""" The network architectures is based on PyTorch implemenation of StyleGAN2Encoder. Original PyTorch repo: https://github.com/rosinality/style-based-gan-pytorch Origianl StyelGAN2 paper: https://github.com/NVlabs/stylegan2 We use the network architeture for our single-image traning setting. """ import math import numpy as np import random import torch from torch import nn from torch.nn import functional as F def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return F.leaky_relu(input + bias, negative_slope) * scale class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): # print("FusedLeakyReLU: ", input.abs().mean()) out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) # print("FusedLeakyReLU: ", out.abs().mean()) return out def upfirdn2d_native( input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 ): _, minor, in_h, in_w = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, minor, in_h, 1, in_w, 1) out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) out = out.view(-1, minor, in_h * up_y, in_w * up_x) out = F.pad( out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] ) out = out[ :, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] # out = out.permute(0, 3, 1, 2) out = out.reshape( [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] ) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) # out = out.permute(0, 2, 3, 1) return out[:, :, ::down_y, ::down_x] def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) class PixelNorm(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if len(k.shape) == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class Upsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * (factor ** 2) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) return out class Downsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class EqualConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True ): super().__init__() self.weight = nn.Parameter( torch.randn(out_channel, in_channel, kernel_size, kernel_size) ) self.scale = math.sqrt(1) / math.sqrt(in_channel * (kernel_size ** 2)) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): # print("Before EqualConv2d: ", input.abs().mean()) out = F.conv2d( input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) # print("After EqualConv2d: ", out.abs().mean(), (self.weight * self.scale).abs().mean()) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' ) class EqualLinear(nn.Module): def __init__( self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None ): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = (math.sqrt(1) / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear( input, self.weight * self.scale, bias=self.bias * self.lr_mul ) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class ScaledLeakyReLU(nn.Module): def __init__(self, negative_slope=0.2): super().__init__() self.negative_slope = negative_slope def forward(self, input): out = F.leaky_relu(input, negative_slope=self.negative_slope) return out * math.sqrt(2) class ModulatedConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], ): super().__init__() self.eps = 1e-8 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = (len(blur_kernel) - factor) - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = math.sqrt(1) / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter( torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) ) if style_dim is not None and style_dim > 0: self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' f'upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape if style is not None: style = self.modulation(style).view(batch, 1, in_channel, 1, 1) else: style = torch.ones(batch, 1, in_channel, 1, 1).cuda() weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view( batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size ) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view( batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size ) weight = weight.transpose(1, 2).reshape( batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size ) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = image.new_empty(batch, 1, height, width).normal_() return image + self.weight * noise class ConstantInput(nn.Module): def __init__(self, channel, size=4): super().__init__() self.input = nn.Parameter(torch.randn(1, channel, size, size)) def forward(self, input): batch = input.shape[0] out = self.input.repeat(batch, 1, 1, 1) return out class StyledConv(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim=None, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True, inject_noise=True, ): super().__init__() self.inject_noise = inject_noise self.conv = ModulatedConv2d( in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate, ) self.noise = NoiseInjection() # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) # self.activate = ScaledLeakyReLU(0.2) self.activate = FusedLeakyReLU(out_channel) def forward(self, input, style=None, noise=None): out = self.conv(input, style) if self.inject_noise: out = self.noise(out, noise=noise) # out = out + self.bias out = self.activate(out) return out class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.upsample = Upsample(blur_kernel) self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: skip = self.upsample(skip) out = out + skip return out class Generator(nn.Module): def __init__( self, size, style_dim, n_mlp, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): super().__init__() self.size = size self.style_dim = style_dim layers = [PixelNorm()] for i in range(n_mlp): layers.append( EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu' ) ) self.style = nn.Sequential(*layers) self.channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel ) self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) self.log_size = int(math.log(size, 2)) self.num_layers = (self.log_size - 2) * 2 + 1 self.convs = nn.ModuleList() self.upsamples = nn.ModuleList() self.to_rgbs = nn.ModuleList() self.noises = nn.Module() in_channel = self.channels[4] for layer_idx in range(self.num_layers): res = (layer_idx + 5) // 2 shape = [1, 1, 2 ** res, 2 ** res] self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape)) for i in range(3, self.log_size + 1): out_channel = self.channels[2 ** i] self.convs.append( StyledConv( in_channel, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel, ) ) self.convs.append( StyledConv( out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel ) ) self.to_rgbs.append(ToRGB(out_channel, style_dim)) in_channel = out_channel self.n_latent = self.log_size * 2 - 2 def make_noise(self): device = self.input.input.device noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] for i in range(3, self.log_size + 1): for _ in range(2): noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) return noises def mean_latent(self, n_latent): latent_in = torch.randn( n_latent, self.style_dim, device=self.input.input.device ) latent = self.style(latent_in).mean(0, keepdim=True) return latent def get_latent(self, input): return self.style(input) def forward( self, styles, return_latents=False, inject_index=None, truncation=1, truncation_latent=None, input_is_latent=False, noise=None, randomize_noise=True, ): if not input_is_latent: styles = [self.style(s) for s in styles] if noise is None: if randomize_noise: noise = [None] * self.num_layers else: noise = [ getattr(self.noises, f'noise_{i}') for i in range(self.num_layers) ] if truncation < 1: style_t = [] for style in styles: style_t.append( truncation_latent + truncation * (style - truncation_latent) ) styles = style_t if len(styles) < 2: inject_index = self.n_latent if len(styles[0].shape) < 3: latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) else: latent = styles[0] else: if inject_index is None: inject_index = random.randint(1, self.n_latent - 1) latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) latent = torch.cat([latent, latent2], 1) out = self.input(latent) out = self.conv1(out, latent[:, 0], noise=noise[0]) skip = self.to_rgb1(out, latent[:, 1]) i = 1 for conv1, conv2, noise1, noise2, to_rgb in zip( self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs ): out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) i += 2 image = skip if return_latents: return image, latent else: return image, None class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append( EqualConv2d( in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate, ) ) if activate: if bias: layers.append(FusedLeakyReLU(out_channel)) else: layers.append(ScaledLeakyReLU(0.2)) super().__init__(*layers) class ResBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True, skip_gain=1.0): super().__init__() self.skip_gain = skip_gain self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample, blur_kernel=blur_kernel) if in_channel != out_channel or downsample: self.skip = ConvLayer( in_channel, out_channel, 1, downsample=downsample, activate=False, bias=False ) else: self.skip = nn.Identity() def forward(self, input): out = self.conv1(input) out = self.conv2(out) skip = self.skip(input) out = (out * self.skip_gain + skip) / math.sqrt(self.skip_gain ** 2 + 1.0) return out class StyleGAN2Discriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, no_antialias=False, size=None, opt=None): super().__init__() self.opt = opt self.stddev_group = 16 if size is None: size = 2 ** int((np.rint(np.log2(min(opt.load_size, opt.crop_size))))) if "patch" in self.opt.netD and self.opt.D_patch_size is not None: size = 2 ** int(np.log2(self.opt.D_patch_size)) blur_kernel = [1, 3, 3, 1] channel_multiplier = ndf / 64 channels = { 4: min(384, int(4096 * channel_multiplier)), 8: min(384, int(2048 * channel_multiplier)), 16: min(384, int(1024 * channel_multiplier)), 32: min(384, int(512 * channel_multiplier)), 64: int(256 * channel_multiplier), 128: int(128 * channel_multiplier), 256: int(64 * channel_multiplier), 512: int(32 * channel_multiplier), 1024: int(16 * channel_multiplier), } convs = [ConvLayer(3, channels[size], 1)] log_size = int(math.log(size, 2)) in_channel = channels[size] if "smallpatch" in self.opt.netD: final_res_log2 = 4 elif "patch" in self.opt.netD: final_res_log2 = 3 else: final_res_log2 = 2 for i in range(log_size, final_res_log2, -1): out_channel = channels[2 ** (i - 1)] convs.append(ResBlock(in_channel, out_channel, blur_kernel)) in_channel = out_channel self.convs = nn.Sequential(*convs) if False and "tile" in self.opt.netD: in_channel += 1 self.final_conv = ConvLayer(in_channel, channels[4], 3) if "patch" in self.opt.netD: self.final_linear = ConvLayer(channels[4], 1, 3, bias=False, activate=False) else: self.final_linear = nn.Sequential( EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), EqualLinear(channels[4], 1), ) def forward(self, input, get_minibatch_features=False): if "patch" in self.opt.netD and self.opt.D_patch_size is not None: h, w = input.size(2), input.size(3) y = torch.randint(h - self.opt.D_patch_size, ()) x = torch.randint(w - self.opt.D_patch_size, ()) input = input[:, :, y:y + self.opt.D_patch_size, x:x + self.opt.D_patch_size] out = input for i, conv in enumerate(self.convs): out = conv(out) # print(i, out.abs().mean()) # out = self.convs(input) batch, channel, height, width = out.shape if False and "tile" in self.opt.netD: group = min(batch, self.stddev_group) stddev = out.view( group, -1, 1, channel // 1, height, width ) stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdim=True).squeeze(2) stddev = stddev.repeat(group, 1, height, width) out = torch.cat([out, stddev], 1) out = self.final_conv(out) # print(out.abs().mean()) if "patch" not in self.opt.netD: out = out.view(batch, -1) out = self.final_linear(out) return out class TileStyleGAN2Discriminator(StyleGAN2Discriminator): def forward(self, input): B, C, H, W = input.size(0), input.size(1), input.size(2), input.size(3) size = self.opt.D_patch_size Y = H // size X = W // size input = input.view(B, C, Y, size, X, size) input = input.permute(0, 2, 4, 1, 3, 5).contiguous().view(B * Y * X, C, size, size) return super().forward(input) class StyleGAN2Encoder(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False, opt=None): super().__init__() assert opt is not None self.opt = opt channel_multiplier = ngf / 32 channels = { 4: min(512, int(round(4096 * channel_multiplier))), 8: min(512, int(round(2048 * channel_multiplier))), 16: min(512, int(round(1024 * channel_multiplier))), 32: min(512, int(round(512 * channel_multiplier))), 64: int(round(256 * channel_multiplier)), 128: int(round(128 * channel_multiplier)), 256: int(round(64 * channel_multiplier)), 512: int(round(32 * channel_multiplier)), 1024: int(round(16 * channel_multiplier)), } blur_kernel = [1, 3, 3, 1] cur_res = 2 ** int((np.rint(np.log2(min(opt.load_size, opt.crop_size))))) convs = [nn.Identity(), ConvLayer(3, channels[cur_res], 1)] num_downsampling = self.opt.stylegan2_G_num_downsampling for i in range(num_downsampling): in_channel = channels[cur_res] out_channel = channels[cur_res // 2] convs.append(ResBlock(in_channel, out_channel, blur_kernel, downsample=True)) cur_res = cur_res // 2 for i in range(n_blocks // 2): n_channel = channels[cur_res] convs.append(ResBlock(n_channel, n_channel, downsample=False)) self.convs = nn.Sequential(*convs) def forward(self, input, layers=[], get_features=False): feat = input feats = [] if -1 in layers: layers.append(len(self.convs) - 1) for layer_id, layer in enumerate(self.convs): feat = layer(feat) # print(layer_id, " features ", feat.abs().mean()) if layer_id in layers: feats.append(feat) if get_features: return feat, feats else: return feat class StyleGAN2Decoder(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False, opt=None): super().__init__() assert opt is not None self.opt = opt blur_kernel = [1, 3, 3, 1] channel_multiplier = ngf / 32 channels = { 4: min(512, int(round(4096 * channel_multiplier))), 8: min(512, int(round(2048 * channel_multiplier))), 16: min(512, int(round(1024 * channel_multiplier))), 32: min(512, int(round(512 * channel_multiplier))), 64: int(round(256 * channel_multiplier)), 128: int(round(128 * channel_multiplier)), 256: int(round(64 * channel_multiplier)), 512: int(round(32 * channel_multiplier)), 1024: int(round(16 * channel_multiplier)), } num_downsampling = self.opt.stylegan2_G_num_downsampling cur_res = 2 ** int((np.rint(np.log2(min(opt.load_size, opt.crop_size))))) // (2 ** num_downsampling) convs = [] for i in range(n_blocks // 2): n_channel = channels[cur_res] convs.append(ResBlock(n_channel, n_channel, downsample=False)) for i in range(num_downsampling): in_channel = channels[cur_res] out_channel = channels[cur_res * 2] inject_noise = "small" not in self.opt.netG convs.append( StyledConv(in_channel, out_channel, 3, upsample=True, blur_kernel=blur_kernel, inject_noise=inject_noise) ) cur_res = cur_res * 2 convs.append(ConvLayer(channels[cur_res], 3, 1)) self.convs = nn.Sequential(*convs) def forward(self, input): return self.convs(input) class StyleGAN2Generator(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False, opt=None): super().__init__() self.opt = opt self.encoder = StyleGAN2Encoder(input_nc, output_nc, ngf, use_dropout, n_blocks, padding_type, no_antialias, opt) self.decoder = StyleGAN2Decoder(input_nc, output_nc, ngf, use_dropout, n_blocks, padding_type, no_antialias, opt) def forward(self, input, layers=[], encode_only=False): feat, feats = self.encoder(input, layers, True) if encode_only: return feats else: fake = self.decoder(feat) if len(layers) > 0: return fake, feats else: return fake