import os import sys import math import time import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F from torchlibrosa.stft import Spectrogram, LogmelFilterBank from pytorch_utils import move_data_to_device def init_layer(layer): """Initialize a Linear or Convolutional layer. """ nn.init.xavier_uniform_(layer.weight) if hasattr(layer, 'bias'): if layer.bias is not None: layer.bias.data.fill_(0.) def init_bn(bn): """Initialize a Batchnorm layer. """ bn.bias.data.fill_(0.) bn.weight.data.fill_(1.) def init_gru(rnn): """Initialize a GRU layer. """ def _concat_init(tensor, init_funcs): (length, fan_out) = tensor.shape fan_in = length // len(init_funcs) for (i, init_func) in enumerate(init_funcs): init_func(tensor[i * fan_in : (i + 1) * fan_in, :]) def _inner_uniform(tensor): fan_in = nn.init._calculate_correct_fan(tensor, 'fan_in') nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in)) for i in range(rnn.num_layers): _concat_init( getattr(rnn, 'weight_ih_l{}'.format(i)), [_inner_uniform, _inner_uniform, _inner_uniform] ) torch.nn.init.constant_(getattr(rnn, 'bias_ih_l{}'.format(i)), 0) _concat_init( getattr(rnn, 'weight_hh_l{}'.format(i)), [_inner_uniform, _inner_uniform, nn.init.orthogonal_] ) torch.nn.init.constant_(getattr(rnn, 'bias_hh_l{}'.format(i)), 0) class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, momentum): super(ConvBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn1 = nn.BatchNorm2d(out_channels, momentum) self.bn2 = nn.BatchNorm2d(out_channels, momentum) self.init_weight() def init_weight(self): init_layer(self.conv1) init_layer(self.conv2) init_bn(self.bn1) init_bn(self.bn2) def forward(self, input, pool_size=(2, 2), pool_type='avg'): """ Args: input: (batch_size, in_channels, time_steps, freq_bins) Outputs: output: (batch_size, out_channels, classes_num) """ x = F.relu_(self.bn1(self.conv1(input))) x = F.relu_(self.bn2(self.conv2(x))) if pool_type == 'avg': x = F.avg_pool2d(x, kernel_size=pool_size) return x class AcousticModelCRnn8Dropout(nn.Module): def __init__(self, classes_num, midfeat, momentum): super(AcousticModelCRnn8Dropout, self).__init__() self.conv_block1 = ConvBlock(in_channels=1, out_channels=48, momentum=momentum) self.conv_block2 = ConvBlock(in_channels=48, out_channels=64, momentum=momentum) self.conv_block3 = ConvBlock(in_channels=64, out_channels=96, momentum=momentum) self.conv_block4 = ConvBlock(in_channels=96, out_channels=128, momentum=momentum) self.fc5 = nn.Linear(midfeat, 768, bias=False) self.bn5 = nn.BatchNorm1d(768, momentum=momentum) self.gru = nn.GRU(input_size=768, hidden_size=256, num_layers=2, bias=True, batch_first=True, dropout=0., bidirectional=True) self.fc = nn.Linear(512, classes_num, bias=True) self.init_weight() def init_weight(self): init_layer(self.fc5) init_bn(self.bn5) init_gru(self.gru) init_layer(self.fc) def forward(self, input): """ Args: input: (batch_size, channels_num, time_steps, freq_bins) Outputs: output: (batch_size, time_steps, classes_num) """ x = self.conv_block1(input, pool_size=(1, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block2(x, pool_size=(1, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block3(x, pool_size=(1, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block4(x, pool_size=(1, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = x.transpose(1, 2).flatten(2) x = F.relu(self.bn5(self.fc5(x).transpose(1, 2)).transpose(1, 2)) x = F.dropout(x, p=0.5, training=self.training, inplace=True) (x, _) = self.gru(x) x = F.dropout(x, p=0.5, training=self.training, inplace=False) output = torch.sigmoid(self.fc(x)) return output class Regress_onset_offset_frame_velocity_CRNN(nn.Module): def __init__(self, frames_per_second, classes_num): super(Regress_onset_offset_frame_velocity_CRNN, self).__init__() sample_rate = 16000 window_size = 2048 hop_size = sample_rate // frames_per_second mel_bins = 229 fmin = 30 fmax = sample_rate // 2 window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None midfeat = 1792 momentum = 0.01 # Spectrogram extractor self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, win_length=window_size, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True) # Logmel feature extractor self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True) self.bn0 = nn.BatchNorm2d(mel_bins, momentum) self.frame_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum) self.reg_onset_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum) self.reg_offset_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum) self.velocity_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum) self.reg_onset_gru = nn.GRU(input_size=88 * 2, hidden_size=256, num_layers=1, bias=True, batch_first=True, dropout=0., bidirectional=True) self.reg_onset_fc = nn.Linear(512, classes_num, bias=True) self.frame_gru = nn.GRU(input_size=88 * 3, hidden_size=256, num_layers=1, bias=True, batch_first=True, dropout=0., bidirectional=True) self.frame_fc = nn.Linear(512, classes_num, bias=True) self.init_weight() def init_weight(self): init_bn(self.bn0) init_gru(self.reg_onset_gru) init_gru(self.frame_gru) init_layer(self.reg_onset_fc) init_layer(self.frame_fc) def forward(self, input): """ Args: input: (batch_size, data_length) Outputs: output_dict: dict, { 'reg_onset_output': (batch_size, time_steps, classes_num), 'reg_offset_output': (batch_size, time_steps, classes_num), 'frame_output': (batch_size, time_steps, classes_num), 'velocity_output': (batch_size, time_steps, classes_num) } """ x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) x = x.transpose(1, 3) x = self.bn0(x) x = x.transpose(1, 3) frame_output = self.frame_model(x) # (batch_size, time_steps, classes_num) reg_onset_output = self.reg_onset_model(x) # (batch_size, time_steps, classes_num) reg_offset_output = self.reg_offset_model(x) # (batch_size, time_steps, classes_num) velocity_output = self.velocity_model(x) # (batch_size, time_steps, classes_num) # Use velocities to condition onset regression x = torch.cat((reg_onset_output, (reg_onset_output ** 0.5) * velocity_output.detach()), dim=2) (x, _) = self.reg_onset_gru(x) x = F.dropout(x, p=0.5, training=self.training, inplace=False) reg_onset_output = torch.sigmoid(self.reg_onset_fc(x)) """(batch_size, time_steps, classes_num)""" # Use onsets and offsets to condition frame-wise classification x = torch.cat((frame_output, reg_onset_output.detach(), reg_offset_output.detach()), dim=2) (x, _) = self.frame_gru(x) x = F.dropout(x, p=0.5, training=self.training, inplace=False) frame_output = torch.sigmoid(self.frame_fc(x)) # (batch_size, time_steps, classes_num) """(batch_size, time_steps, classes_num)""" output_dict = { 'reg_onset_output': reg_onset_output, 'reg_offset_output': reg_offset_output, 'frame_output': frame_output, 'velocity_output': velocity_output} return output_dict class Regress_pedal_CRNN(nn.Module): def __init__(self, frames_per_second, classes_num): super(Regress_pedal_CRNN, self).__init__() sample_rate = 16000 window_size = 2048 hop_size = sample_rate // frames_per_second mel_bins = 229 fmin = 30 fmax = sample_rate // 2 window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None midfeat = 1792 momentum = 0.01 # Spectrogram extractor self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, win_length=window_size, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True) # Logmel feature extractor self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True) self.bn0 = nn.BatchNorm2d(mel_bins, momentum) self.reg_pedal_onset_model = AcousticModelCRnn8Dropout(1, midfeat, momentum) self.reg_pedal_offset_model = AcousticModelCRnn8Dropout(1, midfeat, momentum) self.reg_pedal_frame_model = AcousticModelCRnn8Dropout(1, midfeat, momentum) self.init_weight() def init_weight(self): init_bn(self.bn0) def forward(self, input): """ Args: input: (batch_size, data_length) Outputs: output_dict: dict, { 'reg_onset_output': (batch_size, time_steps, classes_num), 'reg_offset_output': (batch_size, time_steps, classes_num), 'frame_output': (batch_size, time_steps, classes_num), 'velocity_output': (batch_size, time_steps, classes_num) } """ x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) x = x.transpose(1, 3) x = self.bn0(x) x = x.transpose(1, 3) reg_pedal_onset_output = self.reg_pedal_onset_model(x) # (batch_size, time_steps, classes_num) reg_pedal_offset_output = self.reg_pedal_offset_model(x) # (batch_size, time_steps, classes_num) pedal_frame_output = self.reg_pedal_frame_model(x) # (batch_size, time_steps, classes_num) output_dict = { 'reg_pedal_onset_output': reg_pedal_onset_output, 'reg_pedal_offset_output': reg_pedal_offset_output, 'pedal_frame_output': pedal_frame_output} return output_dict # This model is not trained, but is combined from the trained note and pedal models. class Note_pedal(nn.Module): def __init__(self, frames_per_second, classes_num): """The combination of note and pedal model. """ super(Note_pedal, self).__init__() self.note_model = Regress_onset_offset_frame_velocity_CRNN(frames_per_second, classes_num) self.pedal_model = Regress_pedal_CRNN(frames_per_second, classes_num) def load_state_dict(self, m, strict=False): self.note_model.load_state_dict(m['note_model'], strict=strict) self.pedal_model.load_state_dict(m['pedal_model'], strict=strict) def forward(self, input): note_output_dict = self.note_model(input) pedal_output_dict = self.pedal_model(input) full_output_dict = {} full_output_dict.update(note_output_dict) full_output_dict.update(pedal_output_dict) return full_output_dict