try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import cv2
import torch
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
import torch
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
model_path = "https://huggingface.co/dbmdz/detectron2-model/resolve/main/model_final.pth"
cfg = get_cfg()
cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.WEIGHTS = model_path
my_metadata = MetadataCatalog.get("dbmdz_coco_all")
my_metadata.thing_classes = ["Illumination", "Illustration"]
if not torch.cuda.is_available():
cfg.MODEL.DEVICE = "cpu"
def inference(image_url, image, min_score):
if image_url:
r = requests.get(image_url)
if r:
im = np.frombuffer(r.content, dtype="uint8")
im = cv2.imdecode(im, cv2.IMREAD_COLOR)
else:
# Model expect BGR!
im = image[:,:,::-1]
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
predictor = DefaultPredictor(cfg)
outputs = predictor(im)
v = Visualizer(im, my_metadata, scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
return out.get_image()
title = "DBMDZ Detectron2 Model Demo"
description = "This demo introduces an interactive playground for our trained Detectron2 model.
The model was trained on manually annotated segments from digitized books to detect Illustration or Illumination segments on a given page."
article = '
Detectron model is available from our repository here on the Hugging Face Model Hub.
' gr.Interface( inference, [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"), gr.inputs.Image(type="numpy", label="Input Image"), gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score"), ], gr.outputs.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[]).launch()