': '22799485', 'name': 'Timothy Ferrell'}, {'authorId': '2115326300', 'name': 'Alex Jones'}, {'authorId': '46214199', 'name': 'L. Linsky'}, {'authorId': '3083814', 'name': 'Jayashree Mohan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Computer Communications and Networks +ss_year=2016 +ss_abstract=Short range vehicle to vehicle and device to device communications are of growing interest due to their utility for vehicular safety and infotainment applications as well as for improving the capacity of cellular networks. These mobile systems are characterized by ephemeral, stochastic links. We consider a fundamental problem in this domain -- how to maximize the amount of useful content downloaded by a client from a server over an encounter that lasts a random amount of time. We assume that the distribution of link duration is known or estimated \emph{a priori} based on historical as well as real-time measurements. We present MERLIN (Maximum Expected download over Random LINks), a single-phase file request protocol that is provably optimal. We evaluate MERLIN comprehensively via simulations based on both ideal link duration distributions as well as empirical distributions obtained from real vehicular mobility traces (from Taxis in Shanghai and Buses in Chicago). We also present two Contiki OS-based implementations of MERLIN (with local and remote calculations) evaluated on the Tmote Sky wireless embedded platform. +ss_paper_id=4f5a8494f6c5412ca751e54af18598e30b6497e8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_optimizing_singlephase_downloads_over_random_duration_links_in_mobile_networks.txt b/database/original_documents/publications_text/2016_optimizing_singlephase_downloads_over_random_duration_links_in_mobile_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..6653001ac37ddf7da4a9300164e5dc2f7b9922f7 --- /dev/null +++ b/database/original_documents/publications_text/2016_optimizing_singlephase_downloads_over_random_duration_links_in_mobile_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Optimizing Single-Phase Downloads over Random Duration Links in Mobile Networks +venue=USC ANRG Technical Report. +authors=['Amber Bhargava', 'Timothy Ferrell', 'Alex Jones', 'Leo Linsky', 'Jayashree Mohan', 'Bhaskar Krishnamachari'] +abstract=Short range vehicle to vehicle and device to device communications are of growing interest due to their utility for vehicular safety and infotainment applications as well as for improving the capacity of cellular networks. These mobile systems are characterized by ephemeral, stochastic links. We consider a fundamental problem in this domain -- how to maximize the amount of useful content downloaded by a client from a server over an encounter that lasts a random amount of time. We assume that the distribution of link duration is known or estimated \emph{a priori} based on historical as well as real-time measurements. We present MERLIN (Maximum Expected download over Random LINks), a single-phase file request protocol that is provably optimal. We evaluate MERLIN comprehensively via simulations based on both ideal link duration distributions as well as empirical distributions obtained from real vehicular mobility traces (from Taxis in Shanghai and Buses in Chicago). We also present two Contiki OS-based implementations of MERLIN (with local and remote calculations) evaluated on the Tmote Sky wireless embedded platform. + +# Information +links.pdf=/static/public/papers/MERLIN_ANRGTechnicalReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4f5a8494f6c5412ca751e54af18598e30b6497e8 +type=Technical Reports and Preprints +year=2016 +paper_id=820701ae +ss_title=Optimizing Downloads over Random Duration Links in Mobile Networks +ss_authors=[{'authorId': '49871766', 'name': 'A.S. Bhargava'}, {'authorId': '3457954', 'name': 'Spencer Congero'}, {'authorId': '22799485', 'name': 'Timothy Ferrell'}, {'authorId': '2115326300', 'name': 'Alex Jones'}, {'authorId': '46214199', 'name': 'L. Linsky'}, {'authorId': '3083814', 'name': 'Jayashree Mohan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Computer Communications and Networks +ss_year=2016 +ss_abstract=Short range vehicle to vehicle and device to device communications are of growing interest due to their utility for vehicular safety and infotainment applications as well as for improving the capacity of cellular networks. These mobile systems are characterized by ephemeral, stochastic links. We consider a fundamental problem in this domain -- how to maximize the amount of useful content downloaded by a client from a server over an encounter that lasts a random amount of time. We assume that the distribution of link duration is known or estimated \emph{a priori} based on historical as well as real-time measurements. We present MERLIN (Maximum Expected download over Random LINks), a single-phase file request protocol that is provably optimal. We evaluate MERLIN comprehensively via simulations based on both ideal link duration distributions as well as empirical distributions obtained from real vehicular mobility traces (from Taxis in Shanghai and Buses in Chicago). We also present two Contiki OS-based implementations of MERLIN (with local and remote calculations) evaluated on the Tmote Sky wireless embedded platform. +ss_paper_id=4f5a8494f6c5412ca751e54af18598e30b6497e8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_reliability_through_timeslotted_channel_hopping_and_floodingbased_routing.txt b/database/original_documents/publications_text/2016_reliability_through_timeslotted_channel_hopping_and_floodingbased_routing.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e3069b5d2869d9737d46e2328f786670e605a82 --- /dev/null +++ b/database/original_documents/publications_text/2016_reliability_through_timeslotted_channel_hopping_and_floodingbased_routing.txt @@ -0,0 +1,18 @@ +# Publication +title=Reliability through Timeslotted Channel Hopping and Flooding-based Routing +venue=ACM International Conference on Embedded Wireless Systems and Networks (Dependability Competition), EWSN 2016. +authors=['Pedro Henrique Gomes', 'Thomas Watteyne', 'Pradipta Ghosh', 'Bhaskar Krishnamachari'] +abstract=The recent IEEE802.15.4e-2012 standard proposes medium access variants for improving the efficiency of lowpower and lossy networks. The Timeslotted Channel Hopping (TSCH) mode enables wireless networks that can support applications with high-reliability requirements, such as smart factories, process automation and smart buildings. In TSCH-based networks, time is sliced into time slots and channel hopping is used to combat external interference and multi-path fading. The IETF 6TiSCH working group currently standardizes different scheduling approaches and what routing protocol to use. OpenWSN is the de-facto opensource implementation of TSCH/6TiSCH. We propose to participate in the EWSN Dependability Competition by utilizing a modified version of OpenWSN in which we employ controlled flooding as a routing protocol. We believe the channel hopping nature of IEEE802.15.4e TSCH will yield high reliability, and controlled flooding will yield low latency and resilience to topological changes. Lessons learnt from participating in the competition will be fed back to the IETF 6TiSCH standardization group; the code developed will be contributed to the OpenWSN opensource project (www.openwsn.org). + +# Information +links.pdf=/static/public/papers/Gomes_EWSN_2016.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0cf520fd8b1aa2b50b8bf98bb15dbf5ccf6460d7 +type=Conference Papers +year=2016 +paper_id=a83bbe7d +ss_title=Competition: Reliability through Timeslotted Channel Hopping and Flooding-based Routing +ss_authors=[{'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '1686537', 'name': 'T. Watteyne'}, {'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=European Conference/Workshop on Wireless Sensor Networks +ss_year=2016 +ss_abstract=The recent IEEE802.15.4e-2012 standard proposes medium access variants for improving the efficiency of lowpower and lossy networks. The Timeslotted Channel Hopping (TSCH) mode enables wireless networks that can support applications with high-reliability requirements, such as smart factories, process automation and smart buildings. In TSCH-based networks, time is sliced into time slots and channel hopping is used to combat external interference and multi-path fading. The IETF 6TiSCH working group currently standardizes different scheduling approaches and what routing protocol to use. OpenWSN is the de-facto opensource implementation of TSCH/6TiSCH. We propose to participate in the EWSN Dependability Competition by utilizing a modified version of OpenWSN in which we employ controlled flooding as a routing protocol. We believe the channel hopping nature of IEEE802.15.4e TSCH will yield high reliability, and controlled flooding will yield low latency and resilience to topological changes. Lessons learnt from participating in the competition will be fed back to the IETF 6TiSCH standardization group; the code developed will be contributed to the OpenWSN opensource project (www.openwsn.org). +ss_paper_id=0cf520fd8b1aa2b50b8bf98bb15dbf5ccf6460d7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_restless_poachers_handling_explorationexploitation_tradeoffs_in_security_domains.txt b/database/original_documents/publications_text/2016_restless_poachers_handling_explorationexploitation_tradeoffs_in_security_domains.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a58a727db2563399412534dc7ec50ee2dce6eec --- /dev/null +++ b/database/original_documents/publications_text/2016_restless_poachers_handling_explorationexploitation_tradeoffs_in_security_domains.txt @@ -0,0 +1,18 @@ +# Publication +title=Restless Poachers: Handling Exploration-Exploitation Tradeoffs in Security Domains +venue=Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016). +authors=['Yundi Qian', 'Chao Zhang', 'Bhaskar Krishnamachari', 'Milind Tambe'] +abstract=The success of Stackelberg Security Games (SSGs) in counter-terrorism domains has inspired researchers' interest in applying game-theoretic models to other security domains with frequent interactions between defenders and attackers, e.g., wildlife protection. Previous research optimizes defenders' strategies by modeling this problem as a repeated Stackelberg game, capturing the special property in this domain --- frequent interactions between defenders and attackers. However, this research fails to handle exploration-exploitation tradeoff in this domain caused by the fact that defenders only have knowledge of attack activities at targets they protect. This paper addresses this shortcoming and provides the following contributions: (i) We formulate the problem as a restless multi-armed bandit (RMAB) model to address this challenge. (ii) To use Whittle index policy to plan for patrol strategies in the RMAB, we provide two sufficient conditions for indexability and an algorithm to numerically evaluate indexability. (iii) Given indexability, we propose a binary search based algorithm to find Whittle index policy efficiently. + +# Information +links.pdf=/static/public/papers/aamas2016_EvE_Yundi.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9a179cf2333cc09da85e9c723d91ece72ccb7bf5 +type=Conference Papers +year=2016 +paper_id=56ea4bef +ss_title=Restless Poachers: Handling Exploration-Exploitation Tradeoffs in Security Domains +ss_authors=[{'authorId': '47037252', 'name': 'Yundi Qian'}, {'authorId': None, 'name': 'Chao Zhang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143736701', 'name': 'Milind Tambe'}] +ss_venue=Adaptive Agents and Multi-Agent Systems +ss_year=2016 +ss_abstract=The success of Stackelberg Security Games (SSGs) in counter-terrorism domains has inspired researchers' interest in applying game-theoretic models to other security domains with frequent interactions between defenders and attackers, e.g., wildlife protection. Previous research optimizes defenders' strategies by modeling this problem as a repeated Stackelberg game, capturing the special property in this domain --- frequent interactions between defenders and attackers. However, this research fails to handle exploration-exploitation tradeoff in this domain caused by the fact that defenders only have knowledge of attack activities at targets they protect. This paper addresses this shortcoming and provides the following contributions: (i) We formulate the problem as a restless multi-armed bandit (RMAB) model to address this challenge. (ii) To use Whittle index policy to plan for patrol strategies in the RMAB, we provide two sufficient conditions for indexability and an algorithm to numerically evaluate indexability. (iii) Given indexability, we propose a binary search based algorithm to find Whittle index policy efficiently. +ss_paper_id=9a179cf2333cc09da85e9c723d91ece72ccb7bf5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_robotic_message_ferrying_for_wireless_networks_using_coarsegrained_backpressure_control.txt b/database/original_documents/publications_text/2016_robotic_message_ferrying_for_wireless_networks_using_coarsegrained_backpressure_control.txt new file mode 100644 index 0000000000000000000000000000000000000000..09fe36dd23edbf7697a70555971ebbdd011ae6b0 --- /dev/null +++ b/database/original_documents/publications_text/2016_robotic_message_ferrying_for_wireless_networks_using_coarsegrained_backpressure_control.txt @@ -0,0 +1,18 @@ +# Publication +title=Robotic Message Ferrying for Wireless Networks Using Coarse-Grained Backpressure Control +venue=IEEE Transactions on Mobile Computing, 2016. +authors=['Shangxing Wang', 'Andrea Gasparri', 'Bhaskar Krishnamachari'] +abstract=We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a homogeneous network. + +# Information +links.pdf=/static/public/papers/CBMF_Trans_Final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/782f5c311c6509cd9c27e2a86115d3ca7f6157ec +type=Journal Papers +year=2016 +paper_id=b62b8d51 +ss_title=Robotic Message Ferrying for Wireless Networks Using Coarse-Grained Backpressure Control +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '1685694', 'name': 'A. Gasparri'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2013 +ss_abstract=We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a homogeneous network. +ss_paper_id=782f5c311c6509cd9c27e2a86115d3ca7f6157ec \ No newline at end of file diff --git a/database/original_documents/publications_text/2016_stochastic_contextual_bandits_with_known_reward_functions.txt b/database/original_documents/publications_text/2016_stochastic_contextual_bandits_with_known_reward_functions.txt new file mode 100644 index 0000000000000000000000000000000000000000..b7a6404aedfbbc5ababb27b05a6e2cd5128febff --- /dev/null +++ b/database/original_documents/publications_text/2016_stochastic_contextual_bandits_with_known_reward_functions.txt @@ -0,0 +1,18 @@ +# Publication +title=Stochastic Contextual Bandits with Known Reward Functions +venue=USC ANRG Technical Report, ANRG-2016-02. +authors=['Pranav Sakulkar', 'Bhaskar Krishnamachari'] +abstract=Many sequential decision-making problems in communication networks can be modeled as contextual bandit problems, which are natural extensions of the well-known multi-armed bandit problem. In contextual bandit problems, at each time, an agent observes some side information or context, pulls one arm and receives the reward for that arm. We consider a stochastic formulation where the context-reward tuples are independently drawn from an unknown distribution in each trial. Motivated by networking applications, we analyze a setting where the reward is a known non-linear function of the context and the chosen arm's current state. We first consider the case of discrete and finite context-spaces and propose DCB($\epsilon$), an algorithm that we prove, through a careful analysis, yields regret (cumulative reward gap compared to a distribution-aware genie) scaling logarithmically in time and linearly in the number of arms that are not optimal for any context, improving over existing algorithms where the regret scales linearly in the total number of arms. We then study continuous context-spaces with Lipschitz reward functions and propose CCB($\epsilon, \delta$), an algorithm that uses DCB($\epsilon$) as a subroutine. CCB($\epsilon, \delta$) reveals a novel regret-storage trade-off that is parametrized by $\delta$. Tuning $\delta$ to the time horizon allows us to obtain sub-linear regret bounds, while requiring sub-linear storage. By exploiting joint learning for all contexts we get regret bounds for CCB($\epsilon, \delta$) that are unachievable by any existing contextual bandit algorithm for continuous context-spaces. We also show similar performance bounds for the unknown horizon case. + +# Information +links.pdf=/static/public/papers/DCB_ANRG_TechReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/929e227bc772defa2ee70b6ec3522b97a205aa34 +type=Technical Reports and Preprints +year=2016 +paper_id=9ce227f3 +ss_title=Stochastic Contextual Bandits with Known Reward Functions +ss_authors=[{'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=arXiv.org +ss_year=2016 +ss_abstract=Many sequential decision-making problems in communication networks can be modeled as contextual bandit problems, which are natural extensions of the well-known multi-armed bandit problem. In contextual bandit problems, at each time, an agent observes some side information or context, pulls one arm and receives the reward for that arm. We consider a stochastic formulation where the context-reward tuples are independently drawn from an unknown distribution in each trial. Motivated by networking applications, we analyze a setting where the reward is a known non-linear function of the context and the chosen arm's current state. We first consider the case of discrete and finite context-spaces and propose DCB($\epsilon$), an algorithm that we prove, through a careful analysis, yields regret (cumulative reward gap compared to a distribution-aware genie) scaling logarithmically in time and linearly in the number of arms that are not optimal for any context, improving over existing algorithms where the regret scales linearly in the total number of arms. We then study continuous context-spaces with Lipschitz reward functions and propose CCB($\epsilon, \delta$), an algorithm that uses DCB($\epsilon$) as a subroutine. CCB($\epsilon, \delta$) reveals a novel regret-storage trade-off that is parametrized by $\delta$. Tuning $\delta$ to the time horizon allows us to obtain sub-linear regret bounds, while requiring sub-linear storage. By exploiting joint learning for all contexts we get regret bounds for CCB($\epsilon, \delta$) that are unachievable by any existing contextual bandit algorithm for continuous context-spaces. We also show similar performance bounds for the unknown horizon case. +ss_paper_id=929e227bc772defa2ee70b6ec3522b97a205aa34 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_a_reinforcement_learning_approach_to_optimize_downloads_over_mobile_networks.txt b/database/original_documents/publications_text/2017_a_reinforcement_learning_approach_to_optimize_downloads_over_mobile_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..bbcc2e6e1f946271935ddae52aa393bb482b1264 --- /dev/null +++ b/database/original_documents/publications_text/2017_a_reinforcement_learning_approach_to_optimize_downloads_over_mobile_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=A Reinforcement Learning Approach to Optimize Downloads Over Mobile Networks +venue=International Conference on Communication Systems and Networks (COMSNETS), 2017. +authors=['Jayashree Mohan', 'Angad Vittal', 'K Chandrasekaran', 'Bhaskar Krishnamachari'] +abstract=Dedicated Short Range Communication is attracting a lot of interest these days due to its utility in vehicular safety applications, intelligent transportation system and infotainment applications. Such vehicular networks are characterized by the highly dynamic changes in topology, no significant power constraints and ephemeral links. Considering an interaction between the client and server nodes that last for a random duration of time, an important question is to maximize the amount of useful content downloaded by the client, either in a single request phase, or iteratively in multiple phases. The aim of this work is to propose and investigate a multiphase request model using Markov Decision Process and compare its efficiency against a single phase version. We show that a multiphase request protocol performs better than single phase protocol. + +# Information +links.pdf=/static/public/papers/comsnets_2017.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5844fd1181be8cec26d320c8386d07eecd5bef6c +type=Conference Papers +year=2017 +paper_id=5bbe3098 +ss_title=A reinforcement learning approach to optimize downloads over mobile networks +ss_authors=[{'authorId': '3083814', 'name': 'Jayashree Mohan'}, {'authorId': '19318342', 'name': 'Angad Vittal'}, {'authorId': '2653146', 'name': 'K. Chandrasekaran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Communication Systems and Networks +ss_year=2017 +ss_abstract=Dedicated Short Range Communication is attracting a lot of interest these days due to its utility in vehicular safety applications, intelligent transportation system and infotainment applications. Such vehicular networks are characterized by the highly dynamic changes in topology, no significant power constraints and ephemeral links. Considering an interaction between the client and server nodes that last for a random duration of time, an important question is to maximize the amount of useful content downloaded by the client, either in a single request phase, or iteratively in multiple phases. The aim of this work is to propose and investigate a multiphase request model using Markov Decision Process and compare its efficiency against a single phase version. We show that a multiphase request protocol performs better than single phase protocol. +ss_paper_id=5844fd1181be8cec26d320c8386d07eecd5bef6c \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_a_study_of_contact_durations_for_vehicle_to_vehicle_communications.txt b/database/original_documents/publications_text/2017_a_study_of_contact_durations_for_vehicle_to_vehicle_communications.txt new file mode 100644 index 0000000000000000000000000000000000000000..044d363dd05815030a0e04b945d89a4e50383f7e --- /dev/null +++ b/database/original_documents/publications_text/2017_a_study_of_contact_durations_for_vehicle_to_vehicle_communications.txt @@ -0,0 +1,18 @@ +# Publication +title=A Study of Contact Durations for Vehicle to Vehicle Communications +venue=International Symposium on Sensor Networks, Systems and Security, 2017 +authors=['Quynh Nguyen', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/ContactDuration_ISSNSS.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/758f1f4e8ac62e9c7ca0e3ee7ea4efca05e7c48c +type=Conference Papers +year=2017 +paper_id=be65965a +ss_title=A Study of Contact Durations for Vehicle to Vehicle Communications +ss_authors=[{'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue= +ss_year=2017 +ss_abstract=None +ss_paper_id=758f1f4e8ac62e9c7ca0e3ee7ea4efca05e7c48c \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_a_unifying_bayesian_optimization_framework_for_radio_frequency_localization.txt b/database/original_documents/publications_text/2017_a_unifying_bayesian_optimization_framework_for_radio_frequency_localization.txt new file mode 100644 index 0000000000000000000000000000000000000000..3405bf02260927cf8735b3a185667ff9b6979fc2 --- /dev/null +++ b/database/original_documents/publications_text/2017_a_unifying_bayesian_optimization_framework_for_radio_frequency_localization.txt @@ -0,0 +1,18 @@ +# Publication +title=“A Unifying Bayesian Optimization Framework for Radio Frequency Localization” +venue=in IEEE Transactions on Cognitive Communications and Networking. +authors=['Nachikethas A Jagadeesan', 'Bhaskar Krishnamachari'] +abstract=We consider the problem of estimating an RF-device’s location based on observations, such as received signal strength, from a set of transmitters with known locations. We survey the literature on this problem, showing that previous authors have considered implicitly or explicitly various metrics. We present a Bayesian optimization framework that unifies these works and shows how to optimize the location estimation with respect to a given metric. We demonstrate how the framework can incorporate a general class of algorithms, including both model-based methods and data-driven algorithms such fingerprinting. This is illustrated by re-deriving the most popular algorithms within this framework. Furthermore, we propose using the error-CDF as a unified way of comparing algorithms based on two methods: 1) stochastic dominance and 2) an upper bound on error-CDFs. We prove that an algorithm that optimizes any distance-based cost function is not strictly stochastically dominated by any other algorithm. This suggests that in lieu of the search for a universally best localization algorithm, the community should focus on finding the best algorithm for a given well-defined objective. + +# Information +links.pdf=/static/public/papers/Nachikethas_Localization_TCCN_CR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/19a1be87ab8b4befc22b1feb8da7b2d1f59eba49 +type=Journal Papers +year=2017 +paper_id=001031e0 +ss_title=A Unifying Bayesian Optimization Framework for Radio Frequency Localization +ss_authors=[{'authorId': '37127446', 'name': 'Nachikethas A. Jagadeesan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Cognitive Communications and Networking +ss_year=2017 +ss_abstract=We consider the problem of estimating an RF-device’s location based on observations, such as received signal strength, from a set of transmitters with known locations. We survey the literature on this problem, showing that previous authors have considered implicitly or explicitly various metrics. We present a Bayesian optimization framework that unifies these works and shows how to optimize the location estimation with respect to a given metric. We demonstrate how the framework can incorporate a general class of algorithms, including both model-based methods and data-driven algorithms such fingerprinting. This is illustrated by re-deriving the most popular algorithms within this framework. Furthermore, we propose using the error-CDF as a unified way of comparing algorithms based on two methods: 1) stochastic dominance and 2) an upper bound on error-CDFs. We prove that an algorithm that optimizes any distance-based cost function is not strictly stochastically dominated by any other algorithm. This suggests that in lieu of the search for a universally best localization algorithm, the community should focus on finding the best algorithm for a given well-defined objective. +ss_paper_id=19a1be87ab8b4befc22b1feb8da7b2d1f59eba49 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_a_waitandsee_twothreshold_optimal_sleeping_policy_for_a_single_server_with_bursty_traffic.txt b/database/original_documents/publications_text/2017_a_waitandsee_twothreshold_optimal_sleeping_policy_for_a_single_server_with_bursty_traffic.txt new file mode 100644 index 0000000000000000000000000000000000000000..f98248d26ca6c7579aec31c7c470ad194bc05e47 --- /dev/null +++ b/database/original_documents/publications_text/2017_a_waitandsee_twothreshold_optimal_sleeping_policy_for_a_single_server_with_bursty_traffic.txt @@ -0,0 +1,18 @@ +# Publication +title=“A Wait-and-See Two-Threshold Optimal Sleeping Policy for a Single Server With Bursty Traffic” +venue=in IEEE Transactions on Green Communications and Networking, vol. 1, no. 4, pp. 528-540, Dec. 2017. +authors=['Bingjie Leng', 'Xueying Guo', 'Xi Zheng', 'Bhaskar Krishnamachari', 'Zhisheng Niu'] +abstract=Making idle servers sleep is considered to be a key approach to reducing energy consumption of various information and communication systems. Optimal sleeping policies for a single server have been derived only for non-bursty traffic in prior work. In this paper, for the first time, we study the optimal sleeping operation for a single server with bursty traffic to answer the question of whether server sleeping can bring extra benefit with bursty traffic or not. Key factors including switchover energy consumption as well as delay performance are considered. We formulate the problem as a partially observable Markov decision process, and show that it can be solved by observing time elapsed since the last arrival. The optimal sleeping policy is shown to be a two-threshold policy with a wait-and-see feature, i.e., the server would wait a period of time to see if there are any extra arrivals before switching modes. Simulation results show that with the optimal sleeping mechanism, traffic burstiness can enhance system performance on energy cost and delay penalty. + +# Information +links.pdf=/static/public/papers/wait-two-threshold_final_double.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4a11ae351054163ac7189a54cb444418b17cd454 +type=Journal Papers +year=2017 +paper_id=b360a20b +ss_title=A Wait-and-See Two-Threshold Optimal Sleeping Policy for a Single Server With Bursty Traffic +ss_authors=[{'authorId': '47817446', 'name': 'Bingjie Leng'}, {'authorId': '2589602', 'name': 'Xueying Guo'}, {'authorId': '2110068744', 'name': 'Xi Zheng'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Transactions on Green Communications and Networking +ss_year=2017 +ss_abstract=Making idle servers sleep is considered to be a key approach to reducing energy consumption of various information and communication systems. Optimal sleeping policies for a single server have been derived only for non-bursty traffic in prior work. In this paper, for the first time, we study the optimal sleeping operation for a single server with bursty traffic to answer the question of whether server sleeping can bring extra benefit with bursty traffic or not. Key factors including switchover energy consumption as well as delay performance are considered. We formulate the problem as a partially observable Markov decision process, and show that it can be solved by observing time elapsed since the last arrival. The optimal sleeping policy is shown to be a two-threshold policy with a wait-and-see feature, i.e., the server would wait a period of time to see if there are any extra arrivals before switching modes. Simulation results show that with the optimal sleeping mechanism, traffic burstiness can enhance system performance on energy cost and delay penalty. +ss_paper_id=4a11ae351054163ac7189a54cb444418b17cd454 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_an_adaptive_approach_for_uavbased_pesticide_spraying_in_dynamic_environments.txt b/database/original_documents/publications_text/2017_an_adaptive_approach_for_uavbased_pesticide_spraying_in_dynamic_environments.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2f4083aef701910ded25756af07dacfd7f60006 --- /dev/null +++ b/database/original_documents/publications_text/2017_an_adaptive_approach_for_uavbased_pesticide_spraying_in_dynamic_environments.txt @@ -0,0 +1,18 @@ +# Publication +title=An adaptive approach for UAV-based pesticide spraying in dynamic environments +venue=in Computers and Electronics in Agriculture, 2017. +authors=['Bruno Faical', 'Heitor Freitas', 'Pedro H Gomes', 'Leandro Y Mano', 'Gustavo Pessin', 'André CPLF de Carvalho', 'Bhaskar Krishnamachari', 'Jó Ueyama'] +abstract=None + +# Information +links.pdf=/static/public/papers/Faical_CEA.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1e615474ecb5e13887373ef44f66c905c4a2b1f0 +type=Journal Papers +year=2017 +paper_id=b0fe1ac7 +ss_title=An adaptive approach for UAV-based pesticide spraying in dynamic environments +ss_authors=[{'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '3052598', 'name': 'Heitor Freitas'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '3351236', 'name': 'L. Mano'}, {'authorId': '2584178', 'name': 'G. Pessin'}, {'authorId': '143618972', 'name': 'A. Carvalho'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2190289', 'name': 'J. Ueyama'}] +ss_venue=Computers and Electronics in Agriculture +ss_year=2017 +ss_abstract=None +ss_paper_id=1e615474ecb5e13887373ef44f66c905c4a2b1f0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_arrest_a_rssi_based_approach_for_mobile_sensing_and_tracking_of_a_moving_object.txt b/database/original_documents/publications_text/2017_arrest_a_rssi_based_approach_for_mobile_sensing_and_tracking_of_a_moving_object.txt new file mode 100644 index 0000000000000000000000000000000000000000..79de1b0ed57eb7317a7f66f45aceca6af8042508 --- /dev/null +++ b/database/original_documents/publications_text/2017_arrest_a_rssi_based_approach_for_mobile_sensing_and_tracking_of_a_moving_object.txt @@ -0,0 +1,18 @@ +# Publication +title=ARREST: A RSSI Based Approach for Mobile Sensing and Tracking of a Moving Object +venue=IEEE International Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicles (WiUAV) in conjuction with IEEE GLOBECOM 2017 +authors=['Pradipta Ghosh', 'Jason A Tran', 'Bhaskar Krishnamachari'] +abstract=We present Autonomous Rssi based RElative poSitioning and Tracking (ARREST), a new robotic sensing system for tracking and following a moving, RF-emitting object, which we refer to as the Leader, solely based on signal strength information. Our proposed tracking agent, which we refer to as the TrackBot, uses a single rotating, off-the-shelf, directional antenna, novel angle and relative speed estimation algorithms, and Kalman filtering to continually estimate the relative position of the Leader with decimeter level accuracy (which is comparable to a state-of-the-art multiple access point based RF-localization system) and the relative speed of the Leader with accuracy on the order of 1 m/s. The TrackBot feeds the relative position and speed estimates into a Linear Quadratic Gaussian (LQG) controller to generate a set of control outputs to control the orientation and the movement of the TrackBot. We perform an extensive set of real world experiments with a full-fledged prototype to demonstrate that the TrackBot is able to stay within 5m of the Leader with: (1) more than 99% probability in line of sight scenarios, and (2) more than 75% probability in no line of sight scenarios, when it moves 1.8X faster than the Leader. + +# Information +links.pdf=/static/public/papers/arrest_wiuav.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a992126ee0de147f8b3bdda4b0723e85af339e32 +type=Conference Papers +year=2017 +paper_id=b04f0251 +ss_title=ARREST: A RSSI Based Approach for Mobile Sensing and Tracking of a Moving Object +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2017 IEEE Globecom Workshops (GC Wkshps) +ss_year=2017 +ss_abstract=We present Autonomous Rssi based RElative poSitioning and Tracking (ARREST), a new robotic sensing system for tracking and following a moving, RF-emitting object, which we refer to as the Leader, solely based on signal strength information. Our proposed tracking agent, which we refer to as the TrackBot, uses a single rotating, off-the-shelf, directional antenna, novel angle and relative speed estimation algorithms, and Kalman filtering to continually estimate the relative position of the Leader with decimeter level accuracy (which is comparable to a state-of-the-art multiple access point based RF-localization system) and the relative speed of the Leader with accuracy on the order of 1 m/s. The TrackBot feeds the relative position and speed estimates into a Linear Quadratic Gaussian (LQG) controller to generate a set of control outputs to control the orientation and the movement of the TrackBot. We perform an extensive set of real world experiments with a full-fledged prototype to demonstrate that the TrackBot is able to stay within 5m of the Leader with: (1) more than 99% probability in line of sight scenarios, and (2) more than 75% probability in no line of sight scenarios, when it moves 1.8X faster than the Leader. +ss_paper_id=a992126ee0de147f8b3bdda4b0723e85af339e32 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_computing_interencounter_time_distributions_for_multiple_random_walkers_on_graphs.txt b/database/original_documents/publications_text/2017_computing_interencounter_time_distributions_for_multiple_random_walkers_on_graphs.txt new file mode 100644 index 0000000000000000000000000000000000000000..0386e1d0312563036b101d2bb76d1b7eeb65cfa3 --- /dev/null +++ b/database/original_documents/publications_text/2017_computing_interencounter_time_distributions_for_multiple_random_walkers_on_graphs.txt @@ -0,0 +1,18 @@ +# Publication +title=Computing Inter-Encounter Time Distributions for Multiple Random Walkers on Graphs +venue=Information Theory and Applications Workshop, 2017 +authors=['Quynh Nguyen', 'Bhaskar Krishnamachari'] +abstract=For intermittently connected mobile networks such as sparsely-deployed vehicular networks, it is of great interest to characterize the distribution of encounter times. We consider a very general mobility model in which each device is assumed to be moving through a given graph following a general random walk with arbitrary transition probabilities. We consider first the pairwise inter-encounter time distribution for a pair of random walkers and present a recursive polynomial-time computation that yields the exact solution. We then consider the individual-to-any inter-encounter time (i.e., the time between contacts of a particular walker with any of the other walkers in the population). For this harder problem, we give an approximate computation that is also polynomial time. We validate the accuracy of the presented solutions using numerical simulations. We discuss how the model can be generalized to consider multiple populations. + +# Information +links.pdf=/static/public/papers/EncounterDistribution_ITA2017.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9e22d3433ffaeff8da31781707fc1ee84ad18a85 +type=Conference Papers +year=2017 +paper_id=8a2e2e48 +ss_title=Computing inter-encounter time distributions for multiple random walkers on graphs +ss_authors=[{'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Information Theory and Applications Workshop +ss_year=2017 +ss_abstract=For intermittently connected mobile networks such as sparsely-deployed vehicular networks, it is of great interest to characterize the distribution of encounter times. We consider a very general mobility model in which each device is assumed to be moving through a given graph following a general random walk with arbitrary transition probabilities. We consider first the pairwise inter-encounter time distribution for a pair of random walkers and present a recursive polynomial-time computation that yields the exact solution. We then consider the individual-to-any inter-encounter time (i.e., the time between contacts of a particular walker with any of the other walkers in the population). For this harder problem, we give an approximate computation that is also polynomial time. We validate the accuracy of the presented solutions using numerical simulations. We discuss how the model can be generalized to consider multiple populations. +ss_paper_id=9e22d3433ffaeff8da31781707fc1ee84ad18a85 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_deep_reinforcement_learning_for_dynamic_multichannel_access.txt b/database/original_documents/publications_text/2017_deep_reinforcement_learning_for_dynamic_multichannel_access.txt new file mode 100644 index 0000000000000000000000000000000000000000..066c33fd7788d44ff4e1ab7850cdd158e4a1210a --- /dev/null +++ b/database/original_documents/publications_text/2017_deep_reinforcement_learning_for_dynamic_multichannel_access.txt @@ -0,0 +1,18 @@ +# Publication +title=Deep Reinforcement Learning for Dynamic Multichannel Access +venue=International Conference on Computing, Networking and Communications (ICNC), 2017 (Invited Paper). +authors=['Shangxing Wang', 'Hanpeng Liu', 'Pedro Henrique Gomes', 'Bhaskar Krishnamachari'] +abstract=We consider a dynamic multichannel access problem, where multiple correlated channels follow an unknown joint Markov model and users select the channel to transmit data. The objective is to find a policy that maximizes the expected long-term number of successful transmissions. The problem is formulated as a partially observable Markov decision process with unknown system dynamics. To overcome the challenges of unknown dynamics and prohibitive computation, we apply the concept of reinforcement learning and implement a deep Q-network (DQN). We first study the optimal policy for fixed-pattern channel switching with known system dynamics and show through simulations that DQN can achieve the same optimal performance without knowing the system statistics. We then compare the performance of DQN with a Myopic policy and a Whittle Index-based heuristic through both more general simulations as well as real data trace and show that DQN achieves near-optimal performance in more complex situations. Finally, we propose an adaptive DQN approach with the capability to adapt its learning in time-varying scenarios. + +# Information +links.pdf=/static/public/papers/DQNChannelAccess_ICNC2017_FI.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b4c398f234e946d599b492d8a4bba4eb8376122 +type=Conference Papers +year=2017 +paper_id=25085d47 +ss_title=Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '29901869', 'name': 'Hanpeng Liu'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Cognitive Communications and Networking +ss_year=2018 +ss_abstract=We consider a dynamic multichannel access problem, where multiple correlated channels follow an unknown joint Markov model and users select the channel to transmit data. The objective is to find a policy that maximizes the expected long-term number of successful transmissions. The problem is formulated as a partially observable Markov decision process with unknown system dynamics. To overcome the challenges of unknown dynamics and prohibitive computation, we apply the concept of reinforcement learning and implement a deep Q-network (DQN). We first study the optimal policy for fixed-pattern channel switching with known system dynamics and show through simulations that DQN can achieve the same optimal performance without knowing the system statistics. We then compare the performance of DQN with a Myopic policy and a Whittle Index-based heuristic through both more general simulations as well as real data trace and show that DQN achieves near-optimal performance in more complex situations. Finally, we propose an adaptive DQN approach with the capability to adapt its learning in time-varying scenarios. +ss_paper_id=3b4c398f234e946d599b492d8a4bba4eb8376122 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_delay_aware_resource_management_for_grid_energy_savings_in_green_cellular_base_stations_with_hybrid_power_supplies.txt b/database/original_documents/publications_text/2017_delay_aware_resource_management_for_grid_energy_savings_in_green_cellular_base_stations_with_hybrid_power_supplies.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2cd6ac0c6dbd806e0c5e9a9472ca0ae7b086737 --- /dev/null +++ b/database/original_documents/publications_text/2017_delay_aware_resource_management_for_grid_energy_savings_in_green_cellular_base_stations_with_hybrid_power_supplies.txt @@ -0,0 +1,18 @@ +# Publication +title=Delay Aware Resource Management for Grid Energy Savings in Green Cellular Base stations with Hybrid Power Supplies +venue=IEEE Transactions on Communications, 2017. +authors=['Vinay Chamola', 'Biplab Sikdar', 'Bhaskar Krishnamachari'] +abstract=Base stations equipped with resources to harvest renewable energy are not only environment-friendly but can also reduce the grid energy consumed, thus bringing cost savings for the cellular network operators. Intelligent management of the harvested energy can further increase the cost savings. Such management of energy savings has to be carefully coupled with managing the quality of service so as to ensure customer satisfaction. In such a process, there is a trade-off between the energy drawn from grid and the quality of service. Unlike prior studies which mainly focus on network energy minimization, this paper proposes a framework for jointly managing the grid energy savings and the quality of service (in terms of the network latency), which is achieved by downlink power control and user association reconfiguration. We use a real BS deployment scenario from London, U.K., to show the performance of our proposed framework and compare it against existing benchmarks. We show that the proposed framework can lead to around 60% grid energy savings as well as better network latency performance than the traditionally used scheme. + +# Information +links.pdf=/static/public/papers/Chamola_TCOM_2017.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5eeb37c560929322d8ff2a48aa006ffc38eb8e72 +type=Journal Papers +year=2017 +paper_id=e95b45a4 +ss_title=Delay Aware Resource Management for Grid Energy Savings in Green Cellular Base Stations With Hybrid Power Supplies +ss_authors=[{'authorId': '3185174', 'name': 'V. Chamola'}, {'authorId': '48440849', 'name': 'B. Sikdar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Communications +ss_year=2017 +ss_abstract=Base stations equipped with resources to harvest renewable energy are not only environment-friendly but can also reduce the grid energy consumed, thus bringing cost savings for the cellular network operators. Intelligent management of the harvested energy can further increase the cost savings. Such management of energy savings has to be carefully coupled with managing the quality of service so as to ensure customer satisfaction. In such a process, there is a trade-off between the energy drawn from grid and the quality of service. Unlike prior studies which mainly focus on network energy minimization, this paper proposes a framework for jointly managing the grid energy savings and the quality of service (in terms of the network latency), which is achieved by downlink power control and user association reconfiguration. We use a real BS deployment scenario from London, U.K., to show the performance of our proposed framework and compare it against existing benchmarks. We show that the proposed framework can lead to around 60% grid energy savings as well as better network latency performance than the traditionally used scheme. +ss_paper_id=5eeb37c560929322d8ff2a48aa006ffc38eb8e72 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_demo_circe__a_runtime_scheduler_for_dagbased_dispersed_computing.txt b/database/original_documents/publications_text/2017_demo_circe__a_runtime_scheduler_for_dagbased_dispersed_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..257665e9dacb1ecd086c8bd7d1fe6967fb9bbca4 --- /dev/null +++ b/database/original_documents/publications_text/2017_demo_circe__a_runtime_scheduler_for_dagbased_dispersed_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=DEMO: CIRCE – A runtime scheduler for DAG-based dispersed computing +venue=The Second ACM/IEEE Symposium on Edge Computing (SEC) 2017. (poster) +authors=['Aleksandra Knezevic', 'Quynh Nguyen', 'Jason A Tran', 'Pradipta Ghosh', 'Pranav Sakulkar', 'Bhaskar Krishnamachari', 'Murali Annavaram'] +abstract=CIRCE (Centralized Runtime sChedulEr) is a runtime scheduling software tool for dispersed computing. It can deploy pipelined computations described in the form of a Directed Acyclic Graph (DAG) on multiple geographically dispersed compute nodes at the edge and in the cloud. A key innovation in this scheduler compared to prior work is the incorporation of a run-time network profiler which accounts for the network performance among nodes when scheduling. This demo will show an implementation of CIRCE deployed on a testbed of tens of nodes, from both an edge computing testbed and a geographically distributed cloud, with real-time evaluation of the task processing performance of different scheduling algorithms. + +# Information +links.pdf=/static/public/papers/CIRCE__A_runtime_scheduler_for_DAG_based_dispersed_computing.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a385f18449a02e444b16f5bb9867e2a8873c4978 +type=Conference Papers +year=2017 +paper_id=b9aaacc1 +ss_title=CIRCE - a runtime scheduler for DAG-based dispersed computing: demo +ss_authors=[{'authorId': '2073070356', 'name': 'Aleksandra Knezevic'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=IFIP International Information Security Conference +ss_year=2017 +ss_abstract=CIRCE (Centralized Runtime sChedulEr) is a runtime scheduling software tool for dispersed computing. It can deploy pipelined computations described in the form of a Directed Acyclic Graph (DAG) on multiple geographically dispersed compute nodes at the edge and in the cloud. A key innovation in this scheduler compared to prior work is the incorporation of a run-time network profiler which accounts for the network performance among nodes when scheduling. This demo will show an implementation of CIRCE deployed on a testbed of tens of nodes, from both an edge computing testbed and a geographically distributed cloud, with real-time evaluation of the task processing performance of different scheduling algorithms. +ss_paper_id=a385f18449a02e444b16f5bb9867e2a8873c4978 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_empirical_evaluation_of_the_heatdiffusion_collection_protocol_for_wireless_sensor_networks.txt b/database/original_documents/publications_text/2017_empirical_evaluation_of_the_heatdiffusion_collection_protocol_for_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..1541b155fe3f51cfc4b143c5e6bf3d4afac6b4be --- /dev/null +++ b/database/original_documents/publications_text/2017_empirical_evaluation_of_the_heatdiffusion_collection_protocol_for_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=“Empirical evaluation of the heat-diffusion collection protocol for wireless sensor networks” +venue=in Computer Network, Volume 127, 9 November 2017, Pages 217–232 +authors=['Pradipta Ghosh', 'He Ren', 'Reza', 'Banirazi', 'Bhaskar Krishnamachari', 'Edmond Jonckheere'] +abstract=None + +# Information +links.pdf=http://www.sciencedirect.com/science/article/pii/S1389128617303250 +links.semantic_scholar=https://www.semanticscholar.org/paper/a27b386639b178a10a3740e6deeb469a23d46b62 +type=Journal Papers +year=2017 +paper_id=e0be5b4c +ss_title=Empirical evaluation of the heat-diffusion collection protocol for wireless sensor networks +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2114294148', 'name': 'He Ren'}, {'authorId': '2799433', 'name': 'Reza Banirazi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}] +ss_venue=Comput. Networks +ss_year=2016 +ss_abstract=None +ss_paper_id=a27b386639b178a10a3740e6deeb469a23d46b62 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_greedy__pipeline__scheduling__for__online__dispersed__computing.txt b/database/original_documents/publications_text/2017_greedy__pipeline__scheduling__for__online__dispersed__computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..45800af074c3f99093269a7f236b77724cfc29d7 --- /dev/null +++ b/database/original_documents/publications_text/2017_greedy__pipeline__scheduling__for__online__dispersed__computing.txt @@ -0,0 +1,18 @@ +# Publication +title=Greedy​ ​ Pipeline​ ​ Scheduling​ ​ for​ ​ Online​ ​ Dispersed​ ​ Computing +venue=USC ANRG Technical Report, ANRG-2017-06. +authors=['Diyi Hu', 'Pranav Sakulkar', 'Bhaskar Krishnamachari'] +abstract=Invited Talks.- External Memory Data Structures.- Some Algorithmic Problems in Large Networks.- Exact and Approximate Distances in Graphs - A Survey.- Caching and Prefetching.- Strongly Competitive Algorithms for Caching with Pipelined Prefetching.- Duality between Prefetching and Queued Writing with Parallel Disks.- Online Algorithms.- Online Bin Coloring.- A General Decomposition Theorem for the k-Server Problem.- Buying a Constant Competitive Ratio for Paging.- Data Structures I.- Simple Minimal Perfect Hashing in Less Space.- Cuckoo Hashing.- Optimization and Approximation.- Coupling Variable Fixing Algorithms for the Automatic Recording Problem.- Approximation Algorithms for Scheduling Malleable Tasks under Precedence Constraints.- On the Approximability of the Minimum Test Collection Problem.- Sequences.- Finding Approximate Repetitions under Hamming Distance.- SNPs Problems, Complexity, and Algorithms.- Scheduling.- A FPTAS for Approximating the Unrelated Parallel Machines Scheduling Problem with Costs.- Grouping Techniques for Scheduling Problems: Simpler and Faster.- A 2-Approximation Algorithm for the Multi-vehicle Scheduling Problem on a Path with Release and Handling Times.- Shortest Paths.- A Simple Shortest Path Algorithm with Linear Average Time.- A Heuristic for Dijkstra's Algorithm with Many Targets and Its Use in Weighted Matching Algorithms.- Geometry I.- A Separation Bound for Real Algebraic Expressions.- Property Testing with Geometric Queries.- Smallest Color-Spanning Objects.- Data Structures II.- Explicit Deterministic Constructions for Membership in the Bitprobe Model.- Lossy Dictionaries.- Geometry II.- Splitting a Delaunay Triangulation in Linear Time.- A Fast Algorithm for Approximating the Detour of a Polygonal Chain.- An Approximation Algorithm for Minimum Convex Cover with Logarithmic Performance Guarantee.- Distributed Algorithms.- Distributed O(? log n)-Edge-Coloring Algorithm.- Modeling Replica Placement in a Distributed File System: Narrowing the Gap between Analysis and Simulation.- Graph Algorithms.- Computing Cycle Covers without Short Cycles.- A Polynomial Time Algorithm for the Cutwidth of Bounded Degree Graphs with Small Treewidth.- Lower Bounds and Exact Algorithms for the Graph Partitioning Problem Using Multicommodity Flows.- Pricing.- Fast Pricing of European Asian Options with Provable Accuracy: Single-Stock and Basket Options.- Competitive Auctions for Multiple Digital Goods.- Broadcasting and Multicasting.- Algorithms for Efficient Filtering in Content-Based Multicast.- Approximation Algorithms for Minimum-Time Broadcast under the Vertex-Disjoint Paths Mode.- Round Robin Is Optimal for Fault-Tolerant Broadcasting on Wireless Networks.- Graph Labeling and Graph Drawing.- Online and Offline Distance Constrained Labeling of Disk Graphs.- Approximate Distance Labeling Schemes.- On the Parameterized Complexity of Layered Graph Drawing.- Graphs.- A General Model of Undirected Web Graphs.- Packing Cycles and Cuts in Undirected Graphs.- Greedy Algorithms for Minimisation Problems in Random Regular Graphs. + +# Information +links.pdf=/static/public/papers/GreedyPipelineSchedulingForOnlineDispersedComputing_ANRGTechReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f55902ea17f3b383144cc959def7f52067abaea7 +type=Technical Reports and Preprints +year=2017 +paper_id=0b32e5d0 +ss_title=Algorithms - ESA 2001 : 9th Annual European Symposium, Århus, Denmark, August 28-31, 2001 : proceedings +ss_authors=[{'authorId': '1732130', 'name': 'F. Heide'}] +ss_venue= +ss_year=2001 +ss_abstract=Invited Talks.- External Memory Data Structures.- Some Algorithmic Problems in Large Networks.- Exact and Approximate Distances in Graphs - A Survey.- Caching and Prefetching.- Strongly Competitive Algorithms for Caching with Pipelined Prefetching.- Duality between Prefetching and Queued Writing with Parallel Disks.- Online Algorithms.- Online Bin Coloring.- A General Decomposition Theorem for the k-Server Problem.- Buying a Constant Competitive Ratio for Paging.- Data Structures I.- Simple Minimal Perfect Hashing in Less Space.- Cuckoo Hashing.- Optimization and Approximation.- Coupling Variable Fixing Algorithms for the Automatic Recording Problem.- Approximation Algorithms for Scheduling Malleable Tasks under Precedence Constraints.- On the Approximability of the Minimum Test Collection Problem.- Sequences.- Finding Approximate Repetitions under Hamming Distance.- SNPs Problems, Complexity, and Algorithms.- Scheduling.- A FPTAS for Approximating the Unrelated Parallel Machines Scheduling Problem with Costs.- Grouping Techniques for Scheduling Problems: Simpler and Faster.- A 2-Approximation Algorithm for the Multi-vehicle Scheduling Problem on a Path with Release and Handling Times.- Shortest Paths.- A Simple Shortest Path Algorithm with Linear Average Time.- A Heuristic for Dijkstra's Algorithm with Many Targets and Its Use in Weighted Matching Algorithms.- Geometry I.- A Separation Bound for Real Algebraic Expressions.- Property Testing with Geometric Queries.- Smallest Color-Spanning Objects.- Data Structures II.- Explicit Deterministic Constructions for Membership in the Bitprobe Model.- Lossy Dictionaries.- Geometry II.- Splitting a Delaunay Triangulation in Linear Time.- A Fast Algorithm for Approximating the Detour of a Polygonal Chain.- An Approximation Algorithm for Minimum Convex Cover with Logarithmic Performance Guarantee.- Distributed Algorithms.- Distributed O(? log n)-Edge-Coloring Algorithm.- Modeling Replica Placement in a Distributed File System: Narrowing the Gap between Analysis and Simulation.- Graph Algorithms.- Computing Cycle Covers without Short Cycles.- A Polynomial Time Algorithm for the Cutwidth of Bounded Degree Graphs with Small Treewidth.- Lower Bounds and Exact Algorithms for the Graph Partitioning Problem Using Multicommodity Flows.- Pricing.- Fast Pricing of European Asian Options with Provable Accuracy: Single-Stock and Basket Options.- Competitive Auctions for Multiple Digital Goods.- Broadcasting and Multicasting.- Algorithms for Efficient Filtering in Content-Based Multicast.- Approximation Algorithms for Minimum-Time Broadcast under the Vertex-Disjoint Paths Mode.- Round Robin Is Optimal for Fault-Tolerant Broadcasting on Wireless Networks.- Graph Labeling and Graph Drawing.- Online and Offline Distance Constrained Labeling of Disk Graphs.- Approximate Distance Labeling Schemes.- On the Parameterized Complexity of Layered Graph Drawing.- Graphs.- A General Model of Undirected Web Graphs.- Packing Cycles and Cuts in Undirected Graphs.- Greedy Algorithms for Minimisation Problems in Random Regular Graphs. +ss_paper_id=f55902ea17f3b383144cc959def7f52067abaea7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_green_energy_and_delay_aware_downlink_power_control_and_user_association_for_off_grid_solar_powered_base_stations.txt b/database/original_documents/publications_text/2017_green_energy_and_delay_aware_downlink_power_control_and_user_association_for_off_grid_solar_powered_base_stations.txt new file mode 100644 index 0000000000000000000000000000000000000000..2ac575a5530c4e1190c0fddb774552c8ac2a1e40 --- /dev/null +++ b/database/original_documents/publications_text/2017_green_energy_and_delay_aware_downlink_power_control_and_user_association_for_off_grid_solar_powered_base_stations.txt @@ -0,0 +1,18 @@ +# Publication +title=Green Energy and Delay Aware Downlink Power Control and User Association for Off Grid Solar Powered Base Stations +venue=IEEE Systems Journal, 2017. +authors=['Vinay Chamola', 'Bhaskar Krishnamachari', 'Biplab Sikdar'] +abstract=Cellular base stations (BSs) powered by renewable energy like solar power have emerged as a promising solution to address the issues of reducing the carbon footprint of the telecom industry as well as the operational cost associated with powering the BSs. This paper considers a network of off-grid solar-powered BSs and addresses two key challenges while operating them: first is avoiding energy outages and second is ensuring reliable quality of service (in terms of the network latency). In order to do so, the problem of minimizing the network latency given the constrained energy availability at the BSs is formulated. Unlike existing literature which have addressed this problem using user-association reconfiguration or BS on/off strategies, we address the problem by proposing an intelligent algorithm for allocating the harvested green energy over time, and green energy and delay aware downlink power control and user association. Using a real BS deployment scenario, we show the efficacy of our methodology and demonstrate its superior performance compared to existing benchmarks. + +# Information +links.pdf=/static/public/papers/Chamola_ISJ_2017.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/142fa2408f6b55fce5c46e75190ec0859e8b8c27 +type=Journal Papers +year=2017 +paper_id=6e705f79 +ss_title=Green Energy and Delay Aware Downlink Power Control and User Association for Off-Grid Solar-Powered Base Stations +ss_authors=[{'authorId': '3185174', 'name': 'V. Chamola'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '48440849', 'name': 'B. Sikdar'}] +ss_venue=IEEE Systems Journal +ss_year=2018 +ss_abstract=Cellular base stations (BSs) powered by renewable energy like solar power have emerged as a promising solution to address the issues of reducing the carbon footprint of the telecom industry as well as the operational cost associated with powering the BSs. This paper considers a network of off-grid solar-powered BSs and addresses two key challenges while operating them: first is avoiding energy outages and second is ensuring reliable quality of service (in terms of the network latency). In order to do so, the problem of minimizing the network latency given the constrained energy availability at the BSs is formulated. Unlike existing literature which have addressed this problem using user-association reconfiguration or BS on/off strategies, we address the problem by proposing an intelligent algorithm for allocating the harvested green energy over time, and green energy and delay aware downlink power control and user association. Using a real BS deployment scenario, we show the efficacy of our methodology and demonstrate its superior performance compared to existing benchmarks. +ss_paper_id=142fa2408f6b55fce5c46e75190ec0859e8b8c27 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_hermes_latency_optimal_task_assignment_for_resourceconstrained_mobile_computing.txt b/database/original_documents/publications_text/2017_hermes_latency_optimal_task_assignment_for_resourceconstrained_mobile_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..52806acdc14a56ddf0fdb39d1df4b45178cc9125 --- /dev/null +++ b/database/original_documents/publications_text/2017_hermes_latency_optimal_task_assignment_for_resourceconstrained_mobile_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing +venue=in IEEE Transactions on Mobile Computing, 2017. +authors=['Yi-Hsuan Kao', 'Bhaskar Krishnamachari', 'Moo-Ryong Ra', 'Fan Bai'] +abstract=With mobile devices increasingly able to connect to cloud servers from anywhere, resource-constrained devices can potentially perform offloading of computational tasks to either save local resource usage or improve performance. It is of interest to find optimal assignments of tasks to local and remote devices that can take into account the application-specific profile, availability of computational resources, and link connectivity, and find a balance between energy consumption costs of mobile devices and latency for delay-sensitive applications. We formulate an NP-hard problem to minimize the application latency while meeting prescribed resource utilization constraints. Different from most of existing works that either rely on the integer programming solver, or on heuristics that offer no theoretical performance guarantees, we propose Hermes, a novel fully polynomial time approximation scheme (FPTAS). We identify for a subset of problem instances, where the application task graphs can be described as serial trees, Hermes provides a solution with latency no more than $(1+\epsilon)$ times of the minimum while incurring complexity that is polynomial in problem size and $\frac{1}{\epsilon}$ . We further propose an online algorithm to learn the unknown dynamic environment and guarantee that the performance gap compared to the optimal strategy is bounded by a logarithmic function with time. Evaluation is done by using real data set collected from several benchmarks, and is shown that Hermes improves the latency by $16$ percent compared to a previously published heuristic and increases CPU computing time by only $0.4$ percent of overall latency. + +# Information +links.pdf=/static/public/papers/Hermes_TMC_Kao.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ab33e9ced1913a2dd687e5e8f7af9efc9a8673d9 +type=Journal Papers +year=2017 +paper_id=c95a9d1d +ss_title=Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing +ss_authors=[{'authorId': '2056892379', 'name': 'Yi-Hsuan Kao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '144977346', 'name': 'Moo-Ryong Ra'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=IEEE Transactions on Mobile Computing +ss_year=2017 +ss_abstract=With mobile devices increasingly able to connect to cloud servers from anywhere, resource-constrained devices can potentially perform offloading of computational tasks to either save local resource usage or improve performance. It is of interest to find optimal assignments of tasks to local and remote devices that can take into account the application-specific profile, availability of computational resources, and link connectivity, and find a balance between energy consumption costs of mobile devices and latency for delay-sensitive applications. We formulate an NP-hard problem to minimize the application latency while meeting prescribed resource utilization constraints. Different from most of existing works that either rely on the integer programming solver, or on heuristics that offer no theoretical performance guarantees, we propose Hermes, a novel fully polynomial time approximation scheme (FPTAS). We identify for a subset of problem instances, where the application task graphs can be described as serial trees, Hermes provides a solution with latency no more than $(1+\epsilon)$ times of the minimum while incurring complexity that is polynomial in problem size and $\frac{1}{\epsilon}$ . We further propose an online algorithm to learn the unknown dynamic environment and guarantee that the performance gap compared to the optimal strategy is bounded by a logarithmic function with time. Evaluation is done by using real data set collected from several benchmarks, and is shown that Hermes improves the latency by $16$ percent compared to a previously published heuristic and increases CPU computing time by only $0.4$ percent of overall latency. +ss_paper_id=ab33e9ced1913a2dd687e5e8f7af9efc9a8673d9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_interference_power_bound_analysis_of_a_network_of_wireless_robots.txt b/database/original_documents/publications_text/2017_interference_power_bound_analysis_of_a_network_of_wireless_robots.txt new file mode 100644 index 0000000000000000000000000000000000000000..1dd4afee90e8809b0ecd79dde56a1646ec19c651 --- /dev/null +++ b/database/original_documents/publications_text/2017_interference_power_bound_analysis_of_a_network_of_wireless_robots.txt @@ -0,0 +1,18 @@ +# Publication +title=Interference Power Bound Analysis of a Network of Wireless Robots +venue=International Conference on Communication Systems and Networks (COMSNETS), 2017 (Invited Paper) +authors=['Pradipta Ghosh', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/comsnets2017_pradipta.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6608c160c1013947c5be6145ef741754ebec4f15 +type=Conference Papers +year=2017 +paper_id=19d82a0b +ss_title=Interference Power Bound Analysis of a Network of Wireless Robots +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Communication Systems and Networks +ss_year=2016 +ss_abstract=None +ss_paper_id=6608c160c1013947c5be6145ef741754ebec4f15 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_loco_a_location_based_communication_scheme.txt b/database/original_documents/publications_text/2017_loco_a_location_based_communication_scheme.txt new file mode 100644 index 0000000000000000000000000000000000000000..95b2edaea6276ad143523d83bd8dffcf6d19f0f2 --- /dev/null +++ b/database/original_documents/publications_text/2017_loco_a_location_based_communication_scheme.txt @@ -0,0 +1,18 @@ +# Publication +title=LOCO: A Location Based Communication Scheme +venue=​Workshop on New Wireless Communication Paradigms for the Internet of Things (MadCom), International Conference on Embedded Wireless Systems and Networks (EWSN), 2017. +authors=['Pradipta Ghosh', 'Nachikethas A Jagadeesan', 'Pranav Sakulkar', 'Bhaskar Krishnamachari'] +abstract=We present, LOcation based COmmunication (LOCO), a new channel for communication for robots that can act as a fail-safe communication mechanism in contexts of radio failures, given a working localization system. With insights from traditional wireless communication, we formulate a channel model for the location based communication channel where the transmitted data is modulated into a set of discrete locations of a robot. The receiving end employs a localization module to estimate the positions of the robot and to demodulate it into received symbols. We further identify the key factors that control the capacity and error performance of this channel: the symbol grid granularity, variance of the localization noise, the frequency of the localization, and the speed of the robot. In this paper, we also present a set of illustrative examples for LOCO along with pertinent analysis via detailed simulation and real-world data based emulation experiments. + +# Information +links.pdf=/static/public/papers/madcom2017.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/89676572c3ac2971eb82deef9bbf05416cfdaac7 +type=Conference Papers +year=2017 +paper_id=03b636a2 +ss_title=LOCO: A Location Based Communication Scheme +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2278635', 'name': 'N. Jagadeesan'}, {'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=European Conference/Workshop on Wireless Sensor Networks +ss_year=2017 +ss_abstract=We present, LOcation based COmmunication (LOCO), a new channel for communication for robots that can act as a fail-safe communication mechanism in contexts of radio failures, given a working localization system. With insights from traditional wireless communication, we formulate a channel model for the location based communication channel where the transmitted data is modulated into a set of discrete locations of a robot. The receiving end employs a localization module to estimate the positions of the robot and to demodulate it into received symbols. We further identify the key factors that control the capacity and error performance of this channel: the symbol grid granularity, variance of the localization noise, the frequency of the localization, and the speed of the robot. In this paper, we also present a set of illustrative examples for LOCO along with pertinent analysis via detailed simulation and real-world data based emulation experiments. +ss_paper_id=89676572c3ac2971eb82deef9bbf05416cfdaac7 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_mabotsch_multihop_and_blacklistbased_optimized_time_synchronized_channel_hopping.txt b/database/original_documents/publications_text/2017_mabotsch_multihop_and_blacklistbased_optimized_time_synchronized_channel_hopping.txt new file mode 100644 index 0000000000000000000000000000000000000000..b3f49005bea67e08f5597ff151b7fbfdb02f3b43 --- /dev/null +++ b/database/original_documents/publications_text/2017_mabotsch_multihop_and_blacklistbased_optimized_time_synchronized_channel_hopping.txt @@ -0,0 +1,18 @@ +# Publication +title=MABO-TSCH: Multi-Hop And Blacklist-based Optimized Time Synchronized Channel Hopping +venue=in Transactions on Emerging Telecommunications Technologies, 2017. +authors=['Pedro Henrique Gomes', 'Thomas Watteyne', 'Bhaskar Krishnamachari'] +abstract=Emerging Industrial Internet of Things applications, such as smart factories, require reliable communication and robustness against interference from colocated wireless systems. To address these challenges, frequency‐hopping spread spectrum has been used by different protocols, including IEEE802.15.4‐2015 TSCH. Frequency‐hopping spread spectrum can be improved with the aid of blacklists to avoid bad frequencies. The quality of channels in most environments shows significant spatial‐temporal variation, which limits the effectiveness of simple blacklisting schemes. In this article, we propose an enhanced blacklisting solution to improve the TSCH protocol. The proposed algorithms work in a distributed fashion, where each pair of receiver/transmitter nodes negotiates a local blacklist, based on the estimation of packet delivery ratio. We model the channel quality estimation as a multiarmed bandit problem and show that it is possible to create blacklists that provide results close to optimal without any separate learning phase. The proposed algorithms are implemented in OpenWSN and evaluated through simulations in 2 different scenarios with about 40 motes and experiments using an indoor testbed with 40 TelosB motes. + +# Information +links.pdf=/static/public/papers/2017_Pedro_ETT_MABO_TSCH.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e918f969841f9980b40dd69f4e13421712dc4c6b +type=Journal Papers +year=2017 +paper_id=3975ece5 +ss_title=MABO‐TSCH: Multihop and blacklist‐based optimized time synchronized channel hopping +ss_authors=[{'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '1686537', 'name': 'T. Watteyne'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Transactions on Emerging Telecommunications Technologies +ss_year=2018 +ss_abstract=Emerging Industrial Internet of Things applications, such as smart factories, require reliable communication and robustness against interference from colocated wireless systems. To address these challenges, frequency‐hopping spread spectrum has been used by different protocols, including IEEE802.15.4‐2015 TSCH. Frequency‐hopping spread spectrum can be improved with the aid of blacklists to avoid bad frequencies. The quality of channels in most environments shows significant spatial‐temporal variation, which limits the effectiveness of simple blacklisting schemes. In this article, we propose an enhanced blacklisting solution to improve the TSCH protocol. The proposed algorithms work in a distributed fashion, where each pair of receiver/transmitter nodes negotiates a local blacklist, based on the estimation of packet delivery ratio. We model the channel quality estimation as a multiarmed bandit problem and show that it is possible to create blacklists that provide results close to optimal without any separate learning phase. The proposed algorithms are implemented in OpenWSN and evaluated through simulations in 2 different scenarios with about 40 motes and experiments using an indoor testbed with 40 TelosB motes. +ss_paper_id=e918f969841f9980b40dd69f4e13421712dc4c6b \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_miniradar_a_low_power_ieee_802154_transceiver_based_implementation_of_bistatic_radar.txt b/database/original_documents/publications_text/2017_miniradar_a_low_power_ieee_802154_transceiver_based_implementation_of_bistatic_radar.txt new file mode 100644 index 0000000000000000000000000000000000000000..67cd2778aa8fa0c319ae1151d3b0a9b93d59ed90 --- /dev/null +++ b/database/original_documents/publications_text/2017_miniradar_a_low_power_ieee_802154_transceiver_based_implementation_of_bistatic_radar.txt @@ -0,0 +1,18 @@ +# Publication +title=miniRadar: A Low Power IEEE 802.15.4 Transceiver Based Implementation of Bistatic Radar +venue=ACM HotWireless 2017 +authors=['Pradipta Ghosh', 'Jenny Xie', 'Bhaskar Krishnamachari'] +abstract=Passively detect all (or a subset of) prominent RF reflective surfaces using 802.15.4 Radios in a 2D grid environment + +# Information +links.pdf=/static/public/papers/miniradar.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a33f88ee273e4bcb8400c58d6978d3c575bec9db +type=Conference Papers +year=2017 +paper_id=5dedb2c0 +ss_title=Miniradar: A Low Power IEEE 802.15.4 Transceiver Based Implementaion of Bistatic Rader +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2109729411', 'name': 'Jenny Xie'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Information Theory and Applications Workshop +ss_year=2017 +ss_abstract=Passively detect all (or a subset of) prominent RF reflective surfaces using 802.15.4 Radios in a 2D grid environment +ss_paper_id=a33f88ee273e4bcb8400c58d6978d3c575bec9db \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_olliviers_ricci_curvature_of_real_lowpower_wireless_network_testbed.txt b/database/original_documents/publications_text/2017_olliviers_ricci_curvature_of_real_lowpower_wireless_network_testbed.txt new file mode 100644 index 0000000000000000000000000000000000000000..549be9cf25ad3cf3c20511c5e9bd9e0739ecaa09 --- /dev/null +++ b/database/original_documents/publications_text/2017_olliviers_ricci_curvature_of_real_lowpower_wireless_network_testbed.txt @@ -0,0 +1,18 @@ +# Publication +title=Ollivier’s Ricci Curvature of real low-power wireless network testbed +venue=USC ANRG Technical Report, ANRG-2017-05, 2017. +authors=['Pedro Henrique Gomes', 'Chi Wang', 'Bhaskar Krishnamachari', 'Edmond Jonckheere'] +abstract=None + +# Information +links.pdf=/static/public/papers/TR_ORC_on_multi_channel_wireless_networks.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/30d50f04b23dc395fd59ee82f3eab943c433476f +type=Technical Reports and Preprints +year=2017 +paper_id=796adcc9 +ss_title=Ollivier ’ s Ricci Curvature of real low-power wireless network testbed +ss_authors=[{'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '2116632134', 'name': 'Chi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2121224952', 'name': 'E. Jonckheere'}] +ss_venue= +ss_year=None +ss_abstract=None +ss_paper_id=30d50f04b23dc395fd59ee82f3eab943c433476f \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_online_learning_schemes_for_power_allocation_in_energy_harvesting_communications.txt b/database/original_documents/publications_text/2017_online_learning_schemes_for_power_allocation_in_energy_harvesting_communications.txt new file mode 100644 index 0000000000000000000000000000000000000000..d26573d67efcf98b5b3b0d21550217cfd7da6e99 --- /dev/null +++ b/database/original_documents/publications_text/2017_online_learning_schemes_for_power_allocation_in_energy_harvesting_communications.txt @@ -0,0 +1,18 @@ +# Publication +title=“Online Learning Schemes for Power Allocation in Energy Harvesting Communications” +venue=in IEEE Transactions on Information Theory. +authors=['Pranav Sakulkar', 'Bhaskar Krishnamachari'] +abstract=We consider the problem of power allocation over one or more time-varying channels with unknown distributions in energy harvesting communications. In the single-channel case, the transmitter chooses the transmit power based on the amount of stored energy in its battery with the goal of maximizing the average rate over time. We model this problem as a Markov decision process (MDP) with transmitter as the agent, battery status as the state, transmits power as the action and rate as the reward. The average reward maximization problem can be modeled by a linear program (LP) that uses the transition probabilities for the state-action pairs and their reward values to select a power allocation policy. This problem is challenging because the uncertainty in channels implies that the mean rewards associated with the state-action pairs are unknown. We therefore propose two online learning algorithms: linear program of sample means (LPSM) and Epoch-LPSM that learn these rewards and adapt their policies over time. For both algorithms, we prove that their regret is upper-bounded by a constant. To our knowledge this is the first result showing constant regret learning algorithms for MDPs with unknown mean rewards. We also prove an even stronger result about LPSM: that its policy matches the optimal policy exactly in finite expected time. Epoch-LPSM incurs a higher regret compared with the LPSM, while reducing the computational requirements substantially. We further consider a multi-channel scenario, where the agent also chooses a channel in each slot, and present our multi-channel LPSM (MC-LPSM) algorithm that explores different channels and uses that information to solve the LP during exploitation. MC-LPSM incurs a regret that scales logarithmically in time and linearly in the number of channels. Through a matching lower bound on the regret of any algorithm, we also prove the asymptotic order optimality of MC-LPSM. + +# Information +links.pdf=/static/public/papers/Online_Learning_over_MDPs.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/875a5245b6c68fce94b9dcec109701a20a7a4501 +type=Journal Papers +year=2017 +paper_id=502c2408 +ss_title=Online Learning Schemes for Power Allocation in Energy Harvesting Communications +ss_authors=[{'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Information Theory +ss_year=2016 +ss_abstract=We consider the problem of power allocation over one or more time-varying channels with unknown distributions in energy harvesting communications. In the single-channel case, the transmitter chooses the transmit power based on the amount of stored energy in its battery with the goal of maximizing the average rate over time. We model this problem as a Markov decision process (MDP) with transmitter as the agent, battery status as the state, transmits power as the action and rate as the reward. The average reward maximization problem can be modeled by a linear program (LP) that uses the transition probabilities for the state-action pairs and their reward values to select a power allocation policy. This problem is challenging because the uncertainty in channels implies that the mean rewards associated with the state-action pairs are unknown. We therefore propose two online learning algorithms: linear program of sample means (LPSM) and Epoch-LPSM that learn these rewards and adapt their policies over time. For both algorithms, we prove that their regret is upper-bounded by a constant. To our knowledge this is the first result showing constant regret learning algorithms for MDPs with unknown mean rewards. We also prove an even stronger result about LPSM: that its policy matches the optimal policy exactly in finite expected time. Epoch-LPSM incurs a higher regret compared with the LPSM, while reducing the computational requirements substantially. We further consider a multi-channel scenario, where the agent also chooses a channel in each slot, and present our multi-channel LPSM (MC-LPSM) algorithm that explores different channels and uses that information to solve the LP during exploitation. MC-LPSM incurs a regret that scales logarithmically in time and linearly in the number of channels. Through a matching lower bound on the regret of any algorithm, we also prove the asymptotic order optimality of MC-LPSM. +ss_paper_id=875a5245b6c68fce94b9dcec109701a20a7a4501 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_optimal_sleeping_mechanism_for_multiple_servers_with_mmppbased_bursty_traffic_arrival.txt b/database/original_documents/publications_text/2017_optimal_sleeping_mechanism_for_multiple_servers_with_mmppbased_bursty_traffic_arrival.txt new file mode 100644 index 0000000000000000000000000000000000000000..cce47342e6b37d25b847c58f6d2488566d8c2025 --- /dev/null +++ b/database/original_documents/publications_text/2017_optimal_sleeping_mechanism_for_multiple_servers_with_mmppbased_bursty_traffic_arrival.txt @@ -0,0 +1,18 @@ +# Publication +title=“Optimal Sleeping Mechanism for Multiple Servers with MMPP-Based Bursty Traffic Arrival” +venue=in IEEE Wireless Communications Letters. +authors=['Zhiyuan Jiang', 'Bhaskar Krishnamachari', 'Sheng Zhou', 'Zhisheng Niu'] +abstract=A fundamental problem in green communications and networking is the operation of servers (routers or base stations) with sleeping mechanism to optimize energy-delay tradeoffs. This problem is very challenging when considering realistic bursty (non-Poisson) traffic. We prove for the first time that the optimal structure of such a sleeping mechanism for multiple servers when the arrival of jobs is modeled by a bursty Markov-modulated Poisson process (MMPP). It is shown that the optimal operation, which determines the number of active (or sleeping) servers dynamically, is hysteretic and monotone, and hence, it is a queue-threshold-based policy. This letter settles a conjecture in the literature that the optimal sleeping mechanism for a single server with interrupted Poisson arrival process, which can be treated as a special case of MMPP, is queue-threshold-based. The exact thresholds are given by numerically solving the Markov decision process. + +# Information +links.pdf=/static/public/papers/zhiyuan_wcl_final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f9a11af453538a9c89ec966837169b508dfa28fd +type=Journal Papers +year=2017 +paper_id=a5b94adf +ss_title=Optimal Sleeping Mechanism for Multiple Servers With MMPP-Based Bursty Traffic Arrival +ss_authors=[{'authorId': '4302623', 'name': 'Zhiyuan Jiang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Wireless Communications Letters +ss_year=2017 +ss_abstract=A fundamental problem in green communications and networking is the operation of servers (routers or base stations) with sleeping mechanism to optimize energy-delay tradeoffs. This problem is very challenging when considering realistic bursty (non-Poisson) traffic. We prove for the first time that the optimal structure of such a sleeping mechanism for multiple servers when the arrival of jobs is modeled by a bursty Markov-modulated Poisson process (MMPP). It is shown that the optimal operation, which determines the number of active (or sleeping) servers dynamically, is hysteretic and monotone, and hence, it is a queue-threshold-based policy. This letter settles a conjecture in the literature that the optimal sleeping mechanism for a single server with interrupted Poisson arrival process, which can be treated as a special case of MMPP, is queue-threshold-based. The exact thresholds are given by numerically solving the Markov decision process. +ss_paper_id=f9a11af453538a9c89ec966837169b508dfa28fd \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_painting_the_dragoneye_from_inanimate_data_to_interactive_control_emulation_of_cellular_networks.txt b/database/original_documents/publications_text/2017_painting_the_dragoneye_from_inanimate_data_to_interactive_control_emulation_of_cellular_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..1008d8b33e615c5a90c69e02520f0d3b8b168e2e --- /dev/null +++ b/database/original_documents/publications_text/2017_painting_the_dragoneye_from_inanimate_data_to_interactive_control_emulation_of_cellular_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Painting the DragonEye: From Inanimate Data to Interactive Control Emulation of Cellular Networks +venue=USC ANRG Technical Report, ANRG-2017-02. +authors=['Jingchu Liu', 'Bhaskar Krishnamachari', 'Sheng Zhou', 'Zhisheng Niu'] +abstract=Data from mobile cellular networks has been extremely valuable in helping us understand traffic dynamics, monitor network operations, and conceive better deployment plans. Among these applications, trace-driven emulation is particularly interesting due to its potential in enabling open, reproducible, and cost-effective examination of innovative designs of cellular networks. Nevertheless, the inanimate nature of off-line data restricts it from being directly used for testing interactive network control algorithms, which may change the original data distribution. To address this issue, we present the DragonEye interactive emulation framework. DragonEye combines offline network data with microscopic refining and reacting models to emulate the live interaction between mobile users and the cellular network. For demonstration, we implement DragonEye using session-level user traffic logs captured from a real WLAN. This implementation is then used to test a reinforcement-learning-based base station (BS) sleeping control algorithm. Results show that emulated users can interactively queue and cancel requests in response to dynamic sleeping operations, which demonstrates the effectiveness of DragonEye in emulating live interaction using offline data. + +# Information +links.pdf=/static/public/papers/DragonEye_ANRG_TechReport.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7912e131c1350d5a202751acff5fde59fc4ebd39 +type=Technical Reports and Preprints +year=2017 +paper_id=52718547 +ss_title=Painting the DragonEye : From Inanimate Data to Interactive Control Emulation of Cellular Networks +ss_authors=[{'authorId': '1695477', 'name': 'Jingchu Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue= +ss_year=2017 +ss_abstract=Data from mobile cellular networks has been extremely valuable in helping us understand traffic dynamics, monitor network operations, and conceive better deployment plans. Among these applications, trace-driven emulation is particularly interesting due to its potential in enabling open, reproducible, and cost-effective examination of innovative designs of cellular networks. Nevertheless, the inanimate nature of off-line data restricts it from being directly used for testing interactive network control algorithms, which may change the original data distribution. To address this issue, we present the DragonEye interactive emulation framework. DragonEye combines offline network data with microscopic refining and reacting models to emulate the live interaction between mobile users and the cellular network. For demonstration, we implement DragonEye using session-level user traffic logs captured from a real WLAN. This implementation is then used to test a reinforcement-learning-based base station (BS) sleeping control algorithm. Results show that emulated users can interactively queue and cancel requests in response to dynamic sleeping operations, which demonstrates the effectiveness of DragonEye in emulating live interaction using offline data. +ss_paper_id=7912e131c1350d5a202751acff5fde59fc4ebd39 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_teaching_communication_technologies_and_standards_for_the_industrial_iot_use_6tisch.txt b/database/original_documents/publications_text/2017_teaching_communication_technologies_and_standards_for_the_industrial_iot_use_6tisch.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e3b0f2d7a92b39fcc5887bea8181955c31f803d --- /dev/null +++ b/database/original_documents/publications_text/2017_teaching_communication_technologies_and_standards_for_the_industrial_iot_use_6tisch.txt @@ -0,0 +1,18 @@ +# Publication +title=Teaching Communication Technologies and Standards for the Industrial IoT? Use 6TiSCH! +venue=in IEEE Communications Magazine, vol. 55, no. 5, pp. 132-137, May 2017. +authors=['Thomas Watteyne', 'Pere Tuset-Peiró', 'Xavier Vilajosana', 'Sofie Pollin', 'Bhaskar Krishnamachari'] +abstract=The IETF 6TiSCH stack encompasses IEEE802.15.4 TSCH, IETF 6LoWPAN, RPL, and CoAP. It is one of the key standards-based technologies to enable industrial process monitoring and control, and unleash the Industrial Internet of Things (IIoT). The 6TiSCH stack is also a valuable asset for educational purposes, as it integrates an Internet-enabled IPv6-based upper stack with stateof- the-art low-power wireless mesh communication technologies. Teaching with 6TiSCH empowers students with a valuable set of competencies, including topics related to computer networking (medium access control operation, IPv6 networking), embedded systems (process scheduling, concurrency), and wireless communications (multipath propagation, interference effects), as well as application requirements for the IIoT. This article discusses how the 6TiSCH stack can be incorporated into existing and new curricula to teach the next generation of electrical engineering and computer science professionals about designing and deploying such networks. It also gives a comprehensive overview of the 6TiSCH stack and the tools that exist to support a course based on it. + +# Information +links.pdf=/static/public/papers/1_commag_b_camera_ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6152d648ad01ed80e07af3165e7b9273018f7ba5 +type=Journal Papers +year=2017 +paper_id=5b4b28bf +ss_title=Teaching Communication Technologies and Standards for the Industrial IoT? Use 6TiSCH! +ss_authors=[{'authorId': '1686537', 'name': 'T. Watteyne'}, {'authorId': '2386329', 'name': 'Pere Tuset'}, {'authorId': '3307777', 'name': 'Xavier Vilajosana'}, {'authorId': '1791308', 'name': 'S. Pollin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Communications Magazine +ss_year=2017 +ss_abstract=The IETF 6TiSCH stack encompasses IEEE802.15.4 TSCH, IETF 6LoWPAN, RPL, and CoAP. It is one of the key standards-based technologies to enable industrial process monitoring and control, and unleash the Industrial Internet of Things (IIoT). The 6TiSCH stack is also a valuable asset for educational purposes, as it integrates an Internet-enabled IPv6-based upper stack with stateof- the-art low-power wireless mesh communication technologies. Teaching with 6TiSCH empowers students with a valuable set of competencies, including topics related to computer networking (medium access control operation, IPv6 networking), embedded systems (process scheduling, concurrency), and wireless communications (multipath propagation, interference effects), as well as application requirements for the IIoT. This article discusses how the 6TiSCH stack can be incorporated into existing and new curricula to teach the next generation of electrical engineering and computer science professionals about designing and deploying such networks. It also gives a comprehensive overview of the 6TiSCH stack and the tools that exist to support a course based on it. +ss_paper_id=6152d648ad01ed80e07af3165e7b9273018f7ba5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2017_the_publishprocesssubscribe_paradigm_for_the_internet_of_things.txt b/database/original_documents/publications_text/2017_the_publishprocesssubscribe_paradigm_for_the_internet_of_things.txt new file mode 100644 index 0000000000000000000000000000000000000000..d0ad5cafc41ba36311480a28fd14ab4ecb3e1331 --- /dev/null +++ b/database/original_documents/publications_text/2017_the_publishprocesssubscribe_paradigm_for_the_internet_of_things.txt @@ -0,0 +1,18 @@ +# Publication +title=The Publish-Process-Subscribe Paradigm for the Internet of Things +venue=USC ANRG Technical Report, ANRG-2017-04, 2017. +authors=['Bhaskar Krishnamachari', 'Kwame Wright'] +abstract=We advocate an extension of the traditional publish-subscribe middleware for the Internet of Things that incorporates computation that we refer to as ​publish-process-subscribe ​paradigm. This paradigm allows for greater privacy, aggregation and sensor fusion to improve resource utilization while delivering meaningful data to end points, as well as the necessary processing capability for controlling actuators. We give examples of such publish-process-subscribe systems suitable for IoT systems. + +# Information +links.pdf=/static/public/papers/ANRG_TechReport_201704_PublishProcessSubscribeForIoT.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b4124c936ccd07e379168c13155ebd223f9cb491 +type=Technical Reports and Preprints +year=2017 +paper_id=54ba9943 +ss_title=The Publish-Process-Subscribe Paradigm for the Internet of Things +ss_authors=[{'authorId': '37763411', 'name': 'Kwame-Lante Wright'}] +ss_venue= +ss_year=None +ss_abstract=We advocate an extension of the traditional publish-subscribe middleware for the Internet of Things that incorporates computation that we refer to as ​publish-process-subscribe ​paradigm. This paradigm allows for greater privacy, aggregation and sensor fusion to improve resource utilization while delivering meaningful data to end points, as well as the necessary processing capability for controlling actuators. We give examples of such publish-process-subscribe systems suitable for IoT systems. +ss_paper_id=b4124c936ccd07e379168c13155ebd223f9cb491 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_a_game_theoretic_approach_to_newsvendor_problems_with_censored_markovian_demand.txt b/database/original_documents/publications_text/2018_a_game_theoretic_approach_to_newsvendor_problems_with_censored_markovian_demand.txt new file mode 100644 index 0000000000000000000000000000000000000000..974022a82460891268a00835e6e8cd3d61e4631b --- /dev/null +++ b/database/original_documents/publications_text/2018_a_game_theoretic_approach_to_newsvendor_problems_with_censored_markovian_demand.txt @@ -0,0 +1,18 @@ +# Publication +title=A Game Theoretic Approach to Newsvendor Problems with Censored Markovian Demand +venue=2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France, 2018. +authors=['P Mansourifard', 'F Mansourifard', 'B Krishnamachari'] +abstract=This paper studies the Newsvendor problem for a setting in which (i) the demand is temporally correlated, (ii) the demand is censored, (iii) the distribution of the demand is unknown. The correlation is modeled as a Markovian process. The censoring means that if the demand is larger than the action (selected inventory), only a lower bound on the demand can be revealed. The uncertainty set on the demand distribution is given by only the upper and lower bound on the amount of the change from a time to the next time. We propose a robust approach to minimize the worst-case total cost and model it as a min-max zero-sum repeated game. We prove that the worst-case distribution of the adversary at each time is a two-point distribution with non-zero probabilities at the extrema of the uncertainty set of the demand. And the optimal action of the decision-maker can have any of the following structures: (i) a randomized solution with a two-point distribution at the extrema, (ii) a deterministic solution at a convex combination of the extrema. Both above solutions balance over-utilization and under-utilization costs. Finally, we extend our results to uni-model cost functions and present numerical results to study the solution. + +# Information +links.pdf=/static/public/papers/Game_IEOM2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bd5a584de85712bb47d6a376b862bd7ea7c05484 +type=Conference Papers +year=2018 +paper_id=ce7c9b5a +ss_title=A Game Theoretic Approach to Multi-Period Newsvendor Problems with Censored Markovian Demand +ss_authors=[{'authorId': '1738225641', 'name': 'Farzaneh Mansourifard'}, {'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Journal of Industrial Engineering and Operations Management +ss_year=2019 +ss_abstract=This paper studies the Newsvendor problem for a setting in which (i) the demand is temporally correlated, (ii) the demand is censored, (iii) the distribution of the demand is unknown. The correlation is modeled as a Markovian process. The censoring means that if the demand is larger than the action (selected inventory), only a lower bound on the demand can be revealed. The uncertainty set on the demand distribution is given by only the upper and lower bound on the amount of the change from a time to the next time. We propose a robust approach to minimize the worst-case total cost and model it as a min-max zero-sum repeated game. We prove that the worst-case distribution of the adversary at each time is a two-point distribution with non-zero probabilities at the extrema of the uncertainty set of the demand. And the optimal action of the decision-maker can have any of the following structures: (i) a randomized solution with a two-point distribution at the extrema, (ii) a deterministic solution at a convex combination of the extrema. Both above solutions balance over-utilization and under-utilization costs. Finally, we extend our results to uni-model cost functions and present numerical results to study the solution. +ss_paper_id=bd5a584de85712bb47d6a376b862bd7ea7c05484 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_a_heuristic_policy_for_outpatient_surgery_appointment_sequencing_newsvendor_ordering.txt b/database/original_documents/publications_text/2018_a_heuristic_policy_for_outpatient_surgery_appointment_sequencing_newsvendor_ordering.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd71a4ae8f6e4f1fd1e10ec18d62d1717e4e9e13 --- /dev/null +++ b/database/original_documents/publications_text/2018_a_heuristic_policy_for_outpatient_surgery_appointment_sequencing_newsvendor_ordering.txt @@ -0,0 +1,18 @@ +# Publication +title=A Heuristic Policy for Outpatient Surgery Appointment Sequencing: Newsvendor Ordering +venue=2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France, 2018. +authors=['F Mansourifard', 'P Mansourifard', 'M Ziyadi', 'B Krishnamachari'] +abstract=Sequencing and scheduling the surgeries in operating rooms (ORs) can be a very important problem since (i) the duration of each surgery can be uncertain, (ii) surgeries are a great source of revenue and a huge source of cost for the hospitals because doctors, OR staff, and surgery equipment are very expensive resources, and (iii) the satisfaction of patients and minimizing their waiting time is also a very important criterion. Solving this problem can reduce the costs and increase the satisfaction of patients significantly, but at the same time it is very hard to drive the solution mathematically. Even the sequencing subproblem can be challenging if the number of surgeries are large. There is no known tractable optimal solution to this problem and in practice, mostly a heuristic policy which orders surgeries based on increasing duration variances, i.e. the surgery with the smaller variance is scheduled earlier, is applied. We propose a simple heuristic policy for the sequencing of the surgeries based on the Newsvendor cost, and analyze it using a hospital data set as a case study. We show that this heuristic policy outperforms the ordering based on variance since it takes the asymmetry of waiting and idle costs into account. For the cases where the difference between the idle and waiting cost is large, which is the case in surgery sequencing, this approach achieves a better improvement in the total expected cost. + +# Information +links.pdf=/static/public/papers/Heuristic_IEOM2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/84b1d06e34e72aa09c67eab41247a5e55ad3ab2e +type=Conference Papers +year=2018 +paper_id=0f4e0dc7 +ss_title=A Heuristic Policy for Outpatient Surgery Appointment Sequencing: Newsvendor Ordering +ss_authors=[{'authorId': '1738225641', 'name': 'Farzaneh Mansourifard'}, {'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '2066587628', 'name': 'Morteza Ziyadi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145416466', 'name': 'Ming Hsieh'}] +ss_venue= +ss_year=2018 +ss_abstract=Sequencing and scheduling the surgeries in operating rooms (ORs) can be a very important problem since (i) the duration of each surgery can be uncertain, (ii) surgeries are a great source of revenue and a huge source of cost for the hospitals because doctors, OR staff, and surgery equipment are very expensive resources, and (iii) the satisfaction of patients and minimizing their waiting time is also a very important criterion. Solving this problem can reduce the costs and increase the satisfaction of patients significantly, but at the same time it is very hard to drive the solution mathematically. Even the sequencing subproblem can be challenging if the number of surgeries are large. There is no known tractable optimal solution to this problem and in practice, mostly a heuristic policy which orders surgeries based on increasing duration variances, i.e. the surgery with the smaller variance is scheduled earlier, is applied. We propose a simple heuristic policy for the sequencing of the surgeries based on the Newsvendor cost, and analyze it using a hospital data set as a case study. We show that this heuristic policy outperforms the ordering based on variance since it takes the asymmetry of waiting and idle costs into account. For the cases where the difference between the idle and waiting cost is large, which is the case in surgery sequencing, this approach achieves a better improvement in the total expected cost. +ss_paper_id=84b1d06e34e72aa09c67eab41247a5e55ad3ab2e \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_blockchain_for_the_iot_opportunities_and_challenges.txt b/database/original_documents/publications_text/2018_blockchain_for_the_iot_opportunities_and_challenges.txt new file mode 100644 index 0000000000000000000000000000000000000000..60ec264a2cc73b7379804278b70b58b22e055f1b --- /dev/null +++ b/database/original_documents/publications_text/2018_blockchain_for_the_iot_opportunities_and_challenges.txt @@ -0,0 +1,18 @@ +# Publication +title=Blockchain for the IoT: Opportunities and Challenges +venue=arXiv: 1805.02818 [cs.DC]. +authors=['Gowri Sankar Ramachandran', 'Bhaskar Krishnamachari'] +abstract=Blockchain technology has been transforming the financial industry and has created a new crypto-economy in the last decade. The foundational concepts such as decentralized trust and distributed ledger are promising for distributed, and large-scale Internet of Things (IoT) applications. However, the applications of Blockchain beyond cryptocurrencies in this domain are few and far between because of the lack of understanding and inherent architectural challenges. In this paper, we describe the opportunities for applications of blockchain for the IoT and examine the challenges involved in architecting Blockchain-based IoT applications. + +# Information +links.pdf=https://arxiv.org/abs/1805.02818 +links.semantic_scholar=https://www.semanticscholar.org/paper/de8cec33c0d284f9e1ab657193dde70ff44633ba +type=Technical Reports and Preprints +year=2018 +paper_id=1e3797c1 +ss_title=Blockchain for the IoT: Opportunities and Challenges +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=arXiv.org +ss_year=2018 +ss_abstract=Blockchain technology has been transforming the financial industry and has created a new crypto-economy in the last decade. The foundational concepts such as decentralized trust and distributed ledger are promising for distributed, and large-scale Internet of Things (IoT) applications. However, the applications of Blockchain beyond cryptocurrencies in this domain are few and far between because of the lack of understanding and inherent architectural challenges. In this paper, we describe the opportunities for applications of blockchain for the IoT and examine the challenges involved in architecting Blockchain-based IoT applications. +ss_paper_id=de8cec33c0d284f9e1ab657193dde70ff44633ba \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_can_decentralized_status_update_achieve_universally_nearoptimal_ageofinformation_in_wireless_multiaccess_channels.txt b/database/original_documents/publications_text/2018_can_decentralized_status_update_achieve_universally_nearoptimal_ageofinformation_in_wireless_multiaccess_channels.txt new file mode 100644 index 0000000000000000000000000000000000000000..a934bccdc50c78ca799c490dd0ffdf5106c707c7 --- /dev/null +++ b/database/original_documents/publications_text/2018_can_decentralized_status_update_achieve_universally_nearoptimal_ageofinformation_in_wireless_multiaccess_channels.txt @@ -0,0 +1,18 @@ +# Publication +title=Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels? +venue=International Teletraffic Congress, 2018. +authors=['Zhiyuan Jiang', 'Bhaskar Krishnamachari', 'Sheng Zhou', 'Zhisheng Niu'] +abstract=In an Internet-of-Things system where status data are collected from sensors and actuators for time-critical applications, the freshness of data is vital and can be quantified by the recently proposed age-of-information (AoI) metric. In this paper, we first consider a general scenario where multiple terminals share a common channel to transmit or receive randomly generated status packets. The optimal scheduling problem to minimize AoI is formulated as a restless multi-armed bandit problem. To solve the problem efficiently, we derive the Whittle's index in closed-form and establish the indexability thereof. Compared with existing work, we extend the index policy for AoI optimization to incorporate stochastic packet arrivals and optimal packet management (buffering the latest packet). Inspired by the index policy which has near-optimal performance but is centralized by nature, a decentralized status update scheme, i.e., the index-prioritized random access policy (IPRA), is further proposed, achieving universally near-optimal AoI performance and outperforming state-of-the-arts in the literature. + +# Information +links.pdf=/static/public/papers/Decentralized_status_update_AoI.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c5502091d247c0fe0b4fcfc8245e07b392cd9d99 +type=Conference Papers +year=2018 +paper_id=d96b8041 +ss_title=Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels? +ss_authors=[{'authorId': '4302623', 'name': 'Zhiyuan Jiang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=International Test Conference +ss_year=2018 +ss_abstract=In an Internet-of-Things system where status data are collected from sensors and actuators for time-critical applications, the freshness of data is vital and can be quantified by the recently proposed age-of-information (AoI) metric. In this paper, we first consider a general scenario where multiple terminals share a common channel to transmit or receive randomly generated status packets. The optimal scheduling problem to minimize AoI is formulated as a restless multi-armed bandit problem. To solve the problem efficiently, we derive the Whittle's index in closed-form and establish the indexability thereof. Compared with existing work, we extend the index policy for AoI optimization to incorporate stochastic packet arrivals and optimal packet management (buffering the latest packet). Inspired by the index policy which has near-optimal performance but is centralized by nature, a decentralized status update scheme, i.e., the index-prioritized random access policy (IPRA), is further proposed, achieving universally near-optimal AoI performance and outperforming state-of-the-arts in the literature. +ss_paper_id=c5502091d247c0fe0b4fcfc8245e07b392cd9d99 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_decentralized_status_update_for_ageofinformation_optimization_in_wireless_multiaccess_channels.txt b/database/original_documents/publications_text/2018_decentralized_status_update_for_ageofinformation_optimization_in_wireless_multiaccess_channels.txt new file mode 100644 index 0000000000000000000000000000000000000000..504af812f0007bcb6b01558bc9f101a5fbf02383 --- /dev/null +++ b/database/original_documents/publications_text/2018_decentralized_status_update_for_ageofinformation_optimization_in_wireless_multiaccess_channels.txt @@ -0,0 +1,18 @@ +# Publication +title=Decentralized status update for age-of-information optimization in wireless multiaccess channels +venue=IEEE International Symposium on Information Theory (ISIT), 2018. +authors=['Z Jiang', 'B Krishnamachari', 'X Zheng', 'S Zhou', 'Z Niu'] +abstract=We consider a system where multiple terminals transmit their randomly generated status updates to a base station (BS) sharing a wireless multiaccess uplink channel. The problem of interest, especially in massive Internet-of-Things systems, is that how to schedule the terminals to minimize the time-average age-of-information in a decentralized manner, namely terminals transmit autonomously without signalling exchange (overhead) with the BS or other terminals. Towards this end, the round-robin with one-packet buffers (the newest packet at each terminal only) policy (RR-ONE) is proposed and proved optimal among arrival-independent renewal (AIR) policies. In addition to its simple structure which is instrumental for decentralized implementation, RR-ONE is further proved asymptotically (massive terminals) optimal among all policies, including centralized and non-causal policies. + +# Information +links.pdf=/static/public/papers/zhiyuan_isit_final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ece279b0dfc9350c8efc893f9c0f9b46ab53e575 +type=Conference Papers +year=2018 +paper_id=216727a5 +ss_title=Decentralized Status Update for Age-of-Information Optimization in Wireless Multiaccess Channels +ss_authors=[{'authorId': '4302623', 'name': 'Zhiyuan Jiang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2110068744', 'name': 'Xi Zheng'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=International Symposium on Information Theory +ss_year=2018 +ss_abstract=We consider a system where multiple terminals transmit their randomly generated status updates to a base station (BS) sharing a wireless multiaccess uplink channel. The problem of interest, especially in massive Internet-of-Things systems, is that how to schedule the terminals to minimize the time-average age-of-information in a decentralized manner, namely terminals transmit autonomously without signalling exchange (overhead) with the BS or other terminals. Towards this end, the round-robin with one-packet buffers (the newest packet at each terminal only) policy (RR-ONE) is proposed and proved optimal among arrival-independent renewal (AIR) policies. In addition to its simple structure which is instrumental for decentralized implementation, RR-ONE is further proved asymptotically (massive terminals) optimal among all policies, including centralized and non-causal policies. +ss_paper_id=ece279b0dfc9350c8efc893f9c0f9b46ab53e575 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_deep_reinforcement_learning_for_dynamic_multichannel_access_in_wireless_networks.txt b/database/original_documents/publications_text/2018_deep_reinforcement_learning_for_dynamic_multichannel_access_in_wireless_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c2b68f0247cb6aaa8b2a7148604465835167504 --- /dev/null +++ b/database/original_documents/publications_text/2018_deep_reinforcement_learning_for_dynamic_multichannel_access_in_wireless_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks +venue=in IEEE Transactions on Cognitive Communications and Networking. +authors=['Shangxing Wang', 'Hanpeng Liu', 'Pedro Henrique Gomes and Bhaskar Krishnamachari'] +abstract=We consider a dynamic multichannel access problem, where multiple correlated channels follow an unknown joint Markov model and users select the channel to transmit data. The objective is to find a policy that maximizes the expected long-term number of successful transmissions. The problem is formulated as a partially observable Markov decision process with unknown system dynamics. To overcome the challenges of unknown dynamics and prohibitive computation, we apply the concept of reinforcement learning and implement a deep Q-network (DQN). We first study the optimal policy for fixed-pattern channel switching with known system dynamics and show through simulations that DQN can achieve the same optimal performance without knowing the system statistics. We then compare the performance of DQN with a Myopic policy and a Whittle Index-based heuristic through both more general simulations as well as real data trace and show that DQN achieves near-optimal performance in more complex situations. Finally, we propose an adaptive DQN approach with the capability to adapt its learning in time-varying scenarios. + +# Information +links.pdf=/static/public/papers/DQN_ChannelAccess_TCCN2018_FI.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b4c398f234e946d599b492d8a4bba4eb8376122 +type=Journal Papers +year=2018 +paper_id=3c8ef119 +ss_title=Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks +ss_authors=[{'authorId': '90862831', 'name': 'Shangxing Wang'}, {'authorId': '29901869', 'name': 'Hanpeng Liu'}, {'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Cognitive Communications and Networking +ss_year=2018 +ss_abstract=We consider a dynamic multichannel access problem, where multiple correlated channels follow an unknown joint Markov model and users select the channel to transmit data. The objective is to find a policy that maximizes the expected long-term number of successful transmissions. The problem is formulated as a partially observable Markov decision process with unknown system dynamics. To overcome the challenges of unknown dynamics and prohibitive computation, we apply the concept of reinforcement learning and implement a deep Q-network (DQN). We first study the optimal policy for fixed-pattern channel switching with known system dynamics and show through simulations that DQN can achieve the same optimal performance without knowing the system statistics. We then compare the performance of DQN with a Myopic policy and a Whittle Index-based heuristic through both more general simulations as well as real data trace and show that DQN achieves near-optimal performance in more complex situations. Finally, we propose an adaptive DQN approach with the capability to adapt its learning in time-varying scenarios. +ss_paper_id=3b4c398f234e946d599b492d8a4bba4eb8376122 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_deepnap_datadriven_base_station_sleeping_operations_through_deep_reinforcement_learning.txt b/database/original_documents/publications_text/2018_deepnap_datadriven_base_station_sleeping_operations_through_deep_reinforcement_learning.txt new file mode 100644 index 0000000000000000000000000000000000000000..ceff09e7d74170d4fcba2a2ffd80489fa790ab04 --- /dev/null +++ b/database/original_documents/publications_text/2018_deepnap_datadriven_base_station_sleeping_operations_through_deep_reinforcement_learning.txt @@ -0,0 +1,18 @@ +# Publication +title=DeepNap: Data-Driven Base Station Sleeping Operations through Deep Reinforcement Learning +venue=IEEE Internet of Things Journal, SI on AI Powered Network Management, accepted 2018. +authors=['Jingchu Liu', 'Bhaskar Krishnamachari', 'Sheng Zhou', 'Zhisheng Niu'] +abstract=Base station (BS) sleeping is an effective way to reduce the energy consumption of mobile networks. Previous efforts to design sleeping control algorithms mainly rely on stochastic traffic models and analytical derivation. However, the tractability of models often conflicts with the complexity of real-world traffic, making it difficult to apply in reality. In this paper, we propose a data-driven algorithm for dynamic sleeping control called DeepNap. This algorithm uses a deep Q-network (DQN) to learn effective sleeping policies from high-dimensional raw observations or un-quantized systems state vectors. We propose to enhance the original DQN algorithm with action-wise experience replay and adaptive reward scaling to deal with the challenges in nonstationary traffic. We also provide a model-assisted variant of DeepNap through the Dyna framework for inferring and simulating system dynamics. Periodical traffic modeling makes it possible to capture the nonstationarity in real-world traffic and the incorporation with DQN allows for feature learning and generalization from model outputs. Experiments show that both the end-to-end and the model-assisted version of DeepNap outperform table-based ${Q}$ -learning algorithm and the nonstationarity enhancements improve the stability of vanilla DQN. + +# Information +links.pdf=/static/public/papers/deepnap_IoTJ-Final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cbe3bfc43a228b2007f36afdf320719a62b4214d +type=Journal Papers +year=2018 +paper_id=952ff957 +ss_title=DeepNap: Data-Driven Base Station Sleeping Operations Through Deep Reinforcement Learning +ss_authors=[{'authorId': '1695477', 'name': 'Jingchu Liu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Internet of Things Journal +ss_year=2018 +ss_abstract=Base station (BS) sleeping is an effective way to reduce the energy consumption of mobile networks. Previous efforts to design sleeping control algorithms mainly rely on stochastic traffic models and analytical derivation. However, the tractability of models often conflicts with the complexity of real-world traffic, making it difficult to apply in reality. In this paper, we propose a data-driven algorithm for dynamic sleeping control called DeepNap. This algorithm uses a deep Q-network (DQN) to learn effective sleeping policies from high-dimensional raw observations or un-quantized systems state vectors. We propose to enhance the original DQN algorithm with action-wise experience replay and adaptive reward scaling to deal with the challenges in nonstationary traffic. We also provide a model-assisted variant of DeepNap through the Dyna framework for inferring and simulating system dynamics. Periodical traffic modeling makes it possible to capture the nonstationarity in real-world traffic and the incorporation with DQN allows for feature learning and generalization from model outputs. Experiments show that both the end-to-end and the model-assisted version of DeepNap outperform table-based ${Q}$ -learning algorithm and the nonstationarity enhancements improve the stability of vanilla DQN. +ss_paper_id=cbe3bfc43a228b2007f36afdf320719a62b4214d \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_distributionally_robust_radio_frequency_localization.txt b/database/original_documents/publications_text/2018_distributionally_robust_radio_frequency_localization.txt new file mode 100644 index 0000000000000000000000000000000000000000..ff9d9155996c02f7ce5f72d8d4b640753f2fca91 --- /dev/null +++ b/database/original_documents/publications_text/2018_distributionally_robust_radio_frequency_localization.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributionally Robust Radio Frequency Localization +venue=IEEE Transactions on Signal and Information Processing over Networks, 2018. +authors=['N A Jagadeesan', 'B Krishnamachari'] +abstract=We consider the problem of estimating the location of an RF-device using observations such as received signal strengths, generated according to an uncertain distribution from a set of transmitters with known locations. We present a distributionally robust formulation of the localization problem that explicitly takes into account the uncertainty in the distribution that generates the observations. We identify the structure of the robust solution and demonstrate how to construct the optimization problem so that it is easily computed, and always yields the optimal solution. We show that the robust estimate outperforms traditional methods in the presence of modeling errors, while remaining close to the traditional estimate when the modeling is exact. This suggests that the formulation presented here is an attractive option in applications where we use a model that may not be an exact fit to our environment or if changes in our environment have induced errors in an empirically derived model. + +# Information +links.pdf=/static/public/papers/Nachi_RLczn_CR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d9e466892ba5a407cfeee256d3a4bbdc2510bf76 +type=Journal Papers +year=2018 +paper_id=73e467a4 +ss_title=Distributionally Robust Radio Frequency Localization +ss_authors=[{'authorId': '2278635', 'name': 'N. Jagadeesan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Transactions on Signal and Information Processing over Networks +ss_year=2019 +ss_abstract=We consider the problem of estimating the location of an RF-device using observations such as received signal strengths, generated according to an uncertain distribution from a set of transmitters with known locations. We present a distributionally robust formulation of the localization problem that explicitly takes into account the uncertainty in the distribution that generates the observations. We identify the structure of the robust solution and demonstrate how to construct the optimization problem so that it is easily computed, and always yields the optimal solution. We show that the robust estimate outperforms traditional methods in the presence of modeling errors, while remaining close to the traditional estimate when the modeling is exact. This suggests that the formulation presented here is an attractive option in applications where we use a model that may not be an exact fit to our environment or if changes in our environment have induced errors in an empirically derived model. +ss_paper_id=d9e466892ba5a407cfeee256d3a4bbdc2510bf76 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_endtoend_network_performance_monitoring_for_dispersed_computing.txt b/database/original_documents/publications_text/2018_endtoend_network_performance_monitoring_for_dispersed_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..b1378f67901c59c3a8146893d60c7fe95afa20e4 --- /dev/null +++ b/database/original_documents/publications_text/2018_endtoend_network_performance_monitoring_for_dispersed_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=End-to-End Network Performance Monitoring for Dispersed Computing +venue=International Conference on Computing, Networking and Communications, March 2018. +authors=['Quynh Nguyen', 'Pradipta Ghosh', 'Bhaskar Krishnamachari'] +abstract=With a growing demand for computationally intensive applications with widely distributed data sources, there is an increased need for dispersed computing systems that can schedule computation on cloud nodes across a network. A key challenge in dispersed computing is the need to characterize the end to end network performance for data transfer between compute points and measure it at run-time so that optimized computation scheduling decisions can be made. To address this challenge, we empirically study file transfer times between geographically dispersed cloud computing points using SCP (secure copy). We show, to our knowledge for the first time, that the end to end file transfer latency experienced by this widely-used protocol is better modelled to have a quadratic dependency on the file size (instead of a simple linear dependency that would be expected if the network were treated as an bit-pipe with a deterministic average bandwidth). We incorporate this observation into the design of a real-time network profiler for dispersed computing that determines best fit quadratic regression parameters between each pair of nodes and reports them to the scheduler node. Our end to end network quadratic latency profiler has been released as a key part of an open source tool dispersed computing profiler called DRUPE, and also as part of a DAG-based dispersed computing scheduling tool called CIRCE. + +# Information +links.pdf=/static/public/papers/DispersedNetworkProfiler_ICNC2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0713a59e708fe8bbc90b7768701544115a187406 +type=Conference Papers +year=2018 +paper_id=47e619cb +ss_paper_id=0713a59e708fe8bbc90b7768701544115a187406 +ss_title=End-to-End Network Performance Monitoring for Dispersed Computing +ss_authors=[{'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Computing, Networking and Communications +ss_year=2018 +ss_abstract=With a growing demand for computationally intensive applications with widely distributed data sources, there is an increased need for dispersed computing systems that can schedule computation on cloud nodes across a network. A key challenge in dispersed computing is the need to characterize the end to end network performance for data transfer between compute points and measure it at run-time so that optimized computation scheduling decisions can be made. To address this challenge, we empirically study file transfer times between geographically dispersed cloud computing points using SCP (secure copy). We show, to our knowledge for the first time, that the end to end file transfer latency experienced by this widely-used protocol is better modelled to have a quadratic dependency on the file size (instead of a simple linear dependency that would be expected if the network were treated as an bit-pipe with a deterministic average bandwidth). We incorporate this observation into the design of a real-time network profiler for dispersed computing that determines best fit quadratic regression parameters between each pair of nodes and reports them to the scheduler node. Our end to end network quadratic latency profiler has been released as a key part of an open source tool dispersed computing profiler called DRUPE, and also as part of a DAG-based dispersed computing scheduling tool called CIRCE. \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_fwb_funneling_wider_bandwidth_algorithm_for_high_performance_data_collection_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2018_fwb_funneling_wider_bandwidth_algorithm_for_high_performance_data_collection_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..44a0e79029c998e1d8cd3d4d393b684c60c75a30 --- /dev/null +++ b/database/original_documents/publications_text/2018_fwb_funneling_wider_bandwidth_algorithm_for_high_performance_data_collection_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=FWB: Funneling Wider Bandwidth Algorithm for High Performance Data Collection in Wireless Sensor Networks +venue=21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Montreal, 2018 +authors=['Rodrigo C Tavares', 'Marcos Carvalho', 'Marcos A M Vieira', 'Luiz F M Vieira', 'Bhaskar Krishnamachari'] +abstract=Many applications in Wireless Sensor Networks (WSNs) require collecting massive data in a coordinated approach. To that end, a many-to-one (convergecast) communication pattern is used in tree-based WSNs. However, traffic near the sink node usually becomes the network bottleneck. In this work, we propose an extension to the 802.15.4 standard for enabling wider bandwidth channels. Then, we measure the speed of data collection in a tree-based WSN, with radios operating in these wider bandwidth channels. Finally, we propose and implement Funneling Wider Bandwidth (FWB), an algorithm that minimizes schedule length in networks. We prove that the algorithm is optimal in regard to the number of time slots. In our simulations and experiments, we show that FWB achieves a higher average throughput and a smaller number of time slots. This new approach could be adapted for other relevant emerging standards, such as WirelessHART, ISA 100.11a and IEEE 802.15.4e TSCH. + +# Information +links.pdf=/static/public/papers/fwbFunnelingWider_2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cb3c16362e69546f8dba8bd3da5903fe3d543a1f +type=Conference Papers +year=2018 +paper_id=12e372a6 +ss_title=FWB: Funneling Wider Bandwidth Algorithm for High Performance Data Collection in Wireless Sensor Networks +ss_authors=[{'authorId': '2060796026', 'name': 'Rodrigo C. Tavares'}, {'authorId': '2075426145', 'name': 'Marcos Carvalho'}, {'authorId': '7250999', 'name': 'M. Vieira'}, {'authorId': '143622284', 'name': 'L. Vieira'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems +ss_year=2018 +ss_abstract=Many applications in Wireless Sensor Networks (WSNs) require collecting massive data in a coordinated approach. To that end, a many-to-one (convergecast) communication pattern is used in tree-based WSNs. However, traffic near the sink node usually becomes the network bottleneck. In this work, we propose an extension to the 802.15.4 standard for enabling wider bandwidth channels. Then, we measure the speed of data collection in a tree-based WSN, with radios operating in these wider bandwidth channels. Finally, we propose and implement Funneling Wider Bandwidth (FWB), an algorithm that minimizes schedule length in networks. We prove that the algorithm is optimal in regard to the number of time slots. In our simulations and experiments, we show that FWB achieves a higher average throughput and a smaller number of time slots. This new approach could be adapted for other relevant emerging standards, such as WirelessHART, ISA 100.11a and IEEE 802.15.4e TSCH. +ss_paper_id=cb3c16362e69546f8dba8bd3da5903fe3d543a1f \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_i3_an_iot_marketplace_for_smart_communities.txt b/database/original_documents/publications_text/2018_i3_an_iot_marketplace_for_smart_communities.txt new file mode 100644 index 0000000000000000000000000000000000000000..de810939d3b45baeb727286cf024ea393549241e --- /dev/null +++ b/database/original_documents/publications_text/2018_i3_an_iot_marketplace_for_smart_communities.txt @@ -0,0 +1,18 @@ +# Publication +title=I3: An IoT Marketplace for Smart Communities +venue=In Proceedings of the 16th ACM International Conference on Mobile Mobile Systems, Applications, and Services (MobiSys) (ACM IoT Day Vision Paper), Munich, Germany, June 10-15, 2018. +authors=['Bhaskar Krishnamachari', 'Jerry Power', 'Seon Ho Kim', 'Cyrus Shahabi'] +abstract=There are many barriers preventing the adoption of the Internet of Things (IoT) in smart communities and smart cities, including interoperability, concerns about vendor lock-in, economic constraints, and privacy issues. We present a “marketecture” and platform called the Intelligent IoT Integrator (I3) that addresses these problems through the development of a marketplace that facilities the easy movement of realtime IoT data streams between device owners and third-party applications, based on the establishment of suitable incentives and usage agreements. We envision the system scaling gracefully over time as different I3 community instances peer with each other. + +# Information +links.pdf=/static/public/papers/i3-iot-marketplace.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/8f20677e2954ca83df5b87255fc72cb62f3b735f +type=Conference Papers +year=2018 +paper_id=53b4e74c +ss_title=I3: An IoT Marketplace for Smart Communities +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '30783098', 'name': 'Jerry Power'}, {'authorId': '2109530520', 'name': 'S. Kim'}, {'authorId': '1773086', 'name': 'C. Shahabi'}] +ss_venue=ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services +ss_year=2018 +ss_abstract=There are many barriers preventing the adoption of the Internet of Things (IoT) in smart communities and smart cities, including interoperability, concerns about vendor lock-in, economic constraints, and privacy issues. We present a “marketecture” and platform called the Intelligent IoT Integrator (I3) that addresses these problems through the development of a marketplace that facilities the easy movement of realtime IoT data streams between device owners and third-party applications, based on the establishment of suitable incentives and usage agreements. We envision the system scaling gracefully over time as different I3 community instances peer with each other. +ss_paper_id=8f20677e2954ca83df5b87255fc72cb62f3b735f \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_intelligent_robotic_iot_system_iris_testbed.txt b/database/original_documents/publications_text/2018_intelligent_robotic_iot_system_iris_testbed.txt new file mode 100644 index 0000000000000000000000000000000000000000..26ae16c380a92ac2ee150fba8416eed5278bd52a --- /dev/null +++ b/database/original_documents/publications_text/2018_intelligent_robotic_iot_system_iris_testbed.txt @@ -0,0 +1,18 @@ +# Publication +title=Intelligent Robotic IoT System (IRIS) Testbed +venue=In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct, 2018 +authors=['Jason A Tran', 'Pradipta Ghosh', 'Yutong Gu', 'Richard Kim', 'Daniel DSouza', 'Nora Ayanian', 'Bhaskar Krishnamachari'] +abstract=We present the Intelligent Robotic IoT System (IRIS), a modular, portable, scalable, and open-source testbed for robotic wireless network research. There are two key features that separate IRIS from most of the state-of-the-art multi-robot testbeds. (1)Portability: IRIS does not require a costly static global positioning system such as a VICON system nor time-intensive vision-based SLAM for its operation. Designed with an inexpensive Time Difference of Arrival (TDoA)localization system with centimeter level accuracy, the IRIS testbed can be deployed in an arbitrary uncontrolled environment in a matter of minutes. (2)Programmable Wireless Communication Stack: IRIS comes with a modular programmable low-power IEEE 802.15.4 radio and IPv6 network stack on each node. For the ease of administrative control and communication, we also developed a lightweight publish-subscribe overlay protocol called ROMANO that is used for bootstrapping the robots (also referred to as the IRISbots), collecting statistics, and direct control of individual robots, if needed. We detail the modular architecture of the IRIS testbed design along with the system implementation details and localization performance statistics. + +# Information +links.pdf=/static/public/papers/Intelligent_Robotic_Iot_System_Testbed__IRIS_-4.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/adba731362f0f649d8d95e7d858c1269f5b4e144 +type=Conference Papers +year=2018 +paper_id=2dd38114 +ss_title=Intelligent Robotic IoT System (IRIS)Testbed +ss_authors=[{'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '2047465961', 'name': 'Yutong Gu'}, {'authorId': '2054540950', 'name': 'Richard Kim'}, {'authorId': '2064115484', 'name': "Daniel D'Souza"}, {'authorId': '2247162', 'name': 'Nora Ayanian'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE/RJS International Conference on Intelligent RObots and Systems +ss_year=2018 +ss_abstract=We present the Intelligent Robotic IoT System (IRIS), a modular, portable, scalable, and open-source testbed for robotic wireless network research. There are two key features that separate IRIS from most of the state-of-the-art multi-robot testbeds. (1)Portability: IRIS does not require a costly static global positioning system such as a VICON system nor time-intensive vision-based SLAM for its operation. Designed with an inexpensive Time Difference of Arrival (TDoA)localization system with centimeter level accuracy, the IRIS testbed can be deployed in an arbitrary uncontrolled environment in a matter of minutes. (2)Programmable Wireless Communication Stack: IRIS comes with a modular programmable low-power IEEE 802.15.4 radio and IPv6 network stack on each node. For the ease of administrative control and communication, we also developed a lightweight publish-subscribe overlay protocol called ROMANO that is used for bootstrapping the robots (also referred to as the IRISbots), collecting statistics, and direct control of individual robots, if needed. We detail the modular architecture of the IRIS testbed design along with the system implementation details and localization performance statistics. +ss_paper_id=adba731362f0f649d8d95e7d858c1269f5b4e144 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_moving_beyond_testbeds_lessons_we_learned_about_connectivity.txt b/database/original_documents/publications_text/2018_moving_beyond_testbeds_lessons_we_learned_about_connectivity.txt new file mode 100644 index 0000000000000000000000000000000000000000..db6e7f2c30e1e6062dab727a259d03eaf7b0207b --- /dev/null +++ b/database/original_documents/publications_text/2018_moving_beyond_testbeds_lessons_we_learned_about_connectivity.txt @@ -0,0 +1,18 @@ +# Publication +title=Moving Beyond Testbeds? Lessons (We) Learned about Connectivity +venue=IEEE Pervasive Computing. +authors=['Keoma Brun', 'Pedro Henrique Gomes', 'Thomas Watteyne', 'Pascale Minet'] +abstract=How realistic is the connectivity in a testbed? We answer this question by gathering connectivity measurements from 11 datasets, on both testbeds and real-world deployments. We propose a 5-point checklist to assess the realism of a testbed deployment and introduce a visual tool to evaluate the connectivity characteristics of a deployment. + +# Information +links.pdf=https://anrg.usc.edu/www/brun18moving_3_r2_rc5_manuscript/ +links.semantic_scholar=https://www.semanticscholar.org/paper/8075ddda77cbe364ae2ec7aefda7ade7b432f3b9 +type=Journal Papers +year=2018 +paper_id=7203a89b +ss_title=Moving Beyond Testbeds? Lessons (We) Learned About Connectivity +ss_authors=[{'authorId': '1403260912', 'name': 'Keoma Brun-Laguna'}, {'authorId': '1684475', 'name': 'P. Minet'}, {'authorId': '1686537', 'name': 'T. Watteyne'}, {'authorId': '144097385', 'name': 'P. Gomes'}] +ss_venue=IEEE pervasive computing +ss_year=2018 +ss_abstract=How realistic is the connectivity in a testbed? We answer this question by gathering connectivity measurements from 11 datasets, on both testbeds and real-world deployments. We propose a 5-point checklist to assess the realism of a testbed deployment and introduce a visual tool to evaluate the connectivity characteristics of a deployment. +ss_paper_id=8075ddda77cbe364ae2ec7aefda7ade7b432f3b9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_percentile_policies_for_inventory_problems_with_partially_observed_markovian_demands.txt b/database/original_documents/publications_text/2018_percentile_policies_for_inventory_problems_with_partially_observed_markovian_demands.txt new file mode 100644 index 0000000000000000000000000000000000000000..0ff900ce219ed3e79a0cc8eb87e58e92d7397de2 --- /dev/null +++ b/database/original_documents/publications_text/2018_percentile_policies_for_inventory_problems_with_partially_observed_markovian_demands.txt @@ -0,0 +1,18 @@ +# Publication +title=Percentile Policies for Inventory Problems with Partially Observed Markovian Demands +venue=2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France, 2018. +authors=['F Mansourifard', 'P Mansourifard', 'B Krishnamachari'] +abstract=We study a set of inventory control problems with correlated demands over different time periods. On the other hands, we relax the assumption of fully observation of the demand at the end of each time period. In other words, we consider the case of partially observed (censored) demand in the context of a multiperiod inventory problem. If the demand in a period is larger than the inventory level, we don’t observe the unmet demand. Otherwise, the demand is fully observed and the leftover inventory is carried over to the next period. Formulating the problem as a Partially Observable Markov Decision Process provides a dynamic program (DP) to minimize the total expected cost. Unfortunately, the corresponding DP is defined on an uncountable state space, with little hope for a computationally feasible solution. We present an interesting heuristic policy with a percentile threshold structure which outperforms the myopic policy and performs close to the optimal policy. We derive its performance guarantee and evaluate it using numerical simulations. + +# Information +links.pdf=/static/public/papers/Inventory_IEOM2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/eebf92f3bf6924a8c6e2b212bdc17e1c04e143f0 +type=Conference Papers +year=2018 +paper_id=1ea1fe84 +ss_title=Percentile Policies for Inventory Problems with Partially Observed Markovian Demands +ss_authors=[{'authorId': '1738225641', 'name': 'Farzaneh Mansourifard'}, {'authorId': '1728085', 'name': 'Parisa Mansourifard'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145416466', 'name': 'Ming Hsieh'}] +ss_venue= +ss_year=2018 +ss_abstract=We study a set of inventory control problems with correlated demands over different time periods. On the other hands, we relax the assumption of fully observation of the demand at the end of each time period. In other words, we consider the case of partially observed (censored) demand in the context of a multiperiod inventory problem. If the demand in a period is larger than the inventory level, we don’t observe the unmet demand. Otherwise, the demand is fully observed and the leftover inventory is carried over to the next period. Formulating the problem as a Partially Observable Markov Decision Process provides a dynamic program (DP) to minimize the total expected cost. Unfortunately, the corresponding DP is defined on an uncountable state space, with little hope for a computationally feasible solution. We present an interesting heuristic policy with a percentile threshold structure which outperforms the myopic policy and performs close to the optimal policy. We derive its performance guarantee and evaluate it using numerical simulations. +ss_paper_id=eebf92f3bf6924a8c6e2b212bdc17e1c04e143f0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_smartedge_a_smart_contract_for_edge_computing.txt b/database/original_documents/publications_text/2018_smartedge_a_smart_contract_for_edge_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..ea67571aec6615d97b00729e302f0398bcf74ada --- /dev/null +++ b/database/original_documents/publications_text/2018_smartedge_a_smart_contract_for_edge_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=SmartEdge: A Smart Contract for Edge Computing +venue=1​st​ International Workshop on Blockchain for the Internet of Things at the IEEE International Conference on Blockchain, July 2018. +authors=['Kwame-Lante Wright', 'Martin Martinez', 'Uday Chadha', 'Bhaskar Krishnamachari'] +abstract=Edge computing has emerged as an effective offloading strategy for constrained devices. It enables low-capability devices to leverage nearby resources for assistance with computationally-intensive tasks. We envision a future where Internet of Things (IoT) devices may autonomously transact with other more powerful devices to request such offloading services. We believe blockchain-based technologies can help facilitate this process by tracking usage and managing payments. In this work we introduce SmartEdge, an Ethereum-based smart contract for edge computing and show that it is a low-cost, low-overhead tool for compute-resource management. + +# Information +links.pdf=/static/public/papers/SmartEdge_BIoT2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/40533f3715ba624808ae503c8f2b83d03f2153ad +type=Conference Papers +year=2018 +paper_id=1e028176 +ss_title=SmartEdge: A Smart Contract for Edge Computing +ss_authors=[{'authorId': '37763411', 'name': 'Kwame-Lante Wright'}, {'authorId': '2116737671', 'name': 'Martin Martinez'}, {'authorId': '1394574102', 'name': 'Uday Chadha'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) +ss_year=2018 +ss_abstract=Edge computing has emerged as an effective offloading strategy for constrained devices. It enables low-capability devices to leverage nearby resources for assistance with computationally-intensive tasks. We envision a future where Internet of Things (IoT) devices may autonomously transact with other more powerful devices to request such offloading services. We believe blockchain-based technologies can help facilitate this process by tracking usage and managing payments. In this work we introduce SmartEdge, an Ethereum-based smart contract for edge computing and show that it is a low-cost, low-overhead tool for compute-resource management. +ss_paper_id=40533f3715ba624808ae503c8f2b83d03f2153ad \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_streaming_data_payment_protocol_sdpp_for_the_internet_of_things.txt b/database/original_documents/publications_text/2018_streaming_data_payment_protocol_sdpp_for_the_internet_of_things.txt new file mode 100644 index 0000000000000000000000000000000000000000..b125fff93b2be95bbcdf8f2382e1b32dfa277e4f --- /dev/null +++ b/database/original_documents/publications_text/2018_streaming_data_payment_protocol_sdpp_for_the_internet_of_things.txt @@ -0,0 +1,18 @@ +# Publication +title=Streaming Data Payment Protocol (SDPP) for the Internet of Things +venue=the 1st International Workshop on Blockchain for the Internet of Things (BIoT), held in conjunction with IEEE Blockchain, Halifax, Canada, 2018. +authors=['Rahul Radhakrishnan', 'Bhaskar Krishnamachari'] +abstract=As the deployments of IoT systems grow for a wide range of applications, there are new use-cases emerging where the organizations or individuals that own sensor devices are different from the individuals or organizations that have use for the data from those devices. In such settings it is helpful for the data consumer to be able to effortlessly get data streams in return for monetary payments. The advent of cryptocurrency technologies have made the establishment of bidirectional automatic data micro-payment channels (with data flowing in one direction and micro-payments in the other) feasible. We present an application layer protocol called the streaming data payment protocol (SDPP) which embodies this very idea. The protocol also makes provisions for the data provider to send automated invoices and the data consumer to provide signed receipts for data to be stored on an immutable distributed ledger for auditing and dispute resolution purposes. We present an implementation of SDPP using TCP for data transport and IOTA as both cryptocurrency and a distributed ledger. + +# Information +links.pdf=/static/public/papers/streamingDataPaymentProtocol_2018.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/28b4251922feb10a6a7c534313f81aab88025a34 +type=Conference Papers +year=2018 +paper_id=5bf913ac +ss_title=Streaming Data Payment Protocol (SDPP) for the Internet of Things +ss_authors=[{'authorId': '2066241990', 'name': 'Rahul Radhakrishnan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) +ss_year=2018 +ss_abstract=As the deployments of IoT systems grow for a wide range of applications, there are new use-cases emerging where the organizations or individuals that own sensor devices are different from the individuals or organizations that have use for the data from those devices. In such settings it is helpful for the data consumer to be able to effortlessly get data streams in return for monetary payments. The advent of cryptocurrency technologies have made the establishment of bidirectional automatic data micro-payment channels (with data flowing in one direction and micro-payments in the other) feasible. We present an application layer protocol called the streaming data payment protocol (SDPP) which embodies this very idea. The protocol also makes provisions for the data provider to send automated invoices and the data consumer to provide signed receipts for data to be stored on an immutable distributed ledger for auditing and dispute resolution purposes. We present an implementation of SDPP using TCP for data transport and IOTA as both cryptocurrency and a distributed ledger. +ss_paper_id=28b4251922feb10a6a7c534313f81aab88025a34 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_swarmdag_a_partition_tolerant_distributed_ledger_protocol_for_swarm_robotics_supported_by_boeing_research_and_technology.txt b/database/original_documents/publications_text/2018_swarmdag_a_partition_tolerant_distributed_ledger_protocol_for_swarm_robotics_supported_by_boeing_research_and_technology.txt new file mode 100644 index 0000000000000000000000000000000000000000..0506e45562f42f0c8ad89487a1ab1b4dabb26059 --- /dev/null +++ b/database/original_documents/publications_text/2018_swarmdag_a_partition_tolerant_distributed_ledger_protocol_for_swarm_robotics_supported_by_boeing_research_and_technology.txt @@ -0,0 +1,18 @@ +# Publication +title=SwarmDAG: A Partition Tolerant Distributed Ledger Protocol for Swarm Robotics (Supported by Boeing Research and Technology) +venue=Symposium on Blockchain for Robotic Systems, MIT, Boston, USA, Dec. 5, 2018. +authors=['Jason A Tran', 'Gowri S Ramachandran', 'Palash M Shah', 'Claudiu B Danilov', 'Rodolfo A Santiago', 'Bhaskar Krishnamachari'] +abstract=Blockchain technology has the potential to disrupt applications beyond cryptocurrencies. This work applies the concepts of blockchain technology to swarm robotics applications. Swarm robots typically operate in a distributed fashion, wherein the collaboration and coordination between the robots are essential to accomplishing the application goals. However, robot swarms may experience network partitions either due to navigational and communication challenges or in order to perform certain tasks efficiently. We propose a novel protocol, SwarmDAG, that enables the maintenance of a distributed ledger based on the concept of extended virtual synchrony while managing and tolerating network partitions. + +# Information +links.pdf=/static/public/papers/SwarmDAG_A_Partition_Tolerant_Distributed_Ledger_Protocol_for_Swarm_Robotics.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4e3d171d266783408102a05695ccf0421e90729d +type=Conference Papers +year=2018 +paper_id=aa59d310 +ss_paper_id=4e3d171d266783408102a05695ccf0421e90729d +ss_title=SwarmDAG: A Partition Tolerant Distributed Ledger Protocol for Swarm Robotics +ss_authors=[{'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1382693921', 'name': 'Palash M Shah'}, {'authorId': '2582540', 'name': 'C. Danilov'}, {'authorId': '2841724', 'name': 'Rodolfo A. Santiago'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Ledger +ss_year=2019 +ss_abstract=Blockchain technology has the potential to disrupt applications beyond cryptocurrencies. This work applies the concepts of blockchain technology to swarm robotics applications. Swarm robots typically operate in a distributed fashion, wherein the collaboration and coordination between the robots are essential to accomplishing the application goals. However, robot swarms may experience network partitions either due to navigational and communication challenges or in order to perform certain tasks efficiently. We propose a novel protocol, SwarmDAG, that enables the maintenance of a distributed ledger based on the concept of extended virtual synchrony while managing and tolerating network partitions. \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_towards_a_decentralized_data_marketplace_for_smart_cities.txt b/database/original_documents/publications_text/2018_towards_a_decentralized_data_marketplace_for_smart_cities.txt new file mode 100644 index 0000000000000000000000000000000000000000..b861cf7acb50550129fd292b8efb247f625ce2b4 --- /dev/null +++ b/database/original_documents/publications_text/2018_towards_a_decentralized_data_marketplace_for_smart_cities.txt @@ -0,0 +1,18 @@ +# Publication +title=Towards a Decentralized Data Marketplace for Smart Cities +venue=Invited paper at The 1st International Workshop on BLockchain Enabled Sustainable Smart Cities (BLESS 2018), Kansas City, MO, USA, Sept. 19, 2018, held in conjunction with the 4th IEEE Annual International Smart Cities Conference (ISC2 2018). +authors=['Gowri S Ramachandran', 'Rahul Radhakrishnan', 'Bhaskar Krishnamachari'] +abstract=One of the ways in which a city can become smarter is to grow a local economy around the sharing of data from IoT devices and other open data that can be used in applications to improve the lives of its citizens. Prior work and ongoing projects have examined or are currently focused on the development of centralized data marketplaces for smart cities. Here we explore how a decentralized data marketplace could be created using blockchain and other distributed ledger technologies. We consider the possible benefits of such a decentralized architecture, identify different elements that such a decentralized marketplace should have, and show how they could be potentially integrated into a comprehensive solution. We also present a simple smart contract implementation of a decentralized registry where data products can be posted by data owners for retrieval by potential buyers. + +# Information +links.pdf=/static/public/papers/decentralized-data-marketplace-smart-cities.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4d2e66cd639142e96569e9271efe468156ca1c18 +type=Conference Papers +year=2018 +paper_id=a7133f73 +ss_title=Towards a Decentralized Data Marketplace for Smart Cities +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2066241990', 'name': 'Rahul Radhakrishnan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2018 IEEE International Smart Cities Conference (ISC2) +ss_year=2018 +ss_abstract=One of the ways in which a city can become smarter is to grow a local economy around the sharing of data from IoT devices and other open data that can be used in applications to improve the lives of its citizens. Prior work and ongoing projects have examined or are currently focused on the development of centralized data marketplaces for smart cities. Here we explore how a decentralized data marketplace could be created using blockchain and other distributed ledger technologies. We consider the possible benefits of such a decentralized architecture, identify different elements that such a decentralized marketplace should have, and show how they could be potentially integrated into a comprehensive solution. We also present a simple smart contract implementation of a decentralized registry where data products can be posted by data owners for retrieval by potential buyers. +ss_paper_id=4d2e66cd639142e96569e9271efe468156ca1c18 \ No newline at end of file diff --git a/database/original_documents/publications_text/2018_wave_a_distributed_scheduling_framework_for_dispersed_computing.txt b/database/original_documents/publications_text/2018_wave_a_distributed_scheduling_framework_for_dispersed_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..3d801bfddecbbb56c17503d709dae8db99fc27cc --- /dev/null +++ b/database/original_documents/publications_text/2018_wave_a_distributed_scheduling_framework_for_dispersed_computing.txt @@ -0,0 +1,11 @@ +# Publication +title=WAVE: A Distributed Scheduling Framework for Dispersed Computing +venue=USC ANRG Technical Report, ANRG-2018-01. +authors=['Pranav Sakulkar', 'Pradipta Ghosh', 'Aleksandra Knezevic', 'Jiatong Wang', 'Quynh Nguyen', 'Jason Tran', 'HV Krishna Giri Narra', 'Zhifeng Lin', 'Songze Li', 'Ming Yu', 'Bhaskar Krishnamachari', 'Salman Avestimehr', 'Murali Annavaram'] +abstract=None + +# Information +links.pdf=/static/public/papers/wave_dispersed_computing_ANRGTechReport.pdf +type=Technical Reports and Preprints +year=2018 +paper_id=f547d667 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_a_crowdbased_image_learning_framework_using_edge_computing_for_smart_city.txt b/database/original_documents/publications_text/2019_a_crowdbased_image_learning_framework_using_edge_computing_for_smart_city.txt new file mode 100644 index 0000000000000000000000000000000000000000..c48d7bd9c409d0440a85c1db283392b3b4c990e9 --- /dev/null +++ b/database/original_documents/publications_text/2019_a_crowdbased_image_learning_framework_using_edge_computing_for_smart_city.txt @@ -0,0 +1,18 @@ +# Publication +title=A Crowd-Based Image Learning Framework Using Edge Computing for Smart City +venue=5th IEEE International Conference on Multimedia Big Data, Singapore, September 2019. (Winner of Best Student Paper Award) +authors=['Giorgos Constantinou', 'Abdullah Alfarrarjeh', 'Seon Ho Kim', 'Gowri Sankar Ramachandran', 'Bhaskar Krishnamachari', 'Cyrus Shahabi'] +abstract=Smart city applications covering a wide area such as traffic monitoring and pothole detection are gradually adopting more image machine learning algorithms utilizing ubiquitous camera sensors. To support such applications, an edge computing paradigm focuses on processing large amount of multimedia data at the edge to offload processing cost and reduce long-distance traffic and latency. However, existing edge computing approaches rely on pre-trained static models and are limited in supporting diverse classes of edge devices as well as learning models to support them. This research proposes a novel crowd-based learning framework which allows edge devices with diverse resource capabilities to perform machine learning towards the realization of image-based smart city applications. The intelligent retraining algorithm allows sharing key visual features to achieve a higher accuracy based on the temporal and geospatial uniqueness. Our evaluation shows the trade-off between accuracy and the resource constraints of the edge devices, while the model re-sizing option enables running machine learning models on edge devices with high flexibility. + +# Information +links.pdf=/static/public/papers/BigMM19__Crowd_learning_Framework_using_Edge_Computing_for_Smart_City__Camera_Ready_.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/1f86887c01fe603363dfa02bab8830dc68704485 +type=Conference Papers +year=2019 +paper_id=f1cf5b5e +ss_title=A Crowd-Based Image Learning Framework using Edge Computing for Smart City Applications +ss_authors=[{'authorId': '32737352', 'name': 'G. Constantinou'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2522656', 'name': 'Abdullah Alfarrarjeh'}, {'authorId': '2109530520', 'name': 'S. Kim'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1773086', 'name': 'C. Shahabi'}] +ss_venue=IEEE International Conference on Multimedia Big Data +ss_year=2019 +ss_abstract=Smart city applications covering a wide area such as traffic monitoring and pothole detection are gradually adopting more image machine learning algorithms utilizing ubiquitous camera sensors. To support such applications, an edge computing paradigm focuses on processing large amount of multimedia data at the edge to offload processing cost and reduce long-distance traffic and latency. However, existing edge computing approaches rely on pre-trained static models and are limited in supporting diverse classes of edge devices as well as learning models to support them. This research proposes a novel crowd-based learning framework which allows edge devices with diverse resource capabilities to perform machine learning towards the realization of image-based smart city applications. The intelligent retraining algorithm allows sharing key visual features to achieve a higher accuracy based on the temporal and geospatial uniqueness. Our evaluation shows the trade-off between accuracy and the resource constraints of the edge devices, while the model re-sizing option enables running machine learning models on edge devices with high flexibility. +ss_paper_id=1f86887c01fe603363dfa02bab8830dc68704485 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_an_evaluation_of_consensus_latency_in_partitioning_networks.txt b/database/original_documents/publications_text/2019_an_evaluation_of_consensus_latency_in_partitioning_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..a5945e291125c82e78f08552b9c57e74e64c772d --- /dev/null +++ b/database/original_documents/publications_text/2019_an_evaluation_of_consensus_latency_in_partitioning_networks.txt @@ -0,0 +1,19 @@ +# Publication +title=An Evaluation of Consensus Latency in Partitioning Networks +venue=Proceedings of the 2019 IEEE Military Communications Conference (MILCOM), 2019. +authors=['Jason A Tran', 'Gowri Ramachandran', 'Claudiu B Danilov', 'Bhaskar Krishnamachari'] +abstract=Consensus, or state machine replication, is critical for the deployment of distributed battlefield systems. Battlefield networks operate in environments with unpredictable wireless connectivity which lead to sparse networks and frequent partitioning, and this makes deploying centralized architectures where nodes require a connection to a remote server unsuitable. The Extended Virtual Synchrony (EVS) model provides membership views which enables a network to reach consensus even after experiencing a series of partitions and mergers. If a node wants to propose state transitions that require nodes that are not currently in its membership view, then the node needs to wait until it reconnects with those nodes. The time the node has to wait to reconnect to the other nodes introduces consensus delays in the network. In this work, we evaluate consensus latency by focusing on these queued state transition proposals due to both network partition characteristics and distributed application/mission design. The key findings of our results show that consensus delay is least affected by network partitioning when the network splits at a rate equal to or less than 1/4 the rate in which partitions merge. Our evaluation results provide application and mission designers guidelines on the tradeoffs between several network characteristics and desired consensus latency properties. + +# Information +links.pdf=/static/public/papers/MilCom_Consensus_Latency.pdf +links.code=https://github.com/ANRGUSC/swarmdag/tree/master/simulations +links.semantic_scholar=https://www.semanticscholar.org/paper/d0868e76ce5796e5e1f4d7f489c0f3ea99a95b60 +type=Conference Papers +year=2019 +paper_id=7a4f3959 +ss_title=An Evaluation of Consensus Latency in Partitioning Networks +ss_authors=[{'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2582540', 'name': 'C. Danilov'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Military Communications Conference +ss_year=2019 +ss_abstract=Consensus, or state machine replication, is critical for the deployment of distributed battlefield systems. Battlefield networks operate in environments with unpredictable wireless connectivity which lead to sparse networks and frequent partitioning, and this makes deploying centralized architectures where nodes require a connection to a remote server unsuitable. The Extended Virtual Synchrony (EVS) model provides membership views which enables a network to reach consensus even after experiencing a series of partitions and mergers. If a node wants to propose state transitions that require nodes that are not currently in its membership view, then the node needs to wait until it reconnects with those nodes. The time the node has to wait to reconnect to the other nodes introduces consensus delays in the network. In this work, we evaluate consensus latency by focusing on these queued state transition proposals due to both network partition characteristics and distributed application/mission design. The key findings of our results show that consensus delay is least affected by network partitioning when the network splits at a rate equal to or less than 1/4 the rate in which partitions merge. Our evaluation results provide application and mission designers guidelines on the tradeoffs between several network characteristics and desired consensus latency properties. +ss_paper_id=d0868e76ce5796e5e1f4d7f489c0f3ea99a95b60 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_arrest_a_rssi_based_approach_for_mobile_sensing_and_tracking_of_a_moving_object.txt b/database/original_documents/publications_text/2019_arrest_a_rssi_based_approach_for_mobile_sensing_and_tracking_of_a_moving_object.txt new file mode 100644 index 0000000000000000000000000000000000000000..1735385fc76cba882b14005d05c71d806f35a0a0 --- /dev/null +++ b/database/original_documents/publications_text/2019_arrest_a_rssi_based_approach_for_mobile_sensing_and_tracking_of_a_moving_object.txt @@ -0,0 +1,18 @@ +# Publication +title=ARREST: A RSSI Based Approach for Mobile Sensing and Tracking of a Moving Object +venue=in IEEE Transactions on Mobile Computing, 2019. +authors=['Pradipta Ghosh', 'Jason A Tran', 'Bhaskar Krishnamachari'] +abstract=We present Autonomous Rssi based RElative poSitioning and Tracking (ARREST), a new robotic sensing system for tracking and following a moving, RF-emitting object, which we refer to as the Leader, solely based on signal strength information. Our proposed tracking agent, which we refer to as the TrackBot, uses a single rotating, off-the-shelf, directional antenna, novel angle and relative speed estimation algorithms, and Kalman filtering to continually estimate the relative position of the Leader with decimeter level accuracy (which is comparable to a state-of-the-art multiple access point based RF-localization system) and the relative speed of the Leader with accuracy on the order of 1 m/s. The TrackBot feeds the relative position and speed estimates into a Linear Quadratic Gaussian (LQG) controller to generate a set of control outputs to control the orientation and the movement of the TrackBot. We perform an extensive set of real world experiments with a full-fledged prototype to demonstrate that the TrackBot is able to stay within 5m of the Leader with: (1) more than 99% probability in line of sight scenarios, and (2) more than 75% probability in no line of sight scenarios, when it moves 1.8X faster than the Leader. + +# Information +links.pdf=/static/public/papers/ARREST-FINAL.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a992126ee0de147f8b3bdda4b0723e85af339e32 +type=Journal Papers +year=2019 +paper_id=d8145a5c +ss_title=ARREST: A RSSI Based Approach for Mobile Sensing and Tracking of a Moving Object +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2017 IEEE Globecom Workshops (GC Wkshps) +ss_year=2017 +ss_abstract=We present Autonomous Rssi based RElative poSitioning and Tracking (ARREST), a new robotic sensing system for tracking and following a moving, RF-emitting object, which we refer to as the Leader, solely based on signal strength information. Our proposed tracking agent, which we refer to as the TrackBot, uses a single rotating, off-the-shelf, directional antenna, novel angle and relative speed estimation algorithms, and Kalman filtering to continually estimate the relative position of the Leader with decimeter level accuracy (which is comparable to a state-of-the-art multiple access point based RF-localization system) and the relative speed of the Leader with accuracy on the order of 1 m/s. The TrackBot feeds the relative position and speed estimates into a Linear Quadratic Gaussian (LQG) controller to generate a set of control outputs to control the orientation and the movement of the TrackBot. We perform an extensive set of real world experiments with a full-fledged prototype to demonstrate that the TrackBot is able to stay within 5m of the Leader with: (1) more than 99% probability in line of sight scenarios, and (2) more than 75% probability in no line of sight scenarios, when it moves 1.8X faster than the Leader. +ss_paper_id=a992126ee0de147f8b3bdda4b0723e85af339e32 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_astar_sustainable_battery_free_energy_harvesting_for_heterogeneous_platforms_and_dynamic_environments.txt b/database/original_documents/publications_text/2019_astar_sustainable_battery_free_energy_harvesting_for_heterogeneous_platforms_and_dynamic_environments.txt new file mode 100644 index 0000000000000000000000000000000000000000..16a65d97ef23a0a0b6d5e2dca07cbc154df2f022 --- /dev/null +++ b/database/original_documents/publications_text/2019_astar_sustainable_battery_free_energy_harvesting_for_heterogeneous_platforms_and_dynamic_environments.txt @@ -0,0 +1,18 @@ +# Publication +title=AsTAR: Sustainable Battery Free Energy Harvesting for Heterogeneous Platforms and Dynamic Environments +venue=In Proceedings of the 2019 International Conference on Embedded Wireless Systems and Networks, EWSN 2019. ACM, 2019. +authors=['Yang', 'Fan', 'Ashok Samraj Thangarajan', 'Gowri Sankar Ramachandran', 'Bhaskar Krishnamachari', 'Wouter Joosen', 'Christophe Huygens', 'Danny Hughes'] +abstract=Today’s commercial Internet of Things devices remain largely dependent upon batteries, which offer high capacity, stable energy storage at the expense of limited shelf-lives and toxic chemical compositions. Research on sustainable energy harvesting platforms is essential to realizing a new generation of long-lived and environmentally friendly IoT products. This paper contributes to this goal by introducing AsTAR, an energy-aware task scheduler and associated reference platform that aims to lower the burden of developing sustainable applications through self-adaptive task scheduling. We evaluate AsTAR based on its capability to deliver sustainable operation on heterogeneous platforms. Evaluation shows that: (i.) With zero modeling AsTAR rapidly identifies optimum task scheduling rates, while (ii.) reacting quickly to environmental change and (iii.) these features incur minimal performance overhead in terms of memory, computation and energy. Considered in sum, we believe that these features significantly simplify the process of creating sustainable energy harvesting IoT applications. + +# Information +links.pdf=/static/public/papers/AsTAR-yang.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bc4ac157c1be2807f7f5bbf679669689068664e3 +type=Conference Papers +year=2019 +paper_id=b9cc7431 +ss_title=AsTAR: Sustainable Battery Free Energy Harvesting for Heterogeneous Platforms and Dynamic Environments +ss_authors=[{'authorId': '145338224', 'name': 'F. Yang'}, {'authorId': '3418506', 'name': 'A. Thangarajan'}, {'authorId': '1752104', 'name': 'W. Joosen'}, {'authorId': '3132139', 'name': 'Christophe Huygens'}, {'authorId': '49895506', 'name': 'D. Hughes'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=European Conference/Workshop on Wireless Sensor Networks +ss_year=2019 +ss_abstract=Today’s commercial Internet of Things devices remain largely dependent upon batteries, which offer high capacity, stable energy storage at the expense of limited shelf-lives and toxic chemical compositions. Research on sustainable energy harvesting platforms is essential to realizing a new generation of long-lived and environmentally friendly IoT products. This paper contributes to this goal by introducing AsTAR, an energy-aware task scheduler and associated reference platform that aims to lower the burden of developing sustainable applications through self-adaptive task scheduling. We evaluate AsTAR based on its capability to deliver sustainable operation on heterogeneous platforms. Evaluation shows that: (i.) With zero modeling AsTAR rapidly identifies optimum task scheduling rates, while (ii.) reacting quickly to environmental change and (iii.) these features incur minimal performance overhead in terms of memory, computation and energy. Considered in sum, we believe that these features significantly simplify the process of creating sustainable energy harvesting IoT applications. +ss_paper_id=bc4ac157c1be2807f7f5bbf679669689068664e3 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_blendsmddm_blockchainenabled_secure_microservices_for_decentralized_data_marketplaces.txt b/database/original_documents/publications_text/2019_blendsmddm_blockchainenabled_secure_microservices_for_decentralized_data_marketplaces.txt new file mode 100644 index 0000000000000000000000000000000000000000..67eace012a575ee3b912d3463af23531eebdc2c8 --- /dev/null +++ b/database/original_documents/publications_text/2019_blendsmddm_blockchainenabled_secure_microservices_for_decentralized_data_marketplaces.txt @@ -0,0 +1,18 @@ +# Publication +title=BlendSM-DDM: BLockchain-ENabled Secure Microservices for Decentralized Data Marketplaces +venue=Proceedings of the 2nd International Workshop on BLockchain Enabled Sustainable Smart Cities (BLESS 2019), Morocco, October, 2019, held in conjunction with the 5th IEEE Annual International Smart Cities Conference (ISC2 2019), 2019. +authors=['Ronghua Xu', 'Gowri Ramachandran', 'Yu Chen', 'Bhaskar Krishnamachari'] +abstract=To promote the benefits of the Internet of Things (IoT) in smart communities and smart cities, a real-time data marketplace middleware platform, called the Intelligent IoT Integrator (I3), has been recently proposed. While facilitating the easy exchanges of real-time IoT data streams between device owners and third-party applications through the marketplace, I3 is presently a monolithic, centralized platform for a single community. Although the service oriented architecture (SOA) has been widely adopted in the IoT and cyber-physical systems (CPS), it is difficult for a monolithic architecture to provide scalable, inter-operable and extensible services for large numbers of distributed IoT devices and different application vendors. Traditional security solutions rely on a centralized authority, which can be a performance bottleneck or susceptible to a single point of failure. Inspired by containerized microservices and blockchain technology, this paper proposed a BLockchain-ENabled Secure Microservices for Decentralized Data Marketplaces (BlendSM-DDM). Within a permissioned blockchain network, a microservices based security mechanism is introduced to secure data exchange and payment among participants in the marketplace. BlendSM-DDM is able to offer a decentralized, scalable and auditable data exchanges for the data marketplace. + +# Information +links.pdf=/static/public/papers/BlendSM-DDM.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/7947fe4227fa9e7cdc97bde8da3dffbdfacfd4ee +type=Conference Papers +year=2019 +paper_id=04d5f48a +ss_title=BlendSM-DDM: BLockchain-ENabled Secure Microservices for Decentralized Data Marketplaces +ss_authors=[{'authorId': '144583532', 'name': 'Ronghua Xu'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2144836470', 'name': 'Yu Chen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=2019 IEEE International Smart Cities Conference (ISC2) +ss_year=2019 +ss_abstract=To promote the benefits of the Internet of Things (IoT) in smart communities and smart cities, a real-time data marketplace middleware platform, called the Intelligent IoT Integrator (I3), has been recently proposed. While facilitating the easy exchanges of real-time IoT data streams between device owners and third-party applications through the marketplace, I3 is presently a monolithic, centralized platform for a single community. Although the service oriented architecture (SOA) has been widely adopted in the IoT and cyber-physical systems (CPS), it is difficult for a monolithic architecture to provide scalable, inter-operable and extensible services for large numbers of distributed IoT devices and different application vendors. Traditional security solutions rely on a centralized authority, which can be a performance bottleneck or susceptible to a single point of failure. Inspired by containerized microservices and blockchain technology, this paper proposed a BLockchain-ENabled Secure Microservices for Decentralized Data Marketplaces (BlendSM-DDM). Within a permissioned blockchain network, a microservices based security mechanism is introduced to secure data exchange and payment among participants in the marketplace. BlendSM-DDM is able to offer a decentralized, scalable and auditable data exchanges for the data marketplace. +ss_paper_id=7947fe4227fa9e7cdc97bde8da3dffbdfacfd4ee \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_closedform_whittles_indexenabled_random_access_for_timely_status_update.txt b/database/original_documents/publications_text/2019_closedform_whittles_indexenabled_random_access_for_timely_status_update.txt new file mode 100644 index 0000000000000000000000000000000000000000..9e1dadafa7b54aa085d5e5c6e8fbced1228c40c5 --- /dev/null +++ b/database/original_documents/publications_text/2019_closedform_whittles_indexenabled_random_access_for_timely_status_update.txt @@ -0,0 +1,18 @@ +# Publication +title=Closed-Form Whittle’s Index-Enabled Random Access for Timely Status Update +venue=in IEEE Transactions on Communications, 2019 +authors=['Jingzhou Sun', 'Zhiyuan Jiang', 'Bhaskar Krishnamachari', 'Sheng Zhou', 'Zhisheng Niu'] +abstract=We consider a star-topology wireless network for status update where a central node collects status data from a large number of distributed machine-type terminals that share a wireless medium. The Age of Information (AoI) minimization scheduling problem is formulated by the restless multi-armed bandit. A widely-proven near-optimal solution, i.e., the Whittle’s index, is derived in closed-form and the corresponding indexability is established. The index is then generalized to incorporate stochastic, periodic packet arrivals and unreliable channels. Inspired by the index scheduling policies which achieve near-optimal AoI but require heavy signaling overhead, a contention-based random access scheme, namely Index-Prioritized Random Access (IPRA), is further proposed. Based on IPRA, terminals that are not urgent to update, indicated by their indices, are barred access to the wireless medium, thus improving the access timeliness. A computer-based simulation shows that IPRA’s performance is close to the optimal AoI in this setting and outperforms standard random access schemes. Also, for applications with hard AoI deadlines, we provide reliable deadline guarantee analysis. Closed-form achievable AoI stationary distributions under Bernoulli packet arrivals are derived such that AoI deadline with high reliability can be ensured by calculating the maximum number of supportable terminals and allocating system resources proportionally. + +# Information +links.pdf=/static/public/papers/TCOM2019_zhiyuan.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/097e895d7490af21eb9102d0867dd8c5a299f0f5 +type=Journal Papers +year=2019 +paper_id=ee85449b +ss_title=Closed-Form Whittle’s Index-Enabled Random Access for Timely Status Update +ss_authors=[{'authorId': '9253849', 'name': 'Jingzhou Sun'}, {'authorId': '4302623', 'name': 'Zhiyuan Jiang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Transactions on Communications +ss_year=2019 +ss_abstract=We consider a star-topology wireless network for status update where a central node collects status data from a large number of distributed machine-type terminals that share a wireless medium. The Age of Information (AoI) minimization scheduling problem is formulated by the restless multi-armed bandit. A widely-proven near-optimal solution, i.e., the Whittle’s index, is derived in closed-form and the corresponding indexability is established. The index is then generalized to incorporate stochastic, periodic packet arrivals and unreliable channels. Inspired by the index scheduling policies which achieve near-optimal AoI but require heavy signaling overhead, a contention-based random access scheme, namely Index-Prioritized Random Access (IPRA), is further proposed. Based on IPRA, terminals that are not urgent to update, indicated by their indices, are barred access to the wireless medium, thus improving the access timeliness. A computer-based simulation shows that IPRA’s performance is close to the optimal AoI in this setting and outperforms standard random access schemes. Also, for applications with hard AoI deadlines, we provide reliable deadline guarantee analysis. Closed-form achievable AoI stationary distributions under Bernoulli packet arrivals are derived such that AoI deadline with high reliability can be ensured by calculating the maximum number of supportable terminals and allocating system resources proportionally. +ss_paper_id=097e895d7490af21eb9102d0867dd8c5a299f0f5 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_container_orchestration_for_dispersed_computing.txt b/database/original_documents/publications_text/2019_container_orchestration_for_dispersed_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..a578e9184e94ce44ba94ed164c40b98209b647a3 --- /dev/null +++ b/database/original_documents/publications_text/2019_container_orchestration_for_dispersed_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=Container Orchestration for Dispersed Computing +venue=In 5th International Workshop on Container Technologies and Container Clouds (WOC ’19), December 9–13, 2019, Davis, CA, USA. ACM, New York, NY, USA +authors=['Pradipta Ghosh', 'Quynh Nguyen', 'Bhaskar Krishnamachari'] +abstract=In the era of Internet of Things, there is an increasing demand for networked computing to support the requirements of time-constrained, compute-intensive distributed applications. We present a container orchestration architecture for dispersed computing, and its implementation in an open source software called Jupiter. The system automates the distribution of computational tasks for complex computational applications described as an Directed Acyclic Graph (DAG) to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution of the DAG thereafter. This Kubernetes based container-orchestration system supports both centralized and decentralized scheduling algorithms for optimally mapping the tasks based on information from a range of profilers: network profilers, resource profilers, and execution time profilers. + +# Information +links.pdf=/static/public/papers/Jupiter__Camera_Ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/09fb7586e17ef3ae49de61d50d33734b75e1febc +type=Conference Papers +year=2019 +paper_id=960060dd +ss_title=Container Orchestration for Dispersed Computing +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=WOC@Middleware +ss_year=2019 +ss_abstract=In the era of Internet of Things, there is an increasing demand for networked computing to support the requirements of time-constrained, compute-intensive distributed applications. We present a container orchestration architecture for dispersed computing, and its implementation in an open source software called Jupiter. The system automates the distribution of computational tasks for complex computational applications described as an Directed Acyclic Graph (DAG) to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution of the DAG thereafter. This Kubernetes based container-orchestration system supports both centralized and decentralized scheduling algorithms for optimally mapping the tasks based on information from a range of profilers: network profilers, resource profilers, and execution time profilers. +ss_paper_id=09fb7586e17ef3ae49de61d50d33734b75e1febc \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_context_information_sharing_for_the_internet_of_things_a_survey.txt b/database/original_documents/publications_text/2019_context_information_sharing_for_the_internet_of_things_a_survey.txt new file mode 100644 index 0000000000000000000000000000000000000000..1826832930e939ab945d2fa2fc147a03d3f793ac --- /dev/null +++ b/database/original_documents/publications_text/2019_context_information_sharing_for_the_internet_of_things_a_survey.txt @@ -0,0 +1,18 @@ +# Publication +title=Context Information Sharing for the Internet of Things: A Survey +venue=in Elsevier Computer Networks, 2019. +authors=['Everton de Matos', 'Ramão Tiago Tiburski', 'Carlos Roberto Moratelli', 'Sergio Johann Filho', 'Leonardo Albernaz Amaral', 'Gowri Ramachandran', 'Bhaskar Krishnamachari', 'Fabiano Hessel'] +abstract=None + +# Information +links.pdf=/static/public/papers/computer_networks_journal2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/373ef4e020db7eebacea9d4d6988abe1e33c3e25 +type=Journal Papers +year=2019 +paper_id=7c6b0777 +ss_title=Context information sharing for the Internet of Things: A survey +ss_authors=[{'authorId': '144376704', 'name': 'Everton de Matos'}, {'authorId': '1829454', 'name': 'Ramão Tiago Tiburski'}, {'authorId': '1745041', 'name': 'C. Moratelli'}, {'authorId': '2248095', 'name': 'S. J. Filho'}, {'authorId': '143692654', 'name': 'Leonardo A. Amaral'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '7331931', 'name': 'F. Hessel'}] +ss_venue=Comput. Networks +ss_year=2020 +ss_abstract=None +ss_paper_id=373ef4e020db7eebacea9d4d6988abe1e33c3e25 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_demo_an_immersive_visualization_of_microclimatic_data_using_usc_air.txt b/database/original_documents/publications_text/2019_demo_an_immersive_visualization_of_microclimatic_data_using_usc_air.txt new file mode 100644 index 0000000000000000000000000000000000000000..f8071a6257f90761477790364cf3b650c8aa2135 --- /dev/null +++ b/database/original_documents/publications_text/2019_demo_an_immersive_visualization_of_microclimatic_data_using_usc_air.txt @@ -0,0 +1,18 @@ +# Publication +title=Demo: An Immersive Visualization of Micro-climatic Data using USC AiR +venue=17th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), June 2019. +authors=['Gowri Sankar Ramachandran', 'Biayna Bogosian', 'Kunal Vasudeva', 'Sushanth Ikshwaku Sriramaraju', 'Jay Patel', 'Shubhesh Amidwar', 'Lavanya Malladi', 'Rohan Doddaiah Shylaja', 'Nishant Revur Bharath Kumar', 'Bhaskar Krishnamachari'] +abstract=The air pollution level is increasing globally at an alarming rate. In the last two decades, many cities have adopted policies to control the emission of pollutants to the atmosphere as well as to promote sustainable urban developments. However, many of these initiatives have concluded that a long term success would require investing in the environmental literacy of the general population. In this demonstration paper, we present USC AiR, a mobile application that translates the air quality sensor feeds from the CCITI smart campus testbed into augmented reality visualizations for the USC community. USC AiR also allows users to report alarming air quality conditions and recommend environmental interventions such as planting trees. We believe that the integration of augmented reality for air quality monitoring enables the citizens to become more engaged with the air quality data while encouraging them to contribute to the reduction of anthropogenic air pollutants. + +# Information +links.pdf=/static/public/papers/USCAir_MobiSys_Demo.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/515669807abf1ce360e51f735a8088a262626a44 +type=Conference Papers +year=2019 +paper_id=839ad649 +ss_title=An Immersive Visualization of Micro-climatic Data using USC AiR (demo) +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '137022139', 'name': 'B. Bogosian'}, {'authorId': '147264304', 'name': 'Kunal Vasudeva'}, {'authorId': '148143689', 'name': 'Sushanth Ikshwaku Sriramaraju'}, {'authorId': '1581195012', 'name': 'Jayraj Patel'}, {'authorId': '72709702', 'name': 'Shubhesh Amidwar'}, {'authorId': '147336401', 'name': 'Lavanya Malladi'}, {'authorId': '147972788', 'name': 'R. Shylaja'}, {'authorId': '2116163281', 'name': 'Nishant Revur Bharath Kumar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services +ss_year=2019 +ss_abstract=The air pollution level is increasing globally at an alarming rate. In the last two decades, many cities have adopted policies to control the emission of pollutants to the atmosphere as well as to promote sustainable urban developments. However, many of these initiatives have concluded that a long term success would require investing in the environmental literacy of the general population. In this demonstration paper, we present USC AiR, a mobile application that translates the air quality sensor feeds from the CCITI smart campus testbed into augmented reality visualizations for the USC community. USC AiR also allows users to report alarming air quality conditions and recommend environmental interventions such as planting trees. We believe that the integration of augmented reality for air quality monitoring enables the citizens to become more engaged with the air quality data while encouraging them to contribute to the reduction of anthropogenic air pollutants. +ss_paper_id=515669807abf1ce360e51f735a8088a262626a44 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_enhancing_engagement_in_tokencurated_registries_with_an_inflationary_mechanism.txt b/database/original_documents/publications_text/2019_enhancing_engagement_in_tokencurated_registries_with_an_inflationary_mechanism.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c898115b7c832a7e76a7e6a969bed620daa2438 --- /dev/null +++ b/database/original_documents/publications_text/2019_enhancing_engagement_in_tokencurated_registries_with_an_inflationary_mechanism.txt @@ -0,0 +1,18 @@ +# Publication +title=Enhancing Engagement in Token-Curated Registries with an Inflationary Mechanism +venue=IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019. +authors=['Yi Lucy Wang', 'Bhaskar Krishnamachari'] +abstract=Token Curated Registries (TCR) are decentralized recommendation systems that can be implemented using Blockchain smart contracts. They allow participants to vote for or against adding items to a list through a process that involves staking tokens intrinsic to the registry, with winners receiving the staked tokens for each vote. A TCR aims to provide incentives to create a well-curated list. In this work, we consider a challenge for these systems - incentivizing token-holders to actually engage and participate in the voting process. We propose a novel token-inflation mechanism for enhancing engagement, whereby only voting participants see their token supply increased by a predefined multiple after each round of voting. To evaluate this proposal, we propose a simple 4-class model of voters that captures all possible combinations of two key dimenions: whether they are engaged (likely to vote at all for a given item) or disengaged, and whether they are informed (likely to vote in a way that increases the quality of the list) or uninformed, and a simple metric to evaluate the quality of the list as a function of the vote outcomes. We conduct simulations using this model of voters and show that implementing token-inflation results in greater wealth accumulation for engaged voters. In particular, when the number of informed voters is sufficiently high, our simulations show that voters that are both informed and engaged see the greatest benefits from participating in the registry when our proposed token-inflation mechanism is employed. + +# Information +links.pdf=/static/public/papers/EnhancingEngagement_ICBC.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5691eee49a1c48a86692b8f79c2cd88bde402aaa +type=Conference Papers +year=2019 +paper_id=7dd63c19 +ss_title=Enhancing Engagement in Token-Curated Registries via an Inflationary Mechanism +ss_authors=[{'authorId': '2154459220', 'name': 'Yi Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Blockchain +ss_year=2018 +ss_abstract=Token Curated Registries (TCR) are decentralized recommendation systems that can be implemented using Blockchain smart contracts. They allow participants to vote for or against adding items to a list through a process that involves staking tokens intrinsic to the registry, with winners receiving the staked tokens for each vote. A TCR aims to provide incentives to create a well-curated list. In this work, we consider a challenge for these systems - incentivizing token-holders to actually engage and participate in the voting process. We propose a novel token-inflation mechanism for enhancing engagement, whereby only voting participants see their token supply increased by a predefined multiple after each round of voting. To evaluate this proposal, we propose a simple 4-class model of voters that captures all possible combinations of two key dimenions: whether they are engaged (likely to vote at all for a given item) or disengaged, and whether they are informed (likely to vote in a way that increases the quality of the list) or uninformed, and a simple metric to evaluate the quality of the list as a function of the vote outcomes. We conduct simulations using this model of voters and show that implementing token-inflation results in greater wealth accumulation for engaged voters. In particular, when the number of informed voters is sufficiently high, our simulations show that voters that are both informed and engaged see the greatest benefits from participating in the registry when our proposed token-inflation mechanism is employed. +ss_paper_id=5691eee49a1c48a86692b8f79c2cd88bde402aaa \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_enhancing_support_for_machine_learning_and_edge_computing_on_an_iot_data_marketplace.txt b/database/original_documents/publications_text/2019_enhancing_support_for_machine_learning_and_edge_computing_on_an_iot_data_marketplace.txt new file mode 100644 index 0000000000000000000000000000000000000000..7fd8ee1179ce981bfa84e6fb832c1c1fa80969e4 --- /dev/null +++ b/database/original_documents/publications_text/2019_enhancing_support_for_machine_learning_and_edge_computing_on_an_iot_data_marketplace.txt @@ -0,0 +1,18 @@ +# Publication +title=Enhancing Support for Machine Learning and Edge Computing on an IoT Data Marketplace +venue=Proceedings of the The Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeIoT 2019) co-located with ACM SenSys 2019, New York, NY, USA, 2019. +authors=['Kurian Karyakulam Sajan', 'Gowri Ramachandran', 'Bhaskar Krishnamachari'] +abstract=IoT applications are increasingly employing machine learning (ML) algorithms to manage and control the operational environment autonomously while predicting future actions. To leverage these emerging technologies, the application developers require an enormous amount of data to build models. Data marketplaces enable the IoT application developers to buy data from IoT device owners to train machine learning models. Contemporary data marketplaces only focus on connecting the IoT infrastructure owner (seller) with application developers (buyer) while lacking integrated support for data analytics. Application developers are required to manually create and manage machine learning pipelines by combining edge computing resources with data sources. In this paper, we present an architectural framework to build machine learning pipelines for data marketplaces automatically. Our framework enables application developers (buyers) to leverage the edge computing resources provided by the sellers and compose low-latency IoT applications that incorporate ML-based processing. We present a proof-of-concept implementation on the I3 data marketplace and outline open challenges in combining machine-learning, AI, and edge computing technologies with data marketplaces. + +# Information +links.pdf=/static/public/papers/AIChallenge_Paper-Final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/63fdab0735e7aa046377d688dd762f42fd1d37c0 +type=Conference Papers +year=2019 +paper_id=3b089a5a +ss_title=Enhancing Support for Machine Learning and Edge Computing on an IoT Data Marketplace +ss_authors=[{'authorId': '1403616728', 'name': 'Kurian Karyakulam Sajan'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Proceedings of the First International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things +ss_year=2019 +ss_abstract=IoT applications are increasingly employing machine learning (ML) algorithms to manage and control the operational environment autonomously while predicting future actions. To leverage these emerging technologies, the application developers require an enormous amount of data to build models. Data marketplaces enable the IoT application developers to buy data from IoT device owners to train machine learning models. Contemporary data marketplaces only focus on connecting the IoT infrastructure owner (seller) with application developers (buyer) while lacking integrated support for data analytics. Application developers are required to manually create and manage machine learning pipelines by combining edge computing resources with data sources. In this paper, we present an architectural framework to build machine learning pipelines for data marketplaces automatically. Our framework enables application developers (buyers) to leverage the edge computing resources provided by the sellers and compose low-latency IoT applications that incorporate ML-based processing. We present a proof-of-concept implementation on the I3 data marketplace and outline open challenges in combining machine-learning, AI, and edge computing technologies with data marketplaces. +ss_paper_id=63fdab0735e7aa046377d688dd762f42fd1d37c0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_fwb_funneling_wider_bandwidth_algorithm_for_high_performance_data_collection_in_wireless_sensor_networks.txt b/database/original_documents/publications_text/2019_fwb_funneling_wider_bandwidth_algorithm_for_high_performance_data_collection_in_wireless_sensor_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..46a679e38a4b0473f73019582fb1ca66c41ac992 --- /dev/null +++ b/database/original_documents/publications_text/2019_fwb_funneling_wider_bandwidth_algorithm_for_high_performance_data_collection_in_wireless_sensor_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=FWB: Funneling Wider Bandwidth Algorithm for High Performance Data Collection in Wireless Sensor Networks +venue=Elsevier Computer Communications, 2019. +authors=['Rodrigo C Tavares', 'Marcos Carvalho', 'Eduardo Câmara Júnior', 'Erik de Britto e Silva', 'Marcos Vieira', 'Luiz Filipe Menezes Vieira', 'Bhaskar Krishnamachari'] +abstract=Many applications in Wireless Sensor Networks (WSNs) require collecting massive data in a coordinated approach. To that end, a many-to-one (convergecast) communication pattern is used in tree-based WSNs. However, traffic near the sink node usually becomes the network bottleneck. In this work, we propose an extension to the 802.15.4 standard for enabling wider bandwidth channels. Then, we measure the speed of data collection in a tree-based WSN, with radios operating in these wider bandwidth channels. Finally, we propose and implement Funneling Wider Bandwidth (FWB), an algorithm that minimizes schedule length in networks. We prove that the algorithm is optimal in regard to the number of time slots. In our simulations and experiments, we show that FWB achieves a higher average throughput and a smaller number of time slots. This new approach could be adapted for other relevant emerging standards, such as WirelessHART, ISA 100.11a and IEEE 802.15.4e TSCH. + +# Information +links.pdf=None +links.semantic_scholar=https://www.semanticscholar.org/paper/cb3c16362e69546f8dba8bd3da5903fe3d543a1f +type=Journal Papers +year=2019 +paper_id=973f6710 +ss_title=FWB: Funneling Wider Bandwidth Algorithm for High Performance Data Collection in Wireless Sensor Networks +ss_authors=[{'authorId': '2060796026', 'name': 'Rodrigo C. Tavares'}, {'authorId': '2075426145', 'name': 'Marcos Carvalho'}, {'authorId': '7250999', 'name': 'M. Vieira'}, {'authorId': '143622284', 'name': 'L. Vieira'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems +ss_year=2018 +ss_abstract=Many applications in Wireless Sensor Networks (WSNs) require collecting massive data in a coordinated approach. To that end, a many-to-one (convergecast) communication pattern is used in tree-based WSNs. However, traffic near the sink node usually becomes the network bottleneck. In this work, we propose an extension to the 802.15.4 standard for enabling wider bandwidth channels. Then, we measure the speed of data collection in a tree-based WSN, with radios operating in these wider bandwidth channels. Finally, we propose and implement Funneling Wider Bandwidth (FWB), an algorithm that minimizes schedule length in networks. We prove that the algorithm is optimal in regard to the number of time slots. In our simulations and experiments, we show that FWB achieves a higher average throughput and a smaller number of time slots. This new approach could be adapted for other relevant emerging standards, such as WirelessHART, ISA 100.11a and IEEE 802.15.4e TSCH. +ss_paper_id=cb3c16362e69546f8dba8bd3da5903fe3d543a1f \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_information_autonomy_selfadaptive_information_management_for_edgeassisted_autonomous_uav_systems.txt b/database/original_documents/publications_text/2019_information_autonomy_selfadaptive_information_management_for_edgeassisted_autonomous_uav_systems.txt new file mode 100644 index 0000000000000000000000000000000000000000..0c8f13aedb9812a3565ca2f2041d85f92612eb12 --- /dev/null +++ b/database/original_documents/publications_text/2019_information_autonomy_selfadaptive_information_management_for_edgeassisted_autonomous_uav_systems.txt @@ -0,0 +1,18 @@ +# Publication +title=Information Autonomy: Self-Adaptive Information Management for Edge-Assisted Autonomous UAV Systems +venue=Proceedings of the 2019 IEEE Military Communications Conference (MILCOM), 2019. +authors=['Davide Callegaro', 'Sabur Baidya', 'Gowri Sankar Ramachandran', 'Bhaskar Krishnamachari', 'Marco Levorato'] +abstract=Making Unmanned Aerial Vehicles (UAV) fully autonomous faces many challenges, some of which are connected to the inherent limitations of their on-board resources, such as energy supply, sensing capabilities, wireless characteristics, and computational power. The sensing, communication, and computation Internet of Things (IoT) infrastructure surrounding the UAVs can mitigate such limitations. However, external traffic dynamics, signal propagation, and other poignant characteristics of the IoT infrastructure make it an extremely dynamic and incoherent environment, especially in urban scenarios, thus challenging the use of IoT resources for mission-critical UAV applications. Herein, the concept of information autonomy is introduced to extend autonomy to encompass how information-related tasks are handled in this challenging scenario. In this paper, we motivate the need for “Information Autonomy” based on our observations from real-world experiments and present a self-adaptive framework for edge-assisted UAV applications. Through our preliminary evaluation, we show that our “Information Autonomy” framework is capable of handling uncertainties autonomously during run-time. + +# Information +links.pdf=/static/public/papers/SEAMS2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/535ca0f4c74da8e66e82f71e31bf0b433724535f +type=Conference Papers +year=2019 +paper_id=ae03b35f +ss_title=Information Autonomy: Self-Adaptive Information Management for Edge-Assisted Autonomous UAV Systems +ss_authors=[{'authorId': '40946018', 'name': 'Davide Callegaro'}, {'authorId': '143890566', 'name': 'S. Baidya'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1737640', 'name': 'M. Levorato'}] +ss_venue=IEEE Military Communications Conference +ss_year=2019 +ss_abstract=Making Unmanned Aerial Vehicles (UAV) fully autonomous faces many challenges, some of which are connected to the inherent limitations of their on-board resources, such as energy supply, sensing capabilities, wireless characteristics, and computational power. The sensing, communication, and computation Internet of Things (IoT) infrastructure surrounding the UAVs can mitigate such limitations. However, external traffic dynamics, signal propagation, and other poignant characteristics of the IoT infrastructure make it an extremely dynamic and incoherent environment, especially in urban scenarios, thus challenging the use of IoT resources for mission-critical UAV applications. Herein, the concept of information autonomy is introduced to extend autonomy to encompass how information-related tasks are handled in this challenging scenario. In this paper, we motivate the need for “Information Autonomy” based on our observations from real-world experiments and present a self-adaptive framework for edge-assisted UAV applications. Through our preliminary evaluation, we show that our “Information Autonomy” framework is capable of handling uncertainties autonomously during run-time. +ss_paper_id=535ca0f4c74da8e66e82f71e31bf0b433724535f \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_noctua_a_publishprocesssubscribe_system_for_iot.txt b/database/original_documents/publications_text/2019_noctua_a_publishprocesssubscribe_system_for_iot.txt new file mode 100644 index 0000000000000000000000000000000000000000..2939d0aa917c88bc17daa0841b80407195368594 --- /dev/null +++ b/database/original_documents/publications_text/2019_noctua_a_publishprocesssubscribe_system_for_iot.txt @@ -0,0 +1,18 @@ +# Publication +title=Noctua: A Publish-Process-Subscribe System for IoT +venue=USC ANRG Technical Report ANRG-2019-01. arXiv: 1805.02818 [cs.DC]. +authors=['Kwame-Lante Wright', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=The publish-subscribe messaging scheme has proven to be an effective real-time communication abstraction for IoT applications; by decoupling sensors from actuators, it helps to ease deployment of such systems. However, many IoT applications consume data from various sources before they take an action, but they are not always interested in the raw data itself but rather a refined, computationally processed version of it. Network bandwidth and device energy are wasted when the computation is performed at end-points that are constrained devices. To address this issue, we advocate for an extension of the traditional publish-subscribe approach, a new messaging paradigm we refer to as publish-process-subscribe. We present Noctua, a framework that enables a publish-process-subscribe architecture for IoT applications. Through a real-system implementation in JavaScript based on Node.js, we demonstrate and evaluate how Noctua can help IoT developers by enabling more efficient use of network resources and reduces the strain on edge devices by delivering to them more meaningful data. We illustrate Noctua’s capability through application examples including aggregating multiple sensor flows and providing radio signal-strength-based localization as a real-time service. We also incorporate role-based authorization and access mechanisms within Noctua to provide fine-grained support for privacy by facilitating the deployment of application-specific anonymization and filtering of raw data streams in a customized, differentiated manner for different sets of users. + +# Information +links.pdf=/static/public/papers/Noctua_TR.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/386c5f7c38b3b4bb4632003ec22dd26bf655131e +type=Technical Reports and Preprints +year=2019 +paper_id=36e3c2fe +ss_title=Noctua : A Publish-Process-Subscribe System for IoT +ss_authors=[{'authorId': '37763411', 'name': 'Kwame-Lante Wright'}] +ss_venue= +ss_year=2019 +ss_abstract=The publish-subscribe messaging scheme has proven to be an effective real-time communication abstraction for IoT applications; by decoupling sensors from actuators, it helps to ease deployment of such systems. However, many IoT applications consume data from various sources before they take an action, but they are not always interested in the raw data itself but rather a refined, computationally processed version of it. Network bandwidth and device energy are wasted when the computation is performed at end-points that are constrained devices. To address this issue, we advocate for an extension of the traditional publish-subscribe approach, a new messaging paradigm we refer to as publish-process-subscribe. We present Noctua, a framework that enables a publish-process-subscribe architecture for IoT applications. Through a real-system implementation in JavaScript based on Node.js, we demonstrate and evaluate how Noctua can help IoT developers by enabling more efficient use of network resources and reduces the strain on edge devices by delivering to them more meaningful data. We illustrate Noctua’s capability through application examples including aggregating multiple sensor flows and providing radio signal-strength-based localization as a real-time service. We also incorporate role-based authorization and access mechanisms within Noctua to provide fine-grained support for privacy by facilitating the deployment of application-specific anonymization and filtering of raw data streams in a customized, differentiated manner for different sets of users. +ss_paper_id=386c5f7c38b3b4bb4632003ec22dd26bf655131e \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_payflow_micropayments_for_bandwidth_reservations_in_software_defined_networks.txt b/database/original_documents/publications_text/2019_payflow_micropayments_for_bandwidth_reservations_in_software_defined_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..38a7f789047eea8e8f493ac782a4aabc89f6d851 --- /dev/null +++ b/database/original_documents/publications_text/2019_payflow_micropayments_for_bandwidth_reservations_in_software_defined_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=PayFlow: Micropayments for Bandwidth Reservations in Software Defined Networks +venue=In 1st International IEEE Workshop on the Economics of Fog, Edge and Cloud Computing (ECOFEC 2019) in conjunction with IEEE INFOCOM, Paris, France, April 29 – May 2, 2019. +authors=['David Chen', 'Zhiyue Zhang', 'Ambrish Krishnan', 'Bhaskar Krishnamachari'] +abstract=We present PayFlow, a fine-granularity QoS micro-payment system that allows end devices in a software-defined network to make and pre-pay for guaranteed bandwidth reservations for their flows within the network for an arbitrary period of time. PayFlow combines payments using digital currency and storage of transaction records in a distributed ledger with queue-based QoS management using software-defined networks. While the PayFlow architecture is agnostic to the choice of digital currency, ledger technology and SDN platform used, we present a proof of concept implementation of PayFlow using OpenFlow and the IOTA cryptocurrency and distributed ledger, that we evaluate using the Mininet emulator. + +# Information +links.pdf=/static/public/papers/Payflow.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c6ce49199c54074db5c00ad478db3cdfffd9c627 +type=Conference Papers +year=2019 +paper_id=99ed2037 +ss_title=PayFlow: Micropayments for Bandwidth Reservations in Software Defined Networks +ss_authors=[{'authorId': '2132562265', 'name': 'D. Chen'}, {'authorId': '2128144069', 'name': 'Zhiyue Zhang'}, {'authorId': '2064367144', 'name': 'Ambrish Krishnan'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Conference on Computer Communications Workshops +ss_year=2019 +ss_abstract=We present PayFlow, a fine-granularity QoS micro-payment system that allows end devices in a software-defined network to make and pre-pay for guaranteed bandwidth reservations for their flows within the network for an arbitrary period of time. PayFlow combines payments using digital currency and storage of transaction records in a distributed ledger with queue-based QoS management using software-defined networks. While the PayFlow architecture is agnostic to the choice of digital currency, ledger technology and SDN platform used, we present a proof of concept implementation of PayFlow using OpenFlow and the IOTA cryptocurrency and distributed ledger, that we evaluate using the Mininet emulator. +ss_paper_id=c6ce49199c54074db5c00ad478db3cdfffd9c627 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_publishpaysubscribe_protocol_for_paymentdriven_edge_computing.txt b/database/original_documents/publications_text/2019_publishpaysubscribe_protocol_for_paymentdriven_edge_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..3969ff0a9473cd0a3f3bd53d4c543826b6278a37 --- /dev/null +++ b/database/original_documents/publications_text/2019_publishpaysubscribe_protocol_for_paymentdriven_edge_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=Publish-Pay-Subscribe Protocol for Payment-driven Edge Computing +venue=2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge) and will be co-located with the 2019 USENIX Annual Technical Conference, July 2019. +authors=['Gowri S Ramachandran', 'Sharon LG Contreras', 'Bhaskar Krishnamachari'] +abstract=IoT applications are starting to rely heavily on edge computing due to the advent of low-power and high data-rate wireless communication technologies such as 5G and the processing capability of GPU-driven edge platforms. However, the computation and the data communication model for the edge computing applications are quite diverse which limits their interoperability. An interoperable edge computing architecture with a versatile communication model would lead to the development of innovative and incentive-driven edge computing applications by combining various data sources from a wide array of devices. In this paper, we present an edge computing architecture by extending the publish-subscribe protocol with support for incentives. Our novel publish-pay-subscribe protocol enable the data producers (publishers) to sell their data with data consumers and service providers (subscribers). The proposed architecture not only allows the device owners to gain incentive but also enable the service providers to sell the processed data with one or more data consumers. Our proof-of-concept implementation using AEDES publish-subscribe broker and Ethereum cryptocurrency shows the feasibility of publish-pay-subscribe broker and its support for data-driven and incentive-based edge computing applications. + +# Information +links.pdf=/static/public/papers/hotegde_pspp_camera_ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2fdbb8082743b710c50bd6bd9427df87e47be0a8 +type=Conference Papers +year=2019 +paper_id=e55fe620 +ss_title=Publish-Pay-Subscribe Protocol for Payment-driven Edge Computing +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2184787978', 'name': 'Sharon L. G. Contreras'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=USENIX Workshop on Hot Topics in Edge Computing +ss_year=2019 +ss_abstract=IoT applications are starting to rely heavily on edge computing due to the advent of low-power and high data-rate wireless communication technologies such as 5G and the processing capability of GPU-driven edge platforms. However, the computation and the data communication model for the edge computing applications are quite diverse which limits their interoperability. An interoperable edge computing architecture with a versatile communication model would lead to the development of innovative and incentive-driven edge computing applications by combining various data sources from a wide array of devices. In this paper, we present an edge computing architecture by extending the publish-subscribe protocol with support for incentives. Our novel publish-pay-subscribe protocol enable the data producers (publishers) to sell their data with data consumers and service providers (subscribers). The proposed architecture not only allows the device owners to gain incentive but also enable the service providers to sell the processed data with one or more data consumers. Our proof-of-concept implementation using AEDES publish-subscribe broker and Ethereum cryptocurrency shows the feasibility of publish-pay-subscribe broker and its support for data-driven and incentive-based edge computing applications. +ss_paper_id=2fdbb8082743b710c50bd6bd9427df87e47be0a8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_sdpp_streaming_data_payment_protocol_for_data_economy.txt b/database/original_documents/publications_text/2019_sdpp_streaming_data_payment_protocol_for_data_economy.txt new file mode 100644 index 0000000000000000000000000000000000000000..80f2dc5e9883493d5fd27f853ce3e89af351c32d --- /dev/null +++ b/database/original_documents/publications_text/2019_sdpp_streaming_data_payment_protocol_for_data_economy.txt @@ -0,0 +1,18 @@ +# Publication +title=SDPP: Streaming Data Payment Protocol for Data Economy +venue=In the Demo Session of IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019. +authors=['Rahul Radhakrishnan', 'Gowri S Ramachandran', 'Bhaskar Krishnamachari'] +abstract=Applications in the area of IoT and smart cities rely heavily on data to manage and control their operational environments. In such applications, machine learning and artificial intelligence algorithms help the government officials, city administrators, and industries to make an informed decision on managing their cities and factories using the data collected from various sources. As we step into the era where ”data is termed as new oil”, there is a need for protocols with support for selling and buying data without giving up the data ownership to third-parties. In this demo, we present Streaming Data Payment Protocol (SDPP), which is an application layer protocol for selling and buying data. SDPP uses blockchain and distributed ledger technology for micropayments and immutable storage of transaction records. In addition, our protocol has a built-in mechanism to set data granularity since the bulk transfer of data between a seller and a buyer may lead to a loss for the seller if the buyer terminates the connection after receiving the data without making a payment. In this demo, we present SDPP and explain how it can contribute to the emerging data economy using a proof-of-concept implementation that uses TCP protocol for data communication and IOTA as both cryptocurrency and a distributed ledger. + +# Information +links.pdf=/static/public/papers/SDPP_ICBC_2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b0eab4f6271dbdfdaffe61128c325dfcddefbc28 +type=Conference Papers +year=2019 +paper_id=c1d268b2 +ss_title=SDPP: Streaming Data Payment Protocol for Data Economy +ss_authors=[{'authorId': '2066241990', 'name': 'Rahul Radhakrishnan'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Blockchain +ss_year=2019 +ss_abstract=Applications in the area of IoT and smart cities rely heavily on data to manage and control their operational environments. In such applications, machine learning and artificial intelligence algorithms help the government officials, city administrators, and industries to make an informed decision on managing their cities and factories using the data collected from various sources. As we step into the era where ”data is termed as new oil”, there is a need for protocols with support for selling and buying data without giving up the data ownership to third-parties. In this demo, we present Streaming Data Payment Protocol (SDPP), which is an application layer protocol for selling and buying data. SDPP uses blockchain and distributed ledger technology for micropayments and immutable storage of transaction records. In addition, our protocol has a built-in mechanism to set data granularity since the bulk transfer of data between a seller and a buyer may lead to a loss for the seller if the buyer terminates the connection after receiving the data without making a payment. In this demo, we present SDPP and explain how it can contribute to the emerging data economy using a proof-of-concept implementation that uses TCP protocol for data communication and IOTA as both cryptocurrency and a distributed ledger. +ss_paper_id=b0eab4f6271dbdfdaffe61128c325dfcddefbc28 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_solving_the_buyer_and_sellers_dilemma_a_dualdeposit_escrow_smart_contract_for_provably_cheatproof_delivery_and_payment_for_a_digital_good_without_a_trusted_mediator.txt b/database/original_documents/publications_text/2019_solving_the_buyer_and_sellers_dilemma_a_dualdeposit_escrow_smart_contract_for_provably_cheatproof_delivery_and_payment_for_a_digital_good_without_a_trusted_mediator.txt new file mode 100644 index 0000000000000000000000000000000000000000..186992644dc9a1a39418a1f996ab9b7e7cb2865c --- /dev/null +++ b/database/original_documents/publications_text/2019_solving_the_buyer_and_sellers_dilemma_a_dualdeposit_escrow_smart_contract_for_provably_cheatproof_delivery_and_payment_for_a_digital_good_without_a_trusted_mediator.txt @@ -0,0 +1,18 @@ +# Publication +title=Solving the Buyer and Seller’s Dilemma: A Dual-Deposit Escrow Smart Contract for Provably Cheat-Proof Delivery and Payment for a Digital Good without a Trusted Mediator +venue=IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019. +authors=['Aditya Asgaonkar', 'Bhaskar Krishnamachari'] +abstract=A fundamental problem for electronic commerce is the buying and selling of digital goods between individuals that may not know or trust each other. Traditionally, this problem has been addressed by the use of trusted third-parties such as credit-card companies, mediated escrows, legal adjudication, or reputation systems. Despite the rise of blockchain protocols as a way to send payments without trusted third parties, the important problem of exchanging a digital good for payment without trusted third parties has been paid much less attention. We refer to this problem as the Buyer and Seller’s Dilemma and present for it a dual-deposit escrow trade protocol which uses double-sided payment deposits in conjunction with simple cryptographic primitives, and that can be implemented using a blockchain-based smart contract. We analyze our protocol as an extensive-form game and prove that the Sub-game Perfect Nash Equilibrium for this game is for both the buyer and seller to cooperate and behave honestly. We address this problem under the assumption that the digital good being traded is known and verifiable, with a fixed price known to both parties. + +# Information +links.pdf=/static/public/papers/Dual_Deposit_ICBC_2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/4d478bca1e6ec610ddcd6a9d0216eac8302b0502 +type=Conference Papers +year=2019 +paper_id=3d6aafdf +ss_title=Solving the Buyer and Seller’s Dilemma: A Dual-Deposit Escrow Smart Contract for Provably Cheat-Proof Delivery and Payment for a Digital Good without a Trusted Mediator +ss_authors=[{'authorId': '48370618', 'name': 'Aditya Asgaonkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Blockchain +ss_year=2018 +ss_abstract=A fundamental problem for electronic commerce is the buying and selling of digital goods between individuals that may not know or trust each other. Traditionally, this problem has been addressed by the use of trusted third-parties such as credit-card companies, mediated escrows, legal adjudication, or reputation systems. Despite the rise of blockchain protocols as a way to send payments without trusted third parties, the important problem of exchanging a digital good for payment without trusted third parties has been paid much less attention. We refer to this problem as the Buyer and Seller’s Dilemma and present for it a dual-deposit escrow trade protocol which uses double-sided payment deposits in conjunction with simple cryptographic primitives, and that can be implemented using a blockchain-based smart contract. We analyze our protocol as an extensive-form game and prove that the Sub-game Perfect Nash Equilibrium for this game is for both the buyer and seller to cooperate and behave honestly. We address this problem under the assumption that the digital good being traded is known and verifiable, with a fixed price known to both parties. +ss_paper_id=4d478bca1e6ec610ddcd6a9d0216eac8302b0502 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_tamurpl_thompson_samplingbased_multichannel_rpl.txt b/database/original_documents/publications_text/2019_tamurpl_thompson_samplingbased_multichannel_rpl.txt new file mode 100644 index 0000000000000000000000000000000000000000..8d6d24ebc998ddeb749d90dfc22ca0f2afa5ef71 --- /dev/null +++ b/database/original_documents/publications_text/2019_tamurpl_thompson_samplingbased_multichannel_rpl.txt @@ -0,0 +1,18 @@ +# Publication +title=TAMU‐RPL: Thompson sampling‐based multichannel RPL +venue=in Transactions on Emerging Telecommunications Technologies. +authors=['Gomes', 'Pedro Henrique', 'Bhaskar Krishnamachari'] +abstract=For the success of critical applications in the IoT, there is a need to counteract the effects of external interference, especially when the unlicensed spectrum is used. One way of improving the performance is with a routing protocol that quickly reacts to changes in the environment and avoids path and/or frequencies with higher interference. In this paper, we propose an optimization to the RPL protocol, called TAMU‐RPL, that can keep a more accurate estimation of link quality to the neighbors and quickly react to degradation on the links. TAMU‐RPL also uses the quality of links at different frequencies and opportunistically avoids the ones with bad quality. It is evaluated through simulations with connectivity traces from a 40‐node test bed and in a real 5‐node deployment. We compare TAMU‐RPL with a baseline RPL protocol and a Dijkstra‐based shortest‐path algorithm. Results show that TAMU‐RPL can successfully explore the neighbors and obtain ETX values much closer to the ones obtained with a shortest‐path tree, even when link quality changes over time. In the simulation evaluation, TAMU‐RPL was able to double the number of packets received at the sink compared to RPL and reduced the average delay of packets (in time slots) by more than 10%. In the real deployment, the number of packets received at the sink was increased by more than 33%. + +# Information +links.pdf=/static/public/papers/TAMU_RPL.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d36278025ec356ae6b6d226bf83565609303e5a8 +type=Journal Papers +year=2019 +paper_id=58cab8ad +ss_title=TAMU‐RPL: Thompson sampling‐based multichannel RPL +ss_authors=[{'authorId': '144097385', 'name': 'P. Gomes'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Transactions on Emerging Telecommunications Technologies +ss_year=2019 +ss_abstract=For the success of critical applications in the IoT, there is a need to counteract the effects of external interference, especially when the unlicensed spectrum is used. One way of improving the performance is with a routing protocol that quickly reacts to changes in the environment and avoids path and/or frequencies with higher interference. In this paper, we propose an optimization to the RPL protocol, called TAMU‐RPL, that can keep a more accurate estimation of link quality to the neighbors and quickly react to degradation on the links. TAMU‐RPL also uses the quality of links at different frequencies and opportunistically avoids the ones with bad quality. It is evaluated through simulations with connectivity traces from a 40‐node test bed and in a real 5‐node deployment. We compare TAMU‐RPL with a baseline RPL protocol and a Dijkstra‐based shortest‐path algorithm. Results show that TAMU‐RPL can successfully explore the neighbors and obtain ETX values much closer to the ones obtained with a shortest‐path tree, even when link quality changes over time. In the simulation evaluation, TAMU‐RPL was able to double the number of packets received at the sink compared to RPL and reduced the average delay of packets (in time slots) by more than 10%. In the real deployment, the number of packets received at the sink was increased by more than 33%. +ss_paper_id=d36278025ec356ae6b6d226bf83565609303e5a8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_throughput_optimized_scheduler_for_dispersed_computing_systems.txt b/database/original_documents/publications_text/2019_throughput_optimized_scheduler_for_dispersed_computing_systems.txt new file mode 100644 index 0000000000000000000000000000000000000000..3945fbb6a1592c8c7835f3fe39a2ca7e1e4121c9 --- /dev/null +++ b/database/original_documents/publications_text/2019_throughput_optimized_scheduler_for_dispersed_computing_systems.txt @@ -0,0 +1,18 @@ +# Publication +title=Throughput Optimized Scheduler for Dispersed Computing Systems +venue=In 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile-Cloud), San Francisco, USA, 2019. +authors=['Diyi Hu', 'Bhaskar Krishnamachari'] +abstract=Dispersed computing is promising paradigm to supplement the conventional cloud computing. Performing computation on the edge leads to significant reduction in communication with the remote cloud. However, challenges exist to fully exploit the advantages of dispersed computing systems: The edge devices are heterogeneous in computation and communication capacity; Tasks decomposed from the target applications can have complex precedence requirements captured by a Directed Acyclic Graph (DAG). With these challenges in mind, we propose a throughput optimized task scheduler, targeting at applications (such as computer vision and video processing) where input data are continuously and steadily fed into the execution pipeline. The scheduler incorporates two innovative techniques: task duplication and task splitting. To circumvent low bandwidth data links in the highly heterogeneous environment, we duplicate critical tasks to reroute communication paths. To load-balance the various tasks in complicated target applications, we split heavy-loaded tasks to allow cooperation of multiple nearby edge devices. Through simulation, we thoroughly evaluate the performance of the scheduler under various configuration of tasks and dispersed systems. Task duplication improves throughput of the baseline schedule significantly (> 1.2×), for systems with large variance in data link bandwidth and tasks with large communication-to-computation ratio. Task splitting leads to significant throughput improvement (> 1.25×) for systems with heterogeneous processing power and tasks with large variance in workload. On average, our scheduler improves throughput of the baseline schedule by > 1.6×. + +# Information +links.pdf=/static/public/papers/ThroughputSchedulerDipersed.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/bf30e5165b383e38bffda204620266d89b8b16da +type=Conference Papers +year=2019 +paper_id=435dc7d9 +ss_title=Throughput Optimized Scheduler for Dispersed Computing Systems +ss_authors=[{'authorId': '120426961', 'name': 'Diyi Hu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE International Conference on Mobile Cloud Computing, Services, and Engineering +ss_year=2019 +ss_abstract=Dispersed computing is promising paradigm to supplement the conventional cloud computing. Performing computation on the edge leads to significant reduction in communication with the remote cloud. However, challenges exist to fully exploit the advantages of dispersed computing systems: The edge devices are heterogeneous in computation and communication capacity; Tasks decomposed from the target applications can have complex precedence requirements captured by a Directed Acyclic Graph (DAG). With these challenges in mind, we propose a throughput optimized task scheduler, targeting at applications (such as computer vision and video processing) where input data are continuously and steadily fed into the execution pipeline. The scheduler incorporates two innovative techniques: task duplication and task splitting. To circumvent low bandwidth data links in the highly heterogeneous environment, we duplicate critical tasks to reroute communication paths. To load-balance the various tasks in complicated target applications, we split heavy-loaded tasks to allow cooperation of multiple nearby edge devices. Through simulation, we thoroughly evaluate the performance of the scheduler under various configuration of tasks and dispersed systems. Task duplication improves throughput of the baseline schedule significantly (> 1.2×), for systems with large variance in data link bandwidth and tasks with large communication-to-computation ratio. Task splitting leads to significant throughput improvement (> 1.25×) for systems with heterogeneous processing power and tasks with large variance in workload. On average, our scheduler improves throughput of the baseline schedule by > 1.6×. +ss_paper_id=bf30e5165b383e38bffda204620266d89b8b16da \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_timely_status_update_in_wireless_uplinks_analytical_solutions_with_asymptotic_optimality.txt b/database/original_documents/publications_text/2019_timely_status_update_in_wireless_uplinks_analytical_solutions_with_asymptotic_optimality.txt new file mode 100644 index 0000000000000000000000000000000000000000..270c0498f60254d19bfe7421c0eccb9569edc605 --- /dev/null +++ b/database/original_documents/publications_text/2019_timely_status_update_in_wireless_uplinks_analytical_solutions_with_asymptotic_optimality.txt @@ -0,0 +1,18 @@ +# Publication +title=Timely Status Update in Wireless Uplinks: Analytical Solutions with Asymptotic Optimality +venue=in IEEE Internet of Things Journal, 2019. +authors=['Z Jiang', 'B Krishnamachari', 'X Zheng', 'S Zhou', 'Z Niu'] +abstract=In a typical Internet of Things (IoT) application where a central controller collects status updates from multiple terminals, e.g., sensors and monitors, through a wireless multiaccess uplink, an important problem is how to attain timely status updates autonomously. In this paper, the timeliness of the status is measured by the recently proposed age-of-information (AoI) metric; both the theoretical and practical aspects of the problem are investigated: we aim to obtain a scheduling policy with minimum AoI and, meanwhile, requires little signaling exchange overhead. Toward this end, we first consider the set of arrival-independent and renewal policies; the optimal policy thereof to minimize the time-average AoI is proved to be a round-robin policy with one-packet (latest packet only and others are dropped) buffers (RR-ONE). The optimality is established based on a generalized Poisson-arrival-see-time-average theorem. It is further proved that RR-ONE is asymptotically optimal among all policies in the massive IoT regime. The AoI steady-state stationary distribution under RR-ONE is also derived. An implementation scheme of RR-ONE is proposed which can accommodate dynamic terminal appearances with little overhead. In addition, considering scenarios where packets cannot be dropped, a Lyapunov optimization-based max-AoI-weight policy is proposed which achieves better performance compared with state-of-the-art. + +# Information +links.pdf=/static/public/papers/Timely_status_update_IOTJ.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0e535383dbe2aac140521605edc078a5a4ad29d3 +type=Journal Papers +year=2019 +paper_id=fddf7495 +ss_title=Timely Status Update in Wireless Uplinks: Analytical Solutions With Asymptotic Optimality +ss_authors=[{'authorId': '4302623', 'name': 'Zhiyuan Jiang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2110068744', 'name': 'Xi Zheng'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Internet of Things Journal +ss_year=2019 +ss_abstract=In a typical Internet of Things (IoT) application where a central controller collects status updates from multiple terminals, e.g., sensors and monitors, through a wireless multiaccess uplink, an important problem is how to attain timely status updates autonomously. In this paper, the timeliness of the status is measured by the recently proposed age-of-information (AoI) metric; both the theoretical and practical aspects of the problem are investigated: we aim to obtain a scheduling policy with minimum AoI and, meanwhile, requires little signaling exchange overhead. Toward this end, we first consider the set of arrival-independent and renewal policies; the optimal policy thereof to minimize the time-average AoI is proved to be a round-robin policy with one-packet (latest packet only and others are dropped) buffers (RR-ONE). The optimality is established based on a generalized Poisson-arrival-see-time-average theorem. It is further proved that RR-ONE is asymptotically optimal among all policies in the massive IoT regime. The AoI steady-state stationary distribution under RR-ONE is also derived. An implementation scheme of RR-ONE is proposed which can accommodate dynamic terminal appearances with little overhead. In addition, considering scenarios where packets cannot be dropped, a Lyapunov optimization-based max-AoI-weight policy is proposed which achieves better performance compared with state-of-the-art. +ss_paper_id=0e535383dbe2aac140521605edc078a5a4ad29d3 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_towards_a_large_scale_iot_through_partnership_incentive_and_services_a_vision_architecture_and_future_directions.txt b/database/original_documents/publications_text/2019_towards_a_large_scale_iot_through_partnership_incentive_and_services_a_vision_architecture_and_future_directions.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa7d8be23ebac675e7a0938a6d759c8a8c6e4487 --- /dev/null +++ b/database/original_documents/publications_text/2019_towards_a_large_scale_iot_through_partnership_incentive_and_services_a_vision_architecture_and_future_directions.txt @@ -0,0 +1,18 @@ +# Publication +title=Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions +venue=Invited Paper at the International Workshop on Very Large Internet of Things (VLIoT 2019) held in conjunction with the 2019 VLDB Conference, Los Angeles, USA, August 2019. +authors=['Gowri Ramachandran', 'Bhaskar Krishnamachari'] +abstract=Internet of Things applications has been deployed and managed in a small to a medium scale deployments in industries and small segments of cities in the last decade. These real-world deployments not only helped the researchers and application developers to create protocols, standards, and frameworks but also helped them understand the challenges associated with the maintenance and management of IoT deployments in all kinds of operational environments. Despite the technological advancements and the deployment experiences, the technology failed to create a notable momentum towards large scale IoT applications involving thousands of IoT devices. We argue the reasons behind the lack of large scale deployments and the limitations of contemporary IoT deployment model. In addition, we present an approach involving multiple stakeholders as a means to scale IoT applications to hundreds of devices. Besides, we argue that the partnership, incentive mechanisms, privacy, and security frameworks are the critical factors for large scale IoT deployments of the future. + +# Information +links.pdf=/static/public/papers/Towards_a_large_scale_IoT.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f1cd18fb2a5b43b1196333c56b5f4f3b2c6dbdf4 +type=Conference Papers +year=2019 +paper_id=6e6c7c90 +ss_title=Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Open J. Internet Things +ss_year=2019 +ss_abstract=Internet of Things applications has been deployed and managed in a small to a medium scale deployments in industries and small segments of cities in the last decade. These real-world deployments not only helped the researchers and application developers to create protocols, standards, and frameworks but also helped them understand the challenges associated with the maintenance and management of IoT deployments in all kinds of operational environments. Despite the technological advancements and the deployment experiences, the technology failed to create a notable momentum towards large scale IoT applications involving thousands of IoT devices. We argue the reasons behind the lack of large scale deployments and the limitations of contemporary IoT deployment model. In addition, we present an approach involving multiple stakeholders as a means to scale IoT applications to hundreds of devices. Besides, we argue that the partnership, incentive mechanisms, privacy, and security frameworks are the critical factors for large scale IoT deployments of the future. +ss_paper_id=f1cd18fb2a5b43b1196333c56b5f4f3b2c6dbdf4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_trinity_a_byzantine_faulttolerant_distributed_publishsubscribe_system_with_immutable_blockchainbased_persistence.txt b/database/original_documents/publications_text/2019_trinity_a_byzantine_faulttolerant_distributed_publishsubscribe_system_with_immutable_blockchainbased_persistence.txt new file mode 100644 index 0000000000000000000000000000000000000000..16373a3692d1f0cef02f87a88af26654ba357fb7 --- /dev/null +++ b/database/original_documents/publications_text/2019_trinity_a_byzantine_faulttolerant_distributed_publishsubscribe_system_with_immutable_blockchainbased_persistence.txt @@ -0,0 +1,18 @@ +# Publication +title=Trinity: A Byzantine Fault-Tolerant Distributed Publish-Subscribe System with Immutable Blockchain-based Persistence +venue=IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, South Korea, May, 2019. +authors=['Gowri S Ramachandran', 'Kwame-Lante Wright', 'Licheng Zheng', 'Pavas Navaney', 'Muhammad Naveed', 'Jagjit Dhaliwal', 'Bhaskar Krishnamachari'] +abstract=Internet of Things (IoT), Supply Chain monitoring, and other distributed applications rely on messaging protocols for data exchange. Contemporary IoT and enterprise deployments widely use the publish-subscribe messaging model because of its resource-efficiency. However, the systems with publish-subscribe messaging model employ a centralized architecture, wherein the data from all the publishers in the application network flows via a central broker to the subscribers. Such a centralized architecture makes the publish-subscribe messaging model susceptible to Byzantine failures. For example, it provides an opportunity for the organization that owns the broker to tamper with the data. In this work, we contribute Trinity, a novel distributed publish-subscribe broker with Byzantine fault-tolerance and blockchain-based immutability. Trinity distributes the data published to one of the brokers in the network to all the brokers in the network, and stores the data in an immutable ledger through the use of blockchain technology. Through the use of consensus protocols and distributed ledger technology, Trinity can guarantee ordering, fault-tolerance, persistence and immutability across trust boundaries.Our evaluation results show that Trinity consumes minimal resources. To the best of our knowledge, Trinity is the first framework that combines the components of the blockchain technology with the publish-subscribe messaging model. Furthermore, we plan to use Trinity in a real-world use case for increasing the transparency of racial profiling. + +# Information +links.pdf=/static/public/papers/Trinity.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/379f0e0665a49d1fa59aa139d589b5b40bc3b9cf +type=Conference Papers +year=2019 +paper_id=22d6b918 +ss_title=Trinity: A Byzantine Fault-Tolerant Distributed Publish-Subscribe System with Immutable Blockchain-based Persistence +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '37763411', 'name': 'Kwame-Lante Wright'}, {'authorId': '2149969537', 'name': 'Licheng Zheng'}, {'authorId': '51227185', 'name': 'Pavas Navaney'}, {'authorId': '145116440', 'name': 'Muhammad Naveed'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2065368394', 'name': 'Jagjit Dhaliwal'}] +ss_venue=International Conference on Blockchain +ss_year=2019 +ss_abstract=Internet of Things (IoT), Supply Chain monitoring, and other distributed applications rely on messaging protocols for data exchange. Contemporary IoT and enterprise deployments widely use the publish-subscribe messaging model because of its resource-efficiency. However, the systems with publish-subscribe messaging model employ a centralized architecture, wherein the data from all the publishers in the application network flows via a central broker to the subscribers. Such a centralized architecture makes the publish-subscribe messaging model susceptible to Byzantine failures. For example, it provides an opportunity for the organization that owns the broker to tamper with the data. In this work, we contribute Trinity, a novel distributed publish-subscribe broker with Byzantine fault-tolerance and blockchain-based immutability. Trinity distributes the data published to one of the brokers in the network to all the brokers in the network, and stores the data in an immutable ledger through the use of blockchain technology. Through the use of consensus protocols and distributed ledger technology, Trinity can guarantee ordering, fault-tolerance, persistence and immutability across trust boundaries.Our evaluation results show that Trinity consumes minimal resources. To the best of our knowledge, Trinity is the first framework that combines the components of the blockchain technology with the publish-subscribe messaging model. Furthermore, we plan to use Trinity in a real-world use case for increasing the transparency of racial profiling. +ss_paper_id=379f0e0665a49d1fa59aa139d589b5b40bc3b9cf \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_vesper_a_realtime_processing_framework_for_vehicle_perception_augmentation.txt b/database/original_documents/publications_text/2019_vesper_a_realtime_processing_framework_for_vehicle_perception_augmentation.txt new file mode 100644 index 0000000000000000000000000000000000000000..33f7c658cc782eaea617dfaba703a81561d8bdd2 --- /dev/null +++ b/database/original_documents/publications_text/2019_vesper_a_realtime_processing_framework_for_vehicle_perception_augmentation.txt @@ -0,0 +1,18 @@ +# Publication +title=VESPER: A Real-time Processing Framework for Vehicle Perception Augmentation +venue=In 3rd Workshop on Integrating Edge Computing, Caching, and Offloading in Next Generation Networks (IECCO 2019) in conjunction with IEEE INFOCOM. Paris, France, April, 2019. +authors=['Kwame-Lante Wright', 'Pranav Sakulkar', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=With today’s intelligent vehicles, there are a variety of information-rich sensors, both on and off-board, that can stream data to assist drivers. In the future, we imagine physical infrastructure capable of sensing and communicating data to vehicles to improve a driver’s awareness on the road. To process this data and present information to the driver in real-time, we introduce VESPER, a real-time processing framework and online scheduling algorithm designed to exploit distributed devices that are connected via wireless links. A significant feature of the VESPER algorithm is its ability to navigate the trade-off between accuracy and computational complexity of modern machine learning tools by adapting the workload, while still satisfying latency and throughput requirements. We refer to this capability as polymorphic computing. VESPER also scales opportunistically to leverage the computational resources of external devices. We evaluate VESPER on an image-processing pipeline and demonstrate that it outperforms offloading schemes based on static workloads. + +# Information +links.pdf=/static/public/papers/VESPER_IEECO_2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e43694806bca82a7c813bb7ab3ee4911a64571a3 +type=Conference Papers +year=2019 +paper_id=e6a59679 +ss_title=VESPER: A Real-time Processing Framework for Vehicle Perception Augmentation +ss_authors=[{'authorId': '37763411', 'name': 'Kwame-Lante Wright'}, {'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=Conference on Computer Communications Workshops +ss_year=2019 +ss_abstract=With today’s intelligent vehicles, there are a variety of information-rich sensors, both on and off-board, that can stream data to assist drivers. In the future, we imagine physical infrastructure capable of sensing and communicating data to vehicles to improve a driver’s awareness on the road. To process this data and present information to the driver in real-time, we introduce VESPER, a real-time processing framework and online scheduling algorithm designed to exploit distributed devices that are connected via wireless links. A significant feature of the VESPER algorithm is its ability to navigate the trade-off between accuracy and computational complexity of modern machine learning tools by adapting the workload, while still satisfying latency and throughput requirements. We refer to this capability as polymorphic computing. VESPER also scales opportunistically to leverage the computational resources of external devices. We evaluate VESPER on an image-processing pipeline and demonstrate that it outperforms offloading schemes based on static workloads. +ss_paper_id=e43694806bca82a7c813bb7ab3ee4911a64571a3 \ No newline at end of file diff --git a/database/original_documents/publications_text/2019_video_micropayments_for_trusted_vehicular_services_using_motive.txt b/database/original_documents/publications_text/2019_video_micropayments_for_trusted_vehicular_services_using_motive.txt new file mode 100644 index 0000000000000000000000000000000000000000..ec8aea02bb1ff25db009769b900e40308e235b08 --- /dev/null +++ b/database/original_documents/publications_text/2019_video_micropayments_for_trusted_vehicular_services_using_motive.txt @@ -0,0 +1,18 @@ +# Publication +title=Video: Micropayments for Trusted Vehicular Services using MOTIVE +venue=17th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), June 2019. +authors=['Gowri Sankar Ramachandran', 'Xiang Ji', 'Pavas Navaney', 'Licheng Zheng', 'Martin Martinez', 'Bhaskar Krishnamachari'] +abstract=The connected and autonomous vehicles are expected to rely heavily on connectivity to exchange data and computation services with other vehicles and remote infrastructure including roadside units and other edge infrastructure to increase their immediate view, which leads to greater safety, coordination and more comfortable experience for their human occupants. In order for vehicles to obtain data, compute and other services from other vehicles or road-side infrastructure, it is important to be able to make micropayments for those services and for the services to run seamlessly despite the challenges posed by mobility and ephemeral interactions with a dynamic set of neighboring devices. We present MOTIVE, a trusted and decentralized framework that allows vehicles to make peer-to-peer micropayments for data, compute and other services obtained from other vehicles or road-side infrastructure within radio range. The framework utilizes distributed ledger technologies including smart contracts to enable autonomous operation and trusted interactions between vehicles and nearby entities. + +# Information +links.pdf=/static/public/papers/MobiSys_MOTIVE_Video.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f417b71b74674265c5e9374ecf205ec8ac6cdf92 +type=Conference Papers +year=2019 +paper_id=42dcf7e9 +ss_title=Micropayments for Trusted Vehicular Services using MOTIVE (video) +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2117709128', 'name': 'Xiang Ji'}, {'authorId': '51227185', 'name': 'Pavas Navaney'}, {'authorId': '2149969537', 'name': 'Licheng Zheng'}, {'authorId': '2116737671', 'name': 'Martin Martinez'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services +ss_year=2019 +ss_abstract=The connected and autonomous vehicles are expected to rely heavily on connectivity to exchange data and computation services with other vehicles and remote infrastructure including roadside units and other edge infrastructure to increase their immediate view, which leads to greater safety, coordination and more comfortable experience for their human occupants. In order for vehicles to obtain data, compute and other services from other vehicles or road-side infrastructure, it is important to be able to make micropayments for those services and for the services to run seamlessly despite the challenges posed by mobility and ephemeral interactions with a dynamic set of neighboring devices. We present MOTIVE, a trusted and decentralized framework that allows vehicles to make peer-to-peer micropayments for data, compute and other services obtained from other vehicles or road-side infrastructure within radio range. The framework utilizes distributed ledger technologies including smart contracts to enable autonomous operation and trusted interactions between vehicles and nearby entities. +ss_paper_id=f417b71b74674265c5e9374ecf205ec8ac6cdf92 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_blockchain_technology_as_a_means_for_brand_trust_repair__empirical_evidence_from_a_digital_transgression.txt b/database/original_documents/publications_text/2020_blockchain_technology_as_a_means_for_brand_trust_repair__empirical_evidence_from_a_digital_transgression.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee36f71b7f06e79a14e8d9350f8df1dd612841a1 --- /dev/null +++ b/database/original_documents/publications_text/2020_blockchain_technology_as_a_means_for_brand_trust_repair__empirical_evidence_from_a_digital_transgression.txt @@ -0,0 +1,18 @@ +# Publication +title=Blockchain Technology as a Means for Brand Trust Repair – Empirical Evidence from a Digital Transgression +venue=Proceedings of the 53rd Hawaii International Conference on System Sciences, Wailea, USA, 2020. +authors=['Martin Fleischmann', 'Bjoern S Ivens', 'Bhaskar Krishnamachari'] +abstract=Though much discussion in the realm of blockchain revolves around the concept of trust, research examining blockchain technology as a means for brand trust repair is still at an initial stage. This study conducts an experiment that analyzes blockchain technology as a substantive response to a data breach within a global business-to-consumer information systems application. Thereby, the present study expands trust repair theories to the context of blockchain and branding. Research results indicate that the use of blockchain technology as a reaction to a digital transgression may be able to reinstate brand trust, having a superior impact compared to an approach that uses a centrally managed information systems platform to restore brand trust. Overall, study results suggest that the use of blockchain technology can be an effective component of brand trust repair strategies in the digital space. + +# Information +links.pdf=/static/public/papers/blockchain_brandtrust.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/a83cfe84753dd93be87d0f3684fd175f188688f6 +type=Conference Papers +year=2020 +paper_id=d7309162 +ss_title=Blockchain Technology as a Means for Brand Trust Repair - Empirical Evidence from a Digital Transgression +ss_authors=[{'authorId': '2065810377', 'name': 'Martin Fleischmann'}, {'authorId': '2071660633', 'name': 'B. Ivens'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Hawaii International Conference on System Sciences +ss_year=2020 +ss_abstract=Though much discussion in the realm of blockchain revolves around the concept of trust, research examining blockchain technology as a means for brand trust repair is still at an initial stage. This study conducts an experiment that analyzes blockchain technology as a substantive response to a data breach within a global business-to-consumer information systems application. Thereby, the present study expands trust repair theories to the context of blockchain and branding. Research results indicate that the use of blockchain technology as a reaction to a digital transgression may be able to reinstate brand trust, having a superior impact compared to an approach that uses a centrally managed information systems platform to restore brand trust. Overall, study results suggest that the use of blockchain technology can be an effective component of brand trust repair strategies in the digital space. +ss_paper_id=a83cfe84753dd93be87d0f3684fd175f188688f6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_contain_privacyoriented_contact_tracing_protocols_for_epidemics.txt b/database/original_documents/publications_text/2020_contain_privacyoriented_contact_tracing_protocols_for_epidemics.txt new file mode 100644 index 0000000000000000000000000000000000000000..962133412824877fa6ad4b733b240e745ff3256d --- /dev/null +++ b/database/original_documents/publications_text/2020_contain_privacyoriented_contact_tracing_protocols_for_epidemics.txt @@ -0,0 +1,18 @@ +# Publication +title=CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics +venue=USC ANRG Technical Report ANRG-2020-01. https://arxiv.org/abs/2004.05251 +authors=['Arvin Hekmati', 'Gowri Ramachandran', 'Bhaskar Krishnamachari'] +abstract=Public health agencies advocate the use of contact tracing procedures to deal with pandemics such as COVID-19 to prevent the infection of a vast population. Although several mobile applications have been developed previously for contact tracing, they typically require collection of privacy-intrusive information such as GPS locations, personal data, or require infrastructures such as WiFi APs. In this paper, we introduce CONTAIN, an early proposal for privacy-sensitive contact tracing. CONTAIN is a privacy-oriented bluetooth-based mobile digital contact tracing framework that does not rely on any infrastructure-based location sensing, nor the continuous logging of personally identifiable information. The goal of CONTAIN is to allow users to determine with complete privacy if and when they have been within a short distance of someone that is infected. We identify and prove the privacy guarantees provided by CONTAIN. We also present a simulation study utilizing an empirical trace dataset which shows that users can maximize their possibility of identifying if they were near an infected user by turning on the app in more crowded settings. + +# Information +links.pdf=/static/public/papers/CONTAIN_Privacy_oriented_Contact_Tracing_ANRG_2020_01.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b4f74429861a416086fdd9845a8a46c50f869dfe +type=Technical Reports and Preprints +year=2020 +paper_id=9d236f0c +ss_title=CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics +ss_authors=[{'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IFIP/IEEE Symposium on Integrated Network Management +ss_year=2020 +ss_abstract=Public health agencies advocate the use of contact tracing procedures to deal with pandemics such as COVID-19 to prevent the infection of a vast population. Although several mobile applications have been developed previously for contact tracing, they typically require collection of privacy-intrusive information such as GPS locations, personal data, or require infrastructures such as WiFi APs. In this paper, we introduce CONTAIN, an early proposal for privacy-sensitive contact tracing. CONTAIN is a privacy-oriented bluetooth-based mobile digital contact tracing framework that does not rely on any infrastructure-based location sensing, nor the continuous logging of personally identifiable information. The goal of CONTAIN is to allow users to determine with complete privacy if and when they have been within a short distance of someone that is infected. We identify and prove the privacy guarantees provided by CONTAIN. We also present a simulation study utilizing an empirical trace dataset which shows that users can maximize their possibility of identifying if they were near an infected user by turning on the app in more crowded settings. +ss_paper_id=b4f74429861a416086fdd9845a8a46c50f869dfe \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_covid19_risk_estimation_using_a_timevarying_sirmodel.txt b/database/original_documents/publications_text/2020_covid19_risk_estimation_using_a_timevarying_sirmodel.txt new file mode 100644 index 0000000000000000000000000000000000000000..50a03b9dc0ceae87741a81b7cef453cf37ea9e59 --- /dev/null +++ b/database/original_documents/publications_text/2020_covid19_risk_estimation_using_a_timevarying_sirmodel.txt @@ -0,0 +1,18 @@ +# Publication +title=“COVID-19 Risk Estimation using a Time-varying SIR-model +venue=1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19, November 3, 2020. +authors=['Mehrdad Kiamari', 'Gowri Ramachandran', 'Quynh Nguyen', 'Eva Pereira', 'Jeanne Holm', 'Bhaskar Krishnamachari'] +abstract=Policy-makers require data-driven tools to assess the spread of COVID-19 and inform the public of their risk of infection on an ongoing basis. We propose a rigorous hybrid model-and-data-driven approach to risk scoring based on a time-varying SIR epidemic model that ultimately yields a simplified color-coded risk level for each community. The risk score Γt that we propose is proportional to the probability of someone currently healthy getting infected in the next 24 hours based on their locality. We show how this risk score can be estimated using another useful metric of infection spread, Rt, the time-varying average reproduction number which indicates the average number of individuals an infected person would infect in turn. The proposed approach also allows for quantification of uncertainty in the estimates of Rt and Γt in the form of confidence intervals. Code and data from our effort have been open-sourced and are being applied to assess and communicate the risk of infection in the City and County of Los Angeles. + +# Information +links.pdf=/static/public/papers/ACM_SigSpatial_Covid19_Workshop_final.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/974945aca8e6015335646cb006a170d91e9cc35f +type=Conference Papers +year=2020 +paper_id=e73f4b0d +ss_title=COVID-19 Risk Estimation using a Time-varying SIR-model +ss_authors=[{'authorId': '3148965', 'name': 'Mehrdad Kiamari'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '2055937636', 'name': 'Eva Pereira'}, {'authorId': '2061126761', 'name': 'Jeanne Holm'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=COVID@SIGSPATIAL +ss_year=2020 +ss_abstract=Policy-makers require data-driven tools to assess the spread of COVID-19 and inform the public of their risk of infection on an ongoing basis. We propose a rigorous hybrid model-and-data-driven approach to risk scoring based on a time-varying SIR epidemic model that ultimately yields a simplified color-coded risk level for each community. The risk score Γt that we propose is proportional to the probability of someone currently healthy getting infected in the next 24 hours based on their locality. We show how this risk score can be estimated using another useful metric of infection spread, Rt, the time-varying average reproduction number which indicates the average number of individuals an infected person would infect in turn. The proposed approach also allows for quantification of uncertainty in the estimates of Rt and Γt in the form of confidence intervals. Code and data from our effort have been open-sourced and are being applied to assess and communicate the risk of infection in the City and County of Los Angeles. +ss_paper_id=974945aca8e6015335646cb006a170d91e9cc35f \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_demo_abstract_the_intelligent_iot_integrator_data_marketplace__version_1.txt b/database/original_documents/publications_text/2020_demo_abstract_the_intelligent_iot_integrator_data_marketplace__version_1.txt new file mode 100644 index 0000000000000000000000000000000000000000..a8e8e0d3173ef4ded41beecd9d384d9b563018fe --- /dev/null +++ b/database/original_documents/publications_text/2020_demo_abstract_the_intelligent_iot_integrator_data_marketplace__version_1.txt @@ -0,0 +1,18 @@ +# Publication +title=Demo Abstract: The Intelligent IoT Integrator Data Marketplace — Version 1 +venue=5th ACM/IEEE Conference on Internet of Things Design and Implementation (IoTDI), April, 2020. (poster) +authors=['Xiangchen Zhao', 'Kurian Karyakulam Sajan', 'Gowri Sankar Ramachandran', 'Bhaskar Krishnamachari'] +abstract=The widespread adoption of IoT in the context of smart cities, along with the emergence of data-driven applications, increases the interest in data marketplaces. Multiple research articles argued the importance of data marketplaces to create scalable IoT applications. Still, there are no open-source data marketplace implementations to help researchers and practitioners to experiment with and develop novel protocols and frameworks for IoT data marketplaces. In this demo, we introduce Intelligence IoT Integrator (I3) - Version 1, which is an IoT data marketplace developed for smart cities at the University of Southern California. In particular, this demo focuses on user management, product creation, product purchasing, user authentication, and access control. + +# Information +links.pdf=/static/public/papers/iotdi_2020_i3_demo.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/32d57461261d424b6e5f09055411a1fdf62ca336 +type=Conference Papers +year=2020 +paper_id=feccbdda +ss_title=Demo Abstract: The Intelligent IoT Integrator Data Marketplace - Version 1 +ss_authors=[{'authorId': '2116711617', 'name': 'Xiangchen Zhao'}, {'authorId': '1403616728', 'name': 'Kurian Karyakulam Sajan'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Internet-of-Things Design and Implementation +ss_year=2020 +ss_abstract=The widespread adoption of IoT in the context of smart cities, along with the emergence of data-driven applications, increases the interest in data marketplaces. Multiple research articles argued the importance of data marketplaces to create scalable IoT applications. Still, there are no open-source data marketplace implementations to help researchers and practitioners to experiment with and develop novel protocols and frameworks for IoT data marketplaces. In this demo, we introduce Intelligence IoT Integrator (I3) - Version 1, which is an IoT data marketplace developed for smart cities at the University of Southern California. In particular, this demo focuses on user management, product creation, product purchasing, user authentication, and access control. +ss_paper_id=32d57461261d424b6e5f09055411a1fdf62ca336 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_differential_pricing_of_5g_network_slices_for_heterogeneous_customers.txt b/database/original_documents/publications_text/2020_differential_pricing_of_5g_network_slices_for_heterogeneous_customers.txt new file mode 100644 index 0000000000000000000000000000000000000000..24c4b725ff4d124d9d5264f746d697876576908a --- /dev/null +++ b/database/original_documents/publications_text/2020_differential_pricing_of_5g_network_slices_for_heterogeneous_customers.txt @@ -0,0 +1,18 @@ +# Publication +title=“Differential Pricing of 5G Network Slices for Heterogeneous Customers,” +venue=IEEE 10th Annual Computing and Communications Workshop and Conference (CCWC), Las Vegas, Nevada, January 2020. +authors=['Siying Chen', 'Bhaskar Krishnamachari'] +abstract=5G wireless networks promise to enable new kinds of cellular use cases, by offering different network slices to users with different needs. While pricing network bandwidth is relatively straightforward when all users care about data rate, more sophisticated pricing strategies are likely to emerge when some of the customers acquire a network slice with the desire to optimize for a different metric. We consider how a 5G wireless provider may set per-class differential prices to maximize its profit when offering different network slices to different classes of customers. We formulate the problem using fundamental economic principles and present a Drift-Plus-Penalty algorithm to solve the problem in a dynamic setting. We show, through simulation and analysis for a two-class network with latency and throughput-oriented customers, that some surprising phenomena may occur under certain conditions, such as an overall reduction of total resources sold when the relative number of latency-oriented customers grows. + +# Information +links.pdf=/static/public/papers/Differential_Pricing_of_5G_Network_Slices_for_Heterogeneous_Customers.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e56a302a77e01f77a97b54a43ef72ab3dba299a1 +type=Conference Papers +year=2020 +paper_id=a6168e08 +ss_title=Differential Pricing of 5G Network Slices for Heterogeneous Customers +ss_authors=[{'authorId': '2111635980', 'name': 'Siying Chen'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Computing and Communication Workshop and Conference +ss_year=2020 +ss_abstract=5G wireless networks promise to enable new kinds of cellular use cases, by offering different network slices to users with different needs. While pricing network bandwidth is relatively straightforward when all users care about data rate, more sophisticated pricing strategies are likely to emerge when some of the customers acquire a network slice with the desire to optimize for a different metric. We consider how a 5G wireless provider may set per-class differential prices to maximize its profit when offering different network slices to different classes of customers. We formulate the problem using fundamental economic principles and present a Drift-Plus-Penalty algorithm to solve the problem in a dynamic setting. We show, through simulation and analysis for a two-class network with latency and throughput-oriented customers, that some surprising phenomena may occur under certain conditions, such as an overall reduction of total resources sold when the relative number of latency-oriented customers grows. +ss_paper_id=e56a302a77e01f77a97b54a43ef72ab3dba299a1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_distributed_consensus_for_mobile_devices_using_online_brokers.txt b/database/original_documents/publications_text/2020_distributed_consensus_for_mobile_devices_using_online_brokers.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa71a8d24757fbb0bde76bb63a599d536e3f3f50 --- /dev/null +++ b/database/original_documents/publications_text/2020_distributed_consensus_for_mobile_devices_using_online_brokers.txt @@ -0,0 +1,18 @@ +# Publication +title=Distributed Consensus for Mobile Devices using Online Brokers +venue=International Conference on Blockchain and Cryptocurrency, 2020 +authors=['M Kiamari', 'B Krishnamachari', 'M Naveed', 'S Yun'] +abstract=We present a Byzantine Fault Tolerant (BFT) distributed ledger protocol that is aimed at making mobile devices first-class citizens in the consensus process by having them communicate through online brokers. The protocol is provably safe and live. We show that it is capable of a throughput on the order of several thousand transactions per second per shard, and sub-second confirmation latency. + +# Information +links.pdf=None +links.semantic_scholar=https://www.semanticscholar.org/paper/06c80b577b8df6665627632b252210d924695b91 +type=Conference Papers +year=2020 +paper_id=65725bf2 +ss_title=Distributed Consensus for Mobile Devices using Online Brokers +ss_authors=[{'authorId': '3148965', 'name': 'Mehrdad Kiamari'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145116440', 'name': 'Muhammad Naveed'}, {'authorId': '1830391567', 'name': 'Seokgu Yun'}] +ss_venue=International Conference on Blockchain +ss_year=2020 +ss_abstract=We present a Byzantine Fault Tolerant (BFT) distributed ledger protocol that is aimed at making mobile devices first-class citizens in the consensus process by having them communicate through online brokers. The protocol is provably safe and live. We show that it is capable of a throughput on the order of several thousand transactions per second per shard, and sub-second confirmation latency. +ss_paper_id=06c80b577b8df6665627632b252210d924695b91 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_edison_a_blockchainbased_secure_and_auditable_orchestration_framework_for_multidomain_software_defined_networks.txt b/database/original_documents/publications_text/2020_edison_a_blockchainbased_secure_and_auditable_orchestration_framework_for_multidomain_software_defined_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..fb502c85f0eccaaaae6614dd12bbc9e3c7f83ab5 --- /dev/null +++ b/database/original_documents/publications_text/2020_edison_a_blockchainbased_secure_and_auditable_orchestration_framework_for_multidomain_software_defined_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=EDISON: A Blockchain-based Secure and Auditable Orchestration Framework for Multi-domain Software Defined Networks +venue=In Third IEEE International Conference on Blockchain, November, 2020. +authors=['Chandrasekar Balachandran', 'Puneet A Chandrashekhar', 'Gowri Ramachandran', 'Bhaskar Krishnamachari'] +abstract=The emerging networking standards such as 5G and 6G, coupled with technologies like Software Defined Networks (SDN) and Network Function Virtualization (NFV), are increasingly moving towards a multi-tenant and multi-vendor deployment model. Under these circumstances, the hardware vendors rent their networking and computation resources to multiple service providers and application developers. Such a deployment model lets various vendors collaboratively offer networking services to the tenants and the end-users at far greater efficiency and better affordability. However, the issues around trust, ownership, and data security become a concern for tenants and vendors in such multi-tenant and multi-vendor setting. In particular, the centralized nature of SDN controllers, together with the limitations of the contemporary authentication and access control mechanisms, make multi-stakeholder SDN deployments susceptible to several Sybil and trust-related exploits. We present EDISON, a blockchain-based authentication and access control framework, for multi-stakeholder SDN infrastructure that adheres to the Zero-trust security model. It allows the network vendors and third-party service providers to securely set up a service-level agreement while enabling the concerned stakeholders to audit the network operations through an end-to-end encrypted tamper-proof ledger. EDISON creates an ecosystem structured on smart contracts, wherein the network elements rented and used by the tenants interact with the services deployed in the form of contracts to enable decentralized and transparent orchestration. + +# Information +links.pdf=/static/public/papers/EDISON_SDN_Blockchain.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/8aa87e4cea727dddc618a0d5e36dd30db49c0a78 +type=Conference Papers +year=2020 +paper_id=85c9f358 +ss_title=EDISON: A Blockchain-based Secure and Auditable Orchestration Framework for Multi-domain Software Defined Networks +ss_authors=[{'authorId': '2058588711', 'name': 'Chandrasekar Balachandran'}, {'authorId': '2047816541', 'name': 'C. PuneetA.'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Congress on Blockchain and Applications +ss_year=2020 +ss_abstract=The emerging networking standards such as 5G and 6G, coupled with technologies like Software Defined Networks (SDN) and Network Function Virtualization (NFV), are increasingly moving towards a multi-tenant and multi-vendor deployment model. Under these circumstances, the hardware vendors rent their networking and computation resources to multiple service providers and application developers. Such a deployment model lets various vendors collaboratively offer networking services to the tenants and the end-users at far greater efficiency and better affordability. However, the issues around trust, ownership, and data security become a concern for tenants and vendors in such multi-tenant and multi-vendor setting. In particular, the centralized nature of SDN controllers, together with the limitations of the contemporary authentication and access control mechanisms, make multi-stakeholder SDN deployments susceptible to several Sybil and trust-related exploits. We present EDISON, a blockchain-based authentication and access control framework, for multi-stakeholder SDN infrastructure that adheres to the Zero-trust security model. It allows the network vendors and third-party service providers to securely set up a service-level agreement while enabling the concerned stakeholders to audit the network operations through an end-to-end encrypted tamper-proof ledger. EDISON creates an ecosystem structured on smart contracts, wherein the network elements rented and used by the tenants interact with the services deployed in the form of contracts to enable decentralized and transparent orchestration. +ss_paper_id=8aa87e4cea727dddc618a0d5e36dd30db49c0a78 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_enhancing_the_reliability_of_iot_data_marketplaces_through_security_validation_of_iot_devices.txt b/database/original_documents/publications_text/2020_enhancing_the_reliability_of_iot_data_marketplaces_through_security_validation_of_iot_devices.txt new file mode 100644 index 0000000000000000000000000000000000000000..e8d575a50b60c1e9986956658dc74a8e9ec763ec --- /dev/null +++ b/database/original_documents/publications_text/2020_enhancing_the_reliability_of_iot_data_marketplaces_through_security_validation_of_iot_devices.txt @@ -0,0 +1,18 @@ +# Publication +title=Enhancing the Reliability of IoT Data Marketplaces through Security Validation of IoT Devices +venue=2nd International Workshop on IoT Applications and Industry 4.0, Co-located with IEEE DCOSS-2020. Los Angeles, CA, USA. +authors=['Yoonjong Na', 'Yejin Joo', 'Heejo Lee', 'Xiangchen Zhao', 'Kurian Karyakulam Sajan', 'Gowri Ramachandran', 'Bhaskar Krishnamachari'] +abstract=IoT data marketplaces are being developed to help cities and communities create large scale IoT applications. Such data marketplaces let the IoT device owners sell their data to the application developers. Following this application development model, the application developers need not deploy their own IoT devices when developing IoT applications; instead, they can buy data from a data marketplace. In a marketplace-based IoT application, the application developers are making critical business and operation decisions using the data produced by seller’s IoT devices. Under these circumstances, it is crucial to verify and validate the security of IoT devices.In this paper, we assess the security of IoT data marketplaces. In particular, we discuss what kind of vulnerabilities exist in IoT data marketplaces using the well-known STRIDE model, and present a security assessment and certification framework for IoT data marketplaces to help the device owners to examine the security vulnerabilities of their devices. Most importantly, our solution certifies the IoT devices when they connect to the data marketplace, which helps the application developers to make an informed decision when buying and consuming data from a data marketplace. To demonstrate the effectiveness of the proposed approach, we have developed a proof-of-concept using I3 (Intelligent IoT Integrator), which is an open-source IoT data marketplace developed at the University of Southern California, and IoTcube, which is a vulnerability detection toolkit developed by researchers at Korea University. Through this work, we show that it is possible to increase the reliability of a IoT data marketplace while not damaging the convenience of the users. + +# Information +links.pdf=/static/public/papers/Enhancing_the_reliability_of_marketplace.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/68d62f5471351a5bede2210d94c2682f10895083 +type=Conference Papers +year=2020 +paper_id=453bbc7f +ss_title=Enhancing the Reliability of IoT Data Marketplaces through Security Validation of IoT Devices +ss_authors=[{'authorId': '1931507917', 'name': 'Yoonjong Na'}, {'authorId': '84093019', 'name': 'Yejin Joo'}, {'authorId': '2116623548', 'name': 'Heejo Lee'}, {'authorId': '2116711617', 'name': 'Xiangchen Zhao'}, {'authorId': '1403616728', 'name': 'Kurian Karyakulam Sajan'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Distributed Computing in Sensor Systems +ss_year=2020 +ss_abstract=IoT data marketplaces are being developed to help cities and communities create large scale IoT applications. Such data marketplaces let the IoT device owners sell their data to the application developers. Following this application development model, the application developers need not deploy their own IoT devices when developing IoT applications; instead, they can buy data from a data marketplace. In a marketplace-based IoT application, the application developers are making critical business and operation decisions using the data produced by seller’s IoT devices. Under these circumstances, it is crucial to verify and validate the security of IoT devices.In this paper, we assess the security of IoT data marketplaces. In particular, we discuss what kind of vulnerabilities exist in IoT data marketplaces using the well-known STRIDE model, and present a security assessment and certification framework for IoT data marketplaces to help the device owners to examine the security vulnerabilities of their devices. Most importantly, our solution certifies the IoT devices when they connect to the data marketplace, which helps the application developers to make an informed decision when buying and consuming data from a data marketplace. To demonstrate the effectiveness of the proposed approach, we have developed a proof-of-concept using I3 (Intelligent IoT Integrator), which is an open-source IoT data marketplace developed at the University of Southern California, and IoTcube, which is a vulnerability detection toolkit developed by researchers at Korea University. Through this work, we show that it is possible to increase the reliability of a IoT data marketplace while not damaging the convenience of the users. +ss_paper_id=68d62f5471351a5bede2210d94c2682f10895083 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_fast_and_accurate_streaming_cnn_inference_via_communication_compression_on_the_edge.txt b/database/original_documents/publications_text/2020_fast_and_accurate_streaming_cnn_inference_via_communication_compression_on_the_edge.txt new file mode 100644 index 0000000000000000000000000000000000000000..026c73dd4d9965bb968483d0f921aec647e9b673 --- /dev/null +++ b/database/original_documents/publications_text/2020_fast_and_accurate_streaming_cnn_inference_via_communication_compression_on_the_edge.txt @@ -0,0 +1,18 @@ +# Publication +title=Fast and accurate streaming CNN inference via communication compression on the edge +venue=5th ACM/IEEE conference on internet of things design and implementation (IoTDI), April, 2020 +authors=['Diyi Hu', 'Bhaskar Krishnamachari'] +abstract=Recently, compact CNN models have been developed to enable computer vision on the edge. While the small model size reduces the storage overhead and the light-weight layer operations alleviate the burden of the edge processors, it is still challenging to sustain high inference performance due to limited and varying inter-device bandwidth. We propose a streaming inference framework to simultaneously improve throughput and accuracy by communication compression. Specifically, we perform the following optimizations: 1) Partition: we split the CNN layers such that the devices achieve computation load-balance; 2) Compression: we identify inter-device communication bottlenecks and insert Auto-Encoders into the original CNN to compress data traffic; 3) Scheduling: we adaptively select the compression ratio when the variation of bandwidth is large. The above optimizations improve inference throughput significantly due to better communication performance. More importantly, accuracy also increases since 1) fewer frames are dropped when input images are streamed in at a high rate, and 2) the frames successfully entering the pipeline are processed accurately since the AE-based compression incurs negligible information loss. We evaluate MobileNet-v2 on pipeline of Raspberry Pi 3B+. Our compression techniques lead to up to 32% accuracy improvement, when average Wi-Fi bandwidth varies from 3 to 9Mbps. + +# Information +links.pdf=/static/public/papers/CNN_inferene_edge_compression.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/fb22ef53086d236345a5690a6cfd89dce009afc8 +type=Conference Papers +year=2020 +paper_id=b7111f3f +ss_title=Fast and Accurate Streaming CNN Inference via Communication Compression on the Edge +ss_authors=[{'authorId': '120426961', 'name': 'Diyi Hu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Internet-of-Things Design and Implementation +ss_year=2020 +ss_abstract=Recently, compact CNN models have been developed to enable computer vision on the edge. While the small model size reduces the storage overhead and the light-weight layer operations alleviate the burden of the edge processors, it is still challenging to sustain high inference performance due to limited and varying inter-device bandwidth. We propose a streaming inference framework to simultaneously improve throughput and accuracy by communication compression. Specifically, we perform the following optimizations: 1) Partition: we split the CNN layers such that the devices achieve computation load-balance; 2) Compression: we identify inter-device communication bottlenecks and insert Auto-Encoders into the original CNN to compress data traffic; 3) Scheduling: we adaptively select the compression ratio when the variation of bandwidth is large. The above optimizations improve inference throughput significantly due to better communication performance. More importantly, accuracy also increases since 1) fewer frames are dropped when input images are streamed in at a high rate, and 2) the frames successfully entering the pipeline are processed accurately since the AE-based compression incurs negligible information loss. We evaluate MobileNet-v2 on pipeline of Raspberry Pi 3B+. Our compression techniques lead to up to 32% accuracy improvement, when average Wi-Fi bandwidth varies from 3 to 9Mbps. +ss_paper_id=fb22ef53086d236345a5690a6cfd89dce009afc8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_intermobiledevice_distance_estimation_using_network_localization_algorithms_for_digital_contact_logging_applications.txt b/database/original_documents/publications_text/2020_intermobiledevice_distance_estimation_using_network_localization_algorithms_for_digital_contact_logging_applications.txt new file mode 100644 index 0000000000000000000000000000000000000000..536c44770fd1c6011b069bf2ed7f693a5eee884e --- /dev/null +++ b/database/original_documents/publications_text/2020_intermobiledevice_distance_estimation_using_network_localization_algorithms_for_digital_contact_logging_applications.txt @@ -0,0 +1,18 @@ +# Publication +title=Inter-Mobile-Device Distance Estimation using Network Localization Algorithms for Digital Contact Logging Applications +venue=IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), December 2020. +authors=['Lillian Clark', 'Alan Papalia', 'Jônata Tyska Carvalho', 'Luca Mastrostefano', 'Bhaskar Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/Inter_Mobile_Device_Distance_Estimation.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/35373fcc0c81116a04e4f743b09882d5404ba27e +type=Conference Papers +year=2020 +paper_id=53a93246 +ss_title=Inter-Mobile-Device Distance Estimation using Network Localization Algorithms for Digital Contact Logging Applications +ss_authors=[{'authorId': '2070152199', 'name': 'Lillian Clark'}, {'authorId': '1824297799', 'name': 'Alan Papalia'}, {'authorId': '32789180', 'name': 'J. T. Carvalho'}, {'authorId': '72540888', 'name': 'L. Mastrostefano'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Smart Health +ss_year=2020 +ss_abstract=None +ss_paper_id=35373fcc0c81116a04e4f743b09882d5404ba27e \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_mabsta_collaborative_computing_over_heterogeneous_devices_in_dynamic_environments.txt b/database/original_documents/publications_text/2020_mabsta_collaborative_computing_over_heterogeneous_devices_in_dynamic_environments.txt new file mode 100644 index 0000000000000000000000000000000000000000..acfde2f606ed68791d287da7fad9c157eb2a2954 --- /dev/null +++ b/database/original_documents/publications_text/2020_mabsta_collaborative_computing_over_heterogeneous_devices_in_dynamic_environments.txt @@ -0,0 +1,18 @@ +# Publication +title=MABSTA: Collaborative Computing over Heterogeneous Devices in Dynamic Environments +venue=IEEE International Conference on Computer Communications (INFOCOM), 2020. +authors=['Yi-Hsuan Kao', 'Kwame Wright', 'Po-Han Huang', 'Bhaskar Krishnamachari', 'Fan Bai'] +abstract=Collaborative computing, leveraging resource on multiple wireless-connected devices, enables complex applications that a single device cannot support individually. However, the problem of assigning tasks over devices becomes challenging in the dynamic environments encountered in real-world settings, considering that the resource availability and channel conditions change over time in unpredictable ways due to mobility and other factors. In this paper, we formulate the task assignment problem as an online learning problem using an adversarial multi-armed bandit framework. We propose MABSTA, a novel algorithm that learns the performance of unknown devices and channel qualities continually through exploratory probing and makes task assignment decisions by exploiting the gained knowledge. The implementation of MABSTA, based on Gibbs Sampling approach, is computational-light and offers competitive performance in different scenarios on the trace-data obtained from a wireless IoT testbed. Furthermore, we prove that MABSTA is 1-competitive compared to the best offline assignment for any dynamic environment without stationarity assumptions, and demonstrate the polynomial-time algorithm for the exact implementation of the sampling process. To the best of our knowledge, MABSTA is the first online learning algorithm tailored to this class of problems. + +# Information +links.pdf=/static/public/papers/Infocom_2020.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f3d7cbdc0c8546aa134080b604ee8c9bc3f703db +type=Conference Papers +year=2020 +paper_id=530a7e47 +ss_title=MABSTA: Collaborative Computing over Heterogeneous Devices in Dynamic Environments +ss_authors=[{'authorId': '2056892379', 'name': 'Yi-Hsuan Kao'}, {'authorId': '37763411', 'name': 'Kwame-Lante Wright'}, {'authorId': '2148758931', 'name': 'Po-Han Huang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143832410', 'name': 'F. Bai'}] +ss_venue=IEEE Conference on Computer Communications +ss_year=2020 +ss_abstract=Collaborative computing, leveraging resource on multiple wireless-connected devices, enables complex applications that a single device cannot support individually. However, the problem of assigning tasks over devices becomes challenging in the dynamic environments encountered in real-world settings, considering that the resource availability and channel conditions change over time in unpredictable ways due to mobility and other factors. In this paper, we formulate the task assignment problem as an online learning problem using an adversarial multi-armed bandit framework. We propose MABSTA, a novel algorithm that learns the performance of unknown devices and channel qualities continually through exploratory probing and makes task assignment decisions by exploiting the gained knowledge. The implementation of MABSTA, based on Gibbs Sampling approach, is computational-light and offers competitive performance in different scenarios on the trace-data obtained from a wireless IoT testbed. Furthermore, we prove that MABSTA is 1-competitive compared to the best offline assignment for any dynamic environment without stationarity assumptions, and demonstrate the polynomial-time algorithm for the exact implementation of the sampling process. To the best of our knowledge, MABSTA is the first online learning algorithm tailored to this class of problems. +ss_paper_id=f3d7cbdc0c8546aa134080b604ee8c9bc3f703db \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_mobile_encounterbased_social_sybil_control.txt b/database/original_documents/publications_text/2020_mobile_encounterbased_social_sybil_control.txt new file mode 100644 index 0000000000000000000000000000000000000000..83629373dc84f847fab99243bc4d7182ff792f22 --- /dev/null +++ b/database/original_documents/publications_text/2020_mobile_encounterbased_social_sybil_control.txt @@ -0,0 +1,18 @@ +# Publication +title=Mobile Encounter-based Social Sybil Control +venue=2nd International Workshop on Blockchain Applications and Theory (BAT 2020), Paris, France, April 2020 +authors=['Martin Martinez', 'Arvin Hekmati', 'Bhaskar Krishnamachari', 'Seokgu Yun'] +abstract=We present a novel “Proof of Social Contact” approach to Sybil control that utilizes the analysis of digitally signed information about digitally signed pairwise encounters between mobile devices that are logged in a distributed ledger. To illustrate the approach, we show examples of analysis using binary classification techniques under two different adversary detection models, and evaluate them using a real-world mobile device encounter trace. We discuss a number of open problems and future directions that could be pursued by researchers in the field to realize and improve such a system and build on top of it. + +# Information +links.pdf=/static/public/papers/Encounter_based_Social_Sybil_Control.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cca973d9e82a5ea679d7d315c1ff9a95a00ab35d +type=Conference Papers +year=2020 +paper_id=3f207fda +ss_title=Mobile Encounter-based Social Sybil Control +ss_authors=[{'authorId': '2116737671', 'name': 'Martin Martinez'}, {'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '1830391567', 'name': 'Seokgu Yun'}] +ss_venue=Swiss Conference on Data Science +ss_year=2020 +ss_abstract=We present a novel “Proof of Social Contact” approach to Sybil control that utilizes the analysis of digitally signed information about digitally signed pairwise encounters between mobile devices that are logged in a distributed ledger. To illustrate the approach, we show examples of analysis using binary classification techniques under two different adversary detection models, and evaluate them using a real-world mobile device encounter trace. We discuss a number of open problems and future directions that could be pursued by researchers in the field to realize and improve such a system and build on top of it. +ss_paper_id=cca973d9e82a5ea679d7d315c1ff9a95a00ab35d \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_parkingjson_an_open_standard_format_for_parking_data_in_smart_cities.txt b/database/original_documents/publications_text/2020_parkingjson_an_open_standard_format_for_parking_data_in_smart_cities.txt new file mode 100644 index 0000000000000000000000000000000000000000..63ee9c60dcbf360a925b2cf955becc7a75e8f6cc --- /dev/null +++ b/database/original_documents/publications_text/2020_parkingjson_an_open_standard_format_for_parking_data_in_smart_cities.txt @@ -0,0 +1,18 @@ +# Publication +title=ParkingJSON: An Open Standard Format for Parking Data in Smart Cities +venue=Invited Paper at the International Workshop on Very Large Internet of Things (VLIoT 2020) held in conjunction with the 2020 VLDB Conference, Tokyo, Japan, 2020. +authors=['Gowri Ramachandran', 'Jeremy Stout', 'Joyce J Edson', 'Bhaskar Krishnamachari'] +abstract=Data marketplaces and data management platforms offer a viable solution to build large city-scale Internet of Things (IoT) applications. Contemporary data marketplaces and data management platforms for smart cities such as Intelligent IoT Integrator (I3), Cisco Kinetic, Terbine, and Streamr present a middleware platform to help the data owners to provide their data to the application developers. However, such platforms suffer from adoption issues because of the interoperability concerns that stem from heterogeneous data formats. On the one hand, the IoT devices and the software used by the device owners follow either a custom data standard or a proprietary industrial standard. On the other hand, the application developers consuming data from multiple device owners expect the data to follow one common standard to process the data without developing custom software for each data feed. Therefore, a common data standard is desired to enable interoperable data exchange through data marketplace and data management platforms while promoting adoption. We present our experiences from developing a city-scale real-time parking application for a smart city. We also introduce ParkingJSON, a new open standard format for parking data in smart cities, which could help the parking data providers to cover all types of parking infrastructures through a single JSON schema. To the best of our knowledge, this is the first parking data standard proposed that a) covers a wide range of parking spaces and structures, b) integrates spatial information, and c) provides support for data integrity and authenticity. + +# Information +links.pdf=/static/public/papers/Very_Large_IoT_2020_Parking_Paper.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/6a09dfe5380103732863c2ea03fb8124c6543fb8 +type=Conference Papers +year=2020 +paper_id=626e1c80 +ss_title=ParkingJSON: An Open Standard Format for Parking Data in Smart Cities +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2059904406', 'name': 'Jeremy Stout'}, {'authorId': '1879305151', 'name': 'Joyce J. Edson'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Open J. Internet Things +ss_year=2020 +ss_abstract=Data marketplaces and data management platforms offer a viable solution to build large city-scale Internet of Things (IoT) applications. Contemporary data marketplaces and data management platforms for smart cities such as Intelligent IoT Integrator (I3), Cisco Kinetic, Terbine, and Streamr present a middleware platform to help the data owners to provide their data to the application developers. However, such platforms suffer from adoption issues because of the interoperability concerns that stem from heterogeneous data formats. On the one hand, the IoT devices and the software used by the device owners follow either a custom data standard or a proprietary industrial standard. On the other hand, the application developers consuming data from multiple device owners expect the data to follow one common standard to process the data without developing custom software for each data feed. Therefore, a common data standard is desired to enable interoperable data exchange through data marketplace and data management platforms while promoting adoption. We present our experiences from developing a city-scale real-time parking application for a smart city. We also introduce ParkingJSON, a new open standard format for parking data in smart cities, which could help the parking data providers to cover all types of parking infrastructures through a single JSON schema. To the best of our knowledge, this is the first parking data standard proposed that a) covers a wide range of parking spaces and structures, b) integrates spatial information, and c) provides support for data integrity and authenticity. +ss_paper_id=6a09dfe5380103732863c2ea03fb8124c6543fb8 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_poster_centralized_vs_decentralized_contact_tracing_do_gdp_and_democracy_index_influence_privacy_choices.txt b/database/original_documents/publications_text/2020_poster_centralized_vs_decentralized_contact_tracing_do_gdp_and_democracy_index_influence_privacy_choices.txt new file mode 100644 index 0000000000000000000000000000000000000000..01b567761fbaf881ab9d7ceeea8417cc13e444b5 --- /dev/null +++ b/database/original_documents/publications_text/2020_poster_centralized_vs_decentralized_contact_tracing_do_gdp_and_democracy_index_influence_privacy_choices.txt @@ -0,0 +1,18 @@ +# Publication +title=Poster: Centralized vs. Decentralized Contact Tracing: Do GDP and Democracy Index Influence Privacy Choices? +venue=IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), December 2020. +authors=['Nina Tanaka', 'Gowri Ramachandran', 'Bhaskar Krishnamachari'] +abstract=Contagious diseases such as COVID-19 spread rapidly, forcing governments and policymakers to employ corrective measures. Contact tracing is one of the critical tools to identify whether individuals came into contact with infected persons. Many countries, including Australia, Singapore, and India, have released contact tracing apps to reduce the community spread. Such apps follow either a centralized or decentralized architecture; the former lets government agencies store and manage the user's data without privacy support, while the latter allows the user more control over their information, providing privacy. We analyze how the GDP and the democracy index influence the adoption of contact tracing applications. Our study analyzes COVID-19 contact tracing projects announced between February 2020 and August 2020 from 63 countries. The data indicates that countries with high GDP and democracy index tend to opt for decentralized architectures, while autocratic and low GDP countries tend to adopt centralized architectures. + +# Information +links.pdf=/static/public/papers/ACM_CHASE_Camera_Ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5821c45be8f6f3c4329f4289c775900399132e3d +type=Conference Papers +year=2020 +paper_id=f791870a +ss_title=Poster: Centralized vs. Decentralized Contact Tracing: Do GDP and Democracy Index Influence Privacy Choices? +ss_authors=[{'authorId': '1474099600', 'name': 'Nina Tanaka'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies +ss_year=2020 +ss_abstract=Contagious diseases such as COVID-19 spread rapidly, forcing governments and policymakers to employ corrective measures. Contact tracing is one of the critical tools to identify whether individuals came into contact with infected persons. Many countries, including Australia, Singapore, and India, have released contact tracing apps to reduce the community spread. Such apps follow either a centralized or decentralized architecture; the former lets government agencies store and manage the user's data without privacy support, while the latter allows the user more control over their information, providing privacy. We analyze how the GDP and the democracy index influence the adoption of contact tracing applications. Our study analyzes COVID-19 contact tracing projects announced between February 2020 and August 2020 from 63 countries. The data indicates that countries with high GDP and democracy index tend to opt for decentralized architectures, while autocratic and low GDP countries tend to adopt centralized architectures. +ss_paper_id=5821c45be8f6f3c4329f4289c775900399132e3d \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_senate_a_permissionless_byzantine_consensus_protocol_in_wireless_networks_for_realtime_internetofthings_applications.txt b/database/original_documents/publications_text/2020_senate_a_permissionless_byzantine_consensus_protocol_in_wireless_networks_for_realtime_internetofthings_applications.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f4557e414969eeae552fdfeb145042aa111d4ac --- /dev/null +++ b/database/original_documents/publications_text/2020_senate_a_permissionless_byzantine_consensus_protocol_in_wireless_networks_for_realtime_internetofthings_applications.txt @@ -0,0 +1,18 @@ +# Publication +title=SENATE: A Permissionless Byzantine Consensus Protocol in Wireless Networks for Real-Time Internet-of-Things Applications +venue=in IEEE Internet of Things Journal, 2020. +authors=['Zhou Sheng', 'Zhiyuan Jiang', 'Zixu Cao', 'Bhaskar Krishnamachari', 'Zhisheng Niu'] +abstract=The blockchain technology has achieved tremendous success in open (permissionless) decentralized consensus by employing Proof of Work (PoW) or its variants, whereby unauthorized nodes cannot gain a disproportionate impact on consensus beyond their computational power. However, PoW-based systems incur a high delay and low throughput, making them ineffective in dealing with the real-time Internet-of-Things (IoT) applications. On the other hand, the Byzantine fault-tolerant (BFT) consensus algorithms with better delay and throughput performance cannot be employed in permissionless settings due to vulnerability to Sybil attacks. In this article, we present a Sybil-proof wireless network coordinate-based Byzantine consensus (SENATE), which has the merits of both real-time consensus reaching and Sybil-proof, i.e., it is based on the conventional BFT consensus framework yet works in open systems of wireless devices where faulty nodes may launch Sybil attacks. As in a Senate, in the legislature, where the quota of senators per state (district) is a constant irrespective with the population of the state, “senators” in SENATE are selected from participating distributed nodes based on their wireless network coordinates (WNCs) with a fixed number of nodes per district in the WNC space. Elected senators then participate in the subsequent consensus reaching process and broadcast the result. Thereby, the SENATE is a proof against Sybil attacks since pseudonyms of a faulty node are likely to be adjacent in the WNC space and hence fail to be elected. The simulation results reveal that the SENATE can achieve real-time consensus (consensus delay under one second) in a network of hundreds of nodes. + +# Information +links.pdf=/static/public/papers/senate.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cda0c825a3c63160f1f044fb80b6018777af1848 +type=Journal Papers +year=2020 +paper_id=e113539f +ss_title=SENATE: A Permissionless Byzantine Consensus Protocol in Wireless Networks for Real-Time Internet-of-Things Applications +ss_authors=[{'authorId': '4302623', 'name': 'Zhiyuan Jiang'}, {'authorId': '1491380112', 'name': 'Zixu Cao'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '143676396', 'name': 'Sheng Zhou'}, {'authorId': '145273634', 'name': 'Z. Niu'}] +ss_venue=IEEE Internet of Things Journal +ss_year=2018 +ss_abstract=The blockchain technology has achieved tremendous success in open (permissionless) decentralized consensus by employing Proof of Work (PoW) or its variants, whereby unauthorized nodes cannot gain a disproportionate impact on consensus beyond their computational power. However, PoW-based systems incur a high delay and low throughput, making them ineffective in dealing with the real-time Internet-of-Things (IoT) applications. On the other hand, the Byzantine fault-tolerant (BFT) consensus algorithms with better delay and throughput performance cannot be employed in permissionless settings due to vulnerability to Sybil attacks. In this article, we present a Sybil-proof wireless network coordinate-based Byzantine consensus (SENATE), which has the merits of both real-time consensus reaching and Sybil-proof, i.e., it is based on the conventional BFT consensus framework yet works in open systems of wireless devices where faulty nodes may launch Sybil attacks. As in a Senate, in the legislature, where the quota of senators per state (district) is a constant irrespective with the population of the state, “senators” in SENATE are selected from participating distributed nodes based on their wireless network coordinates (WNCs) with a fixed number of nodes per district in the WNC space. Elected senators then participate in the subsequent consensus reaching process and broadcast the result. Thereby, the SENATE is a proof against Sybil attacks since pseudonyms of a faulty node are likely to be adjacent in the WNC space and hence fail to be elected. The simulation results reveal that the SENATE can achieve real-time consensus (consensus delay under one second) in a network of hundreds of nodes. +ss_paper_id=cda0c825a3c63160f1f044fb80b6018777af1848 \ No newline at end of file diff --git a/database/original_documents/publications_text/2020_whistleblower_towards_a_decentralized_and_open_platform_for_spotting_fake_news.txt b/database/original_documents/publications_text/2020_whistleblower_towards_a_decentralized_and_open_platform_for_spotting_fake_news.txt new file mode 100644 index 0000000000000000000000000000000000000000..aeaabe413332c7c961f8dba97e0a309c37a7c98f --- /dev/null +++ b/database/original_documents/publications_text/2020_whistleblower_towards_a_decentralized_and_open_platform_for_spotting_fake_news.txt @@ -0,0 +1,18 @@ +# Publication +title=WhistleBlower: Towards A Decentralized and Open Platform for Spotting Fake News +venue=In Third IEEE International Conference on Blockchain, November, 2020. +authors=['Gowri Ramachandran', 'Daniel Nemeth', 'David Neville', 'Dimitrii Zhelezov', 'Ahmet Yalçin', 'Oliver Fohrmann', 'Bhaskar Krishnamachari'] +abstract=The vast majority of the population is consuming news from various digital sources, including social networking applications such as Twitter and Facebook and other online digital platforms. Such Internet platforms provide malicious entities an opportunity to spread fake news and hoaxes to mislead the population. Besides, Internet users may start to form an opinion and make certain personal or business decisions based on misinformation, leading to undesirable consequences. This paper introduces WhistleBlower, a decentralized and open platform based on the blockchain and distributed ledger technology (DLT) for spotting fake news. The key components of WhistleBlower include a fake news processing engine powered by Artificial Intelligence (AI)/Machine Learning (ML) algorithms, a verifiable computation engine, and a token-curated registry (TCR).WhistleBlower allows the community members to participate in the fake news identification process by running the fake news detection algorithm on their nodes, which would then be validated by a verifiable computation engine to ensure that the public nodes executed the computation honestly and correctly. Whenever a news feed is submitted to WhistleBlower for fake news assessment, it issues a genuineness score, which can then be posted along with the news article to let the newsreaders gauge its legitimacy. However, the genuineness score’s accuracy depends on the machine learning model’s effectiveness that processes the news item. To improve the machine learning algorithm’s reliability, we introduce a Token-curated registry, which enables the public and community members to challenge the algorithm used to estimate the genuineness score. TCR lets the community curate fake news detection algorithms by providing feedback to the ML/AI algorithm developers through the token-curated content moderation process. WhistleBlower is the first open and democratic fake news assessment platform that combines ML/AI, verifiable computation, and TCR to the best of our knowledge. + +# Information +links.pdf=/static/public/papers/WhistleBlower_Camera_Ready.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/615b42dfdf679eee8b6f15cf5a44934ab5a38c92 +type=Conference Papers +year=2020 +paper_id=d7e6675b +ss_title=WhistleBlower: Towards A Decentralized and Open Platform for Spotting Fake News +ss_authors=[{'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '2082094216', 'name': 'Daniel Nemeth'}, {'authorId': '2072121349', 'name': 'David Neville'}, {'authorId': '2034352934', 'name': 'Dimitrii Zhelezov'}, {'authorId': '2054304042', 'name': 'Ahmet Yalçin'}, {'authorId': '2098898802', 'name': 'Oliver Fohrmann'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Congress on Blockchain and Applications +ss_year=2020 +ss_abstract=The vast majority of the population is consuming news from various digital sources, including social networking applications such as Twitter and Facebook and other online digital platforms. Such Internet platforms provide malicious entities an opportunity to spread fake news and hoaxes to mislead the population. Besides, Internet users may start to form an opinion and make certain personal or business decisions based on misinformation, leading to undesirable consequences. This paper introduces WhistleBlower, a decentralized and open platform based on the blockchain and distributed ledger technology (DLT) for spotting fake news. The key components of WhistleBlower include a fake news processing engine powered by Artificial Intelligence (AI)/Machine Learning (ML) algorithms, a verifiable computation engine, and a token-curated registry (TCR).WhistleBlower allows the community members to participate in the fake news identification process by running the fake news detection algorithm on their nodes, which would then be validated by a verifiable computation engine to ensure that the public nodes executed the computation honestly and correctly. Whenever a news feed is submitted to WhistleBlower for fake news assessment, it issues a genuineness score, which can then be posted along with the news article to let the newsreaders gauge its legitimacy. However, the genuineness score’s accuracy depends on the machine learning model’s effectiveness that processes the news item. To improve the machine learning algorithm’s reliability, we introduce a Token-curated registry, which enables the public and community members to challenge the algorithm used to estimate the genuineness score. TCR lets the community curate fake news detection algorithms by providing feedback to the ML/AI algorithm developers through the token-curated content moderation process. WhistleBlower is the first open and democratic fake news assessment platform that combines ML/AI, verifiable computation, and TCR to the best of our knowledge. +ss_paper_id=615b42dfdf679eee8b6f15cf5a44934ab5a38c92 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_a_decentralized_review_system_for_data_marketplaces.txt b/database/original_documents/publications_text/2021_a_decentralized_review_system_for_data_marketplaces.txt new file mode 100644 index 0000000000000000000000000000000000000000..119135d5fe5d5ad8cca764e8ed74cf8bf41c6a7b --- /dev/null +++ b/database/original_documents/publications_text/2021_a_decentralized_review_system_for_data_marketplaces.txt @@ -0,0 +1,18 @@ +# Publication +title=A Decentralized Review System for Data Marketplaces +venue=IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021 +authors=['A Avyukt', 'G Ramachandran', 'B Krishnamachari'] +abstract=Data Marketplaces allow a wide range of public and private data providers on the one hand, and data-consuming applications on the other, to interact. They can be used to exchange valuable data relevant to a community, such as data relevant to traffic, road conditions, parking, air quality and other urban internet of things (IoT) applications, in a scalable manner. Traditionally, online marketplaces use ratings by buyers to help potential consumers identify good quality products; however such rating systems are often easy for sellers to game by paying for flattering ratings and reviews. These problems are even more challenging in data marketplaces due to the possibility of sellers launching Sybil attacks (taking on multiple fake identities) to rate their own products. We propose a novel decentralized crypto-economic system to ensure the credibility of reviews. The key idea of our proposed system, which can be implemented using decentralized smart contracts, is to have sellers apply for their products to be reviewed, followed by an allocation of products to a select subset of reviewers with credibility. The reviewer allocation process is randomized and double-blinded to minimize the possibility of collusion with the seller. The reviewers are incentivized through a mechanism that not only provides a reward for reviewing products posted by sellers but also an additional reward for reviewing test products posted by the marketplace. We analyze the incentive mechanism through game theoretical modeling and show conditions under which the Nash equilibrium policy is for all reviewers to perform the work needed for the review (without guessing at the answer). We also show how the staking mechanism in conjunction with high quality reviews incentivizes sellers to post higher-quality products. A marketplace with higher-quality products, in turn, is likely to have a stronger reputation and attract more customers, helping the entire ecosystem. + +# Information +links.pdf=/static/public/papers/ReviewPaper.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/05f19ec6039bad38c4f897f92ae9aa6be7f960e6 +type=Conference Papers +year=2021 +paper_id=f0fa08a5 +ss_title=A Decentralized Review System for Data Marketplaces +ss_authors=[{'authorId': '2107566711', 'name': 'Anusha Avyukt'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Blockchain +ss_year=2021 +ss_abstract=Data Marketplaces allow a wide range of public and private data providers on the one hand, and data-consuming applications on the other, to interact. They can be used to exchange valuable data relevant to a community, such as data relevant to traffic, road conditions, parking, air quality and other urban internet of things (IoT) applications, in a scalable manner. Traditionally, online marketplaces use ratings by buyers to help potential consumers identify good quality products; however such rating systems are often easy for sellers to game by paying for flattering ratings and reviews. These problems are even more challenging in data marketplaces due to the possibility of sellers launching Sybil attacks (taking on multiple fake identities) to rate their own products. We propose a novel decentralized crypto-economic system to ensure the credibility of reviews. The key idea of our proposed system, which can be implemented using decentralized smart contracts, is to have sellers apply for their products to be reviewed, followed by an allocation of products to a select subset of reviewers with credibility. The reviewer allocation process is randomized and double-blinded to minimize the possibility of collusion with the seller. The reviewers are incentivized through a mechanism that not only provides a reward for reviewing products posted by sellers but also an additional reward for reviewing test products posted by the marketplace. We analyze the incentive mechanism through game theoretical modeling and show conditions under which the Nash equilibrium policy is for all reviewers to perform the work needed for the review (without guessing at the answer). We also show how the staking mechanism in conjunction with high quality reviews incentivizes sellers to post higher-quality products. A marketplace with higher-quality products, in turn, is likely to have a stronger reputation and attract more customers, helping the entire ecosystem. +ss_paper_id=05f19ec6039bad38c4f897f92ae9aa6be7f960e6 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt b/database/original_documents/publications_text/2021_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt new file mode 100644 index 0000000000000000000000000000000000000000..9fa6c17b05ce827fcdffe5a560349d9ef6abc817 --- /dev/null +++ b/database/original_documents/publications_text/2021_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt @@ -0,0 +1,18 @@ +# Publication +title=A Queue-Stabilizing Framework for Networked Multi-Robot Exploration +venue=in IEEE Robotics and Automation Letters, 2021. +authors=['L Clark', 'J Galante', 'B Krishnamachari', 'K Psounis'] +abstract=Motivated by planetary exploration, we consider the problem of deploying a network of mobile robots to explore an unknown environment and share information with a stationary data sink. The configuration of robots affects both network connectivity and the accuracy of relative localization. Robots explore autonomously and can store data locally in their queues. When a communication path exists to the data sink, robots transfer their data. Because robots may fail in a non-deterministic manner, causing loss of the data in their queues, enabling communication is important. However, strict constraints on connectivity and relative positions limit exploration. To take a more flexible approach to managing these multiple objectives, we use Lyapunov-based stochastic optimization to maximize new information while using virtual queues to constrain time-average expectations of metrics of interest. These include queueing delay, network connectivity, and localization uncertainty. The result is a distributed online controller which autonomously and strategically breaks and restores connectivity as needed. We explicitly account for obstacle avoidance, limited sensing ranges, and noisy communication/ranging links with line-of-sight occlusions. We use queuing theory to analyze the average delay experienced by data in our system and guarantee connectivity will be recovered when feasible. We demonstrate in simulation that our queue-stabilizing controller can reduce localization uncertainty and achieve better coverage than two state of the art approaches. + +# Information +links.pdf=/static/public/papers/FINAL_Queue_stabilizing_distributed_online_controller.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d279f4dce2aa2b9338ad8660c5979a20fe9c300a +type=Journal Papers +year=2021 +paper_id=ed5a4df9 +ss_title=A Queue-Stabilizing Framework for Networked Multi-Robot Exploration +ss_authors=[{'authorId': '2070152199', 'name': 'Lillian Clark'}, {'authorId': '2076876343', 'name': 'Joseph M. Galante'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9313028', 'name': 'K. Psounis'}] +ss_venue=IEEE Robotics and Automation Letters +ss_year=2021 +ss_abstract=Motivated by planetary exploration, we consider the problem of deploying a network of mobile robots to explore an unknown environment and share information with a stationary data sink. The configuration of robots affects both network connectivity and the accuracy of relative localization. Robots explore autonomously and can store data locally in their queues. When a communication path exists to the data sink, robots transfer their data. Because robots may fail in a non-deterministic manner, causing loss of the data in their queues, enabling communication is important. However, strict constraints on connectivity and relative positions limit exploration. To take a more flexible approach to managing these multiple objectives, we use Lyapunov-based stochastic optimization to maximize new information while using virtual queues to constrain time-average expectations of metrics of interest. These include queueing delay, network connectivity, and localization uncertainty. The result is a distributed online controller which autonomously and strategically breaks and restores connectivity as needed. We explicitly account for obstacle avoidance, limited sensing ranges, and noisy communication/ranging links with line-of-sight occlusions. We use queuing theory to analyze the average delay experienced by data in our system and guarantee connectivity will be recovered when feasible. We demonstrate in simulation that our queue-stabilizing controller can reduce localization uncertainty and achieve better coverage than two state of the art approaches. +ss_paper_id=d279f4dce2aa2b9338ad8660c5979a20fe9c300a \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_a_survey_of_blockchainbased_strategies_for_healthcare.txt b/database/original_documents/publications_text/2021_a_survey_of_blockchainbased_strategies_for_healthcare.txt new file mode 100644 index 0000000000000000000000000000000000000000..deb0d1bcc190609a580ce495b26866b4089dd8c5 --- /dev/null +++ b/database/original_documents/publications_text/2021_a_survey_of_blockchainbased_strategies_for_healthcare.txt @@ -0,0 +1,18 @@ +# Publication +title=A Survey of Blockchain-Based Strategies for Healthcare +venue=ACM Comput. Surv. 53(2): 27:1-27:27 (2020). +authors=['E Aguiar', 'B Faiçal', 'B Krishnamachari', 'J Ueyama'] +abstract=Blockchain technology has been gaining visibility owing to its ability to enhance the security, reliability, and robustness of distributed systems. Several areas have benefited from research based on this technology, such as finance, remote sensing, data analysis, and healthcare. Data immutability, privacy, transparency, decentralization, and distributed ledgers are the main features that make blockchain an attractive technology. However, healthcare records that contain confidential patient data make this system very complicated because there is a risk of a privacy breach. This study aims to address research into the applications of the blockchain healthcare area. It sets out by discussing the management of medical information, as well as the sharing of medical records, image sharing, and log management. We also discuss papers that intersect with other areas, such as the Internet of Things, the management of information, tracking of drugs along their supply chain, and aspects of security and privacy. As we are aware that there are other surveys of blockchain in healthcare, we analyze and compare both the positive and negative aspects of their papers. Finally, we seek to examine the concepts of blockchain in the medical area, by assessing their benefits and drawbacks and thus giving guidance to other researchers in the area. Additionally, we summarize the methods used in healthcare per application area and show their pros and cons. + +# Information +links.pdf=/static/public/papers/HEALTHCARE-ACM.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ba0b4666845040d429da8ac01d904769999bec05 +type=Journal Papers +year=2021 +paper_id=00aa88b4 +ss_title=A Survey of Blockchain-Based Strategies for Healthcare +ss_authors=[{'authorId': '2148250418', 'name': 'E. J. De Aguiar'}, {'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2190289', 'name': 'J. Ueyama'}] +ss_venue=ACM Computing Surveys +ss_year=2020 +ss_abstract=Blockchain technology has been gaining visibility owing to its ability to enhance the security, reliability, and robustness of distributed systems. Several areas have benefited from research based on this technology, such as finance, remote sensing, data analysis, and healthcare. Data immutability, privacy, transparency, decentralization, and distributed ledgers are the main features that make blockchain an attractive technology. However, healthcare records that contain confidential patient data make this system very complicated because there is a risk of a privacy breach. This study aims to address research into the applications of the blockchain healthcare area. It sets out by discussing the management of medical information, as well as the sharing of medical records, image sharing, and log management. We also discuss papers that intersect with other areas, such as the Internet of Things, the management of information, tracking of drugs along their supply chain, and aspects of security and privacy. As we are aware that there are other surveys of blockchain in healthcare, we analyze and compare both the positive and negative aspects of their papers. Finally, we seek to examine the concepts of blockchain in the medical area, by assessing their benefits and drawbacks and thus giving guidance to other researchers in the area. Additionally, we summarize the methods used in healthcare per application area and show their pros and cons. +ss_paper_id=ba0b4666845040d429da8ac01d904769999bec05 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_contain_privacyoriented_contact_tracing_protocols_for_epidemics.txt b/database/original_documents/publications_text/2021_contain_privacyoriented_contact_tracing_protocols_for_epidemics.txt new file mode 100644 index 0000000000000000000000000000000000000000..4af493c4ac7dba903de0c7860aa7efa36b7d4375 --- /dev/null +++ b/database/original_documents/publications_text/2021_contain_privacyoriented_contact_tracing_protocols_for_epidemics.txt @@ -0,0 +1,18 @@ +# Publication +title=CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics +venue=IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021 +authors=['A Hekmati', 'G Ramachandran', 'B Krishnamachari'] +abstract=Public health agencies advocate the use of contact tracing procedures to deal with pandemics such as COVID-19 to prevent the infection of a vast population. Although several mobile applications have been developed previously for contact tracing, they typically require collection of privacy-intrusive information such as GPS locations, personal data, or require infrastructures such as WiFi APs. In this paper, we introduce CONTAIN, an early proposal for privacy-sensitive contact tracing. CONTAIN is a privacy-oriented bluetooth-based mobile digital contact tracing framework that does not rely on any infrastructure-based location sensing, nor the continuous logging of personally identifiable information. The goal of CONTAIN is to allow users to determine with complete privacy if and when they have been within a short distance of someone that is infected. We identify and prove the privacy guarantees provided by CONTAIN. We also present a simulation study utilizing an empirical trace dataset which shows that users can maximize their possibility of identifying if they were near an infected user by turning on the app in more crowded settings. + +# Information +links.pdf=/static/public/papers/CONTAIN.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/b4f74429861a416086fdd9845a8a46c50f869dfe +type=Conference Papers +year=2021 +paper_id=6d87a3da +ss_title=CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics +ss_authors=[{'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IFIP/IEEE Symposium on Integrated Network Management +ss_year=2020 +ss_abstract=Public health agencies advocate the use of contact tracing procedures to deal with pandemics such as COVID-19 to prevent the infection of a vast population. Although several mobile applications have been developed previously for contact tracing, they typically require collection of privacy-intrusive information such as GPS locations, personal data, or require infrastructures such as WiFi APs. In this paper, we introduce CONTAIN, an early proposal for privacy-sensitive contact tracing. CONTAIN is a privacy-oriented bluetooth-based mobile digital contact tracing framework that does not rely on any infrastructure-based location sensing, nor the continuous logging of personally identifiable information. The goal of CONTAIN is to allow users to determine with complete privacy if and when they have been within a short distance of someone that is infected. We identify and prove the privacy guarantees provided by CONTAIN. We also present a simulation study utilizing an empirical trace dataset which shows that users can maximize their possibility of identifying if they were near an infected user by turning on the app in more crowded settings. +ss_paper_id=b4f74429861a416086fdd9845a8a46c50f869dfe \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_context_information_sharing_for_the_internet_of_things_a_survey.txt b/database/original_documents/publications_text/2021_context_information_sharing_for_the_internet_of_things_a_survey.txt new file mode 100644 index 0000000000000000000000000000000000000000..c701afb15de2041b450a6de5c2e778b660a8ada4 --- /dev/null +++ b/database/original_documents/publications_text/2021_context_information_sharing_for_the_internet_of_things_a_survey.txt @@ -0,0 +1,18 @@ +# Publication +title=Context information sharing for the Internet of Things: A survey +venue=Elsevier Comput. Networks 166 (2020). +authors=['E Matos', 'R Tiburski', 'C Moratelli', 'S Filhoa', 'L Amaral', 'G Ramachandran', 'B Krishnamachari', 'F Hessel'] +abstract=None + +# Information +links.pdf=/static/public/papers/computer_networks_journal2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/373ef4e020db7eebacea9d4d6988abe1e33c3e25 +type=Journal Papers +year=2021 +paper_id=5231f684 +ss_title=Context information sharing for the Internet of Things: A survey +ss_authors=[{'authorId': '144376704', 'name': 'Everton de Matos'}, {'authorId': '1829454', 'name': 'Ramão Tiago Tiburski'}, {'authorId': '1745041', 'name': 'C. Moratelli'}, {'authorId': '2248095', 'name': 'S. J. Filho'}, {'authorId': '143692654', 'name': 'Leonardo A. Amaral'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '7331931', 'name': 'F. Hessel'}] +ss_venue=Comput. Networks +ss_year=2020 +ss_abstract=None +ss_paper_id=373ef4e020db7eebacea9d4d6988abe1e33c3e25 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt b/database/original_documents/publications_text/2021_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt new file mode 100644 index 0000000000000000000000000000000000000000..83a675dd56a73b2b3bd682b93d7e280dc003e552 --- /dev/null +++ b/database/original_documents/publications_text/2021_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt @@ -0,0 +1,18 @@ +# Publication +title=Control, intervention, and behavioral economics over human social networks against COVID-19″ +venue=Adv. Robotics 35(11): 733-739 (2021). +authors=['M Nagahara', 'B Krishnamachari', 'M Ogura', 'A Ortega', 'Y Tanaka', 'Y Ushifusa', 'TW Valente'] +abstract=In this short paper, we propose a new direction of cross-cutting research for prediction and control of spreading COVID-19 viruses over a human social network. Such a network consists of human agents whose behaviors are highly uncertain and biased. To predict and control such an uncertain network, we need to employ various researches such as control theory, signal processing, machine learning, and behavioral economics. In this article, we introduce our recent research results and propose future research topics to overcome the COVID-19 pandemic. GRAPHICAL ABSTRACT + +# Information +links.pdf=/static/public/papers/contr.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b0b933351e936a46b0c95b4b9e0f080d52d6a69 +type=Journal Papers +year=2021 +paper_id=48719c09 +ss_title=Control, intervention, and behavioral economics over human social networks against COVID-19 +ss_authors=[{'authorId': '2117613538', 'name': 'Nagahara Nagahara'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '50701588', 'name': 'Masaki Ogura'}, {'authorId': '2054817790', 'name': 'Antonio Ortega'}, {'authorId': '2112766807', 'name': 'Yuichi Tanaka'}, {'authorId': '98220386', 'name': 'Y. Ushifusa'}, {'authorId': '2225668', 'name': 'T. Valente'}] +ss_venue=Adv. Robotics +ss_year=2021 +ss_abstract=In this short paper, we propose a new direction of cross-cutting research for prediction and control of spreading COVID-19 viruses over a human social network. Such a network consists of human agents whose behaviors are highly uncertain and biased. To predict and control such an uncertain network, we need to employ various researches such as control theory, signal processing, machine learning, and behavioral economics. In this article, we introduce our recent research results and propose future research topics to overcome the COVID-19 pandemic. GRAPHICAL ABSTRACT +ss_paper_id=3b0b933351e936a46b0c95b4b9e0f080d52d6a69 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_daisim_a_computational_simulator_for_the_makerdao_stablecoin.txt b/database/original_documents/publications_text/2021_daisim_a_computational_simulator_for_the_makerdao_stablecoin.txt new file mode 100644 index 0000000000000000000000000000000000000000..570b99fea54ebd38d735ceb8f3d10572dfa2be9f --- /dev/null +++ b/database/original_documents/publications_text/2021_daisim_a_computational_simulator_for_the_makerdao_stablecoin.txt @@ -0,0 +1,18 @@ +# Publication +title=DAISIM: A Computational Simulator for the MakerDAO Stablecoin +venue=Fourth International Symposium on Foundations and Applications of Blockchain, UC Davis, May 7, 2021 +authors=['S Bhat', 'A Kahya', 'B Krishnamachari', 'R Kumar'] +abstract=We present a computational simulation of the single-collateral DAI stablecoin launched by the MakerDAO project in 2017. At the core of the simulation is a model of cryptocurrency investors acting as rational Markowitz mean-variance portfolio optimizers, with heterogeneous risk tolerance. The simulator, called DAISIM, incorporates automated order matching and price update mechanisms to determine the DAI price. We use the simulator to evaluate how the single-collateral DAI price, as well as portfolio allocations, vary for a given population of investors as a function of exogenous parameters such as the price of ETH and various system parameters including stability rate and transaction fee. DAISIM is being made available as open-source and may be useful in evaluating other similar projects. + +# Information +links.pdf=/static/public/papers/DAISIM.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/48dc813c015fd36f6981f4a5611df79baf6588b4 +type=Conference Papers +year=2021 +paper_id=aaa4e743 +ss_title=DAISIM: A Computational Simulator for the MakerDAO Stablecoin +ss_authors=[{'authorId': '15866845', 'name': 'Shreyas Bhat'}, {'authorId': '2051805528', 'name': 'Ayten Kahya'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2108880143', 'name': 'Rohit Kumar'}] +ss_venue=International Symposium on Foundations and Applications of Blockchain +ss_year=2021 +ss_abstract=We present a computational simulation of the single-collateral DAI stablecoin launched by the MakerDAO project in 2017. At the core of the simulation is a model of cryptocurrency investors acting as rational Markowitz mean-variance portfolio optimizers, with heterogeneous risk tolerance. The simulator, called DAISIM, incorporates automated order matching and price update mechanisms to determine the DAI price. We use the simulator to evaluate how the single-collateral DAI price, as well as portfolio allocations, vary for a given population of investors as a function of exogenous parameters such as the price of ETH and various system parameters including stability rate and transaction fee. DAISIM is being made available as open-source and may be useful in evaluating other similar projects. +ss_paper_id=48dc813c015fd36f6981f4a5611df79baf6588b4 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_dataset_largescale_urban_iot_activity_data_for_ddos_attack_emulation.txt b/database/original_documents/publications_text/2021_dataset_largescale_urban_iot_activity_data_for_ddos_attack_emulation.txt new file mode 100644 index 0000000000000000000000000000000000000000..95ba6ae46d7008a08f92da4df090cd33b7c8a87a --- /dev/null +++ b/database/original_documents/publications_text/2021_dataset_largescale_urban_iot_activity_data_for_ddos_attack_emulation.txt @@ -0,0 +1,18 @@ +# Publication +title=“Dataset: Large-scale Urban IoT Activity Data for DDoS Attack Emulation” +venue=CoRR abs/2110.01842 (2021) +authors=['A Hekmati', 'E Grippo', 'B Krishnamachari'] +abstract=As IoT deployments grow in scale for applications such as smart cities, they face increasing cyber-security threats. In particular, as evidenced by the famous Mirai incident and other ongoing threats, large-scale IoT device networks are particularly susceptible to being hijacked and used as botnets to launch distributed denial of service (DDoS) attacks. Real large-scale datasets are needed to train and evaluate the use of machine learning algorithms such as deep neural networks to detect and defend against such DDoS attacks. We present a dataset from an urban IoT deployment of 4060 nodes describing their spatio-temporal activity under benign conditions. We also provide a synthetic DDoS attack generator that injects attack activity into the dataset based on tunable parameters such as number of nodes attacked and duration of attack. We discuss some of the features of the dataset. We also demonstrate the utility of the dataset as well as our synthetic DDoS attack generator by using them for the training and evaluation of a simple multi-label feed-forward neural network that aims to identify which nodes are under attack and when. + +# Information +links.pdf=/static/public/papers/DATASET.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/82a0f6dad314690d79224ed218fad53f8a6bc5ff +type=Conference Papers +year=2021 +paper_id=6572b01a +ss_title=Large-scale Urban IoT Activity Data for DDoS Attack Emulation +ss_authors=[{'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM International Conference on Embedded Networked Sensor Systems +ss_year=2021 +ss_abstract=As IoT deployments grow in scale for applications such as smart cities, they face increasing cyber-security threats. In particular, as evidenced by the famous Mirai incident and other ongoing threats, large-scale IoT device networks are particularly susceptible to being hijacked and used as botnets to launch distributed denial of service (DDoS) attacks. Real large-scale datasets are needed to train and evaluate the use of machine learning algorithms such as deep neural networks to detect and defend against such DDoS attacks. We present a dataset from an urban IoT deployment of 4060 nodes describing their spatio-temporal activity under benign conditions. We also provide a synthetic DDoS attack generator that injects attack activity into the dataset based on tunable parameters such as number of nodes attacked and duration of attack. We discuss some of the features of the dataset. We also demonstrate the utility of the dataset as well as our synthetic DDoS attack generator by using them for the training and evaluation of a simple multi-label feed-forward neural network that aims to identify which nodes are under attack and when. +ss_paper_id=82a0f6dad314690d79224ed218fad53f8a6bc5ff \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_design_and_experimental_evaluation_of_algorithms_for_optimizing_the_throughput_of_dispersed_computing.txt b/database/original_documents/publications_text/2021_design_and_experimental_evaluation_of_algorithms_for_optimizing_the_throughput_of_dispersed_computing.txt new file mode 100644 index 0000000000000000000000000000000000000000..73a011dd47ab8b65d7f6f0753e967cab9dc0fa4a --- /dev/null +++ b/database/original_documents/publications_text/2021_design_and_experimental_evaluation_of_algorithms_for_optimizing_the_throughput_of_dispersed_computing.txt @@ -0,0 +1,18 @@ +# Publication +title=Design and Experimental Evaluation of Algorithms for Optimizing the Throughput of Dispersed Computing +venue=arXiv preprint arXiv:2112.13875, 2021. +authors=['Zhao', 'Xiangchen', 'Diyi Hu', 'Bhaskar Krishnamachari'] +abstract=With growing deployment of Internet of Things (IoT) and machine learning (ML) applications that need to leverage computation on networked edge and cloud resources, it is important to develop algorithms and tools to place these distributed computations to optimize their performance. We address the problem of optimally placing computations described as directed acyclic graphs (DAGs) over a given network of computers, to maximize the steady-state throughput for pipelined inputs. Traditionally, such optimization has focused on a different metric, minimizing single-shot makespan, and a wellknown algorithm is the Heterogeneous Earliest Finish Time (HEFT) algorithm. Keeping in mind the objective of maximizing throughput which is more suitable for many real-time, cloud and IoT applications, we present a different scheduling algorithm that we refer to as Throughput HEFT (TPHEFT). Further, we present two throughput-oriented enhancements which can be applied to any baseline schedule, that we refer to as “node splitting” (SPLIT) and “task duplication” (DUP). In order to implement and evaluate these algorithms, we built new subsystems and plugins for an open-source dispersed computing framework called Jupiter. Experiments with varying DAG structures indicate that: 1) TPHEFT can significantly improve throughput performance compared to HEFT (up to 2.3 times in our experiments), with greater gains when there is less degree of parallelism in the DAG, 2) Node splitting can potentially improve performance over a baseline schedule, with greater gains when the baseline schedule has an imbalanced allocation of computation or intertask communication, and 3) Task duplication generally gives improvements only when running upon a baseline that places communication over slow links. To our knowledge, this is the first study to present a systematic experimental implementation and exploration of throughput-enhancing techniques for dispersed computing on real testbeds. + +# Information +links.pdf=https://arxiv.org/abs/2112.13875 +links.semantic_scholar=https://www.semanticscholar.org/paper/51fd1074665beb788b4bccce09803120d1be1663 +type=Technical Reports and Preprints +year=2021 +paper_id=43fdd3aa +ss_title=Design and Experimental Evaluation of Algorithms for Optimizing the Throughput of Dispersed Computing +ss_authors=[{'authorId': '2116711617', 'name': 'Xiangchen Zhao'}, {'authorId': '120426961', 'name': 'Diyi Hu'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=arXiv.org +ss_year=2021 +ss_abstract=With growing deployment of Internet of Things (IoT) and machine learning (ML) applications that need to leverage computation on networked edge and cloud resources, it is important to develop algorithms and tools to place these distributed computations to optimize their performance. We address the problem of optimally placing computations described as directed acyclic graphs (DAGs) over a given network of computers, to maximize the steady-state throughput for pipelined inputs. Traditionally, such optimization has focused on a different metric, minimizing single-shot makespan, and a wellknown algorithm is the Heterogeneous Earliest Finish Time (HEFT) algorithm. Keeping in mind the objective of maximizing throughput which is more suitable for many real-time, cloud and IoT applications, we present a different scheduling algorithm that we refer to as Throughput HEFT (TPHEFT). Further, we present two throughput-oriented enhancements which can be applied to any baseline schedule, that we refer to as “node splitting” (SPLIT) and “task duplication” (DUP). In order to implement and evaluate these algorithms, we built new subsystems and plugins for an open-source dispersed computing framework called Jupiter. Experiments with varying DAG structures indicate that: 1) TPHEFT can significantly improve throughput performance compared to HEFT (up to 2.3 times in our experiments), with greater gains when there is less degree of parallelism in the DAG, 2) Node splitting can potentially improve performance over a baseline schedule, with greater gains when the baseline schedule has an imbalanced allocation of computation or intertask communication, and 3) Task duplication generally gives improvements only when running upon a baseline that places communication over slow links. To our knowledge, this is the first study to present a systematic experimental implementation and exploration of throughput-enhancing techniques for dispersed computing on real testbeds. +ss_paper_id=51fd1074665beb788b4bccce09803120d1be1663 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_dynamic_automated_market_makers_for_decentralized_cryptocurrency_exchange.txt b/database/original_documents/publications_text/2021_dynamic_automated_market_makers_for_decentralized_cryptocurrency_exchange.txt new file mode 100644 index 0000000000000000000000000000000000000000..9cb288fabe7636ae4ce1dfa2d913b72d6376f7f9 --- /dev/null +++ b/database/original_documents/publications_text/2021_dynamic_automated_market_makers_for_decentralized_cryptocurrency_exchange.txt @@ -0,0 +1,18 @@ +# Publication +title=Dynamic Automated Market Makers for Decentralized Cryptocurrency Exchange +venue=Short paper, IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021 +authors=['B Krishnamachari', 'Q Feng', 'E Grippo'] +abstract=Decentralized cryptocurrency exchange protocols such as Uniswap, Curve and other types of Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained to maintain at all times a mathematical relation to each other, defined by a given function or curve. We propose a dynamic AMM approach where input from a market price oracle is used to modify the mathematical relationship between the assets so that the pool price continuously and automatically adjusts to be identical to the market price. This approach eliminates arbitrage opportunities. + +# Information +links.pdf=/static/public/papers/dynamicautomation.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/9f5f1d55f72fc11afc9555d3603aa7a9f220160d +type=Conference Papers +year=2021 +paper_id=930b47c8 +ss_title=Dynamic Automated Market Makers for Decentralized Cryptocurrency Exchange +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2068040554', 'name': 'Qi Feng'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}] +ss_venue=International Conference on Blockchain +ss_year=2021 +ss_abstract=Decentralized cryptocurrency exchange protocols such as Uniswap, Curve and other types of Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained to maintain at all times a mathematical relation to each other, defined by a given function or curve. We propose a dynamic AMM approach where input from a market price oracle is used to modify the mathematical relationship between the assets so that the pool price continuously and automatically adjusts to be identical to the market price. This approach eliminates arbitrage opportunities. +ss_paper_id=9f5f1d55f72fc11afc9555d3603aa7a9f220160d \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_dynamic_curves_for_decentralized_autonomous_cryptocurrency_exchanges.txt b/database/original_documents/publications_text/2021_dynamic_curves_for_decentralized_autonomous_cryptocurrency_exchanges.txt new file mode 100644 index 0000000000000000000000000000000000000000..f4a2040e68b89d39c1b1e3d5ae9387c89b988629 --- /dev/null +++ b/database/original_documents/publications_text/2021_dynamic_curves_for_decentralized_autonomous_cryptocurrency_exchanges.txt @@ -0,0 +1,18 @@ +# Publication +title=Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges +venue=Fourth International Symposium on Foundations and Applications of Blockchain, UC Davis, May 7, 2021 +authors=['B Krishnamachari', 'Q Feng', 'E Grippo'] +abstract=One of the exciting recent developments in decentralized finance (DeFi) has been the development of decentralized cryptocurrency exchanges that can autonomously handle conversion between different cryptocurrencies. Decentralized exchange protocols such as Uniswap, Curve and other types of Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained to maintain at all times a mathematical relation to each other, defined by a given function or curve. Examples of such functions are the constant-sum and constantproduct AMMs. Existing systems however suffer from several challenges. They require external arbitrageurs to restore the price of tokens in the pool to match the market price. Such activities can potentially drain resources from the liquidity pool. In particular dramatic market price changes can result in low liquidity with respect to one or more of the assets and reduce the total value of the LP. We propose in this work a new approach to constructing the AMM by proposing the idea of dynamic curves. It utilizes input from a market price oracle to modify the mathematical relationship between the assets so that the pool price continuously and automatically adjusts to be identical to the market price. This approach eliminates arbitrage opportunities and, as we show through simulations, maintains liquidity in the LP for all assets and the total value of the LP over a wide range of market prices. + +# Information +links.pdf=/static/public/papers/Dynamiccurves.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/2d1c3e17636ba1d450e1266fc39ada4dbc6ed358 +type=Conference Papers +year=2021 +paper_id=ac97c07b +ss_title=Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges +ss_authors=[{'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145515365', 'name': 'Q. Feng'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}] +ss_venue=International Symposium on Foundations and Applications of Blockchain +ss_year=2021 +ss_abstract=One of the exciting recent developments in decentralized finance (DeFi) has been the development of decentralized cryptocurrency exchanges that can autonomously handle conversion between different cryptocurrencies. Decentralized exchange protocols such as Uniswap, Curve and other types of Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained to maintain at all times a mathematical relation to each other, defined by a given function or curve. Examples of such functions are the constant-sum and constantproduct AMMs. Existing systems however suffer from several challenges. They require external arbitrageurs to restore the price of tokens in the pool to match the market price. Such activities can potentially drain resources from the liquidity pool. In particular dramatic market price changes can result in low liquidity with respect to one or more of the assets and reduce the total value of the LP. We propose in this work a new approach to constructing the AMM by proposing the idea of dynamic curves. It utilizes input from a market price oracle to modify the mathematical relationship between the assets so that the pool price continuously and automatically adjusts to be identical to the market price. This approach eliminates arbitrage opportunities and, as we show through simulations, maintains liquidity in the LP for all assets and the total value of the LP over a wide range of market prices. +ss_paper_id=2d1c3e17636ba1d450e1266fc39ada4dbc6ed358 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.txt b/database/original_documents/publications_text/2021_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..c870884a9ecfccdd8636993dc8447fdf15cfb9ee --- /dev/null +++ b/database/original_documents/publications_text/2021_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=GCNScheduler: Scheduling distributed computing applications using graph convolutional networks +venue=arXiv preprint arXiv:2110.11552, 2021. +authors=['Kiamari', 'Mehrdad', 'Bhaskar Krishnamachari'] +abstract=We provide a highly-efficient solution to the classical problem of scheduling task graphs corresponding to complex applications on distributed computing systems. A number of heuristics have been previously proposed to optimize task scheduling with respect to different metrics (e.g. makespan and throughput). However, they tend to be slow to run, particularly for larger problem instances, limiting their applicability in more dynamic systems. Motivated by the goal of solving these problems more rapidly, we propose, for the first time, a graph convolutional network-based scheduler (GCNScheduler). By carefully integrating the inter-task data dependency structure and the computational network into a single input graph, the GCNScheduler can efficiently schedule tasks of complex applications for a given objective. We use simulations to illustrate that not only can our scheme quickly and efficiently learn from existing scheduling schemes, but also it can easily be applied to large-scale settings that current scheduling schemes fail to handle. We demonstrate the generalization of GCNScheduler to unseen real-world applications and show that it achieves almost the same makespan and throughput as benchmarks, while providing several orders of magnitude faster scheduling times. + +# Information +links.pdf=https://arxiv.org/abs/2110.11552 +links.semantic_scholar=https://www.semanticscholar.org/paper/ab027e71572daf38749d15eef90f86132c9611cd +type=Technical Reports and Preprints +year=2021 +paper_id=a92177b9 +ss_title=GCNScheduler: scheduling distributed computing applications using graph convolutional networks +ss_authors=[{'authorId': '3148965', 'name': 'Mehrdad Kiamari'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=GNNet@CoNEXT +ss_year=2021 +ss_abstract=We provide a highly-efficient solution to the classical problem of scheduling task graphs corresponding to complex applications on distributed computing systems. A number of heuristics have been previously proposed to optimize task scheduling with respect to different metrics (e.g. makespan and throughput). However, they tend to be slow to run, particularly for larger problem instances, limiting their applicability in more dynamic systems. Motivated by the goal of solving these problems more rapidly, we propose, for the first time, a graph convolutional network-based scheduler (GCNScheduler). By carefully integrating the inter-task data dependency structure and the computational network into a single input graph, the GCNScheduler can efficiently schedule tasks of complex applications for a given objective. We use simulations to illustrate that not only can our scheme quickly and efficiently learn from existing scheduling schemes, but also it can easily be applied to large-scale settings that current scheduling schemes fail to handle. We demonstrate the generalization of GCNScheduler to unseen real-world applications and show that it achieves almost the same makespan and throughput as benchmarks, while providing several orders of magnitude faster scheduling times. +ss_paper_id=ab027e71572daf38749d15eef90f86132c9611cd \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_httpsanrgusceduwwwpapersschedulingpdf.txt b/database/original_documents/publications_text/2021_httpsanrgusceduwwwpapersschedulingpdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9554abcbf497e3be4d86563eb26e9330f4b39f93 --- /dev/null +++ b/database/original_documents/publications_text/2021_httpsanrgusceduwwwpapersschedulingpdf.txt @@ -0,0 +1,18 @@ +# Publication +title=https://anrg.usc.edu/www/papers/scheduling.pdf +venue=IEEE BigData 2021: 4365-4370 +authors=['A Hekmati', 'B Krishnamachari', 'M Mataric', 'Course Scheduling to Minimize Student Wait Times For University Buildings During Epidemics'] +abstract=ABSTRACT Of the 17 years (1946–64) Jawaharlal Nehru was India's Prime Minister, his Congress Party government had a senior politician holding the Finance Ministry for only 5: Morarji Desai (1958–63). Otherwise, this crucial portfolio was held by a succession of experts; an illustration of consociational power sharing. This article is about two of those, C.D. Deshmukh and T.T. Krishnamachari, and some of their chequered governmental experiences. Through these, it seeks to cast a critical light on the changing contours of relations between and within the party and the government in the economic sphere during its decade of political dominance. + +# Information +links.pdf=/static/public/papers/scheduling.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/de91d2dbca72d5115198139618222094e0fa7cf0 +type=Conference Papers +year=2021 +paper_id=0a9ed062 +ss_title=Bearing ‘financial responsibility’ for the Government and the Party: C.D. Deshmukh (1950–56) & T.T. Krishnamachari (1956–58) +ss_authors=[{'authorId': '90288069', 'name': 'R. Ankit'}] +ss_venue= +ss_year=2020 +ss_abstract=ABSTRACT Of the 17 years (1946–64) Jawaharlal Nehru was India's Prime Minister, his Congress Party government had a senior politician holding the Finance Ministry for only 5: Morarji Desai (1958–63). Otherwise, this crucial portfolio was held by a succession of experts; an illustration of consociational power sharing. This article is about two of those, C.D. Deshmukh and T.T. Krishnamachari, and some of their chequered governmental experiences. Through these, it seeks to cast a critical light on the changing contours of relations between and within the party and the government in the economic sphere during its decade of political dominance. +ss_paper_id=de91d2dbca72d5115198139618222094e0fa7cf0 \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_jupiter_a_networked_computing_architecture.txt b/database/original_documents/publications_text/2021_jupiter_a_networked_computing_architecture.txt new file mode 100644 index 0000000000000000000000000000000000000000..3ef28c8589f65e7b5ac8d53b31cc539cff5f09b1 --- /dev/null +++ b/database/original_documents/publications_text/2021_jupiter_a_networked_computing_architecture.txt @@ -0,0 +1,18 @@ +# Publication +title=Jupiter: a networked computing architecture” +venue=UCC Companion 2021: 28:1-28:8 +authors=['P Ghosh', 'Q Nguyen', 'P Sakulkar', 'J Tran', 'A Knezevic', 'J Wang', 'Z Lin', 'B Krishnamachari', 'M Annavaram', 'S Avestimehr'] +abstract=Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time profilers; to support both centralized and decentralized scheduling algorithms. While centralized scheduling algorithms with global knowledge have been popular among the grid/cloud computing community, we argue that a distributed scheduling approach is better suited for networked computing due to lower communication and computation overhead in the face of network dynamics. We propose a new class of distributed scheduling algorithms called WAVE and show that despite using more localized knowledge, the WAVE algorithm can match the performance of a well-known centralized scheduling algorithm called Heterogeneous Earliest Finish Time (HEFT). To this, we present a set of real-world experiments on two separate testbeds: (1) a worldwide network of 90 cloud computers across eight cities and (2) a cluster of 30 Raspberry pi nodes. + +# Information +links.pdf=/static/public/papers/JUPITER.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ef3485930a0eca1cd98b8dd7dfc7a919501ec06c +type=Conference Papers +year=2021 +paper_id=bb6a0958 +ss_title=Jupiter: a networked computing architecture +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '2073070356', 'name': 'Aleksandra Knezevic'}, {'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '2109016686', 'name': 'Jiatong Wang'}, {'authorId': '46268272', 'name': 'Zhifeng Lin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}, {'authorId': '5877233', 'name': 'A. Avestimehr'}] +ss_venue=UCC Companion +ss_year=2019 +ss_abstract=Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time profilers; to support both centralized and decentralized scheduling algorithms. While centralized scheduling algorithms with global knowledge have been popular among the grid/cloud computing community, we argue that a distributed scheduling approach is better suited for networked computing due to lower communication and computation overhead in the face of network dynamics. We propose a new class of distributed scheduling algorithms called WAVE and show that despite using more localized knowledge, the WAVE algorithm can match the performance of a well-known centralized scheduling algorithm called Heterogeneous Earliest Finish Time (HEFT). To this, we present a set of real-world experiments on two separate testbeds: (1) a worldwide network of 90 cloud computers across eight cities and (2) a cluster of 30 Raspberry pi nodes. +ss_paper_id=ef3485930a0eca1cd98b8dd7dfc7a919501ec06c \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_largescale_urban_iot_activity_data_for_ddos_attack_emulation.txt b/database/original_documents/publications_text/2021_largescale_urban_iot_activity_data_for_ddos_attack_emulation.txt new file mode 100644 index 0000000000000000000000000000000000000000..e8818cdcc0cf3e5d5f4a60c8fbfd29fd3dd0914c --- /dev/null +++ b/database/original_documents/publications_text/2021_largescale_urban_iot_activity_data_for_ddos_attack_emulation.txt @@ -0,0 +1,18 @@ +# Publication +title=Large-scale Urban IoT Activity Data for DDoS Attack Emulation +venue=, Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys ’21). Association for Computing Machinery, New York, NY, USA, 560–564, November 2021 +authors=['A Hekmati', 'E Grippo', 'B Krishnamachari'] +abstract=As IoT deployments grow in scale for applications such as smart cities, they face increasing cyber-security threats. In particular, as evidenced by the famous Mirai incident and other ongoing threats, large-scale IoT device networks are particularly susceptible to being hijacked and used as botnets to launch distributed denial of service (DDoS) attacks. Real large-scale datasets are needed to train and evaluate the use of machine learning algorithms such as deep neural networks to detect and defend against such DDoS attacks. We present a dataset from an urban IoT deployment of 4060 nodes describing their spatio-temporal activity under benign conditions. We also provide a synthetic DDoS attack generator that injects attack activity into the dataset based on tunable parameters such as number of nodes attacked and duration of attack. We discuss some of the features of the dataset. We also demonstrate the utility of the dataset as well as our synthetic DDoS attack generator by using them for the training and evaluation of a simple multi-label feed-forward neural network that aims to identify which nodes are under attack and when. + +# Information +links.pdf=/static/public/papers/Dataset_Large_scale_Urban_IoT_Activity_Data_for_DDoS_Attack_Emulation.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/82a0f6dad314690d79224ed218fad53f8a6bc5ff +type=Conference Papers +year=2021 +paper_id=32fca6ae +ss_title=Large-scale Urban IoT Activity Data for DDoS Attack Emulation +ss_authors=[{'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=ACM International Conference on Embedded Networked Sensor Systems +ss_year=2021 +ss_abstract=As IoT deployments grow in scale for applications such as smart cities, they face increasing cyber-security threats. In particular, as evidenced by the famous Mirai incident and other ongoing threats, large-scale IoT device networks are particularly susceptible to being hijacked and used as botnets to launch distributed denial of service (DDoS) attacks. Real large-scale datasets are needed to train and evaluate the use of machine learning algorithms such as deep neural networks to detect and defend against such DDoS attacks. We present a dataset from an urban IoT deployment of 4060 nodes describing their spatio-temporal activity under benign conditions. We also provide a synthetic DDoS attack generator that injects attack activity into the dataset based on tunable parameters such as number of nodes attacked and duration of attack. We discuss some of the features of the dataset. We also demonstrate the utility of the dataset as well as our synthetic DDoS attack generator by using them for the training and evaluation of a simple multi-label feed-forward neural network that aims to identify which nodes are under attack and when. +ss_paper_id=82a0f6dad314690d79224ed218fad53f8a6bc5ff \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_revealing_a_hidden_stable_spectral_structure_of_urban_vehicular_traffic.txt b/database/original_documents/publications_text/2021_revealing_a_hidden_stable_spectral_structure_of_urban_vehicular_traffic.txt new file mode 100644 index 0000000000000000000000000000000000000000..6f44141c02ae65104b5e2f8b00b73cfefe00957e --- /dev/null +++ b/database/original_documents/publications_text/2021_revealing_a_hidden_stable_spectral_structure_of_urban_vehicular_traffic.txt @@ -0,0 +1,18 @@ +# Publication +title=“Revealing a Hidden, Stable Spectral Structure of Urban Vehicular Traffic” +venue=VNC 2021: 44-51 +authors=['F Bai', 'B Krishnamachari'] +abstract=A deeper understanding of urban vehicular traffic is important to enable better design and evaluation of future vehicular and cellular communication networks. In this paper, we study the presence of spectral structure in urban vehicular traffic. By analyzing publicly available sets of fleet vehicle mobility traces obtained from two real-world deployments that consist of more than 2,000 taxis in Shanghai and Beijing respectively, we reveal the existence of a stable, low-dimensional spectral structure in vehicular networks, which was often unnoticeable when using classic spatio-temporal data analysis. This stable spectral structure not only significantly simplifies the representation of high dimensional transportation data, but also offers interpretable insights into urban mobility patterns. Leveraging the stability of spectral structure, we demonstrate that the spectral structure analysis could effectively tackle practical problems in the field of transportation research, such as traffic anomaly detection. + +# Information +links.pdf=/static/public/papers/Revealing.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5848f38570d9cdae7feaf516b7032748e61a6cce +type=Conference Papers +year=2021 +paper_id=f986e5ea +ss_title=Revealing a Hidden, Stable Spectral Structure of Urban Vehicular Traffic +ss_authors=[{'authorId': '143832410', 'name': 'F. Bai'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Vehicular Networking Conference +ss_year=2021 +ss_abstract=A deeper understanding of urban vehicular traffic is important to enable better design and evaluation of future vehicular and cellular communication networks. In this paper, we study the presence of spectral structure in urban vehicular traffic. By analyzing publicly available sets of fleet vehicle mobility traces obtained from two real-world deployments that consist of more than 2,000 taxis in Shanghai and Beijing respectively, we reveal the existence of a stable, low-dimensional spectral structure in vehicular networks, which was often unnoticeable when using classic spatio-temporal data analysis. This stable spectral structure not only significantly simplifies the representation of high dimensional transportation data, but also offers interpretable insights into urban mobility patterns. Leveraging the stability of spectral structure, we demonstrate that the spectral structure analysis could effectively tackle practical problems in the field of transportation research, such as traffic anomaly detection. +ss_paper_id=5848f38570d9cdae7feaf516b7032748e61a6cce \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_simulating_the_makerdao_stablecoin.txt b/database/original_documents/publications_text/2021_simulating_the_makerdao_stablecoin.txt new file mode 100644 index 0000000000000000000000000000000000000000..b7063839025909fd07c24ce26c1b09792039c170 --- /dev/null +++ b/database/original_documents/publications_text/2021_simulating_the_makerdao_stablecoin.txt @@ -0,0 +1,18 @@ +# Publication +title=Simulating the MakerDAO Stablecoin +venue=Short paper, IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021 +authors=['S Bhat', 'A Kahya', 'R Kumar', 'B Krishnamachari'] +abstract=We present a computational simulation framework for the single-collateral stablecoin launched by the MakerDAO project. The simulator, called DAISIM, models investors as portfolio optimizers with heterogeneous risk preferences, and incorporates automated order matching and price update mechanisms to determine the DAI price. DAISIM is being made available as open-source and may be useful in evaluating other similar projects. + +# Information +links.pdf=/static/public/papers/makerdao.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cce19081cc02020f446a2adf8d64ca80c94eb79d +type=Conference Papers +year=2021 +paper_id=1625f8da +ss_title=Simulating the MakerDAO Stablecoin +ss_authors=[{'authorId': '15866845', 'name': 'Shreyas Bhat'}, {'authorId': '2051805528', 'name': 'Ayten Kahya'}, {'authorId': '2108880143', 'name': 'Rohit Kumar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Blockchain +ss_year=2021 +ss_abstract=We present a computational simulation framework for the single-collateral stablecoin launched by the MakerDAO project. The simulator, called DAISIM, models investors as portfolio optimizers with heterogeneous risk preferences, and incorporates automated order matching and price update mechanisms to determine the DAI price. DAISIM is being made available as open-source and may be useful in evaluating other similar projects. +ss_paper_id=cce19081cc02020f446a2adf8d64ca80c94eb79d \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_simulationbased_analysis_of_covid19_spread_through_classroom_transmission_on_a_university_campus.txt b/database/original_documents/publications_text/2021_simulationbased_analysis_of_covid19_spread_through_classroom_transmission_on_a_university_campus.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab340681afd802bb693dbc52780ce21310f0c670 --- /dev/null +++ b/database/original_documents/publications_text/2021_simulationbased_analysis_of_covid19_spread_through_classroom_transmission_on_a_university_campus.txt @@ -0,0 +1,17 @@ +# Publication +title=Simulation-Based Analysis of COVID-19 Spread Through Classroom Transmission on a University Campus +venue=IEEE ICC Workshop on Communication, IoT, and AI Technologies to Counter COVID-19 (COVI-COM), 2021 +authors=['A Hekmati', 'M Luhar', 'B Krishnamachari', 'M Mataric'] +abstract=Airborne transmission is now believed to be the primary way that COVID-19 spreads. We study the airborne transmission risk associated with holding in-person classes on university campuses. We utilize a model for airborne transmission risk in an enclosed room that considers the air change rate for the room, mask efficiency, initial infection probability of the occupants, and also the activity level of the occupants. We introduce, and use for our evaluations, a metric $R_0^{eff}$ that represents the ratio of new infections that occur over a week due to classroom interactions to the number of infected individuals at the beginning of the week. This can be seen as a surrogate for the well-known R0 reproductive number metric, but limited in scope to classroom interactions and calculated on a weekly basis. The simulations take into account the possibility of repeated in-classroom interactions between students throughout the week. We presented model predictions were generated using Fall 2019 and Fall 2020 course registration data at a large US university, allowing us to evaluate the difference in transmission risk between in-person and hybrid programs. We quantify the impact of parameters such as reduced occupancy levels and mask efficacy. Our simulations indicate that universal mask usage results in an approximately 3.6× reduction in new infections through classroom interactions. Moving 90% of the classes online leads to about 18× reduction in new cases. Reducing class occupancy to 20%, by having hybrid classes, results in an approximately 2.15 − 2.3× further reduction in new infections. + +# Information +links.pdf=http://anrg.usc.edu/www/papers/SpreadClassroom +links.semantic_scholar=https://www.semanticscholar.org/paper/9a3694a8b9b52f7bf112366099e4e7aa2f43919a +type=Conference Papers +year=2021 +ss_title=Simulation-Based Analysis of COVID-19 Spread Through Classroom Transmission on a University Campus +ss_authors=[{'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '6615460', 'name': 'M. Luhar'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2062776414', 'name': "Maja J. Matari'c"}] +ss_venue=2021 IEEE International Conference on Communications Workshops (ICC Workshops) +ss_year=2021 +ss_abstract=Airborne transmission is now believed to be the primary way that COVID-19 spreads. We study the airborne transmission risk associated with holding in-person classes on university campuses. We utilize a model for airborne transmission risk in an enclosed room that considers the air change rate for the room, mask efficiency, initial infection probability of the occupants, and also the activity level of the occupants. We introduce, and use for our evaluations, a metric $R_0^{eff}$ that represents the ratio of new infections that occur over a week due to classroom interactions to the number of infected individuals at the beginning of the week. This can be seen as a surrogate for the well-known R0 reproductive number metric, but limited in scope to classroom interactions and calculated on a weekly basis. The simulations take into account the possibility of repeated in-classroom interactions between students throughout the week. We presented model predictions were generated using Fall 2019 and Fall 2020 course registration data at a large US university, allowing us to evaluate the difference in transmission risk between in-person and hybrid programs. We quantify the impact of parameters such as reduced occupancy levels and mask efficacy. Our simulations indicate that universal mask usage results in an approximately 3.6× reduction in new infections through classroom interactions. Moving 90% of the classes online leads to about 18× reduction in new cases. Reducing class occupancy to 20%, by having hybrid classes, results in an approximately 2.15 − 2.3× further reduction in new infections. +ss_paper_id=9a3694a8b9b52f7bf112366099e4e7aa2f43919a \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_tactical_jupiter_dynamic_scheduling_of_dispersed_computations_in_tactical_manets.txt b/database/original_documents/publications_text/2021_tactical_jupiter_dynamic_scheduling_of_dispersed_computations_in_tactical_manets.txt new file mode 100644 index 0000000000000000000000000000000000000000..03debd1b81e1e48b981ca82711ab233c98111d54 --- /dev/null +++ b/database/original_documents/publications_text/2021_tactical_jupiter_dynamic_scheduling_of_dispersed_computations_in_tactical_manets.txt @@ -0,0 +1,18 @@ +# Publication +title=“Tactical Jupiter: Dynamic Scheduling of Dispersed Computations in Tactical MANETs” +venue=IEEE MILCOM 2021: 102-107 +authors=['Alexander Poylisher', 'Andrzej Cichocki', 'K Guo', 'J Hunziker', 'Latha A Kant', 'Bhaskar Krishnamachari', 'Salman Avestimehr', 'Murali Annavaram'] +abstract=We present Tactical Jupiter, an adaptation of the recently developed Jupiter framework for scheduling of dispersed computations on heterogeneous resources to tactical MANETs. Tactical Jupiter addresses the challenges to distributed scheduling posed by intermittent connectivity and scarce/variable bandwidth, variable computational resource utilization by background load, and node attrition. Our key contributions include: (a) disruption handling via increased autonomy of task executors, (b) low-overhead ML-based task completion time estimation in presence of background load, and (c) resilient dissemination mechanisms for monitoring information. + +# Information +links.pdf=/static/public/papers/Tactical_Jupiter.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/5dbc1efe88fafbc21031ae0c0d5ee8d85007fded +type=Conference Papers +year=2021 +paper_id=cbf2bddf +ss_title=Tactical Jupiter: Dynamic Scheduling of Dispersed Computations in Tactical MANETs +ss_authors=[{'authorId': '1760535', 'name': 'A. Poylisher'}, {'authorId': '145683890', 'name': 'A. Cichocki'}, {'authorId': '2119607151', 'name': 'K. Guo'}, {'authorId': '95475965', 'name': 'J. Hunziker'}, {'authorId': '2672593', 'name': 'L. Kant'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '5877233', 'name': 'A. Avestimehr'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=IEEE Military Communications Conference +ss_year=2021 +ss_abstract=We present Tactical Jupiter, an adaptation of the recently developed Jupiter framework for scheduling of dispersed computations on heterogeneous resources to tactical MANETs. Tactical Jupiter addresses the challenges to distributed scheduling posed by intermittent connectivity and scarce/variable bandwidth, variable computational resource utilization by background load, and node attrition. Our key contributions include: (a) disruption handling via increased autonomy of task executors, (b) low-overhead ML-based task completion time estimation in presence of background load, and (c) resilient dissemination mechanisms for monitoring information. +ss_paper_id=5dbc1efe88fafbc21031ae0c0d5ee8d85007fded \ No newline at end of file diff --git a/database/original_documents/publications_text/2021_team_trilateration_for_exploration_and_mapping_with_robotic_networks.txt b/database/original_documents/publications_text/2021_team_trilateration_for_exploration_and_mapping_with_robotic_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..efcdc183667fc5716683022d8c54ac8b3e451cbf --- /dev/null +++ b/database/original_documents/publications_text/2021_team_trilateration_for_exploration_and_mapping_with_robotic_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=TEAM: Trilateration for Exploration and Mapping with Robotic Networks +venue=18th International Conference on Ubiquitous Robots (UR) (pp. 539-546), July 2021 +authors=['L Clark', 'C Andre', 'J Galante', 'B Krishnamachari', 'K Psounis'] +abstract=Motivated by lunar exploration, we consider deploying a network of mobile robots to explore an unknown environment while acting as a cooperative positioning system. Robots measure and communicate position-related data in order to perform localization in the absence of infrastructure-based solutions (e.g. stationary beacons or GPS). We present Trilateration for Exploration and Mapping (TEAM), a novel algorithm for low-complexity localization and mapping with robotic networks. TEAM is designed to leverage the capability of commercially-available ultra-wideband (UWB) radios on board the robots to provide range estimates with centimeter accuracy and perform anchorless localization in a shared, stationary frame. It is well-suited for feature-deprived environments, where feature-based localization approaches suffer. We provide experimental results in varied Gazebo simulation environments as well as on a testbed of Turtlebot3 Burgers with Pozyx UWB radios. We compare TEAM to the popular Rao-Blackwellized Particle Filter for Simultaneous Localization and Mapping (SLAM). We demonstrate that TEAM requires an order of magnitude less computational complexity and reduces the necessary sample rate of LiDAR measurements by an order of magnitude. These advantages do not require sacrificing performance, as TEAM reduces the maximum localization error by 50% and achieves up to a 28% increase in map accuracy in feature-deprived environments and comparable map accuracy in other settings. + +# Information +links.pdf=/static/public/papers/TEAM.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/0cbd00e1f6f926c70bfa8831227b2040dc9d37bf +type=Conference Papers +year=2021 +paper_id=3f33892e +ss_title=TEAM: Trilateration for Exploration and Mapping with Robotic Networks +ss_authors=[{'authorId': '2070152199', 'name': 'Lillian Clark'}, {'authorId': '2057772443', 'name': 'Charles André'}, {'authorId': '2076876343', 'name': 'Joseph M. Galante'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9313028', 'name': 'K. Psounis'}] +ss_venue=2021 18th International Conference on Ubiquitous Robots (UR) +ss_year=2020 +ss_abstract=Motivated by lunar exploration, we consider deploying a network of mobile robots to explore an unknown environment while acting as a cooperative positioning system. Robots measure and communicate position-related data in order to perform localization in the absence of infrastructure-based solutions (e.g. stationary beacons or GPS). We present Trilateration for Exploration and Mapping (TEAM), a novel algorithm for low-complexity localization and mapping with robotic networks. TEAM is designed to leverage the capability of commercially-available ultra-wideband (UWB) radios on board the robots to provide range estimates with centimeter accuracy and perform anchorless localization in a shared, stationary frame. It is well-suited for feature-deprived environments, where feature-based localization approaches suffer. We provide experimental results in varied Gazebo simulation environments as well as on a testbed of Turtlebot3 Burgers with Pozyx UWB radios. We compare TEAM to the popular Rao-Blackwellized Particle Filter for Simultaneous Localization and Mapping (SLAM). We demonstrate that TEAM requires an order of magnitude less computational complexity and reduces the necessary sample rate of LiDAR measurements by an order of magnitude. These advantages do not require sacrificing performance, as TEAM reduces the maximum localization error by 50% and achieves up to a 28% increase in map accuracy in feature-deprived environments and comparable map accuracy in other settings. +ss_paper_id=0cbd00e1f6f926c70bfa8831227b2040dc9d37bf \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt b/database/original_documents/publications_text/2022_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt new file mode 100644 index 0000000000000000000000000000000000000000..e4cb2d568328639a673244dd7a4b56871e3ebbd5 --- /dev/null +++ b/database/original_documents/publications_text/2022_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt @@ -0,0 +1,18 @@ +# Publication +title=A Queue-Stabilizing Framework for Networked Multi-Robot Exploration +venue=in IEEE Robotics and Automation Letters, 2021. +authors=['L Clark', 'J Galante', 'B Krishnamachari', 'K Psounis'] +abstract=Motivated by planetary exploration, we consider the problem of deploying a network of mobile robots to explore an unknown environment and share information with a stationary data sink. The configuration of robots affects both network connectivity and the accuracy of relative localization. Robots explore autonomously and can store data locally in their queues. When a communication path exists to the data sink, robots transfer their data. Because robots may fail in a non-deterministic manner, causing loss of the data in their queues, enabling communication is important. However, strict constraints on connectivity and relative positions limit exploration. To take a more flexible approach to managing these multiple objectives, we use Lyapunov-based stochastic optimization to maximize new information while using virtual queues to constrain time-average expectations of metrics of interest. These include queueing delay, network connectivity, and localization uncertainty. The result is a distributed online controller which autonomously and strategically breaks and restores connectivity as needed. We explicitly account for obstacle avoidance, limited sensing ranges, and noisy communication/ranging links with line-of-sight occlusions. We use queuing theory to analyze the average delay experienced by data in our system and guarantee connectivity will be recovered when feasible. We demonstrate in simulation that our queue-stabilizing controller can reduce localization uncertainty and achieve better coverage than two state of the art approaches. + +# Information +links.pdf=/static/public/papers/FINAL_Queue_stabilizing_distributed_online_controller.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d279f4dce2aa2b9338ad8660c5979a20fe9c300a +type=Journal Papers +year=2022 +paper_id=f3c0fd28 +ss_title=A Queue-Stabilizing Framework for Networked Multi-Robot Exploration +ss_authors=[{'authorId': '2070152199', 'name': 'Lillian Clark'}, {'authorId': '2076876343', 'name': 'Joseph M. Galante'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9313028', 'name': 'K. Psounis'}] +ss_venue=IEEE Robotics and Automation Letters +ss_year=2021 +ss_abstract=Motivated by planetary exploration, we consider the problem of deploying a network of mobile robots to explore an unknown environment and share information with a stationary data sink. The configuration of robots affects both network connectivity and the accuracy of relative localization. Robots explore autonomously and can store data locally in their queues. When a communication path exists to the data sink, robots transfer their data. Because robots may fail in a non-deterministic manner, causing loss of the data in their queues, enabling communication is important. However, strict constraints on connectivity and relative positions limit exploration. To take a more flexible approach to managing these multiple objectives, we use Lyapunov-based stochastic optimization to maximize new information while using virtual queues to constrain time-average expectations of metrics of interest. These include queueing delay, network connectivity, and localization uncertainty. The result is a distributed online controller which autonomously and strategically breaks and restores connectivity as needed. We explicitly account for obstacle avoidance, limited sensing ranges, and noisy communication/ranging links with line-of-sight occlusions. We use queuing theory to analyze the average delay experienced by data in our system and guarantee connectivity will be recovered when feasible. We demonstrate in simulation that our queue-stabilizing controller can reduce localization uncertainty and achieve better coverage than two state of the art approaches. +ss_paper_id=d279f4dce2aa2b9338ad8660c5979a20fe9c300a \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_a_survey_of_blockchainbased_strategies_for_healthcare.txt b/database/original_documents/publications_text/2022_a_survey_of_blockchainbased_strategies_for_healthcare.txt new file mode 100644 index 0000000000000000000000000000000000000000..b683a2668e7a9292adbe6fbfecfcd90488bc8df0 --- /dev/null +++ b/database/original_documents/publications_text/2022_a_survey_of_blockchainbased_strategies_for_healthcare.txt @@ -0,0 +1,18 @@ +# Publication +title=A Survey of Blockchain-Based Strategies for Healthcare +venue=ACM Comput. Surv. 53(2): 27:1-27:27 (2020). +authors=['E Aguiar', 'B Faiçal', 'B Krishnamachari', 'J Ueyama'] +abstract=Blockchain technology has been gaining visibility owing to its ability to enhance the security, reliability, and robustness of distributed systems. Several areas have benefited from research based on this technology, such as finance, remote sensing, data analysis, and healthcare. Data immutability, privacy, transparency, decentralization, and distributed ledgers are the main features that make blockchain an attractive technology. However, healthcare records that contain confidential patient data make this system very complicated because there is a risk of a privacy breach. This study aims to address research into the applications of the blockchain healthcare area. It sets out by discussing the management of medical information, as well as the sharing of medical records, image sharing, and log management. We also discuss papers that intersect with other areas, such as the Internet of Things, the management of information, tracking of drugs along their supply chain, and aspects of security and privacy. As we are aware that there are other surveys of blockchain in healthcare, we analyze and compare both the positive and negative aspects of their papers. Finally, we seek to examine the concepts of blockchain in the medical area, by assessing their benefits and drawbacks and thus giving guidance to other researchers in the area. Additionally, we summarize the methods used in healthcare per application area and show their pros and cons. + +# Information +links.pdf=/static/public/papers/HEALTHCARE-ACM.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ba0b4666845040d429da8ac01d904769999bec05 +type=Journal Papers +year=2022 +paper_id=7247147c +ss_title=A Survey of Blockchain-Based Strategies for Healthcare +ss_authors=[{'authorId': '2148250418', 'name': 'E. J. De Aguiar'}, {'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2190289', 'name': 'J. Ueyama'}] +ss_venue=ACM Computing Surveys +ss_year=2020 +ss_abstract=Blockchain technology has been gaining visibility owing to its ability to enhance the security, reliability, and robustness of distributed systems. Several areas have benefited from research based on this technology, such as finance, remote sensing, data analysis, and healthcare. Data immutability, privacy, transparency, decentralization, and distributed ledgers are the main features that make blockchain an attractive technology. However, healthcare records that contain confidential patient data make this system very complicated because there is a risk of a privacy breach. This study aims to address research into the applications of the blockchain healthcare area. It sets out by discussing the management of medical information, as well as the sharing of medical records, image sharing, and log management. We also discuss papers that intersect with other areas, such as the Internet of Things, the management of information, tracking of drugs along their supply chain, and aspects of security and privacy. As we are aware that there are other surveys of blockchain in healthcare, we analyze and compare both the positive and negative aspects of their papers. Finally, we seek to examine the concepts of blockchain in the medical area, by assessing their benefits and drawbacks and thus giving guidance to other researchers in the area. Additionally, we summarize the methods used in healthcare per application area and show their pros and cons. +ss_paper_id=ba0b4666845040d429da8ac01d904769999bec05 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_a_survey_on_gpt3.txt b/database/original_documents/publications_text/2022_a_survey_on_gpt3.txt new file mode 100644 index 0000000000000000000000000000000000000000..0a898e233307a2bda662c53c6a55787905876352 --- /dev/null +++ b/database/original_documents/publications_text/2022_a_survey_on_gpt3.txt @@ -0,0 +1,18 @@ +# Publication +title=A Survey on GPT-3 +venue=USC ANRG Technical Report ANRG-2022-01, December 2022. +authors=['Mingyu Zong', 'Bhaskar Krishnamachari'] +abstract=This paper provides an introductory survey to GPT-3. We cover some of the historical development behind this technology, some of the key features of GPT-3, and discuss the machine learning model and the datasets used. We survey both academic and commercial efforts applying GPT-3 in diverse domains such as developing conversational AI chatbots, software development, creative work, domain knowledge, and business productivity. We discuss some of the challenges that GPT-3 faces such as the problems of training complexity, bias, and hallucination/incorrect answers. We also discuss the future research opportunities in this area. + +# Information +links.pdf=/static/public/papers/A_Survey_On_GPT3.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/157ac9ac2dddeb92c9af271d339adef5258fc7df +type=Technical Reports and Preprints +year=2022 +paper_id=ecd9c743 +ss_title=a survey on GPT-3 +ss_authors=[{'authorId': '70954836', 'name': 'M. Zong'}, {'authorId': '2174866863', 'name': 'Bhaskar Krishnamachari'}] +ss_venue=arXiv.org +ss_year=2022 +ss_abstract=This paper provides an introductory survey to GPT-3. We cover some of the historical development behind this technology, some of the key features of GPT-3, and discuss the machine learning model and the datasets used. We survey both academic and commercial efforts applying GPT-3 in diverse domains such as developing conversational AI chatbots, software development, creative work, domain knowledge, and business productivity. We discuss some of the challenges that GPT-3 faces such as the problems of training complexity, bias, and hallucination/incorrect answers. We also discuss the future research opportunities in this area. +ss_paper_id=157ac9ac2dddeb92c9af271d339adef5258fc7df \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_blizzard_a_distributed_consensus_protocol_for_mobile_devices.txt b/database/original_documents/publications_text/2022_blizzard_a_distributed_consensus_protocol_for_mobile_devices.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa6774fd3cc79b0c0d2affbcb65d476c68d4fa21 --- /dev/null +++ b/database/original_documents/publications_text/2022_blizzard_a_distributed_consensus_protocol_for_mobile_devices.txt @@ -0,0 +1,18 @@ +# Publication +title=Blizzard: a Distributed Consensus Protocol for Mobile Devices +venue=arXiv preprint arXiv:2201.02002, 2022. +authors=['Mehrdad Kiamari', 'Bhaskar Krishnamachari', 'Muhammad Naveed', 'Seokgu Yun'] +abstract=We present Blizzard, a Byzantine Fault Tolerant (BFT) distributed ledger protocol that is aimed at making mobile devices first-class citizens in the consensus process. Blizzard introduces a novel two-tier architecture by having the mobile nodes communicate through online brokers, and includes a decentralized matching scheme to ensure each node connects to a certain number of random brokers. Through mathematical analysis, we derive a guaranteed safety region (i.e. the set of ratios of malicious nodes and malicious brokers for which the safety is assured) for the Blizzard protocol. Liveness is shown as well. We analyze the performance of Blizzard in terms of its throughput, latency and message complexity. Through experiments based on a software implementation, we show that Blizzard is capable of throughput on the order of several thousand transactions per second per shard, and sub-second confirmation + +# Information +links.pdf=https://arxiv.org/abs/2201.02002 +links.semantic_scholar=https://www.semanticscholar.org/paper/be7cff402ff7c0370d9afa08f31e563348728152 +type=Technical Reports and Preprints +year=2022 +paper_id=038d0966 +ss_title=Blizzard: a Distributed Consensus Protocol for Mobile Devices +ss_authors=[{'authorId': '3148965', 'name': 'Mehrdad Kiamari'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145116440', 'name': 'Muhammad Naveed'}, {'authorId': '1830391567', 'name': 'Seokgu Yun'}] +ss_venue=arXiv.org +ss_year=2022 +ss_abstract=We present Blizzard, a Byzantine Fault Tolerant (BFT) distributed ledger protocol that is aimed at making mobile devices first-class citizens in the consensus process. Blizzard introduces a novel two-tier architecture by having the mobile nodes communicate through online brokers, and includes a decentralized matching scheme to ensure each node connects to a certain number of random brokers. Through mathematical analysis, we derive a guaranteed safety region (i.e. the set of ratios of malicious nodes and malicious brokers for which the safety is assured) for the Blizzard protocol. Liveness is shown as well. We analyze the performance of Blizzard in terms of its throughput, latency and message complexity. Through experiments based on a software implementation, we show that Blizzard is capable of throughput on the order of several thousand transactions per second per shard, and sub-second confirmation +ss_paper_id=be7cff402ff7c0370d9afa08f31e563348728152 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_characterizing_ml_training_performance_at_the_tactical_edge.txt b/database/original_documents/publications_text/2022_characterizing_ml_training_performance_at_the_tactical_edge.txt new file mode 100644 index 0000000000000000000000000000000000000000..067692807069e95c70c0e929155d8554483c52dc --- /dev/null +++ b/database/original_documents/publications_text/2022_characterizing_ml_training_performance_at_the_tactical_edge.txt @@ -0,0 +1,18 @@ +# Publication +title=Characterizing ML training performance at the tactical edge +venue=Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, vol. 12113, pp. 500-513. SPIE, 2022. +authors=['A Alshabanah', 'K Balasubramanian', 'B Krishnamachari', 'M Annavaram'] +abstract=The commercial industry has been working to develop ever-larger and more capable machine learning (ML) models (such as recent models from OpenAI, Microsoft and Google with more than ten billion parameters) for everything from general language processing to computer vision that have larger and larger computational, memory and other resource requirements. These powerful models generally need hardware accelerators to accommodate their workloads. GPU systems have been a popular choice among users and deep learning model designers either for their ability to run the inherently parallel deep learning workloads efficiently or for their large memory resource that would fit large deep learning models. We profile and analyze different deep learning workloads using various GPUs and configurations, emphasizing how deep learning architectures have diverse compute requirements. We analyze three popular deep learning workloads: Ultralytics’s You-Only-Look-Once model (Yolov5) on COCO dataset, Bidirectional Encoder Representations from Transformers (BERT), and Deep Learning Recommendation Model (DLRM) on the Criteo Kaggle Display Advertising Challenge Dataset. This work aims to shed light on the performance bottlenecks when using GPU systems as accelerators for training recent deep learning models. + +# Information +links.pdf=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12113/121131N/Characterizing-ML-training-performance-at-the-tactical-edge/10.1117/12.2617773.short?SSO=1 +links.semantic_scholar=https://www.semanticscholar.org/paper/44d45865332061c385030b4dd2e3e50088ac70f1 +type=Conference Papers +year=2022 +paper_id=b2c5ede1 +ss_title=Characterizing ML training performance at the tactical edge +ss_authors=[{'authorId': '2126514178', 'name': 'Abdulla Alshabanah'}, {'authorId': '1500527909', 'name': 'Keshav Balasubramanian'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}] +ss_venue=Defense + Commercial Sensing +ss_year=2022 +ss_abstract=The commercial industry has been working to develop ever-larger and more capable machine learning (ML) models (such as recent models from OpenAI, Microsoft and Google with more than ten billion parameters) for everything from general language processing to computer vision that have larger and larger computational, memory and other resource requirements. These powerful models generally need hardware accelerators to accommodate their workloads. GPU systems have been a popular choice among users and deep learning model designers either for their ability to run the inherently parallel deep learning workloads efficiently or for their large memory resource that would fit large deep learning models. We profile and analyze different deep learning workloads using various GPUs and configurations, emphasizing how deep learning architectures have diverse compute requirements. We analyze three popular deep learning workloads: Ultralytics’s You-Only-Look-Once model (Yolov5) on COCO dataset, Bidirectional Encoder Representations from Transformers (BERT), and Deep Learning Recommendation Model (DLRM) on the Criteo Kaggle Display Advertising Challenge Dataset. This work aims to shed light on the performance bottlenecks when using GPU systems as accelerators for training recent deep learning models. +ss_paper_id=44d45865332061c385030b4dd2e3e50088ac70f1 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_context_information_sharing_for_the_internet_of_things_a_survey.txt b/database/original_documents/publications_text/2022_context_information_sharing_for_the_internet_of_things_a_survey.txt new file mode 100644 index 0000000000000000000000000000000000000000..e8767b52004ea6ae084dab3cc483c73e0729e9cc --- /dev/null +++ b/database/original_documents/publications_text/2022_context_information_sharing_for_the_internet_of_things_a_survey.txt @@ -0,0 +1,18 @@ +# Publication +title=Context information sharing for the Internet of Things: A survey +venue=Elsevier Comput. Networks 166 (2020). +authors=['E Matos', 'R Tiburski', 'C Moratelli', 'S Filhoa', 'L Amaral', 'G Ramachandran', 'B Krishnamachari', 'F Hessel'] +abstract=None + +# Information +links.pdf=/static/public/papers/computer_networks_journal2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/373ef4e020db7eebacea9d4d6988abe1e33c3e25 +type=Journal Papers +year=2022 +paper_id=e646b5ac +ss_title=Context information sharing for the Internet of Things: A survey +ss_authors=[{'authorId': '144376704', 'name': 'Everton de Matos'}, {'authorId': '1829454', 'name': 'Ramão Tiago Tiburski'}, {'authorId': '1745041', 'name': 'C. Moratelli'}, {'authorId': '2248095', 'name': 'S. J. Filho'}, {'authorId': '143692654', 'name': 'Leonardo A. Amaral'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '7331931', 'name': 'F. Hessel'}] +ss_venue=Comput. Networks +ss_year=2020 +ss_abstract=None +ss_paper_id=373ef4e020db7eebacea9d4d6988abe1e33c3e25 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt b/database/original_documents/publications_text/2022_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt new file mode 100644 index 0000000000000000000000000000000000000000..0222923757cde3925b3cf8eb95d47ca974d1aad5 --- /dev/null +++ b/database/original_documents/publications_text/2022_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt @@ -0,0 +1,18 @@ +# Publication +title=Control, intervention, and behavioral economics over human social networks against COVID-19″ +venue=Adv. Robotics 35(11): 733-739 (2021). +authors=['M Nagahara', 'B Krishnamachari', 'M Ogura', 'A Ortega', 'Y Tanaka', 'Y Ushifusa', 'TW Valente'] +abstract=In this short paper, we propose a new direction of cross-cutting research for prediction and control of spreading COVID-19 viruses over a human social network. Such a network consists of human agents whose behaviors are highly uncertain and biased. To predict and control such an uncertain network, we need to employ various researches such as control theory, signal processing, machine learning, and behavioral economics. In this article, we introduce our recent research results and propose future research topics to overcome the COVID-19 pandemic. GRAPHICAL ABSTRACT + +# Information +links.pdf=/static/public/papers/contr.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b0b933351e936a46b0c95b4b9e0f080d52d6a69 +type=Journal Papers +year=2022 +paper_id=0c3cef49 +ss_title=Control, intervention, and behavioral economics over human social networks against COVID-19 +ss_authors=[{'authorId': '2117613538', 'name': 'Nagahara Nagahara'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '50701588', 'name': 'Masaki Ogura'}, {'authorId': '2054817790', 'name': 'Antonio Ortega'}, {'authorId': '2112766807', 'name': 'Yuichi Tanaka'}, {'authorId': '98220386', 'name': 'Y. Ushifusa'}, {'authorId': '2225668', 'name': 'T. Valente'}] +ss_venue=Adv. Robotics +ss_year=2021 +ss_abstract=In this short paper, we propose a new direction of cross-cutting research for prediction and control of spreading COVID-19 viruses over a human social network. Such a network consists of human agents whose behaviors are highly uncertain and biased. To predict and control such an uncertain network, we need to employ various researches such as control theory, signal processing, machine learning, and behavioral economics. In this article, we introduce our recent research results and propose future research topics to overcome the COVID-19 pandemic. GRAPHICAL ABSTRACT +ss_paper_id=3b0b933351e936a46b0c95b4b9e0f080d52d6a69 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_defer_distributed_edge_inference_for_deep_neural_networks.txt b/database/original_documents/publications_text/2022_defer_distributed_edge_inference_for_deep_neural_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..696e622380b94f1968740bdc74021c3a4b0dacea --- /dev/null +++ b/database/original_documents/publications_text/2022_defer_distributed_edge_inference_for_deep_neural_networks.txt @@ -0,0 +1,19 @@ +# Publication +title=DEFER: Distributed Edge Inference for Deep Neural Networks +venue=Workshop on Machine Intelligence in Networked Data and Systems (MINDS), organized in conjunction with 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), 2022. +authors=['A Parthasarathy', 'B Krishnamachari'] +abstract=Modern machine learning tools such as deep neural networks (DNNs) are playing a revolutionary role in many fields such as natural language processing, computer vision, and the internet of things. Once they are trained, deep learning models can be deployed on edge computers to perform classification and prediction on real-time data for these applications. Particularly for large models, the limited computational and memory resources on a single edge device can become the throughput bottleneck for an inference pipeline. To increase throughput and decrease per-device compute load, we present DEFER (Distributed Edge inFERence), a framework for distributed edge inference, which partitions deep neural networks into layers that can be spread across multiple compute nodes. The architecture consists of a single “dispatcher” node to distribute DNN partitions and inference data to respective compute nodes. The compute nodes are connected in a series pattern where each node's computed result is relayed to the subsequent node. The result is then returned to the Dispatcher. We quantify the throughput, energy consumption, network payload, and overhead for our framework under realistic network conditions using the CORE network emulator. We find that for the ResNet50 model, the inference throughput of DEFER with 8 compute nodes is 53% higher and per node energy consumption is 63 % lower than single device inference. We further reduce network communication demands and energy consumption using the ZFP serialization and LZ4 compression algorithms. We have implemented DEFER in Python using the TensorFlow and Keras ML libraries, and have released DEFER as an open-source framework to benefit the research community. + +# Information +links.pdf=https://arxiv.org/abs/2201.06769 +links.code=https://github.com/ANRGUSC/DEFER +links.semantic_scholar=https://www.semanticscholar.org/paper/2e624c38c7c6e2cbccc0b6c0ac2b39f2cb56d50c +type=Conference Papers +year=2022 +paper_id=ce0e1a2f +ss_title=DEFER: Distributed Edge Inference for Deep Neural Networks +ss_authors=[{'authorId': '2149945872', 'name': 'Arjun Parthasarathy'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Communication Systems and Networks +ss_year=2022 +ss_abstract=Modern machine learning tools such as deep neural networks (DNNs) are playing a revolutionary role in many fields such as natural language processing, computer vision, and the internet of things. Once they are trained, deep learning models can be deployed on edge computers to perform classification and prediction on real-time data for these applications. Particularly for large models, the limited computational and memory resources on a single edge device can become the throughput bottleneck for an inference pipeline. To increase throughput and decrease per-device compute load, we present DEFER (Distributed Edge inFERence), a framework for distributed edge inference, which partitions deep neural networks into layers that can be spread across multiple compute nodes. The architecture consists of a single “dispatcher” node to distribute DNN partitions and inference data to respective compute nodes. The compute nodes are connected in a series pattern where each node's computed result is relayed to the subsequent node. The result is then returned to the Dispatcher. We quantify the throughput, energy consumption, network payload, and overhead for our framework under realistic network conditions using the CORE network emulator. We find that for the ResNet50 model, the inference throughput of DEFER with 8 compute nodes is 53% higher and per node energy consumption is 63 % lower than single device inference. We further reduce network communication demands and energy consumption using the ZFP serialization and LZ4 compression algorithms. We have implemented DEFER in Python using the TensorFlow and Keras ML libraries, and have released DEFER as an open-source framework to benefit the research community. +ss_paper_id=2e624c38c7c6e2cbccc0b6c0ac2b39f2cb56d50c \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.txt b/database/original_documents/publications_text/2022_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.txt new file mode 100644 index 0000000000000000000000000000000000000000..21a517db07c718fd20c19788675a473b1657ae50 --- /dev/null +++ b/database/original_documents/publications_text/2022_gcnscheduler_scheduling_distributed_computing_applications_using_graph_convolutional_networks.txt @@ -0,0 +1,18 @@ +# Publication +title=GCNScheduler: Scheduling distributed computing applications using graph convolutional networks +venue=Proceedings of the 1st International Workshop on Graph Neural Networking, 13-17, Dec. 2022 +authors=['M Kiamari', 'B Krishnamachari'] +abstract=We provide a highly-efficient solution to the classical problem of scheduling task graphs corresponding to complex applications on distributed computing systems. A number of heuristics have been previously proposed to optimize task scheduling with respect to different metrics (e.g. makespan and throughput). However, they tend to be slow to run, particularly for larger problem instances, limiting their applicability in more dynamic systems. Motivated by the goal of solving these problems more rapidly, we propose, for the first time, a graph convolutional network-based scheduler (GCNScheduler). By carefully integrating the inter-task data dependency structure and the computational network into a single input graph, the GCNScheduler can efficiently schedule tasks of complex applications for a given objective. We use simulations to illustrate that not only can our scheme quickly and efficiently learn from existing scheduling schemes, but also it can easily be applied to large-scale settings that current scheduling schemes fail to handle. We demonstrate the generalization of GCNScheduler to unseen real-world applications and show that it achieves almost the same makespan and throughput as benchmarks, while providing several orders of magnitude faster scheduling times. + +# Information +links.pdf=/static/public/papers/Mehrdad_GCNScheduler_GNNet.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ab027e71572daf38749d15eef90f86132c9611cd +type=Conference Papers +year=2022 +paper_id=e6c04fa0 +ss_title=GCNScheduler: scheduling distributed computing applications using graph convolutional networks +ss_authors=[{'authorId': '3148965', 'name': 'Mehrdad Kiamari'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=GNNet@CoNEXT +ss_year=2021 +ss_abstract=We provide a highly-efficient solution to the classical problem of scheduling task graphs corresponding to complex applications on distributed computing systems. A number of heuristics have been previously proposed to optimize task scheduling with respect to different metrics (e.g. makespan and throughput). However, they tend to be slow to run, particularly for larger problem instances, limiting their applicability in more dynamic systems. Motivated by the goal of solving these problems more rapidly, we propose, for the first time, a graph convolutional network-based scheduler (GCNScheduler). By carefully integrating the inter-task data dependency structure and the computational network into a single input graph, the GCNScheduler can efficiently schedule tasks of complex applications for a given objective. We use simulations to illustrate that not only can our scheme quickly and efficiently learn from existing scheduling schemes, but also it can easily be applied to large-scale settings that current scheduling schemes fail to handle. We demonstrate the generalization of GCNScheduler to unseen real-world applications and show that it achieves almost the same makespan and throughput as benchmarks, while providing several orders of magnitude faster scheduling times. +ss_paper_id=ab027e71572daf38749d15eef90f86132c9611cd \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_graph_convolutional_networkbased_scheduler_for_distributing_computation_in_the_internet_of_robotic_things.txt b/database/original_documents/publications_text/2022_graph_convolutional_networkbased_scheduler_for_distributing_computation_in_the_internet_of_robotic_things.txt new file mode 100644 index 0000000000000000000000000000000000000000..ecec780566bc6a1c5d8fffa92fd391680bc32147 --- /dev/null +++ b/database/original_documents/publications_text/2022_graph_convolutional_networkbased_scheduler_for_distributing_computation_in_the_internet_of_robotic_things.txt @@ -0,0 +1,18 @@ +# Publication +title=Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things +venue=IEEE MILCOM 2022. +authors=['J Coleman', 'M Kiamari', 'L Clark', 'D DSouza', 'B Krishnamachari'] +abstract=Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms. + +# Information +links.pdf=/static/public/papers/edge_gcn_scheduler.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/cb11a141b3b35d097100c6e60a62cf670475675b +type=Conference Papers +year=2022 +paper_id=2c0cd782 +ss_title=Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things +ss_authors=[{'authorId': '1779792816', 'name': 'Jared R Coleman'}, {'authorId': '3148965', 'name': 'Mehrdad Kiamari'}, {'authorId': '2070152199', 'name': 'Lillian Clark'}, {'authorId': '2064115484', 'name': "Daniel D'Souza"}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE Military Communications Conference +ss_year=2022 +ss_abstract=Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms. +ss_paper_id=cb11a141b3b35d097100c6e60a62cf670475675b \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_intelligent_communication_over_realistic_wireless_networks_in_multiagent_cooperative_games.txt b/database/original_documents/publications_text/2022_intelligent_communication_over_realistic_wireless_networks_in_multiagent_cooperative_games.txt new file mode 100644 index 0000000000000000000000000000000000000000..41e7bddc6bbd79558f212dcc1d83d65e089dbbb9 --- /dev/null +++ b/database/original_documents/publications_text/2022_intelligent_communication_over_realistic_wireless_networks_in_multiagent_cooperative_games.txt @@ -0,0 +1,18 @@ +# Publication +title=“Intelligent Communication over Realistic Wireless Networks in Multi-Agent Cooperative Games” +venue=21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 9–13, 2022 +authors=['D Hu', 'C Zhang', 'V Prasanna', 'B Krishnamachari'] +abstract=In MARL, communication among agents is essential to establish cooperation. Over the realistic wireless network, many factors can affect transmission reliability, especially considering that the wireless network condition varies with agents’ mobility. We propose a framework that improves the intelligence of communication over realistic wireless networks in two fundamental aspects: (1) When : Agents learn the timing of communication based on message importance and wireless channel condition. We further propose a communication lagging technique to make the training end-to-end differentiable. (2) What : Agents augment message contents with wireless network measurements. The messages improve both the game and communication actions of the agents. Experiments on a standard environment show that compared with state-of-the-art, our framework enables more intelligent collaboration and thus achieves significantly better game performance, convergence speed and communication efficiency. + +# Information +links.pdf=/static/public/papers/IntCom.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e2471d472e79372d30193a8250d1aa7eff620769 +type=Conference Papers +year=2022 +paper_id=4c0c7ab7 +ss_title=Intelligent Communication over Realistic Wireless Networks in Multi-Agent Cooperative Games +ss_authors=[{'authorId': '120426961', 'name': 'Diyi Hu'}, {'authorId': '2115812350', 'name': 'Chi Zhang'}, {'authorId': '1728271', 'name': 'V. Prasanna'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=Adaptive Agents and Multi-Agent Systems +ss_year=2022 +ss_abstract=In MARL, communication among agents is essential to establish cooperation. Over the realistic wireless network, many factors can affect transmission reliability, especially considering that the wireless network condition varies with agents’ mobility. We propose a framework that improves the intelligence of communication over realistic wireless networks in two fundamental aspects: (1) When : Agents learn the timing of communication based on message importance and wireless channel condition. We further propose a communication lagging technique to make the training end-to-end differentiable. (2) What : Agents augment message contents with wireless network measurements. The messages improve both the game and communication actions of the agents. Experiments on a standard environment show that compared with state-of-the-art, our framework enables more intelligent collaboration and thus achieves significantly better game performance, convergence speed and communication efficiency. +ss_paper_id=e2471d472e79372d30193a8250d1aa7eff620769 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_learning_practical_communication_strategies_in_cooperative_multiagent_reinforcement_learning.txt b/database/original_documents/publications_text/2022_learning_practical_communication_strategies_in_cooperative_multiagent_reinforcement_learning.txt new file mode 100644 index 0000000000000000000000000000000000000000..caf238e83baf9534f278d103bedfbe2054deaeaa --- /dev/null +++ b/database/original_documents/publications_text/2022_learning_practical_communication_strategies_in_cooperative_multiagent_reinforcement_learning.txt @@ -0,0 +1,18 @@ +# Publication +title=“Learning Practical Communication Strategies in Cooperative Multi-Agent Reinforcement Learning” +venue=Asian Conference on Machine Learning (ACML), PMLR, 2022 +authors=['D Hu', 'C Zhang', 'V Prasanna', 'B Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/hu22.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/c2056bd9a28f547f4d9cb5bf2781e5fb6fea4b02 +type=Conference Papers +year=2022 +paper_id=6a37ada0 +ss_title=RoboCup 2001: Robot Soccer World Cup V +ss_authors=[{'authorId': '143941302', 'name': 'A. Birk'}, {'authorId': '1734889', 'name': 'S. Coradeschi'}, {'authorId': '1794952', 'name': 'S. Tadokoro'}] +ss_venue=Lecture Notes in Computer Science +ss_year=2002 +ss_abstract=None +ss_paper_id=c2056bd9a28f547f4d9cb5bf2781e5fb6fea4b02 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_multiobjective_network_synthesis_for_dispersed_computing_in_tactical_environments.txt b/database/original_documents/publications_text/2022_multiobjective_network_synthesis_for_dispersed_computing_in_tactical_environments.txt new file mode 100644 index 0000000000000000000000000000000000000000..a0abfef16264f00adceb1469b9230dc42f85c2eb --- /dev/null +++ b/database/original_documents/publications_text/2022_multiobjective_network_synthesis_for_dispersed_computing_in_tactical_environments.txt @@ -0,0 +1,19 @@ +# Publication +title=“Multi-objective network synthesis for dispersed computing in tactical environments” +venue=Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI, 12122, p. 1212219, International Society for Optics and Photonics, 2022. +authors=['J Coleman', 'E Grippo', 'B Krishnamachari', 'G Verma'] +abstract=Tactical operations like search and rescue or surveillance necessitate the rapid synthesis of physically dispersed assets and mobile compute nodes into a network capable of efficient and reliable information gathering, dissemination, and processing. We formalize this network synthesis problem as selecting one among a set of potentially deployable networks which optimally supports the distributed execution of complex applications. We present the NSDC (network synthesis for dispersed computing) framework; a general framework for studying this type of problem and use it to provide a solution for one well-motivated variant. We discuss how the framework can be extended to support other objectives, parameters, and constraints as well as more scalable solution approaches. + +# Information +links.pdf=/static/public/papers/iobt.pdf +links.code=https://github.com/ANRGUSC/NSDC +links.semantic_scholar=https://www.semanticscholar.org/paper/54a7f239177260469f4e883ed941da7f0fed70fd +type=Conference Papers +year=2022 +paper_id=2eafb48e +ss_title=Multi-objective network synthesis for dispersed computing in tactical environments +ss_authors=[{'authorId': '1779792816', 'name': 'Jared R Coleman'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '70180972', 'name': 'Gunjan Verma'}] +ss_venue=Defense + Commercial Sensing +ss_year=2022 +ss_abstract=Tactical operations like search and rescue or surveillance necessitate the rapid synthesis of physically dispersed assets and mobile compute nodes into a network capable of efficient and reliable information gathering, dissemination, and processing. We formalize this network synthesis problem as selecting one among a set of potentially deployable networks which optimally supports the distributed execution of complex applications. We present the NSDC (network synthesis for dispersed computing) framework; a general framework for studying this type of problem and use it to provide a solution for one well-motivated variant. We discuss how the framework can be extended to support other objectives, parameters, and constraints as well as more scalable solution approaches. +ss_paper_id=54a7f239177260469f4e883ed941da7f0fed70fd \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_network_synthesis_for_tactical_environments_scenario_challenges_and_opportunities.txt b/database/original_documents/publications_text/2022_network_synthesis_for_tactical_environments_scenario_challenges_and_opportunities.txt new file mode 100644 index 0000000000000000000000000000000000000000..24da7b0db7d3a7c64e1715e387544e459e17c1d8 --- /dev/null +++ b/database/original_documents/publications_text/2022_network_synthesis_for_tactical_environments_scenario_challenges_and_opportunities.txt @@ -0,0 +1,18 @@ +# Publication +title=Network Synthesis for Tactical Environments: Scenario, Challenges, and Opportunities +venue=Proc. SPIE 12113, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, 121130N, 6 June 2022. +authors=['T Anevlavis', 'J Bunton', 'J Coleman', 'M Gokce Dogan', 'E Grippo', 'A Souza', 'C Fragouli', 'B Krishnamachari', 'M Maness', 'K Olson', 'P Shenoy', 'P Tabuada', 'G Verma'] +abstract=We develop a network synthesis scenario, which is built around a concrete perimeter surveillance application, yet we believe captures a number of the challenges and requirements that are common to other tactical communication and computational network applications. The proposed scenario addresses the problem of binary population identification within a perimeter: our goal is to synthesize a sensing and computing network that classifies people moving within a given perimeter into one of two categories (e.g., friend or foe). We discuss several open challenges that we organize across the following clusters: sensor placement, communication network provisioning and optimization, computational task placement, dynamic re-synthesis and resilience under adversarial settings. We also briefly discuss approaches that attempt to address such challenges. + +# Information +links.pdf=/static/public/papers/iobt_network_synthesis.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/75f1252a863e09a7e7c829e6e60345af5b64b934 +type=Conference Papers +year=2022 +paper_id=408959c7 +ss_title=Network synthesis for tactical environments: scenario, challenges, and opportunities +ss_authors=[{'authorId': '65970657', 'name': 'Tzanis Anevlavis'}, {'authorId': '29985683', 'name': 'Jonathan Bunton'}, {'authorId': '1779792816', 'name': 'Jared R Coleman'}, {'authorId': '2175352852', 'name': 'Mine Gokce Dogan'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}, {'authorId': '2116029223', 'name': 'A. Souza'}, {'authorId': '1762299', 'name': 'C. Fragouli'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2175352145', 'name': 'Matthew Maness'}, {'authorId': '2053872111', 'name': 'K. Olson'}, {'authorId': '2172702597', 'name': 'P. Shenoy'}, {'authorId': '1791875', 'name': 'P. Tabuada'}, {'authorId': '70180972', 'name': 'Gunjan Verma'}] +ss_venue=Defense + Commercial Sensing +ss_year=2022 +ss_abstract=We develop a network synthesis scenario, which is built around a concrete perimeter surveillance application, yet we believe captures a number of the challenges and requirements that are common to other tactical communication and computational network applications. The proposed scenario addresses the problem of binary population identification within a perimeter: our goal is to synthesize a sensing and computing network that classifies people moving within a given perimeter into one of two categories (e.g., friend or foe). We discuss several open challenges that we organize across the following clusters: sensor placement, communication network provisioning and optimization, computational task placement, dynamic re-synthesis and resilience under adversarial settings. We also briefly discuss approaches that attempt to address such challenges. +ss_paper_id=75f1252a863e09a7e7c829e6e60345af5b64b934 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_neural_networks_for_ddos_attack_detection_using_an_enhanced_urban_iot_dataset.txt b/database/original_documents/publications_text/2022_neural_networks_for_ddos_attack_detection_using_an_enhanced_urban_iot_dataset.txt new file mode 100644 index 0000000000000000000000000000000000000000..e4d23f8e597b07da6090309afa3de074304fe84f --- /dev/null +++ b/database/original_documents/publications_text/2022_neural_networks_for_ddos_attack_detection_using_an_enhanced_urban_iot_dataset.txt @@ -0,0 +1,18 @@ +# Publication +title=Neural Networks for DDoS Attack Detection using an Enhanced Urban IoT Dataset +venue=International Conference on Computer Communications and Networks (ICCCN), pp. 1-8, doi: 10.1109/ICCCN54977.2022.9868942, July 2022 +authors=['A Hekmati', 'E Grippo', 'B Krishnamachari'] +abstract=We investigate the application of artificial intelligence to cybersecurity, to contribute to the safe and secure growth of the internet of things (IoT). Specifically, we train and evaluate different neural networks models to detect distributed denial of service (DDoS) attacks in a large-scale IoT system. We consider futuristic attacks launched by sophisticated malicious entities that take over multiple distributed IoT nodes and are able to disguise their intrusion by closely mimicking the benign traffic of the network. Using data from prior work, we find that a truncated Cauchy distribution is a suitable fit for benign traffic volume from IoT devices, and we model the attack traffic volume as following the same distribution but with different parameters for location and scale. We emulate both benign and attack traffic by overlaying these traffic volume distributions on top of an activity status data trace from a real urban IoT deployment consisting of about 4000 nodes. Using our enhanced dataset, we compare four neural network models: multi-layer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), and autoencoder (AEN), analyzing their performance as a function of a parameter that measures the deviation of the attacks from the benign data. We observe that all four models are sensitive to the distance between benign and attack traffic. We further observe that LSTM gives the best overall performance in terms of both high accuracy and high recall. + +# Information +links.pdf=/static/public/papers/Neural_Networks_for_DDoS_Attack_Detection_using_an_Enhanced_Urban_IoT_Dataset.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/423bd08b499ec6d58b9616287f01efd6180454a9 +type=Conference Papers +year=2022 +paper_id=6ab92eec +ss_title=Neural Networks for DDoS Attack Detection using an Enhanced Urban IoT Dataset +ss_authors=[{'authorId': '146086014', 'name': 'Arvin Hekmati'}, {'authorId': '3491329', 'name': 'Eugenio Grippo'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Computer Communications and Networks +ss_year=2022 +ss_abstract=We investigate the application of artificial intelligence to cybersecurity, to contribute to the safe and secure growth of the internet of things (IoT). Specifically, we train and evaluate different neural networks models to detect distributed denial of service (DDoS) attacks in a large-scale IoT system. We consider futuristic attacks launched by sophisticated malicious entities that take over multiple distributed IoT nodes and are able to disguise their intrusion by closely mimicking the benign traffic of the network. Using data from prior work, we find that a truncated Cauchy distribution is a suitable fit for benign traffic volume from IoT devices, and we model the attack traffic volume as following the same distribution but with different parameters for location and scale. We emulate both benign and attack traffic by overlaying these traffic volume distributions on top of an activity status data trace from a real urban IoT deployment consisting of about 4000 nodes. Using our enhanced dataset, we compare four neural network models: multi-layer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), and autoencoder (AEN), analyzing their performance as a function of a parameter that measures the deviation of the attacks from the benign data. We observe that all four models are sensitive to the distance between benign and attack traffic. We further observe that LSTM gives the best overall performance in terms of both high accuracy and high recall. +ss_paper_id=423bd08b499ec6d58b9616287f01efd6180454a9 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_optimal_trading_on_a_dynamic_curve_automated_market_maker.txt b/database/original_documents/publications_text/2022_optimal_trading_on_a_dynamic_curve_automated_market_maker.txt new file mode 100644 index 0000000000000000000000000000000000000000..15953c6e70ff9fe7657ff37365c68aa9136d9376 --- /dev/null +++ b/database/original_documents/publications_text/2022_optimal_trading_on_a_dynamic_curve_automated_market_maker.txt @@ -0,0 +1,19 @@ +# Publication +title=Optimal Trading on a Dynamic Curve Automated Market Maker +venue=IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2022 +authors=['S Wang', 'B Krishnamachari'] +abstract=In the emerging realm of decentralized finance (DeFi), most of the existing Automated Market Maker (AMM) protocols used by major platforms like Uniswap and Curve are governed by a static mathematical equation, such as the constant product curve. One major shortcoming of these curves is that they require external forces to maintain the price of the liquidity pool (LP), subjecting the LP to loss due to arbitrage. A novel solution, the dynamic curve AMM, was recently proposed to ensure that the pool price always matches the market price, making the LP invulnerable to arbitrageurs. Dynamic curves, however, have a path-dependent trading problem, meaning that the number of trades and the distribution of trades affect the trader’s gain. We show how to find the optimal trading policy for a dynamic AMM curve under several settings. We first show that in a zero-transaction-fee setting the optimal trading policy is to place infinitesimally small trades, resulting in zero slippage. Then, we present an algorithm that computes the optimal policy in a fixed-number-of-trade setting. Though the problem has an exponentially large search space, our algorithm utilizes dynamic programming to achieve a polynomial run-time. Finally, we generalize the solution to more complex settings, including a per-order-fee setting and a percentage-fee setting. + +# Information +links.pdf=/static/public/papers/Optimal%20Trading%20on%20a%20Dynamic%20Curve%20Automated.pdf +links.code=https://github.com/ANRGUSC/Optimal_Trading_Dynamic_AMM +links.semantic_scholar=https://www.semanticscholar.org/paper/e02be577928f92c03bcc434ca897b5c11ac71f91 +type=Conference Papers +year=2022 +paper_id=cca69ebe +ss_title=Optimal Trading on a Dynamic Curve Automated Market Maker +ss_authors=[{'authorId': '2146514188', 'name': 'Shuang Wang'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=International Conference on Blockchain +ss_year=2022 +ss_abstract=In the emerging realm of decentralized finance (DeFi), most of the existing Automated Market Maker (AMM) protocols used by major platforms like Uniswap and Curve are governed by a static mathematical equation, such as the constant product curve. One major shortcoming of these curves is that they require external forces to maintain the price of the liquidity pool (LP), subjecting the LP to loss due to arbitrage. A novel solution, the dynamic curve AMM, was recently proposed to ensure that the pool price always matches the market price, making the LP invulnerable to arbitrageurs. Dynamic curves, however, have a path-dependent trading problem, meaning that the number of trades and the distribution of trades affect the trader’s gain. We show how to find the optimal trading policy for a dynamic AMM curve under several settings. We first show that in a zero-transaction-fee setting the optimal trading policy is to place infinitesimally small trades, resulting in zero slippage. Then, we present an algorithm that computes the optimal policy in a fixed-number-of-trade setting. Though the problem has an exponentially large search space, our algorithm utilizes dynamic programming to achieve a polynomial run-time. Finally, we generalize the solution to more complex settings, including a per-order-fee setting and a percentage-fee setting. +ss_paper_id=e02be577928f92c03bcc434ca897b5c11ac71f91 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_trip_planning_for_autonomous_vehicles_with_wireless_data_transfer_needs_using_reinforcement_learning.txt b/database/original_documents/publications_text/2022_trip_planning_for_autonomous_vehicles_with_wireless_data_transfer_needs_using_reinforcement_learning.txt new file mode 100644 index 0000000000000000000000000000000000000000..01e732d43d0aae15dfd8b9a858c573f3a4272cc6 --- /dev/null +++ b/database/original_documents/publications_text/2022_trip_planning_for_autonomous_vehicles_with_wireless_data_transfer_needs_using_reinforcement_learning.txt @@ -0,0 +1,18 @@ +# Publication +title=Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs Using Reinforcement Learning +venue=19th International Conference on Mobile Ad-Hoc and Smart Systems (MASS), October 20-22, 2022 +authors=['Y AlSaqabi', 'B Krishnamachari'] +abstract=With recent advancements in the field of commu-nications and the Internet of Things, vehicles are becoming more aware of their environment and are evolving towards full autonomy. Vehicular communication opens up the possibility for vehicle-to-infrastructure interaction, where vehicles could share information with components such as cameras, traffic lights, and signage that support a country's road system. As a result, vehicles are becoming more than just a means of transportation; they are collecting, processing, and transmitting massive amounts of data used to make driving safer and more convenient. With 5G cellular networks and beyond, there is going to be more data bandwidth available on our roads, but it may be heterogeneous because of limitations like line of sight, infrastructure, and heterogeneous traffic on the road. This paper addresses the problem of route planning for autonomous vehicles in urban areas accounting for both driving time and data transfer needs. We propose a novel reinforcement learning solution that prioritizes high bandwidth roads to meet a vehicle's data transfer requirement, while also minimizing driving time. We compare this approach to traffic-unaware and bandwidth-unaware baselines to show how much better it performs under heterogeneous traffic. This solution could be used as a starting point to understand what good policies look like, which could potentially yield faster, more efficient heuristics in the future. + +# Information +links.pdf=/static/public/papers/RL_Routing.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3a44df8982f3535a32ed400b6adcca30e9712a89 +type=Conference Papers +year=2022 +paper_id=41e700ae +ss_title=Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs Using Reinforcement Learning +ss_authors=[{'authorId': '2188172276', 'name': 'Yousef AlSaqabi'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}] +ss_venue=IEEE International Conference on Mobile Adhoc and Sensor Systems +ss_year=2022 +ss_abstract=With recent advancements in the field of commu-nications and the Internet of Things, vehicles are becoming more aware of their environment and are evolving towards full autonomy. Vehicular communication opens up the possibility for vehicle-to-infrastructure interaction, where vehicles could share information with components such as cameras, traffic lights, and signage that support a country's road system. As a result, vehicles are becoming more than just a means of transportation; they are collecting, processing, and transmitting massive amounts of data used to make driving safer and more convenient. With 5G cellular networks and beyond, there is going to be more data bandwidth available on our roads, but it may be heterogeneous because of limitations like line of sight, infrastructure, and heterogeneous traffic on the road. This paper addresses the problem of route planning for autonomous vehicles in urban areas accounting for both driving time and data transfer needs. We propose a novel reinforcement learning solution that prioritizes high bandwidth roads to meet a vehicle's data transfer requirement, while also minimizing driving time. We compare this approach to traffic-unaware and bandwidth-unaware baselines to show how much better it performs under heterogeneous traffic. This solution could be used as a starting point to understand what good policies look like, which could potentially yield faster, more efficient heuristics in the future. +ss_paper_id=3a44df8982f3535a32ed400b6adcca30e9712a89 \ No newline at end of file diff --git a/database/original_documents/publications_text/2022_using_reinforcement_learning_for_operating_educational_campuses_safely_during_a_pandemic_student_abstract.txt b/database/original_documents/publications_text/2022_using_reinforcement_learning_for_operating_educational_campuses_safely_during_a_pandemic_student_abstract.txt new file mode 100644 index 0000000000000000000000000000000000000000..d7c01b1cd06df1c197c962047240de9fc35205b6 --- /dev/null +++ b/database/original_documents/publications_text/2022_using_reinforcement_learning_for_operating_educational_campuses_safely_during_a_pandemic_student_abstract.txt @@ -0,0 +1,18 @@ +# Publication +title=Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract) +venue=AAAI 2022. +authors=['E Ondula', 'B Krishnamachari'] +abstract=The COVID-19 pandemic has brought a significant disruption not only on how schools operate but also affected student sentiments on learning and adoption to different learning strategies. We propose CampusPandemicPlanR, a reinforcement learning-based simulation tool that could be applied to suggest to campus operators how many students from each course to allow on a campus classroom each week. The tool aims to strike a balance between the conflicting goals of keeping students from getting infected, on one hand, and allowing more students to come into campus to allow them to benefit from in-person classes, on the other. Our preliminary results show that reinforcement learning is able to learn better policies over iterations, and that different Pareto-optimal tradeoffs between these conflicting goals could be obtained by varying the reward weight parameter. + +# Information +links.pdf=/static/public/papers/SA-00287-OndulaE.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/e11e9ea65f395144b212186d8193598c2d1a7c62 +type=Conference Papers +year=2022 +paper_id=b6a1f7db +ss_title=Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract) +ss_authors=[{'authorId': '2174948585', 'name': 'Elizabeth Akinyi Ondula'}, {'authorId': '2174866863', 'name': 'Bhaskar Krishnamachari'}] +ss_venue=AAAI Conference on Artificial Intelligence +ss_year=2022 +ss_abstract=The COVID-19 pandemic has brought a significant disruption not only on how schools operate but also affected student sentiments on learning and adoption to different learning strategies. We propose CampusPandemicPlanR, a reinforcement learning-based simulation tool that could be applied to suggest to campus operators how many students from each course to allow on a campus classroom each week. The tool aims to strike a balance between the conflicting goals of keeping students from getting infected, on one hand, and allowing more students to come into campus to allow them to benefit from in-person classes, on the other. Our preliminary results show that reinforcement learning is able to learn better policies over iterations, and that different Pareto-optimal tradeoffs between these conflicting goals could be obtained by varying the reward weight parameter. +ss_paper_id=e11e9ea65f395144b212186d8193598c2d1a7c62 \ No newline at end of file diff --git a/database/original_documents/publications_text/2023_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt b/database/original_documents/publications_text/2023_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt new file mode 100644 index 0000000000000000000000000000000000000000..4f30bab0c436a504fc8d71e3080f52dbb02cf8aa --- /dev/null +++ b/database/original_documents/publications_text/2023_a_queuestabilizing_framework_for_networked_multirobot_exploration.txt @@ -0,0 +1,18 @@ +# Publication +title=A Queue-Stabilizing Framework for Networked Multi-Robot Exploration +venue=in IEEE Robotics and Automation Letters, 2021. +authors=['L Clark', 'J Galante', 'B Krishnamachari', 'K Psounis'] +abstract=Motivated by planetary exploration, we consider the problem of deploying a network of mobile robots to explore an unknown environment and share information with a stationary data sink. The configuration of robots affects both network connectivity and the accuracy of relative localization. Robots explore autonomously and can store data locally in their queues. When a communication path exists to the data sink, robots transfer their data. Because robots may fail in a non-deterministic manner, causing loss of the data in their queues, enabling communication is important. However, strict constraints on connectivity and relative positions limit exploration. To take a more flexible approach to managing these multiple objectives, we use Lyapunov-based stochastic optimization to maximize new information while using virtual queues to constrain time-average expectations of metrics of interest. These include queueing delay, network connectivity, and localization uncertainty. The result is a distributed online controller which autonomously and strategically breaks and restores connectivity as needed. We explicitly account for obstacle avoidance, limited sensing ranges, and noisy communication/ranging links with line-of-sight occlusions. We use queuing theory to analyze the average delay experienced by data in our system and guarantee connectivity will be recovered when feasible. We demonstrate in simulation that our queue-stabilizing controller can reduce localization uncertainty and achieve better coverage than two state of the art approaches. + +# Information +links.pdf=/static/public/papers/FINAL_Queue_stabilizing_distributed_online_controller.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/d279f4dce2aa2b9338ad8660c5979a20fe9c300a +type=Journal Papers +year=2023 +paper_id=d20105a2 +ss_title=A Queue-Stabilizing Framework for Networked Multi-Robot Exploration +ss_authors=[{'authorId': '2070152199', 'name': 'Lillian Clark'}, {'authorId': '2076876343', 'name': 'Joseph M. Galante'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '9313028', 'name': 'K. Psounis'}] +ss_venue=IEEE Robotics and Automation Letters +ss_year=2021 +ss_abstract=Motivated by planetary exploration, we consider the problem of deploying a network of mobile robots to explore an unknown environment and share information with a stationary data sink. The configuration of robots affects both network connectivity and the accuracy of relative localization. Robots explore autonomously and can store data locally in their queues. When a communication path exists to the data sink, robots transfer their data. Because robots may fail in a non-deterministic manner, causing loss of the data in their queues, enabling communication is important. However, strict constraints on connectivity and relative positions limit exploration. To take a more flexible approach to managing these multiple objectives, we use Lyapunov-based stochastic optimization to maximize new information while using virtual queues to constrain time-average expectations of metrics of interest. These include queueing delay, network connectivity, and localization uncertainty. The result is a distributed online controller which autonomously and strategically breaks and restores connectivity as needed. We explicitly account for obstacle avoidance, limited sensing ranges, and noisy communication/ranging links with line-of-sight occlusions. We use queuing theory to analyze the average delay experienced by data in our system and guarantee connectivity will be recovered when feasible. We demonstrate in simulation that our queue-stabilizing controller can reduce localization uncertainty and achieve better coverage than two state of the art approaches. +ss_paper_id=d279f4dce2aa2b9338ad8660c5979a20fe9c300a \ No newline at end of file diff --git a/database/original_documents/publications_text/2023_a_survey_of_blockchainbased_strategies_for_healthcare.txt b/database/original_documents/publications_text/2023_a_survey_of_blockchainbased_strategies_for_healthcare.txt new file mode 100644 index 0000000000000000000000000000000000000000..06605f4fd8e73c442e2a426d54297858d569d947 --- /dev/null +++ b/database/original_documents/publications_text/2023_a_survey_of_blockchainbased_strategies_for_healthcare.txt @@ -0,0 +1,18 @@ +# Publication +title=A Survey of Blockchain-Based Strategies for Healthcare +venue=ACM Comput. Surv. 53(2): 27:1-27:27 (2020). +authors=['E Aguiar', 'B Faiçal', 'B Krishnamachari', 'J Ueyama'] +abstract=Blockchain technology has been gaining visibility owing to its ability to enhance the security, reliability, and robustness of distributed systems. Several areas have benefited from research based on this technology, such as finance, remote sensing, data analysis, and healthcare. Data immutability, privacy, transparency, decentralization, and distributed ledgers are the main features that make blockchain an attractive technology. However, healthcare records that contain confidential patient data make this system very complicated because there is a risk of a privacy breach. This study aims to address research into the applications of the blockchain healthcare area. It sets out by discussing the management of medical information, as well as the sharing of medical records, image sharing, and log management. We also discuss papers that intersect with other areas, such as the Internet of Things, the management of information, tracking of drugs along their supply chain, and aspects of security and privacy. As we are aware that there are other surveys of blockchain in healthcare, we analyze and compare both the positive and negative aspects of their papers. Finally, we seek to examine the concepts of blockchain in the medical area, by assessing their benefits and drawbacks and thus giving guidance to other researchers in the area. Additionally, we summarize the methods used in healthcare per application area and show their pros and cons. + +# Information +links.pdf=/static/public/papers/HEALTHCARE-ACM.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ba0b4666845040d429da8ac01d904769999bec05 +type=Journal Papers +year=2023 +paper_id=1a5ac15d +ss_title=A Survey of Blockchain-Based Strategies for Healthcare +ss_authors=[{'authorId': '2148250418', 'name': 'E. J. De Aguiar'}, {'authorId': '2273944', 'name': 'Bruno S. Faiçal'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '2190289', 'name': 'J. Ueyama'}] +ss_venue=ACM Computing Surveys +ss_year=2020 +ss_abstract=Blockchain technology has been gaining visibility owing to its ability to enhance the security, reliability, and robustness of distributed systems. Several areas have benefited from research based on this technology, such as finance, remote sensing, data analysis, and healthcare. Data immutability, privacy, transparency, decentralization, and distributed ledgers are the main features that make blockchain an attractive technology. However, healthcare records that contain confidential patient data make this system very complicated because there is a risk of a privacy breach. This study aims to address research into the applications of the blockchain healthcare area. It sets out by discussing the management of medical information, as well as the sharing of medical records, image sharing, and log management. We also discuss papers that intersect with other areas, such as the Internet of Things, the management of information, tracking of drugs along their supply chain, and aspects of security and privacy. As we are aware that there are other surveys of blockchain in healthcare, we analyze and compare both the positive and negative aspects of their papers. Finally, we seek to examine the concepts of blockchain in the medical area, by assessing their benefits and drawbacks and thus giving guidance to other researchers in the area. Additionally, we summarize the methods used in healthcare per application area and show their pros and cons. +ss_paper_id=ba0b4666845040d429da8ac01d904769999bec05 \ No newline at end of file diff --git a/database/original_documents/publications_text/2023_context_information_sharing_for_the_internet_of_things_a_survey.txt b/database/original_documents/publications_text/2023_context_information_sharing_for_the_internet_of_things_a_survey.txt new file mode 100644 index 0000000000000000000000000000000000000000..583c9396bf01535e133590e263e2959a0e32530f --- /dev/null +++ b/database/original_documents/publications_text/2023_context_information_sharing_for_the_internet_of_things_a_survey.txt @@ -0,0 +1,18 @@ +# Publication +title=Context information sharing for the Internet of Things: A survey +venue=Elsevier Comput. Networks 166 (2020). +authors=['E Matos', 'R Tiburski', 'C Moratelli', 'S Filhoa', 'L Amaral', 'G Ramachandran', 'B Krishnamachari', 'F Hessel'] +abstract=None + +# Information +links.pdf=/static/public/papers/computer_networks_journal2019.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/373ef4e020db7eebacea9d4d6988abe1e33c3e25 +type=Journal Papers +year=2023 +paper_id=ccf0eceb +ss_title=Context information sharing for the Internet of Things: A survey +ss_authors=[{'authorId': '144376704', 'name': 'Everton de Matos'}, {'authorId': '1829454', 'name': 'Ramão Tiago Tiburski'}, {'authorId': '1745041', 'name': 'C. Moratelli'}, {'authorId': '2248095', 'name': 'S. J. Filho'}, {'authorId': '143692654', 'name': 'Leonardo A. Amaral'}, {'authorId': '39406737', 'name': 'G. Ramachandran'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '7331931', 'name': 'F. Hessel'}] +ss_venue=Comput. Networks +ss_year=2020 +ss_abstract=None +ss_paper_id=373ef4e020db7eebacea9d4d6988abe1e33c3e25 \ No newline at end of file diff --git a/database/original_documents/publications_text/2023_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt b/database/original_documents/publications_text/2023_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt new file mode 100644 index 0000000000000000000000000000000000000000..9524d42afc78dcdf0f36209cefa8872fcb7fa51c --- /dev/null +++ b/database/original_documents/publications_text/2023_control_intervention_and_behavioral_economics_over_human_social_networks_against_covid19.txt @@ -0,0 +1,18 @@ +# Publication +title=Control, intervention, and behavioral economics over human social networks against COVID-19″ +venue=Adv. Robotics 35(11): 733-739 (2021). +authors=['M Nagahara', 'B Krishnamachari', 'M Ogura', 'A Ortega', 'Y Tanaka', 'Y Ushifusa', 'TW Valente'] +abstract=In this short paper, we propose a new direction of cross-cutting research for prediction and control of spreading COVID-19 viruses over a human social network. Such a network consists of human agents whose behaviors are highly uncertain and biased. To predict and control such an uncertain network, we need to employ various researches such as control theory, signal processing, machine learning, and behavioral economics. In this article, we introduce our recent research results and propose future research topics to overcome the COVID-19 pandemic. GRAPHICAL ABSTRACT + +# Information +links.pdf=/static/public/papers/contr.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/3b0b933351e936a46b0c95b4b9e0f080d52d6a69 +type=Journal Papers +year=2023 +paper_id=7c3ca7e2 +ss_title=Control, intervention, and behavioral economics over human social networks against COVID-19 +ss_authors=[{'authorId': '2117613538', 'name': 'Nagahara Nagahara'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '50701588', 'name': 'Masaki Ogura'}, {'authorId': '2054817790', 'name': 'Antonio Ortega'}, {'authorId': '2112766807', 'name': 'Yuichi Tanaka'}, {'authorId': '98220386', 'name': 'Y. Ushifusa'}, {'authorId': '2225668', 'name': 'T. Valente'}] +ss_venue=Adv. Robotics +ss_year=2021 +ss_abstract=In this short paper, we propose a new direction of cross-cutting research for prediction and control of spreading COVID-19 viruses over a human social network. Such a network consists of human agents whose behaviors are highly uncertain and biased. To predict and control such an uncertain network, we need to employ various researches such as control theory, signal processing, machine learning, and behavioral economics. In this article, we introduce our recent research results and propose future research topics to overcome the COVID-19 pandemic. GRAPHICAL ABSTRACT +ss_paper_id=3b0b933351e936a46b0c95b4b9e0f080d52d6a69 \ No newline at end of file diff --git a/database/original_documents/publications_text/2023_search_and_rescue_on_the_line.txt b/database/original_documents/publications_text/2023_search_and_rescue_on_the_line.txt new file mode 100644 index 0000000000000000000000000000000000000000..83713e1d028c23b9e8a6c7d7e76a49111f594251 --- /dev/null +++ b/database/original_documents/publications_text/2023_search_and_rescue_on_the_line.txt @@ -0,0 +1,18 @@ +# Publication +title=Search and Rescue on the Line +venue=SIROCCO 2023 – 30th International Colloquium on Structural Information and Communication Complexity. +authors=['J Coleman', 'L Cheng', 'B Krishnamachari'] +abstract=Underwater imaging is primarily focused on search and rescue, underwater mine detection, underwater cable and pipeline overhauling and underwater geological survey. Main challenge in underwater imaging is blurriness. In underwater environment blurriness is caused by many factors which includes microscopic organism, impurities and density of water which effects refractive index of water, and bokeh which is blurred effect on those region of image that are out of focus in range. Picture of a moving object also have a blur effect, reason is motion blur. To detect object in underwater image, integration of different image processing technique has been made. It includes preprocessing to reduce blurriness and noise in image and Euclidean shape prediction by detecting lines in the image. Computationally feasible technique is also discuss in this paper which is not only independent of image data bank but also less time consuming to process. + +# Information +links.pdf=/static/public/papers/search_and_rescue.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/f9217392a2b3b0a508c8f47164709ede4aef286b +type=Conference Papers +year=2023 +paper_id=8c7e849c +ss_title=Underwater man-made object prediction using line detection technique +ss_authors=[{'authorId': '30303956', 'name': 'Syed Safdar Hussain'}, {'authorId': '2053559877', 'name': 'S. S. Zaidi'}] +ss_venue=European Conference on Artificial Intelligence +ss_year=2014 +ss_abstract=Underwater imaging is primarily focused on search and rescue, underwater mine detection, underwater cable and pipeline overhauling and underwater geological survey. Main challenge in underwater imaging is blurriness. In underwater environment blurriness is caused by many factors which includes microscopic organism, impurities and density of water which effects refractive index of water, and bokeh which is blurred effect on those region of image that are out of focus in range. Picture of a moving object also have a blur effect, reason is motion blur. To detect object in underwater image, integration of different image processing technique has been made. It includes preprocessing to reduce blurriness and noise in image and Euclidean shape prediction by detecting lines in the image. Computationally feasible technique is also discuss in this paper which is not only independent of image data bank but also less time consuming to process. +ss_paper_id=f9217392a2b3b0a508c8f47164709ede4aef286b \ No newline at end of file diff --git a/database/original_documents/publications_text/2023_solving_math_word_problems_concerning_systems_of_equations_with_gpt3.txt b/database/original_documents/publications_text/2023_solving_math_word_problems_concerning_systems_of_equations_with_gpt3.txt new file mode 100644 index 0000000000000000000000000000000000000000..d1f05f5af1af44d2a8485f3484498422b15c0ed3 --- /dev/null +++ b/database/original_documents/publications_text/2023_solving_math_word_problems_concerning_systems_of_equations_with_gpt3.txt @@ -0,0 +1,11 @@ +# Publication +title=Solving Math Word Problems Concerning Systems of Equations with GPT-3 +venue=Thirteenth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-23) to be held February 11-12, 2023. +authors=['M Zong', 'B Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/Solving_Math_Word_Problems_with_GPT3-2022.pdf +type=Conference Papers +year=2023 +paper_id=42a8fad3 \ No newline at end of file diff --git a/helper.py b/helper.py new file mode 100644 index 0000000000000000000000000000000000000000..57e9d42f61f7a1d6c947e74d3b8e42e1c7b8f1b2 --- /dev/null +++ b/helper.py @@ -0,0 +1,21 @@ +from utils import get_embeddings, search_document_annoy, \ + answer_with_gpt3_with_function_calls, transform_user_question, debug_print + +def get_response_from_model(user_input, top_k=3, annoy_metric='dot', model_name="gpt-3.5-turbo", user_query_preprocess=False): + + assert top_k > 0, 'k must be an integer greater than 0' + + if user_query_preprocess: + chatgpt_question = transform_user_question(user_input, model_name) + else: + chatgpt_question = user_input + debug_print("chatgpt_question: ", chatgpt_question) + + try: + user_q_embedding = get_embeddings(chatgpt_question) + document = search_document_annoy(user_q_embedding, top_k=top_k, metric=annoy_metric) + reply = answer_with_gpt3_with_function_calls(document, user_input, model_name) + return reply + except Exception as e: + print(e) + return "Error when trying to get embedding for the user query. Please try with a shorter question." diff --git a/main.py b/main.py index 35c4f0865ad50d6da343fda25d80ee15ea3407ec..f899b4822a66c5afe973e85fdf1b3d00837566ca 100644 --- a/main.py +++ b/main.py @@ -3,11 +3,18 @@ from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles +from pydantic import BaseModel + +from helper import get_response_from_model app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") +class InputData(BaseModel): + user_input: str + api_key: str + @app.get("/", response_class=HTMLResponse) async def read_root(): with open("static/index.html", "r") as f: @@ -19,7 +26,11 @@ async def read_root(): # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat-int4").eval() @app.post("/chat/") -def chat(user_input: str, api_key: str): +def chat(input_data: InputData): + print("input_data: ", input_data) + user_input = input_data.user_input + api_key = input_data.api_key + # Here you can validate the API key, e.g., check if it exists in your database # If the API key is not valid, raise an HTTPException # if not validate_api_key(api_key): @@ -29,5 +40,8 @@ def chat(user_input: str, api_key: str): # input_ids = tokenizer.encode(user_input, return_tensors="pt") # output = model.generate(input_ids) # response = tokenizer.decode(output[0], skip_special_tokens=True) + response = get_response_from_model(user_input) + + return {"response": response} - return {"response": f"user input: {user_input}, api_key: {api_key}"} + # return {"response": f"user input: {input_data.user_input}, api_key: {input_data.api_key}"} \ No newline at end of file diff --git a/model_main.py b/model_main.py new file mode 100644 index 0000000000000000000000000000000000000000..ccddea3c616a1cde06b7bfac70a9ebf628b5c380 --- /dev/null +++ b/model_main.py @@ -0,0 +1,64 @@ +import argparse + +from utils import get_embeddings, search_document_annoy, \ + answer_with_gpt3_with_function_calls, transform_user_question, debug_print + +def main(args): + """ + - Get & embed user's question + - Find top choices of documents based on embedding search + - Generate response + """ + top_k = args.top_k + annoy_metric = args.annoy_metric + + # Get & embed user's question + while True: + print("Hi! What question do you have for ANGR? press 0 to exit") + user_input = input() + if user_input == '0': + break + + assert top_k > 0, 'k must be a integer greater than 0' + + if args.user_query_preprocess: + chatgpt_question = transform_user_question(user_input, args.model) + else: + chatgpt_question = user_input + debug_print("chatgpt_question: ", chatgpt_question) + + try: + user_q_embedding = get_embeddings(chatgpt_question) + document = search_document_annoy(user_q_embedding, top_k=top_k, metric=annoy_metric) + reply = answer_with_gpt3_with_function_calls(document, user_input, args.model) + print(reply) + except Exception as e: + print(e) + print("Error when trying to get embedding for the user query. Please try with a shorter question.") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument('--top_k', default=3, type=int, help="Number of documents to retrieve") + parser.add_argument('--annoy_metric', default='angular', + choices=['angular', 'euclidean', 'manhattan', 'hamming', 'dot'], + help="metric for annoy algorithm") + parser.add_argument('--model', default="gpt-3.5-turbo") + parser.add_argument('--user_query_preprocess', default=False, help="Whether to ask ChatGPT to generate an additional query for itself based on user's question") + parser.add_argument('--debug', default=False, help="define whether to print the debug statement") + args = parser.parse_args() + + main(args) + +""" +python main.py --top_k 3 --annoy_metric dot --user_query_preprocess True + +Questions: +- list math-related publications +- list all publications +- Give me a publication written by J Coleman + - Could you please provide me with a publication authored by J Coleman? + - Can you find a publication authored by J Coleman? +- Give me the link to Jared Coleman's homepage + +""" diff --git a/openai_function_utils/openai_function_impl.py b/openai_function_utils/openai_function_impl.py new file mode 100644 index 0000000000000000000000000000000000000000..490e7b525e6fde0f43adf9e4b203bd359bd96ccb --- /dev/null +++ b/openai_function_utils/openai_function_impl.py @@ -0,0 +1,97 @@ +""" +Util functions for openai api +""" +import json +import os +from thefuzz import process + + +def get_lab_member_info(name: str): + database_addr = os.path.join(os.getcwd(), 'database/original_documents/members.json') + with open(database_addr, 'r') as fin: + all_members_info = json.load(fin) + + for field in all_members_info: + toSearch = all_members_info[field] + for i in toSearch: + if name.lower() in i['name'].lower(): + return json.dumps(i) + + return json.dumps({}) + + +def get_lab_member_detailed_info(name: str, detailed_info: str): + database_addr = os.path.join(os.getcwd(), 'database/original_documents/members.json') + with open(database_addr, 'r') as fin: + all_members_info = json.load(fin) + + for field in all_members_info: + toSearch = all_members_info[field] + for i in toSearch: + if name.lower() in i['name'].lower(): + if "link" in detailed_info.lower() or "homepage" in detailed_info.lower(): + return json.dumps(i['links']) + elif "photo" in detailed_info.lower() or "pic" in detailed_info.lower() or "picture" in detailed_info.lower(): + return json.dumps(i['photo']) + else: + return json.dumps(i["description"]) + + return json.dumps({}) + +def get_publication_by_year(year: str): + database_addr = os.path.join(os.getcwd(), 'database/original_documents/publications.json') + with open(database_addr, 'r') as fin: + all_pub_info = json.load(fin) + data = {} + for field in all_pub_info: + to_search = all_pub_info[field] + for i in to_search: + if int(year) == i['year']: + data.update(i) + return json.dumps(data) + + +def get_pub_info(name: str): + database_addr = os.path.join(os.getcwd(), 'database/original_documents/publications.json') + with open(database_addr, 'r') as fin: + all_members_info = json.load(fin) + + for i in all_members_info: + if name.lower() in i['title'].lower(): + return json.dumps(i) + + return json.dumps({}) + +def get_pub_by_name(name: str): + database_addr = os.path.join(os.getcwd(), 'database/original_documents/publications.json') + with open(database_addr, 'r') as fin: + all_members_info = json.load(fin) + + data = {} + for i in all_members_info: + for author in i['authors']: + if name.lower() in author.lower(): + data.update(i) + + return json.dumps(data) + +def get_fuzz_name(name: str): + choices = {} + database_addr = os.path.join(os.getcwd(), 'database/original_documents/members.json') + with open(database_addr, 'r') as fin: + all_members_info = json.load(fin) + + for field in all_members_info: + toSearch = all_members_info[field] + for i in toSearch: + choices.add(i['name']) + + best = process.extractOne(name, choices, score_cutoff=50) + if best: + return best[0] + else: + return None + + +def semantic_search(query: str): + return \ No newline at end of file diff --git a/openai_function_utils/openai_function_interface.py b/openai_function_utils/openai_function_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..2b32842a3bf6d3ab901be7fc618edbf33bc59780 --- /dev/null +++ b/openai_function_utils/openai_function_interface.py @@ -0,0 +1,118 @@ + +from openai_function_utils.openai_function_impl import get_lab_member_info, get_pub_info, get_lab_member_detailed_info, \ + get_publication_by_year, get_pub_by_name, get_fuzz_name, semantic_search + +OPENAI_FUNCTIONS_DEFINITIONS = [ + { + "name": "get_lab_member_info", + "description": "Get name, photo url, links such as LinkedIn and GitHub, and description of a member of a lab by name. This function is helpful when asked about a name, such as Bhaskar Krishnamachari.", + "parameters": { + "type": "object", + "properties": { + "name": { + "type": "string", + "description": "Name of a lab member, e.g. Jared Coleman", + } + }, + "required": ["name"], + }, + }, + { + "name": "get_lab_member_detailed_info", + "description": "This function is helpful when asked about the specific information of a lab member, such as what is the position or photo or related link of Bhaskar Krishnamachari.", + "parameters": { + "type": "object", + "properties": { + "name": { + "type": "string", + "description": "Name of a lab member, e.g. Jared Coleman", + }, + "detailed_info": { + "type": "string", + "description": "category of the information that the user want to ask about, e.g. position, title, homepage, link", + } + }, + "required": ["name", "detailed_info"], + }, + }, + { + "name": "get_publication_by_year", + "description": "This function is helpful in finding all publication information given a specific year, e.g. what are the 2023 publications.", + "parameters": { + "type": "object", + "properties": { + "year": { + "type": "string", + "description": "The year of the publication, e.g. 2023", + } + }, + "required": ["year"], + }, + }, + { + "name": "get_pub_info", + "description": "Get title, venue, authors, year and link to the publication articles by the title of the publication. This is helpful when asked about a publication, such as when \"Search and Rescue on the Line\" is published, or what publications are made in 2023. When input contains \"\", it's probably a publication", + "parameters": { + "type": "object", + "properties": { + "name": { + "type": "string", + "description": "Title of the publication, e.g. Search and Rescue on the Line\"", + } + }, + "required": ["name"], + }, + }, + { + "name": "get_pub_by_name", + "description": "Get information (e.g. title, venue, authors, year and link to the publication articles) of all publications written by name of a specific member of the lab.", + "parameters": { + "type": "object", + "properties": { + "name": { + "type": "string", + "description": "Name of a lab member", + } + }, + "required": ["name"], + }, + }, + { + "name": "get_fuzz_name", + "description": "When user mentions a name that is cannot be found, use this function to search for the most similar name.", + "parameters": { + "type": "object", + "properties": { + "name": { + "type": "string", + "description": "Name of a lab member", + } + }, + "required": ["name"], + }, + }, + { + "name": "semantic_search", + "description": "does a semantic search over the documents based on query", + "parameters": { + "type": "object", + "properties": { + "query": { + "type": "string", + "description": "The query to search for", + } + }, + "required": ["query"], + } + }, +] + +OPENAI_AVAILABLE_FUNCTIONS = { + "get_lab_member_info": get_lab_member_info, + "get_pub_info": get_pub_info, + "get_lab_member_detailed_info": get_lab_member_detailed_info, + "get_publication_by_year": get_publication_by_year, + "get_pub_by_name": get_pub_by_name, + "get_fuzz_name": get_fuzz_name, + "semantic_search": semantic_search, +} diff --git a/project_description.md b/project_description.md new file mode 100644 index 0000000000000000000000000000000000000000..8985ef08e1bf594e8f8cc185731143b519fe4d6a --- /dev/null +++ b/project_description.md @@ -0,0 +1,113 @@ + +# Ask ANRG Project Description + +Our demo is available at [here](https://huggingface.co/spaces/FloraJ/Ask-ANRG). + +A concise and structured guide to setting up and understanding the ANRG project. + +--- + +## 🚀 Setup + +1. **Clone the Repository**: + ``` + git clone git@github.com:ANRGUSC/ask-anrg.git + ``` + +2. **Navigate to the Directory**: + ``` + cd ask-anrg/ + ``` + +3. **Create a Conda Environment**: + ``` + conda create --name ask_anrg + ``` + +4. **Activate the Conda Environment**: + ``` + conda activate ask_anrg + ``` + +5. **Install Required Dependencies**: + ``` + pip3 install -r requirements.txt + ``` + +6. **Download database from [here](https://drive.google.com/file/d/1-TV70IFIzjO4uPzNRzef3FLhssAfK2g3/view?usp=sharing) for demo purpose, unzip it, and put it directly under the root directory, or place your own documents under the [original_documents](database/original_documents)** + ``` + ask-anrg/ + |-- database/ + |-- original_documents/ + |-- openai_function_utils/ + |-- openai_function_impl.py + |-- openai_function_interface.py + |-- configs.py + |-- requirements.txt + |-- utils.py + |-- main.py + |-- Readme.md + |-- project_description.md + |-- result_report.txt + |-- .gitignore + ``` +7. **set up database data** + If you place your own documents inside the [original_documents](database/original_documents) directory, please run the following command to prepare embeddings for your documents. + ``` + python3 utils.py + ``` + It will create `/database/embeddings` to store the embeddings of the original documents, and create a csv file ```database/document_name_to_embedding.csv``` that stores document name and its embedding vector. + +## 🖥️ How to Run +``` +python main.py +``` +After the prompt "Hi! What question do you have for ANGR? Press 0 to exit", you can reply with your question. + +## 📂 Structure +* database: Contains scraped and processed data related to the lab. + * embeddings: Processed embeddings for the publications. + * original_documents: Original texts scraped from the lab website. + * document_name_to_embedding.csv: Embeddings for all publications. +* openai_function_utils: Utility functions related to OpenAI. + * openai_function_impl.py: Implementations of the OpenAI functions. + * openai_function_interface.py: Interfaces (descriptions) for the OpenAI functions. +* configs.py: Configuration settings, e.g., OpenAI API key. +* requirements.txt: Required Python libraries for the project. +* utils.py: Utility functions, such as embedding, searching, and retrieving answers from ChatGPT. +* main.py: Main entry point of the project. + +## 🛠️ Implemented Functions for OPENAI +These functions are selected to be used by ChatGPT during handling user questions: + +- `get_lab_member_info`: Retrieve details (name, photo URL, links, description) of a lab member by name. +- `get_lab_member_detailed_info`: Detailed information(link, photo, description) of a lab member. +- `get_publication_by_year`: List all publication information for a given year. +- `get_pub_info`: Access details (title, venue, authors, year, link) of a publication by its title. +- `get_pub_by_name`: Get information on all publications written by a specific lab member. + +More details on the functions can be checked under `openai_function_utils/`. + +## Evaluation: Turing Test +We follow the steps below to evaluate our chatbot: +1. Based on the information scraped from lab's website, we come up with questions that chatbot's users may ask, including both general (applied to any lab) and lab-specific questions. Here are some examples: + - Who works here? + - List all publications of this lab. + - What are some recent publications by this lab in the area of [x]? + - What conferences does this lab usually publish to? + - What kind of undergraduate projects does this lab work on? + - Give me the link to [x]'s homepage. + - Give me a publication written by [x]. + - How long has [x] been doing research in [y] area? + - Who in the lab is currently working on [x]? + - Where does former member [x] work now? +2. Given 4 team members A, B, C, D. We will have A and B manually write down and provide answers to the evaluation questions for questions from each category. +3. Then, C will test the questions on the ChatBot and collect the answers. +4. Without knowing which answers are provided by human/chatbot, D will compare the answers for every question and choose which one is more preferable by human. +5. Chatbot's winning rate (i.e. how many times the Chatbot manages to win over the human answerer) will be calculated. + +| Overall Winning Rate | +|:-----------------------------: | +| N/A | + +Refer to [ask_anrg_eval_question.csv](ask_anrg_eval_question.csv) for more details regarding the questions used for evaluation & evaluation results. \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index afcb468a7269ad3f4ee9733ac0c30e3a4101c2b5..6342872f048780e5bb58e60f9d04a70f97f8ac22 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,6 +2,7 @@ openai==0.28.0 pandas==2.0.3 tqdm~=4.66.1 annoy==1.17.3 +thefuzz==0.20.0 fastapi uvicorn transformers diff --git a/result_report.txt b/result_report.txt new file mode 100644 index 0000000000000000000000000000000000000000..54b8b4e2612f0775f13ee47021842c0132070cdb --- /dev/null +++ b/result_report.txt @@ -0,0 +1,144 @@ +Sep 15th, 2023 + +Query 1: all publications +Expected: Listing all the publications + +Actual: only some selected publications, missing some publications +document_content: # Publication +title=Jupiter: a networked computing architecture” +venue=UCC Companion 2021: 28:1-28:8 +authors=['P Ghosh', 'Q Nguyen', 'P Sakulkar', 'J Tran', 'A Knezevic', 'J Wang', 'Z Lin', 'B Krishnamachari', 'M Annavaram', 'S Avestimehr'] +abstract=Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time profilers; to support both centralized and decentralized scheduling algorithms. While centralized scheduling algorithms with global knowledge have been popular among the grid/cloud computing community, we argue that a distributed scheduling approach is better suited for networked computing due to lower communication and computation overhead in the face of network dynamics. We propose a new class of distributed scheduling algorithms called WAVE and show that despite using more localized knowledge, the WAVE algorithm can match the performance of a well-known centralized scheduling algorithm called Heterogeneous Earliest Finish Time (HEFT). To this, we present a set of real-world experiments on two separate testbeds: (1) a worldwide network of 90 cloud computers across eight cities and (2) a cluster of 30 Raspberry pi nodes. + +# Information +links.pdf=/static/public/papers/JUPITER.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ef3485930a0eca1cd98b8dd7dfc7a919501ec06c +type=Conference Papers +year=2021 +paper_id=bb6a0958 +ss_title=Jupiter: a networked computing architecture +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '2073070356', 'name': 'Aleksandra Knezevic'}, {'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '2109016686', 'name': 'Jiatong Wang'}, {'authorId': '46268272', 'name': 'Zhifeng Lin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}, {'authorId': '5877233', 'name': 'A. Avestimehr'}] +ss_venue=UCC Companion +ss_year=2019 +ss_abstract=Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time profilers; to support both centralized and decentralized scheduling algorithms. While centralized scheduling algorithms with global knowledge have been popular among the grid/cloud computing community, we argue that a distributed scheduling approach is better suited for networked computing due to lower communication and computation overhead in the face of network dynamics. We propose a new class of distributed scheduling algorithms called WAVE and show that despite using more localized knowledge, the WAVE algorithm can match the performance of a well-known centralized scheduling algorithm called Heterogeneous Earliest Finish Time (HEFT). To this, we present a set of real-world experiments on two separate testbeds: (1) a worldwide network of 90 cloud computers across eight cities and (2) a cluster of 30 Raspberry pi nodes. +ss_paper_id=ef3485930a0eca1cd98b8dd7dfc7a919501ec06c +Sure! Here are the details of all the publications mentioned in the input text: + +1. Publication: + - Title: Jupiter: a networked computing architecture + - Venue: UCC Companion 2021: 28:1-28:8 + - Authors: P Ghosh, Q Nguyen, P Sakulkar, J Tran, A Knezevic, J Wang, Z Lin, B Krishnamachari, M Annavaram, S Avestimehr + - Abstract: Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time prof +Hi! What question do you have for ANGR? press 0 to exit + + +Query 2: math-related publications +Expected: Solving Math Word Problems Concerning Systems of Equations with GPT-3 + +Actual: fits the expected (only search by titles but not sure if any other publication contents are also related) +document_content: # Publication +title=Solving Math Word Problems Concerning Systems of Equations with GPT-3 +venue=Thirteenth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-23) to be held February 11-12, 2023. +authors=['M Zong', 'B Krishnamachari'] +abstract=None + +# Information +links.pdf=/static/public/papers/Solving_Math_Word_Problems_with_GPT3-2022.pdf +type=Conference Papers +year=2023 +paper_id=42a8fad3 + + +Query 3: all authors +Expected: only author names + +Actual: publication names also included, and some authors are not included, such as E. Ondula who publicated “Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract)“, AAAI 2022. +document_content: # Publication +title=Jupiter: a networked computing architecture” +venue=UCC Companion 2021: 28:1-28:8 +authors=['P Ghosh', 'Q Nguyen', 'P Sakulkar', 'J Tran', 'A Knezevic', 'J Wang', 'Z Lin', 'B Krishnamachari', 'M Annavaram', 'S Avestimehr'] +abstract=Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time profilers; to support both centralized and decentralized scheduling algorithms. While centralized scheduling algorithms with global knowledge have been popular among the grid/cloud computing community, we argue that a distributed scheduling approach is better suited for networked computing due to lower communication and computation overhead in the face of network dynamics. We propose a new class of distributed scheduling algorithms called WAVE and show that despite using more localized knowledge, the WAVE algorithm can match the performance of a well-known centralized scheduling algorithm called Heterogeneous Earliest Finish Time (HEFT). To this, we present a set of real-world experiments on two separate testbeds: (1) a worldwide network of 90 cloud computers across eight cities and (2) a cluster of 30 Raspberry pi nodes. + +# Information +links.pdf=/static/public/papers/JUPITER.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/ef3485930a0eca1cd98b8dd7dfc7a919501ec06c +type=Conference Papers +year=2021 +paper_id=bb6a0958 +ss_title=Jupiter: a networked computing architecture +ss_authors=[{'authorId': '49934897', 'name': 'Pradipta Ghosh'}, {'authorId': '145628959', 'name': 'Quynh Nguyen'}, {'authorId': '2254069', 'name': 'Pranav Sakulkar'}, {'authorId': '2073070356', 'name': 'Aleksandra Knezevic'}, {'authorId': '40553305', 'name': 'Jason A. Tran'}, {'authorId': '2109016686', 'name': 'Jiatong Wang'}, {'authorId': '46268272', 'name': 'Zhifeng Lin'}, {'authorId': '1701475', 'name': 'B. Krishnamachari'}, {'authorId': '145599558', 'name': 'M. Annavaram'}, {'authorId': '5877233', 'name': 'A. Avestimehr'}] +ss_venue=UCC Companion +ss_year=2019 +ss_abstract=Modern latency-sensitive applications such as real-time multi-camera video analytics require networked computing to meet the time constraints. We present Jupiter, an open-source networked computing system that inputs a Directed Acyclic Graph (DAG)-based computational task graph to efficiently distribute the tasks among a set of networked compute nodes and orchestrates the execution thereafter. This Kubernetes container-orchestration-based system includes a range of profilers: network profilers, resource profilers, and execution time profilers; to support both centralized and decentralized scheduling algorithms. While centralized scheduling algorithms with global knowledge have been popular among the grid/cloud computing community, we argue that a distributed scheduling approach is better suited for networked computing due to lower communication and computation overhead in the face of network dynamics. We propose a new class of distributed scheduling algorithms called WAVE and show that despite using more localized knowledge, the WAVE algorithm can match the performance of a well-known centralized scheduling algorithm called Heterogeneous Earliest Finish Time (HEFT). To this, we present a set of real-world experiments on two separate testbeds: (1) a worldwide network of 90 cloud computers across eight cities and (2) a cluster of 30 Raspberry pi nodes. +ss_paper_id=ef3485930a0eca1cd98b8dd7dfc7a919501ec06c +The authors of the publication are: +1. P Ghosh +2. Q Nguyen +3. P Sakulkar +4. J Tran +5. A Knezevic +6. J Wang +7. Z Lin +8. B Krishnamachari +9. M Annavaram +10. S Avestimehr + +Query 4: What publications does B Krishnamachari contribute to +Expected: +"Search and Rescue on the Line", +"Solving Math Word Problems Concerning Systems of Equations with GPT-3", +"Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things", +"Characterizing ML training performance at the tactical edge", +"Optimal Trading on a Dynamic Curve Automated Market Maker", +"Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract)", +"\u201cMulti-objective network synthesis for dispersed computing in tactical environments\u201d", +"\u201cIntelligent Communication over Realistic Wireless Networks in Multi-Agent Cooperative Games\u201d", +"DEFER: Distributed Edge Inference for Deep Neural Networks", +"Network Synthesis for Tactical Environments: Scenario, Challenges, and Opportunities", +"Neural Networks for DDoS Attack Detection using an Enhanced Urban IoT Dataset", +"Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs Using Reinforcement Learning", +"\u201cLearning Practical Communication Strategies in Cooperative Multi-Agent Reinforcement Learning\u201d", +"GCNScheduler: Scheduling distributed computing applications using graph convolutional networks", +"\u201cRevealing a Hidden, Stable Spectral Structure of Urban Vehicular Traffic\u201d", +"\u201cDataset: Large-scale Urban IoT Activity Data for DDoS Attack Emulation\u201d", +"Jupiter: a networked computing architecture\u201d", +"Course Scheduling to Minimize Student Wait Times For University Buildings During Epidemics", +"\u201cSimulation-Based Analysis of COVID-19 Spread Through Classroom Transmission on a University Campus,\u201d", +"A Decentralized Review System for Data Marketplaces", +"DAISIM: A Computational Simulator for the MakerDAO Stablecoin", +"Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges", +"Simulating the MakerDAO Stablecoin", +"Dynamic Automated Market Makers for Decentralized Cryptocurrency Exchange", +"CONTAIN: Privacy-oriented Contact Tracing Protocols for Epidemics", +"Large-scale Urban IoT Activity Data for DDoS Attack Emulation", +"TEAM: Trilateration for Exploration and Mapping with Robotic Networks" + +Actual: missing a lot publications +document_content: # Publication +title=https://anrg.usc.edu/www/papers/scheduling.pdf +venue=IEEE BigData 2021: 4365-4370 +authors=['A Hekmati', 'B Krishnamachari', 'M Mataric', 'Course Scheduling to Minimize Student Wait Times For University Buildings During Epidemics'] +abstract=ABSTRACT Of the 17 years (1946–64) Jawaharlal Nehru was India's Prime Minister, his Congress Party government had a senior politician holding the Finance Ministry for only 5: Morarji Desai (1958–63). Otherwise, this crucial portfolio was held by a succession of experts; an illustration of consociational power sharing. This article is about two of those, C.D. Deshmukh and T.T. Krishnamachari, and some of their chequered governmental experiences. Through these, it seeks to cast a critical light on the changing contours of relations between and within the party and the government in the economic sphere during its decade of political dominance. + +# Information +links.pdf=/static/public/papers/scheduling.pdf +links.semantic_scholar=https://www.semanticscholar.org/paper/de91d2dbca72d5115198139618222094e0fa7cf0 +type=Conference Papers +year=2021 +paper_id=0a9ed062 +ss_title=Bearing ‘financial responsibility’ for the Government and the Party: C.D. Deshmukh (1950–56) & T.T. Krishnamachari (1956–58) +ss_authors=[{'authorId': '90288069', 'name': 'R. Ankit'}] +ss_venue= +ss_year=2020 +ss_abstract=ABSTRACT Of the 17 years (1946–64) Jawaharlal Nehru was India's Prime Minister, his Congress Party government had a senior politician holding the Finance Ministry for only 5: Morarji Desai (1958–63). Otherwise, this crucial portfolio was held by a succession of experts; an illustration of consociational power sharing. This article is about two of those, C.D. Deshmukh and T.T. Krishnamachari, and some of their chequered governmental experiences. Through these, it seeks to cast a critical light on the changing contours of relations between and within the party and the government in the economic sphere during its decade of political dominance. +ss_paper_id=de91d2dbca72d5115198139618222094e0fa7cf0 +Based on the given information, B Krishnamachari has contributed to the following publication: + +- Title: "Course Scheduling to Minimize Student Wait Times For University Buildings During Epidemics" + - Authors: A Hekmati, B Krishnamachari, M Mataric + - Venue: IEEE BigData 2021 + - Pages: 4365-4370 + - Year: 2021 + - Publication Link: [here](https://anrg.usc.edu/www/papers/scheduling.pdf) + +Please note that this is the only publication listed for B Krishnamachari based on the provided information. diff --git a/static/script.js b/static/script.js index 6bdcdbaf638e25261cf1cd7a8751c40af793c67a..bf4e57cb02bd7caef2982bfb01a115a526baa0e9 100644 --- a/static/script.js +++ b/static/script.js @@ -18,6 +18,7 @@ sendBtn.addEventListener('click', () => { scrollToBottom(); // Call FastAPI backend to get response + console.log("type: ", typeof message, typeof apiKey) fetch('/chat/', { method: 'POST', headers: { @@ -26,12 +27,14 @@ sendBtn.addEventListener('click', () => { body: JSON.stringify({user_input: message, api_key: apiKey}) }) .then(response => { + console.log("response: ", response) if (!response.ok) { throw new Error('Network response was not ok'); } return response.json(); }) .then(data => { + console.log("reply: ", data.response) // Display chatbot's response const botMessageDiv = document.createElement('div'); botMessageDiv.className = 'bot-message'; diff --git a/template_questions b/template_questions new file mode 100644 index 0000000000000000000000000000000000000000..2a26ea52b3b51d791303864ffc5f344e1fcefb23 --- /dev/null +++ b/template_questions @@ -0,0 +1,18 @@ +Q1: Give me a publication on neural network? +Expected answer: DEFER: Distributed Edge Inference for Deep Neural Networks (or any publication that is related to neural network, CNN, RNN, etc.) + +Q2: Give me three publication on neural network? +Expected answer: DEFER: Distributed Edge Inference for Deep Neural Networks, Neural Networks for DDoS Attack Detection using an Enhanced Urban IoT Dataset, GCNScheduler: Scheduling distributed computing applications using graph convolutional networks + +Q3: What are some publication of Bhaskar Krishnamachari? +Expected answer: Search and Rescue on the Line, Solving Math Word Problems Concerning Systems of Equations with GPT-3, etc. + +Q4: Give me some publication by B. Krishnamachari? +Expected answer: Search and Rescue on the Line, Solving Math Word Problems Concerning Systems of Equations with GPT-3, etc. + +Q5: What is the title of B. Krishnamachari? +Expected answer: he is a professor + +Q6: Given me one recent publication in 2023 +Expected answer: Search and Rescue on the Line (or any publication published in 2023) + diff --git a/test.ann b/test.ann new file mode 100644 index 0000000000000000000000000000000000000000..3a34e2de7373541f12137ff5adae84b5f47e951c Binary files /dev/null and b/test.ann differ diff --git a/utils.py b/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..fe1cdd6f427ba8b8f23c830efdbae277d95ea860 --- /dev/null +++ b/utils.py @@ -0,0 +1,325 @@ +import ast +import json +import os +from pathlib import Path + +import openai +import pandas as pd +import numpy as np +from tqdm import tqdm + +from annoy import AnnoyIndex + +from openai_function_utils.openai_function_interface import OPENAI_AVAILABLE_FUNCTIONS, OPENAI_FUNCTIONS_DEFINITIONS +from configs import OPENAI_KEY, DEBUG_PRINT + +openai.api_key = OPENAI_KEY +openai.organization = 'org-dsEkob5KeBBq3lbBLhnCXcJt' + + +def get_embeddings(input): + response = openai.Embedding.create(model="text-embedding-ada-002", input=input) + return response['data'][0]['embedding'] + + +def debug_print(*args, **kwargs): + if DEBUG_PRINT: + print(*args, **kwargs) + + +def transform_user_question(question, model): + messages = [ + {"role": "system", + "content": "You are a helpful assistant for ChatGPT that will formulate user's input question to a version that is more understandable by ChatGPT for answering questions related to a research lab."}, + {"role": "user", + "content": f"Formulate this question into a version that is more understandable by ChatGPT: \"{question}\""} + # "content": f"Formulate this question into a version that is more understandable by ChatGPT and is more suitable for embedding retrieval (i.e. we will use the embedding of the re-formulated question to retrieve related documents): \"{question}\""} + ] + response = openai.ChatCompletion.create( + model=model, + messages=messages, + max_tokens=200 + ) + chagpt_question = response["choices"][0]["message"].content + return chagpt_question + + +def answer_with_gpt3_with_function_calls(input_text, question, model): + question = f"Based on the input text: {input_text}\n Give me answers for this question: {question}" + messages = [ + { + "role": "system", + "content": "".join([ + "You are a helpful assistant for ChatGPT that will answer the user's questions. " + ]) + }, + { + "role": "user", + "content": question + } + ] + + response = openai.ChatCompletion.create( + model=model, + messages=messages, + functions=OPENAI_FUNCTIONS_DEFINITIONS, + max_tokens=200 + ) + response_message = response["choices"][0]["message"] + + messages.append( + { + "role": "assistant", + "content": response_message.get("content"), + "function_call": response_message.get("function_call"), + } + ) + + # Check if GPT wanted to call a function + if response_message.get("function_call"): + # Call the function + # Note: the JSON response may not always be valid; be sure to handle errors + available_functions = OPENAI_AVAILABLE_FUNCTIONS # only one function in this example, but you can have multiple + function_name = response_message["function_call"]["name"] + + # Step 4: send the info on the function call and function response to GPT + if function_name == "semantic_search": + # print("Running semantic search") + # print(response_message["function_call"]["arguments"]) + function_args = json.loads(response_message["function_call"]["arguments"]) + embedding = get_embeddings(function_args['query']) + function_response = search_document(embedding, 3) + messages.append({ + "role": "function", + "name": "semantic_search", + "content": function_response + }) + second_response = openai.ChatCompletion.create( + model=model, + messages=messages, + ) # get a new response from GPT where it can see the function response + return second_response.choices[0].message.content + else: + function_to_call = available_functions[function_name] + function_args = json.loads(response_message["function_call"]["arguments"]) + function_response = function_to_call(**function_args) + messages.append(response_message) # extend conversation with assistant's reply + messages.append( + { + "role": "function", + "name": function_name, + "content": function_response, + } + ) # extend conversation with function response + messages.append( + { + "role": "user", + "content": "give me publication of J Coleman" + } + ) + print("DEBUG: messages", messages) + second_response = openai.ChatCompletion.create( + model=model, + messages=messages, + ) # get a new response from GPT where it can see the function response + return second_response.choices[0].message.content + else: + return response.choices[0].message.content + + +def answer_with_gpt3(input_text, question): + messages = [{"role": "system", + "content": "You are an intelligent chatbot for answering user's questions related to a research lab."}] + message = f"Based on the input text: {input_text}\n Give me answers for this question: {question}" + messages.append({"role": "user", "content": message}) + chat = openai.ChatCompletion.create( + model="gpt-3.5-turbo", + messages=messages, + functions=OPENAI_FUNCTIONS_DEFINITIONS, + max_tokens=200 + ) + reply = chat.choices[0].message.content + return reply + + +def search_document(user_question_embed: list, top_k: int = 1): + csv_filename = 'database/document_name_to_embedding.csv' + if not os.path.exists(csv_filename): + print("This won't happen!") + return + + df = pd.read_csv(csv_filename) + # Convert the embedding column from string to list/array + df['embedding'] = df['embedding'].apply(ast.literal_eval).apply(np.array) + + # Calculate cosine similarity + user_question_norm = np.linalg.norm(user_question_embed) + similarities = {} + for _, row in df.iterrows(): + dot_product = np.dot(user_question_embed, row['embedding']) + embedding_norm = np.linalg.norm(row['embedding']) + cosine_similarity = dot_product / (user_question_norm * embedding_norm) + similarities[row['original_filename']] = cosine_similarity + + # Rank documents by similarity + ranked_documents = sorted(similarities.items(), key=lambda x: x[1], reverse=True) + + debug_print("Ranked documents by similarity:", ranked_documents) + + # Get the most similar article + for i in range(top_k): + best_document_filename = ranked_documents[i][0] + with open(best_document_filename, 'rb') as f: + document_content = f.read().decode('utf-8') + debug_print("document_content: ", document_content) + return document_content + + +def search_document_annoy(user_question_embed: list, top_k: int, metric): + csv_filename = 'database/document_name_to_embedding.csv' + if not os.path.exists(csv_filename): + print("This won't happen!") + return + + df = pd.read_csv(csv_filename) + # Convert the embedding column from string to list/array + df['embedding'] = df['embedding'].apply(ast.literal_eval).apply(np.array) + + f = len(df['embedding'][0]) # Length of item vector that will be indexed + + t = AnnoyIndex(f, metric) + for i in range(len(df)): + v = df['embedding'][i] + t.add_item(i, v) + + t.build(10) # 10 trees + t.save('test.ann') + + u = AnnoyIndex(f, metric) + u.load('test.ann') # will just mmap the file + ret = u.get_nns_by_vector(user_question_embed, top_k) # will find top 3 nearest neighbors + debug_print(df['original_filename'][ret[0]]) + document_content = "" + for name in ret: + best_document_filename = df['original_filename'][name] + with open(best_document_filename, 'rb') as f: + document_content += f.read().decode('utf-8') + debug_print("document_content: ", document_content) + return document_content + + +def get_document_embeddings(path: str, all_fns: list): + all_embeddings = [] + all_embedding_fns = [] + all_original_filename = [] + + output_sub_dir = path.split('database/original_documents/') + output_sub_dir = '' if len(output_sub_dir) == 1 else output_sub_dir[1] + + output_dir = os.path.join('database/embeddings', output_sub_dir) + + Path(output_dir).mkdir(parents=True, exist_ok=True) + + for fn in tqdm(all_fns): + document_name = fn.split('.')[0] + original_filename = os.path.join(path, fn) + try: + with open(original_filename, 'rb') as fin: + tmp_file = fin.read().decode('utf-8') + embedding = get_embeddings(tmp_file) + if embedding is not None: + embedding_fn = os.path.join(output_dir, document_name + '.json') + with open(embedding_fn, 'w') as fout: + json.dump(embedding, fout) + all_original_filename.append(original_filename) + all_embedding_fns.append(embedding_fn) + all_embeddings.append(embedding) + except Exception: + print( + f"Error when obtaining embedding vector for {original_filename}. The model's maximum context length is 8192 tokens. Please make sure the file is valid and file length is not too long.") + + return pd.DataFrame({ + 'original_filename': all_original_filename, + 'embedding_filename': all_embedding_fns, + 'embedding': all_embeddings + }) + + +def util(): + model = "gpt-3.5-turbo" + question = "Can you give me a paper about graph neural networks?" + + functions = [ + { + "name": "semantic_search", + "description": "does a semantic search over the documents based on query", + "parameters": { + "type": "object", + "properties": { + "query": { + "type": "string", + "description": "The query to search for", + } + }, + "required": ["query"], + } + }, + ] + + messages = [ + { + "role": "system", + "content": "".join([ + "You are a helpful assistant for ChatGPT that will answer the user's questions. ", + "In order to do so, you may use semantic_search to find relevant documents. ", + ]) + }, + { + "role": "user", + "content": question + } + ] + + while True: + response = openai.ChatCompletion.create( + model=model, + messages=messages, + max_tokens=200, + functions=functions + ) + response_message = response["choices"][0]["message"] + messages.append( + { + "role": "assistant", + "content": response_message.get("content"), + "function_call": response_message.get("function_call"), + } + ) + + if response_message.get("function_call"): + function_args = json.loads(response_message["function_call"]["arguments"]) + embedding = get_embeddings(function_args['query']) + function_response = search_document(embedding) + messages.append({ + "role": "function", + "name": "semantic_search", + "content": function_response + }) + else: + print("Answering question") + print(response_message["content"]) + return + +def main(): + final_df = pd.DataFrame({}) + all_fn_list = os.walk('database/original_documents') + + for path, _, fn_list in all_fn_list: + filename_to_embedding_df = get_document_embeddings(path, fn_list) + final_df = pd.concat([final_df, filename_to_embedding_df], axis=0, ignore_index=True) + + final_df.to_csv('database/document_name_to_embedding.csv') + + +if __name__ == "__main__": + main()