from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation import gradio as gr from PIL import Image import torch import matplotlib.pyplot as plt import torch import numpy as np processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") def process_image(image, prompt): inputs = processor( text=prompt, images=image, padding="max_length", return_tensors="pt" ) # predict with torch.no_grad(): outputs = model(**inputs) preds = outputs.logits pred = torch.sigmoid(preds) mat = pred.cpu().numpy() mask = Image.fromarray(np.uint8(mat * 255), "L") mask = mask.convert("RGB") mask = mask.resize(image.size) mask = np.array(mask)[:, :, 0] # normalize the mask mask_min = mask.min() mask_max = mask.max() mask = (mask - mask_min) / (mask_max - mask_min) return mask def get_masks(prompts, img, threhsold): prompts = prompts.split(",") masks = [] for prompt in prompts: mask = process_image(img, prompt) mask = mask > threhsold masks.append(mask) return masks def extract_image(img, pos_prompts, neg_prompts, threshold, alpha_value=0.5): positive_masks = get_masks(pos_prompts, img, threshold) negative_masks = get_masks(neg_prompts, img, threshold) # combine masks into one masks, logic OR pos_mask = np.any(np.stack(positive_masks), axis=0) neg_mask = np.any(np.stack(negative_masks), axis=0) final_mask = pos_mask & ~neg_mask # create the final mask image final_mask_img = Image.fromarray((final_mask * 255).astype(np.uint8), "L") # create an RGBA version of the original image and the final mask image img_rgba = img.convert("RGBA") mask_rgba = Image.new("RGBA", img.size, (0, 0, 0, 0)) mask_rgba.paste(final_mask_img, (0, 0), final_mask_img) # apply alpha value to final_mask alpha_mask = Image.fromarray((final_mask * 255 * alpha_value).astype(np.uint8), "L") inverse_alpha_mask = Image.fromarray(((1 - final_mask) * 255 * alpha_value).astype(np.uint8), "L") # extract the final image output_image = Image.new("RGBA", img.size, (0, 0, 0, 0)) output_image.paste(img, mask=alpha_mask) # extract the inverse_mask output_inverse_image = Image.new("RGBA", img.size, (0, 0, 0, 0)) output_inverse_image.paste(img, mask=inverse_alpha_mask) return output_image, alpha_mask, inverse_alpha_mask title = "Interactive demo: zero-shot image segmentation with CLIPSeg" description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds." article = "
CLIPSeg: Image Segmentation Using Text and Image Prompts | HuggingFace docs
" with gr.Blocks() as demo: gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts") gr.Markdown(article) gr.Markdown(description) with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil") positive_prompts = gr.Textbox( label="Please describe what you want to identify (comma separated)" ) negative_prompts = gr.Textbox( label="Please describe what you want to ignore (comma separated)" ) input_slider_T = gr.Slider( minimum=0, maximum=1, value=0.4, label="Threshold" ) btn_process = gr.Button(label="Process") with gr.Column(): output_image = gr.Image(label="Result") output_mask = gr.Image(label="Mask") inverse_mask = gr.Image(label="Inverse") btn_process.click( extract_image, inputs=[ input_image, positive_prompts, negative_prompts, input_slider_T, ], outputs=[output_image, output_mask, inverse_mask], api_name="mask" ) demo.launch()