#!/usr/bin/env python # encoding: utf-8 import gradio as gr from PIL import Image import traceback import re import torch import argparse from transformers import AutoModel, AutoTokenizer # Suppress FutureWarnings import warnings warnings.filterwarnings("ignore", category=FutureWarning) # README, How to run demo on different devices # For CPU usage, you can simply run: # python app.py # Argparser parser = argparse.ArgumentParser(description='Demo Application Configuration') parser.add_argument('--device', type=str, default='cpu', choices=['cpu'], help='Device to run the model on. Currently only "cpu" is supported.') parser.add_argument('--dtype', type=str, default='fp32', choices=['fp32'], help='Data type for model computations. "fp32" is standard for CPU.') args = parser.parse_args() device = args.device # Since we're using CPU, set dtype to float32 if args.dtype == 'fp32': dtype = torch.float32 else: dtype = torch.float32 # Fallback to float32 if an unsupported dtype is somehow passed # Load model model_path = 'openbmb/MiniCPM-V-2' try: print("Loading model...") model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(device=device, dtype=dtype) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) print("Model loaded successfully.") except Exception as e: print(f"Error loading model: {e}") traceback.print_exc() exit(1) model.eval() ERROR_MSG = "Error, please retry" model_name = 'MiniCPM-V 2.0' # Define UI components parameters form_radio = { 'choices': ['Beam Search', 'Sampling'], 'value': 'Sampling', 'interactive': True, 'label': 'Decode Type' } # Beam Search Parameters num_beams_slider = { 'minimum': 1, # Changed minimum from 0 to 1 as 0 beams doesn't make sense 'maximum': 10, # Increased maximum for more flexibility 'value': 3, 'step': 1, 'interactive': True, 'label': 'Num Beams' } repetition_penalty_slider = { 'minimum': 0.5, # Changed minimum to a reasonable value 'maximum': 3.0, 'value': 1.2, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty' } # Sampling Parameters repetition_penalty_slider2 = { 'minimum': 0.5, 'maximum': 3.0, 'value': 1.05, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty' } max_new_tokens_slider = { 'minimum': 1, 'maximum': 4096, 'value': 1024, 'step': 1, 'interactive': True, 'label': 'Max New Tokens' } top_p_slider = { 'minimum': 0.1, # Avoid extreme low values 'maximum': 1.0, 'value': 0.8, 'step': 0.05, 'interactive': True, 'label': 'Top P' } top_k_slider = { 'minimum': 10, # Avoid extreme low values 'maximum': 200, 'value': 100, 'step': 1, 'interactive': True, 'label': 'Top K' } temperature_slider = { 'minimum': 0.1, # Avoid extreme low values 'maximum': 2.0, 'value': 0.7, 'step': 0.05, 'interactive': True, 'label': 'Temperature' } def create_component(params, comp='Slider'): """ Utility function to create Gradio UI components based on parameters. """ if comp == 'Slider': return gr.Slider( minimum=params['minimum'], maximum=params['maximum'], value=params['value'], step=params['step'], interactive=params['interactive'], label=params['label'] ) elif comp == 'Radio': return gr.Radio( choices=params['choices'], value=params['value'], interactive=params['interactive'], label=params['label'] ) elif comp == 'Button': return gr.Button( value=params['value'], interactive=True ) def chat(img, msgs, ctx, params=None, vision_hidden_states=None): """ Function to handle the chat interaction. """ print("Entering chat function...") default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024} if params is None: params = default_params if img is None: return -1, "Error, invalid image, please upload a new image", None, None try: image = img.convert('RGB') answer, context, _ = model.chat( image=image, msgs=msgs, context=None, tokenizer=tokenizer, **params ) # Clean up the answer text res = re.sub(r'(.*)', '', answer) res = res.replace('', '').replace('', '').replace('', '').replace('', '') answer = res return -1, answer, None, None except Exception as err: print(err) traceback.print_exc() return -1, ERROR_MSG, None, None def upload_img(image, _chatbot, _app_session): """ Function to handle image uploads. """ print("Uploading image...") try: image = Image.fromarray(image) _app_session['sts'] = None _app_session['ctx'] = [] _app_session['img'] = image _chatbot.append(('', 'Image uploaded successfully, I am ready to take up your queries')) print("Image uploaded successfully.") return _chatbot, _app_session except Exception as e: print(f"Error uploading image: {e}") traceback.print_exc() return _chatbot, _app_session def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature): """ Function to handle user input and generate responses. """ print("Respond function called.") if _app_cfg.get('ctx', None) is None: _chat_bot.append((_question, 'Please upload an image to detect')) return '', _chat_bot, _app_cfg _context = _app_cfg['ctx'].copy() if _context: _context.append({"role": "user", "content": _question}) else: _context = [{"role": "user", "content": _question}] print(':', _question) if params_form == 'Beam Search': params = { 'sampling': False, 'num_beams': num_beams, 'repetition_penalty': repetition_penalty, "max_new_tokens": 896 } else: params = { 'sampling': True, 'top_p': top_p, 'top_k': top_k, 'temperature': temperature, 'repetition_penalty': repetition_penalty_2, "max_new_tokens": 896 } code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params) print(':', _answer) _context.append({"role": "assistant", "content": _answer}) _chat_bot.append((_question, _answer)) if code == 0: _app_cfg['ctx'] = _context _app_cfg['sts'] = sts return '', _chat_bot, _app_cfg def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature): """ Function to handle the regeneration of the last assistant response. """ print("Regenerate button clicked.") if len(_chat_bot) <= 1: _chat_bot.append(('Regenerate', 'No question for regeneration.')) return '', _chat_bot, _app_cfg elif _chat_bot[-1][0] == 'Regenerate': return '', _chat_bot, _app_cfg else: _question = _chat_bot[-1][0] _chat_bot = _chat_bot[:-1] _app_cfg['ctx'] = _app_cfg['ctx'][:-2] return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature) # Building the Gradio Interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1, min_width=300): # Decode Type Selection params_form = create_component(form_radio, comp='Radio') # Beam Search Settings with gr.Accordion("Beam Search"): num_beams = create_component(num_beams_slider) repetition_penalty = create_component(repetition_penalty_slider) # Sampling Settings with gr.Accordion("Sampling"): top_p = create_component(top_p_slider) top_k = create_component(top_k_slider) temperature = create_component(temperature_slider) repetition_penalty_2 = create_component(repetition_penalty_slider2) # Regenerate Button regenerate = create_component({'value': 'Regenerate'}, comp='Button') with gr.Column(scale=3, min_width=500): # Application State app_session = gr.State({'sts': None, 'ctx': None, 'img': None}) # Image Upload Component bt_pic = gr.Image(label="Upload an image to start") # Chatbot Display chat_bot = gr.Chatbot(label="Ask anything about the image") # Text Input for User Messages txt_message = gr.Textbox(label="Input text") # Define Actions regenerate.click( regenerate_button_clicked, [ txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature ], [txt_message, chat_bot, app_session] ) txt_message.submit( respond, [ txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature ], [txt_message, chat_bot, app_session] ) bt_pic.upload( lambda: None, None, chat_bot, queue=False ).then( upload_img, inputs=[bt_pic, chat_bot, app_session], outputs=[chat_bot, app_session] ) # Launch the Gradio App with share=True for testing demo.launch(share=True, debug=True)