import gradio as gr from pubmedScraper import respond_to_query import time def respond( message, history, email, max_res ): response = respond_to_query(message, email, max_res) r = '' for char in response: r+=char time.sleep(0.001) yield r demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="your.email@example.com", label="e-mail address (optional)"), gr.Slider(minimum=1, maximum=15, value=5, step=1, label="Maximum number of results"), ], title="""

BioMedicalPapersBot

Scrape PubMed faster, boost your research!🔬

[GitHub⭐] [Funding]

""" ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)