import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init import functools from torch.optim import lr_scheduler import numpy as np from .stylegan_networks import StyleGAN2Discriminator, StyleGAN2Generator, TileStyleGAN2Discriminator ############################################################################### # Helper Functions ############################################################################### def get_filter(filt_size=3): if(filt_size == 1): a = np.array([1., ]) elif(filt_size == 2): a = np.array([1., 1.]) elif(filt_size == 3): a = np.array([1., 2., 1.]) elif(filt_size == 4): a = np.array([1., 3., 3., 1.]) elif(filt_size == 5): a = np.array([1., 4., 6., 4., 1.]) elif(filt_size == 6): a = np.array([1., 5., 10., 10., 5., 1.]) elif(filt_size == 7): a = np.array([1., 6., 15., 20., 15., 6., 1.]) filt = torch.Tensor(a[:, None] * a[None, :]) filt = filt / torch.sum(filt) return filt class Downsample(nn.Module): def __init__(self, channels, pad_type='reflect', filt_size=3, stride=2, pad_off=0): super(Downsample, self).__init__() self.filt_size = filt_size self.pad_off = pad_off self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2)), int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))] self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels filt = get_filter(filt_size=self.filt_size) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)(self.pad_sizes) def forward(self, inp): if(self.filt_size == 1): if(self.pad_off == 0): return inp[:, :, ::self.stride, ::self.stride] else: return self.pad(inp)[:, :, ::self.stride, ::self.stride] else: return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) class Upsample2(nn.Module): def __init__(self, scale_factor, mode='nearest'): super().__init__() self.factor = scale_factor self.mode = mode def forward(self, x): return torch.nn.functional.interpolate(x, scale_factor=self.factor, mode=self.mode) class Upsample(nn.Module): def __init__(self, channels, pad_type='repl', filt_size=4, stride=2): super(Upsample, self).__init__() self.filt_size = filt_size self.filt_odd = np.mod(filt_size, 2) == 1 self.pad_size = int((filt_size - 1) / 2) self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels filt = get_filter(filt_size=self.filt_size) * (stride**2) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)([1, 1, 1, 1]) def forward(self, inp): ret_val = F.conv_transpose2d(self.pad(inp), self.filt, stride=self.stride, padding=1 + self.pad_size, groups=inp.shape[1])[:, :, 1:, 1:] if(self.filt_odd): return ret_val else: return ret_val[:, :, :-1, :-1] def get_pad_layer(pad_type): if(pad_type in ['refl', 'reflect']): PadLayer = nn.ReflectionPad2d elif(pad_type in ['repl', 'replicate']): PadLayer = nn.ReplicationPad2d elif(pad_type == 'zero'): PadLayer = nn.ZeroPad2d else: print('Pad type [%s] not recognized' % pad_type) return PadLayer class Identity(nn.Module): def forward(self, x): return x def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first epochs and linearly decay the rate to zero over the next epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02, debug=False): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if debug: print(classname) if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[], debug=False, initialize_weights=True): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) # if not amp: # net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs for non-AMP training if initialize_weights: init_weights(net, init_type, init_gain=init_gain, debug=debug) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, no_antialias=False, no_antialias_up=False, gpu_ids=[], opt=None): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by . It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, no_antialias=no_antialias, no_antialias_up=no_antialias_up, n_blocks=9, opt=opt) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, no_antialias=no_antialias, no_antialias_up=no_antialias_up, n_blocks=6, opt=opt) elif netG == 'resnet_4blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, no_antialias=no_antialias, no_antialias_up=no_antialias_up, n_blocks=4, opt=opt) elif netG == 'unet_128': net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'unet_256': net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'stylegan2': net = StyleGAN2Generator(input_nc, output_nc, ngf, use_dropout=use_dropout, opt=opt) elif netG == 'smallstylegan2': net = StyleGAN2Generator(input_nc, output_nc, ngf, use_dropout=use_dropout, n_blocks=2, opt=opt) elif netG == 'resnet_cat': n_blocks = 8 net = G_Resnet(input_nc, output_nc, opt.nz, num_downs=2, n_res=n_blocks - 4, ngf=ngf, norm='inst', nl_layer='relu') else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids, initialize_weights=('stylegan2' not in netG)) def define_F(input_nc, netF, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, no_antialias=False, gpu_ids=[], opt=None): if netF == 'global_pool': net = PoolingF() elif netF == 'reshape': net = ReshapeF() elif netF == 'sample': net = PatchSampleF(use_mlp=False, init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids, nc=opt.netF_nc) elif netF == 'mlp_sample': net = PatchSampleF(use_mlp=True, init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids, nc=opt.netF_nc) elif netF == 'strided_conv': net = StridedConvF(init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids) else: raise NotImplementedError('projection model name [%s] is not recognized' % netF) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, no_antialias=False, gpu_ids=[], opt=None): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you cna specify the number of conv layers in the discriminator with the parameter (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by . It uses Leaky RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, no_antialias=no_antialias,) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, no_antialias=no_antialias,) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) elif 'stylegan2' in netD: net = StyleGAN2Discriminator(input_nc, ndf, n_layers_D, no_antialias=no_antialias, opt=opt) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids, initialize_weights=('stylegan2' not in netD)) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp', 'nonsaturating']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ bs = prediction.size(0) if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() elif self.gan_mode == 'nonsaturating': if target_is_real: loss = F.softplus(-prediction).view(bs, -1).mean(dim=1) else: loss = F.softplus(prediction).view(bs, -1).mean(dim=1) return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class Normalize(nn.Module): def __init__(self, power=2): super(Normalize, self).__init__() self.power = power def forward(self, x): norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power) out = x.div(norm + 1e-7) return out class PoolingF(nn.Module): def __init__(self): super(PoolingF, self).__init__() model = [nn.AdaptiveMaxPool2d(1)] self.model = nn.Sequential(*model) self.l2norm = Normalize(2) def forward(self, x): return self.l2norm(self.model(x)) class ReshapeF(nn.Module): def __init__(self): super(ReshapeF, self).__init__() model = [nn.AdaptiveAvgPool2d(4)] self.model = nn.Sequential(*model) self.l2norm = Normalize(2) def forward(self, x): x = self.model(x) x_reshape = x.permute(0, 2, 3, 1).flatten(0, 2) return self.l2norm(x_reshape) class StridedConvF(nn.Module): def __init__(self, init_type='normal', init_gain=0.02, gpu_ids=[]): super().__init__() # self.conv1 = nn.Conv2d(256, 128, 3, stride=2) # self.conv2 = nn.Conv2d(128, 64, 3, stride=1) self.l2_norm = Normalize(2) self.mlps = {} self.moving_averages = {} self.init_type = init_type self.init_gain = init_gain self.gpu_ids = gpu_ids def create_mlp(self, x): C, H = x.shape[1], x.shape[2] n_down = int(np.rint(np.log2(H / 32))) mlp = [] for i in range(n_down): mlp.append(nn.Conv2d(C, max(C // 2, 64), 3, stride=2)) mlp.append(nn.ReLU()) C = max(C // 2, 64) mlp.append(nn.Conv2d(C, 64, 3)) mlp = nn.Sequential(*mlp) init_net(mlp, self.init_type, self.init_gain, self.gpu_ids) return mlp def update_moving_average(self, key, x): if key not in self.moving_averages: self.moving_averages[key] = x.detach() self.moving_averages[key] = self.moving_averages[key] * 0.999 + x.detach() * 0.001 def forward(self, x, use_instance_norm=False): C, H = x.shape[1], x.shape[2] key = '%d_%d' % (C, H) if key not in self.mlps: self.mlps[key] = self.create_mlp(x) self.add_module("child_%s" % key, self.mlps[key]) mlp = self.mlps[key] x = mlp(x) self.update_moving_average(key, x) x = x - self.moving_averages[key] if use_instance_norm: x = F.instance_norm(x) return self.l2_norm(x) class PatchSampleF(nn.Module): def __init__(self, use_mlp=False, init_type='normal', init_gain=0.02, nc=256, gpu_ids=[]): # potential issues: currently, we use the same patch_ids for multiple images in the batch super(PatchSampleF, self).__init__() self.l2norm = Normalize(2) self.use_mlp = use_mlp self.nc = nc # hard-coded self.mlp_init = False self.init_type = init_type self.init_gain = init_gain self.gpu_ids = gpu_ids def create_mlp(self, feats): for mlp_id, feat in enumerate(feats): input_nc = feat.shape[1] mlp = nn.Sequential(*[nn.Linear(input_nc, self.nc), nn.ReLU(), nn.Linear(self.nc, self.nc)]) if len(self.gpu_ids) > 0: mlp.cuda() setattr(self, 'mlp_%d' % mlp_id, mlp) init_net(self, self.init_type, self.init_gain, self.gpu_ids) self.mlp_init = True def forward(self, feats, num_patches=64, patch_ids=None): return_ids = [] return_feats = [] if self.use_mlp and not self.mlp_init: self.create_mlp(feats) for feat_id, feat in enumerate(feats): B, H, W = feat.shape[0], feat.shape[2], feat.shape[3] feat_reshape = feat.permute(0, 2, 3, 1).flatten(1, 2) if num_patches > 0: if patch_ids is not None: patch_id = patch_ids[feat_id] else: patch_id = torch.randperm(feat_reshape.shape[1], device=feats[0].device) patch_id = patch_id[:int(min(num_patches, patch_id.shape[0]))] # .to(patch_ids.device) x_sample = feat_reshape[:, patch_id, :].flatten(0, 1) # reshape(-1, x.shape[1]) else: x_sample = feat_reshape patch_id = [] if self.use_mlp: mlp = getattr(self, 'mlp_%d' % feat_id) x_sample = mlp(x_sample) return_ids.append(patch_id) x_sample = self.l2norm(x_sample) if num_patches == 0: x_sample = x_sample.permute(0, 2, 1).reshape([B, x_sample.shape[-1], H, W]) return_feats.append(x_sample) return return_feats, return_ids class G_Resnet(nn.Module): def __init__(self, input_nc, output_nc, nz, num_downs, n_res, ngf=64, norm=None, nl_layer=None): super(G_Resnet, self).__init__() n_downsample = num_downs pad_type = 'reflect' self.enc_content = ContentEncoder(n_downsample, n_res, input_nc, ngf, norm, nl_layer, pad_type=pad_type) if nz == 0: self.dec = Decoder(n_downsample, n_res, self.enc_content.output_dim, output_nc, norm=norm, activ=nl_layer, pad_type=pad_type, nz=nz) else: self.dec = Decoder_all(n_downsample, n_res, self.enc_content.output_dim, output_nc, norm=norm, activ=nl_layer, pad_type=pad_type, nz=nz) def decode(self, content, style=None): return self.dec(content, style) def forward(self, image, style=None, nce_layers=[], encode_only=False): content, feats = self.enc_content(image, nce_layers=nce_layers, encode_only=encode_only) if encode_only: return feats else: images_recon = self.decode(content, style) if len(nce_layers) > 0: return images_recon, feats else: return images_recon ################################################################################## # Encoder and Decoders ################################################################################## class E_adaIN(nn.Module): def __init__(self, input_nc, output_nc=1, nef=64, n_layers=4, norm=None, nl_layer=None, vae=False): # style encoder super(E_adaIN, self).__init__() self.enc_style = StyleEncoder(n_layers, input_nc, nef, output_nc, norm='none', activ='relu', vae=vae) def forward(self, image): style = self.enc_style(image) return style class StyleEncoder(nn.Module): def __init__(self, n_downsample, input_dim, dim, style_dim, norm, activ, vae=False): super(StyleEncoder, self).__init__() self.vae = vae self.model = [] self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type='reflect')] for i in range(2): self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type='reflect')] dim *= 2 for i in range(n_downsample - 2): self.model += [Conv2dBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type='reflect')] self.model += [nn.AdaptiveAvgPool2d(1)] # global average pooling if self.vae: self.fc_mean = nn.Linear(dim, style_dim) # , 1, 1, 0) self.fc_var = nn.Linear(dim, style_dim) # , 1, 1, 0) else: self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)] self.model = nn.Sequential(*self.model) self.output_dim = dim def forward(self, x): if self.vae: output = self.model(x) output = output.view(x.size(0), -1) output_mean = self.fc_mean(output) output_var = self.fc_var(output) return output_mean, output_var else: return self.model(x).view(x.size(0), -1) class ContentEncoder(nn.Module): def __init__(self, n_downsample, n_res, input_dim, dim, norm, activ, pad_type='zero'): super(ContentEncoder, self).__init__() self.model = [] self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type='reflect')] # downsampling blocks for i in range(n_downsample): self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type='reflect')] dim *= 2 # residual blocks self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)] self.model = nn.Sequential(*self.model) self.output_dim = dim def forward(self, x, nce_layers=[], encode_only=False): if len(nce_layers) > 0: feat = x feats = [] for layer_id, layer in enumerate(self.model): feat = layer(feat) if layer_id in nce_layers: feats.append(feat) if layer_id == nce_layers[-1] and encode_only: return None, feats return feat, feats else: return self.model(x), None for layer_id, layer in enumerate(self.model): print(layer_id, layer) class Decoder_all(nn.Module): def __init__(self, n_upsample, n_res, dim, output_dim, norm='batch', activ='relu', pad_type='zero', nz=0): super(Decoder_all, self).__init__() # AdaIN residual blocks self.resnet_block = ResBlocks(n_res, dim, norm, activ, pad_type=pad_type, nz=nz) self.n_blocks = 0 # upsampling blocks for i in range(n_upsample): block = [Upsample2(scale_factor=2), Conv2dBlock(dim + nz, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type='reflect')] setattr(self, 'block_{:d}'.format(self.n_blocks), nn.Sequential(*block)) self.n_blocks += 1 dim //= 2 # use reflection padding in the last conv layer setattr(self, 'block_{:d}'.format(self.n_blocks), Conv2dBlock(dim + nz, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type='reflect')) self.n_blocks += 1 def forward(self, x, y=None): if y is not None: output = self.resnet_block(cat_feature(x, y)) for n in range(self.n_blocks): block = getattr(self, 'block_{:d}'.format(n)) if n > 0: output = block(cat_feature(output, y)) else: output = block(output) return output class Decoder(nn.Module): def __init__(self, n_upsample, n_res, dim, output_dim, norm='batch', activ='relu', pad_type='zero', nz=0): super(Decoder, self).__init__() self.model = [] # AdaIN residual blocks self.model += [ResBlocks(n_res, dim, norm, activ, pad_type=pad_type, nz=nz)] # upsampling blocks for i in range(n_upsample): if i == 0: input_dim = dim + nz else: input_dim = dim self.model += [Upsample2(scale_factor=2), Conv2dBlock(input_dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type='reflect')] dim //= 2 # use reflection padding in the last conv layer self.model += [Conv2dBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type='reflect')] self.model = nn.Sequential(*self.model) def forward(self, x, y=None): if y is not None: return self.model(cat_feature(x, y)) else: return self.model(x) ################################################################################## # Sequential Models ################################################################################## class ResBlocks(nn.Module): def __init__(self, num_blocks, dim, norm='inst', activation='relu', pad_type='zero', nz=0): super(ResBlocks, self).__init__() self.model = [] for i in range(num_blocks): self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type, nz=nz)] self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x) ################################################################################## # Basic Blocks ################################################################################## def cat_feature(x, y): y_expand = y.view(y.size(0), y.size(1), 1, 1).expand( y.size(0), y.size(1), x.size(2), x.size(3)) x_cat = torch.cat([x, y_expand], 1) return x_cat class ResBlock(nn.Module): def __init__(self, dim, norm='inst', activation='relu', pad_type='zero', nz=0): super(ResBlock, self).__init__() model = [] model += [Conv2dBlock(dim + nz, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)] model += [Conv2dBlock(dim, dim + nz, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)] self.model = nn.Sequential(*model) def forward(self, x): residual = x out = self.model(x) out += residual return out class Conv2dBlock(nn.Module): def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0, norm='none', activation='relu', pad_type='zero'): super(Conv2dBlock, self).__init__() self.use_bias = True # initialize padding if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, "Unsupported padding type: {}".format(pad_type) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm2d(norm_dim) elif norm == 'inst': self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=False) elif norm == 'ln': self.norm = LayerNorm(norm_dim) elif norm == 'none': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) # initialize convolution self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias) def forward(self, x): x = self.conv(self.pad(x)) if self.norm: x = self.norm(x) if self.activation: x = self.activation(x) return x class LinearBlock(nn.Module): def __init__(self, input_dim, output_dim, norm='none', activation='relu'): super(LinearBlock, self).__init__() use_bias = True # initialize fully connected layer self.fc = nn.Linear(input_dim, output_dim, bias=use_bias) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm1d(norm_dim) elif norm == 'inst': self.norm = nn.InstanceNorm1d(norm_dim) elif norm == 'ln': self.norm = LayerNorm(norm_dim) elif norm == 'none': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) def forward(self, x): out = self.fc(x) if self.norm: out = self.norm(out) if self.activation: out = self.activation(out) return out ################################################################################## # Normalization layers ################################################################################## class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-5, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False, no_antialias_up=False, opt=None): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() self.opt = opt if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i if(no_antialias): model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] else: model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True), Downsample(ngf * mult * 2)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) if no_antialias_up: model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] else: model += [Upsample(ngf * mult), nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=1, # output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input, layers=[], encode_only=False): if -1 in layers: layers.append(len(self.model)) if len(layers) > 0: feat = input feats = [] for layer_id, layer in enumerate(self.model): # print(layer_id, layer) feat = layer(feat) if layer_id in layers: # print("%d: adding the output of %s %d" % (layer_id, layer.__class__.__name__, feat.size(1))) feats.append(feat) else: # print("%d: skipping %s %d" % (layer_id, layer.__class__.__name__, feat.size(1))) pass if layer_id == layers[-1] and encode_only: # print('encoder only return features') return feats # return intermediate features alone; stop in the last layers return feat, feats # return both output and intermediate features else: """Standard forward""" fake = self.model(input) return fake class ResnetDecoder(nn.Module): """Resnet-based decoder that consists of a few Resnet blocks + a few upsampling operations. """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False): """Construct a Resnet-based decoder Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetDecoder, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [] n_downsampling = 2 mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) if(no_antialias): model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] else: model += [Upsample(ngf * mult), nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetEncoder(nn.Module): """Resnet-based encoder that consists of a few downsampling + several Resnet blocks """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False): """Construct a Resnet-based encoder Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetEncoder, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i if(no_antialias): model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] else: model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True), Downsample(ngf * mult * 2)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, no_antialias=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 if(no_antialias): sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] else: sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=1, padding=padw), nn.LeakyReLU(0.2, True), Downsample(ndf)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if(no_antialias): sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] else: sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), Downsample(ndf * nf_mult)] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input) class PatchDiscriminator(NLayerDiscriminator): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, no_antialias=False): super().__init__(input_nc, ndf, 2, norm_layer, no_antialias) def forward(self, input): B, C, H, W = input.size(0), input.size(1), input.size(2), input.size(3) size = 16 Y = H // size X = W // size input = input.view(B, C, Y, size, X, size) input = input.permute(0, 2, 4, 1, 3, 5).contiguous().view(B * Y * X, C, size, size) return super().forward(input) class GroupedChannelNorm(nn.Module): def __init__(self, num_groups): super().__init__() self.num_groups = num_groups def forward(self, x): shape = list(x.shape) new_shape = [shape[0], self.num_groups, shape[1] // self.num_groups] + shape[2:] x = x.view(*new_shape) mean = x.mean(dim=2, keepdim=True) std = x.std(dim=2, keepdim=True) x_norm = (x - mean) / (std + 1e-7) return x_norm.view(*shape)