#========================================================================= # https://huggingface.co/spaces/asigalov61/Parsons-Code-Melody-Transformer #========================================================================= import time as reqtime import datetime from pytz import timezone import re import tqdm import gradio as gr from x_transformer_1_23_2 import * import random from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt #===================================================================================== def parsons_code_to_tokens(parsons_code_str): tokens = [388] for chr in parsons_code_str[1:]: if chr == 'D': tokens.extend([385]) elif chr == 'R': tokens.extend([386]) elif chr == 'U': tokens.extend([387]) return tokens #==================================================================================== def Generate_Melody(input_parsons_code, input_first_note_duration, iinput_first_note_MIDI_pitch ): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('Requested settings:') print('-' * 70) print('Parsons code:', input_parsons_code) print('First note duration:', input_first_note_duration) print('First note MIDI pitch:', iinput_first_note_MIDI_pitch) print('=' * 70) #=============================================================================== print('Instantiating Parsons Code Melody Transformer model...') SEQ_LEN = 322 PAD_IDX = 392 model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') model_path = 'Parsons_Code_Melody_Transformer_Trained_Model_13786_steps_0.3058_loss_0.8819_acc.pth' model.load_state_dict(torch.load(model_path, map_location='cpu')) model.cpu() model.eval() dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type='cpu', dtype=dtype) print('Done!') print('=' * 70) #=============================================================================== print('Prepping Parsons code string...') td_str = re.sub('[^*DRU]', '', input_parsons_code) print(len(td_str)) print('=' * 70) if '*' in td_str and len(td_str) > 1: code_mult = (64 // len(td_str[1:]))+1 mult_code = ('*' + (td_str[1:] * code_mult))[:64] else: mult_code = '*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU' pcode = parsons_code_to_tokens(mult_code) print('Done!') print('=' * 70) #=============================================================================== print('Generating melody...') song = [] song.append(389) song.extend(pcode) song.append(390) song.extend([388, 0, 10+128, 66+256]) for i in tqdm.tqdm(range(1, len(td_str[:64]))): song.append(pcode[i]) x = torch.tensor(song, dtype=torch.long, device='cpu') with ctx: out = model.generate(x, 3, filter_logits_fn=top_k, filter_kwargs={'k': 1}, temperature=1.0, return_prime=False, verbose=False) y = out.tolist()[0] song.extend(y) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) print('Sample INTs', song[:5]) print('=' * 70) song_f = [] time = 0 dur = 4 vel = 90 pitch = 60 channel = 0 for ss in song: if 0 <= ss < 128: time += ss * 32 if 128 <= ss < 256: dur = (ss-128) * 32 if 256 <= ss < 384: pitch = ss-256 song_f.append(['note', time, dur, channel, pitch, vel, 0]) fn1 = 'Parsons-Code-Melody-Transformer-Composition' detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Parsons Code Melody Transformer', output_file_name = fn1, track_name='Project Los Angeles' ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_midi_title, output_midi, output_audio, output_plot # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" app = gr.Blocks() with app: gr.Markdown("

Parsons Code Melody Transformer

") gr.Markdown("

Generate unique melodies from Parsons codes

") gr.Markdown( "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Parsons-Code-Melody-Transformer&style=flat)\n\n" "This is a demo for Clean Melodies subset of Tegridy MIDI Dataset\n\n" "Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n" ) gr.Markdown("## Enter Parsons code:") input_parsons_code = gr.Textbox(label="Parsons code", info="Make sure your Parsons code starts with *", lines=1, value="*" ) clr_btn = gr.ClearButton(components=input_parsons_code) def reset_pcode(): return '*' clr_btn.click(reset_pcode, outputs=input_parsons_code) gr.Markdown("## Select generation options:") input_first_note_duration = gr.Slider(1, 127, value=15, step=1, label="First note duration value") iinput_first_note_MIDI_pitch = gr.Slider(1, 127, value=60, step=1, label="First note MIDI pitch") run_btn = gr.Button("Generate melody", variant="primary") gr.Markdown("## Output results") output_midi_title = gr.Textbox(label="Output MIDI title") output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") output_plot = gr.Plot(label="Output MIDI score plot") output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) run_event = run_btn.click(Generate_Melody, [input_parsons_code, input_first_note_duration, iinput_first_note_MIDI_pitch ], [output_midi_title, output_midi, output_audio, output_plot]) gr.Examples( [["*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU", 15, 60], ["*UDDDUDDDUDRURUDUUDRDDUDDRUDUDURUDRUDUDDDUDDDRDUURUDUUDDDUDRRUUD", 15, 60], ["*DUDDDUUDDUUDDUDUDDDUUUUUDDDDUDDDUUDDUUDDUUDUDDUDDDUUDDUUDDUDUDD", 15, 60], ["*DUUDDRDDUURUDUDDDUDDDDDURDDUDRDURUURUURDDDUURDUURUDUUDURDUDUDRD", 15, 60], ["*UUUDDUUUDDDDDUDDUUDDDDUUDDUDDDDDUUUDDDDDUDDUUUDDDURDUDUUUDDUUUD", 15, 60], ["*UDUUDRUDDUDRURUURUUUUUDUDDUDDUDDUDRUDDUDRUDDDUDUUDRUDDUDRURUURU", 15, 60], ], [input_parsons_code, input_first_note_duration, iinput_first_note_MIDI_pitch ], [output_midi_title, output_midi, output_audio, output_plot], Generate_Melody, cache_examples=True, ) app.queue().launch()