import streamlit as st import tensorflow as tf import pickle with open('models/svm.pkl', 'rb') as f: svm = pickle.load(f) with open('models/gnb.pkl', 'rb') as f: gnb = pickle.load(f) with open('models/vclf.pkl', 'rb') as f: vclf = pickle.load(f) with open('models/tfidf_vectorizer.pkl', 'rb') as file: tfidf = pickle.load(file) model=tf.keras.models.load_model('models/ANN.h5') option = st.selectbox( "\nSelect the model", ("Naive Bayes", "Support Vector Machine", "Voting Classifier","ANN model")) st.title("Detect AI generated text") st.image("images.png") user_input = st.text_area("Enter or paste the text here") if st.button("Predict"): user_input = user_input.strip() if user_input != '': vectorized_text=tfidf.transform([user_input]).toarray() match option: case "Naive Bayes": prediction=gnb.predict(vectorized_text) case "Support Vector Machine": prediction=svm.predict(vectorized_text) case "Voting Classifier": prediction=vclf.predict(vectorized_text) case "ANN model": temp_result=model.predict(vectorized_text) prediction=1 if temp_result>0.5 else 0 output="AI generated data" if prediction else "not an AI generated data" st.write(f"The text is predicted as {output}") else: st.warning("Please enter text to be predicted")