# Ensure the model directory exists import os import json model_dir = os.path.join("model") os.makedirs(model_dir, exist_ok=True) classes = ['hotdog', 'not hotdog'] pretrained = True input_size = [3, 256, 256] normalize_mean = [0.5, 0.5, 0.5] normalize_std = [0.5, 0.5, 0.5] # Updated config data config = { "model_name": "ResNet18", "num_classes": len(classes), "classes": classes, "input_size": input_size, # Format: [channels, height, width] "normalize_mean": normalize_mean, # Mean for normalization "normalize_std": normalize_std, # Std for normalization "pretrained": pretrained # Whether the model was pretrained } # Save the config config_path = os.path.join(model_dir, "config.json") with open(config_path, "w") as f: json.dump(config, f, indent=4) print(f"Config saved to {config_path}")