#!/usr/bin/env python
# encoding: utf-8
import gradio as gr
from PIL import Image
import traceback
import re
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
# Suppress FutureWarnings
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
# README, How to run demo on different devices
# For CPU usage, you can simply run:
# python app.py
# Argparser
parser = argparse.ArgumentParser(description='Demo Application Configuration')
parser.add_argument('--device', type=str, default='cpu', choices=['cpu'], help='Device to run the model on. Currently only "cpu" is supported.')
parser.add_argument('--dtype', type=str, default='fp32', choices=['fp32'], help='Data type for model computations. "fp32" is standard for CPU.')
args = parser.parse_args()
device = args.device
# Since we're using CPU, set dtype to float32
if args.dtype == 'fp32':
dtype = torch.float32
else:
dtype = torch.float32 # Fallback to float32 if an unsupported dtype is somehow passed
# Load model
model_path = 'openbmb/MiniCPM-V-2'
try:
print("Loading model...")
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(device=device, dtype=dtype)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
traceback.print_exc()
exit(1)
model.eval()
ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.0'
# Define UI components parameters
form_radio = {
'choices': ['Beam Search', 'Sampling'],
'value': 'Sampling',
'interactive': True,
'label': 'Decode Type'
}
# Beam Search Parameters
num_beams_slider = {
'minimum': 1, # Changed minimum from 0 to 1 as 0 beams doesn't make sense
'maximum': 10, # Increased maximum for more flexibility
'value': 3,
'step': 1,
'interactive': True,
'label': 'Num Beams'
}
repetition_penalty_slider = {
'minimum': 0.5, # Changed minimum to a reasonable value
'maximum': 3.0,
'value': 1.2,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
# Sampling Parameters
repetition_penalty_slider2 = {
'minimum': 0.5,
'maximum': 3.0,
'value': 1.05,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
max_new_tokens_slider = {
'minimum': 1,
'maximum': 4096,
'value': 1024,
'step': 1,
'interactive': True,
'label': 'Max New Tokens'
}
top_p_slider = {
'minimum': 0.1, # Avoid extreme low values
'maximum': 1.0,
'value': 0.8,
'step': 0.05,
'interactive': True,
'label': 'Top P'
}
top_k_slider = {
'minimum': 10, # Avoid extreme low values
'maximum': 200,
'value': 100,
'step': 1,
'interactive': True,
'label': 'Top K'
}
temperature_slider = {
'minimum': 0.1, # Avoid extreme low values
'maximum': 2.0,
'value': 0.7,
'step': 0.05,
'interactive': True,
'label': 'Temperature'
}
def create_component(params, comp='Slider'):
"""
Utility function to create Gradio UI components based on parameters.
"""
if comp == 'Slider':
return gr.Slider(
minimum=params['minimum'],
maximum=params['maximum'],
value=params['value'],
step=params['step'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Radio':
return gr.Radio(
choices=params['choices'],
value=params['value'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Button':
return gr.Button(
value=params['value'],
interactive=True
)
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
"""
Function to handle the chat interaction.
"""
print("Entering chat function...")
default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
if params is None:
params = default_params
if img is None:
return -1, "Error, invalid image, please upload a new image", None, None
try:
image = img.convert('RGB')
answer, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
**params
)
# Clean up the answer text
res = re.sub(r'(.*)', '', answer)
res = res.replace('[', '').replace(']', '').replace('', '').replace('', '')
answer = res
return -1, answer, None, None
except Exception as err:
print(err)
traceback.print_exc()
return -1, ERROR_MSG, None, None
def upload_img(image, _chatbot, _app_session):
"""
Function to handle image uploads.
"""
print("Uploading image...")
try:
image = Image.fromarray(image)
_app_session['sts'] = None
_app_session['ctx'] = []
_app_session['img'] = image
_chatbot.append(('', 'Image uploaded successfully, I am ready to take up your queries'))
print("Image uploaded successfully.")
return _chatbot, _app_session
except Exception as e:
print(f"Error uploading image: {e}")
traceback.print_exc()
return _chatbot, _app_session
def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
"""
Function to handle user input and generate responses.
"""
print("Respond function called.")
if _app_cfg.get('ctx', None) is None:
_chat_bot.append((_question, 'Please upload an image to detect'))
return '', _chat_bot, _app_cfg
_context = _app_cfg['ctx'].copy()
if _context:
_context.append({"role": "user", "content": _question})
else:
_context = [{"role": "user", "content": _question}]
print(':', _question)
if params_form == 'Beam Search':
params = {
'sampling': False,
'num_beams': num_beams,
'repetition_penalty': repetition_penalty,
"max_new_tokens": 896
}
else:
params = {
'sampling': True,
'top_p': top_p,
'top_k': top_k,
'temperature': temperature,
'repetition_penalty': repetition_penalty_2,
"max_new_tokens": 896
}
code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
print(':', _answer)
_context.append({"role": "assistant", "content": _answer})
_chat_bot.append((_question, _answer))
if code == 0:
_app_cfg['ctx'] = _context
_app_cfg['sts'] = sts
return '', _chat_bot, _app_cfg
def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
"""
Function to handle the regeneration of the last assistant response.
"""
print("Regenerate button clicked.")
if len(_chat_bot) <= 1:
_chat_bot.append(('Regenerate', 'No question for regeneration.'))
return '', _chat_bot, _app_cfg
elif _chat_bot[-1][0] == 'Regenerate':
return '', _chat_bot, _app_cfg
else:
_question = _chat_bot[-1][0]
_chat_bot = _chat_bot[:-1]
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
# Building the Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1, min_width=300):
# Decode Type Selection
params_form = create_component(form_radio, comp='Radio')
# Beam Search Settings
with gr.Accordion("Beam Search"):
num_beams = create_component(num_beams_slider)
repetition_penalty = create_component(repetition_penalty_slider)
# Sampling Settings
with gr.Accordion("Sampling"):
top_p = create_component(top_p_slider)
top_k = create_component(top_k_slider)
temperature = create_component(temperature_slider)
repetition_penalty_2 = create_component(repetition_penalty_slider2)
# Regenerate Button
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
with gr.Column(scale=3, min_width=500):
# Application State
app_session = gr.State({'sts': None, 'ctx': None, 'img': None})
# Image Upload Component
bt_pic = gr.Image(label="Upload an image to start")
# Chatbot Display
chat_bot = gr.Chatbot(label="Ask anything about the image")
# Text Input for User Messages
txt_message = gr.Textbox(label="Input text")
# Define Actions
regenerate.click(
regenerate_button_clicked,
[
txt_message,
chat_bot,
app_session,
params_form,
num_beams,
repetition_penalty,
repetition_penalty_2,
top_p,
top_k,
temperature
],
[txt_message, chat_bot, app_session]
)
txt_message.submit(
respond,
[
txt_message,
chat_bot,
app_session,
params_form,
num_beams,
repetition_penalty,
repetition_penalty_2,
top_p,
top_k,
temperature
],
[txt_message, chat_bot, app_session]
)
bt_pic.upload(
lambda: None,
None,
chat_bot,
queue=False
).then(
upload_img,
inputs=[bt_pic, chat_bot, app_session],
outputs=[chat_bot, app_session]
)
# Launch the Gradio App with share=True for testing
demo.launch(share=True, debug=True)