import time import os import random import numpy as np import torch import torch.utils.data import modules.commons as commons import utils from modules.mel_processing import spectrogram_torch, spec_to_mel_torch from utils import load_wav_to_torch, load_filepaths_and_text # import h5py """Multi speaker version""" class TextAudioSpeakerLoader(torch.utils.data.Dataset): """ 1) loads audio, speaker_id, text pairs 2) normalizes text and converts them to sequences of integers 3) computes spectrograms from audio files. """ def __init__(self, audiopaths, hparams): self.audiopaths = load_filepaths_and_text(audiopaths) self.max_wav_value = hparams.data.max_wav_value self.sampling_rate = hparams.data.sampling_rate self.filter_length = hparams.data.filter_length self.hop_length = hparams.data.hop_length self.win_length = hparams.data.win_length self.sampling_rate = hparams.data.sampling_rate self.use_sr = hparams.train.use_sr self.spec_len = hparams.train.max_speclen self.spk_map = hparams.spk random.seed(1234) random.shuffle(self.audiopaths) def get_audio(self, filename): filename = filename.replace("\\", "/") audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) spec_filename = filename.replace(".wav", ".spec.pt") if os.path.exists(spec_filename): spec = torch.load(spec_filename) else: spec = spectrogram_torch(audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length, center=False) spec = torch.squeeze(spec, 0) torch.save(spec, spec_filename) spk = filename.split("/")[-2] spk = torch.LongTensor([self.spk_map[spk]]) f0 = np.load(filename + ".f0.npy") f0, uv = utils.interpolate_f0(f0) f0 = torch.FloatTensor(f0) uv = torch.FloatTensor(uv) c = torch.load(filename+ ".soft.pt") c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0]) lmin = min(c.size(-1), spec.size(-1)) assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename) assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin] audio_norm = audio_norm[:, :lmin * self.hop_length] if spec.shape[1] < 60: print("skip too short audio:", filename) return None if spec.shape[1] > 800: start = random.randint(0, spec.shape[1]-800) end = start + 790 spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end] audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length] return c, f0, spec, audio_norm, spk, uv def __getitem__(self, index): return self.get_audio(self.audiopaths[index][0]) def __len__(self): return len(self.audiopaths) class TextAudioCollate: def __call__(self, batch): batch = [b for b in batch if b is not None] input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[0].shape[1] for x in batch]), dim=0, descending=True) max_c_len = max([x[0].size(1) for x in batch]) max_wav_len = max([x[3].size(1) for x in batch]) lengths = torch.LongTensor(len(batch)) c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len) f0_padded = torch.FloatTensor(len(batch), max_c_len) spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len) wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) spkids = torch.LongTensor(len(batch), 1) uv_padded = torch.FloatTensor(len(batch), max_c_len) c_padded.zero_() spec_padded.zero_() f0_padded.zero_() wav_padded.zero_() uv_padded.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] c = row[0] c_padded[i, :, :c.size(1)] = c lengths[i] = c.size(1) f0 = row[1] f0_padded[i, :f0.size(0)] = f0 spec = row[2] spec_padded[i, :, :spec.size(1)] = spec wav = row[3] wav_padded[i, :, :wav.size(1)] = wav spkids[i, 0] = row[4] uv = row[5] uv_padded[i, :uv.size(0)] = uv return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded