Spaces:
Sleeping
Sleeping
Modified grok model
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ from graph import build_graph
|
|
| 3 |
from utils import get_retriever, load_vectorstore_from_text
|
| 4 |
from pypdf import PdfReader
|
| 5 |
import hashlib
|
| 6 |
-
from transformers import pipeline
|
| 7 |
|
| 8 |
# --- Page Config ---
|
| 9 |
st.set_page_config(page_title="LangGraph RAG Chatbot", layout="wide")
|
|
@@ -82,9 +82,12 @@ with st.sidebar:
|
|
| 82 |
|
| 83 |
# --- Initialize Summarizer ---
|
| 84 |
if "summarizer" not in st.session_state:
|
|
|
|
|
|
|
| 85 |
st.session_state.summarizer = pipeline(
|
| 86 |
"summarization",
|
| 87 |
-
model=
|
|
|
|
| 88 |
device=-1
|
| 89 |
)
|
| 90 |
|
|
@@ -106,50 +109,48 @@ if "history" not in st.session_state:
|
|
| 106 |
st.session_state.history = []
|
| 107 |
|
| 108 |
# --- Query Input ---
|
| 109 |
-
|
| 110 |
-
st.session_state.current_query = ""
|
| 111 |
|
| 112 |
-
query = st.text_input("π¬ Ask a question:", key="current_query")
|
| 113 |
send_triggered = st.button("Send")
|
| 114 |
|
| 115 |
-
|
| 116 |
-
if
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
|
| 154 |
# --- Chat History Display ---
|
| 155 |
if st.session_state.history:
|
|
|
|
| 3 |
from utils import get_retriever, load_vectorstore_from_text
|
| 4 |
from pypdf import PdfReader
|
| 5 |
import hashlib
|
| 6 |
+
from transformers import pipeline, BartForConditionalGeneration, BartTokenizer
|
| 7 |
|
| 8 |
# --- Page Config ---
|
| 9 |
st.set_page_config(page_title="LangGraph RAG Chatbot", layout="wide")
|
|
|
|
| 82 |
|
| 83 |
# --- Initialize Summarizer ---
|
| 84 |
if "summarizer" not in st.session_state:
|
| 85 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
| 86 |
+
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
| 87 |
st.session_state.summarizer = pipeline(
|
| 88 |
"summarization",
|
| 89 |
+
model=model,
|
| 90 |
+
tokenizer=tokenizer,
|
| 91 |
device=-1
|
| 92 |
)
|
| 93 |
|
|
|
|
| 109 |
st.session_state.history = []
|
| 110 |
|
| 111 |
# --- Query Input ---
|
| 112 |
+
query_input = st.text_input("π¬ Ask a question:")
|
|
|
|
| 113 |
|
|
|
|
| 114 |
send_triggered = st.button("Send")
|
| 115 |
|
| 116 |
+
if send_triggered:
|
| 117 |
+
if query_input.strip():
|
| 118 |
+
formatted_history = [(q, r) for q, r, _ in st.session_state.history]
|
| 119 |
+
|
| 120 |
+
with st.spinner("Generating response..."):
|
| 121 |
+
try:
|
| 122 |
+
result = st.session_state.graph(
|
| 123 |
+
query=query_input,
|
| 124 |
+
temperature=temperature,
|
| 125 |
+
raw_text=st.session_state.get("raw_text"),
|
| 126 |
+
history=formatted_history,
|
| 127 |
+
retriever_override=st.session_state.get("retriever")
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
response = result.get("response", "No response generated.")
|
| 131 |
+
retrieved_docs = result.get("retrieved_docs", [])
|
| 132 |
+
|
| 133 |
+
st.markdown("### π€ Response")
|
| 134 |
+
st.markdown(response)
|
| 135 |
+
|
| 136 |
+
# Save to history
|
| 137 |
+
st.session_state.history.append((query_input, response, retrieved_docs))
|
| 138 |
+
|
| 139 |
+
# Show retrieved docs if available
|
| 140 |
+
if retrieved_docs:
|
| 141 |
+
with st.expander("π Retrieved Chunks"):
|
| 142 |
+
for j, doc in enumerate(retrieved_docs):
|
| 143 |
+
content = getattr(doc, "text", str(doc))
|
| 144 |
+
st.markdown(f"**Chunk {j+1}:**")
|
| 145 |
+
st.code(content.strip(), language="markdown")
|
| 146 |
+
|
| 147 |
+
# Clear the input field by rerunning widget with empty value
|
| 148 |
+
st.experimental_rerun()
|
| 149 |
+
|
| 150 |
+
except Exception as e:
|
| 151 |
+
st.error(f"Query failed: {e}")
|
| 152 |
+
else:
|
| 153 |
+
st.warning("Please enter a question.")
|
| 154 |
|
| 155 |
# --- Chat History Display ---
|
| 156 |
if st.session_state.history:
|
graph.py
CHANGED
|
@@ -9,7 +9,7 @@ from langgraph.graph import StateGraph, END
|
|
| 9 |
from llama_index.core import VectorStoreIndex
|
| 10 |
from llama_index.core.retrievers import BaseRetriever
|
| 11 |
from langchain_groq import ChatGroq
|
| 12 |
-
from transformers import pipeline
|
| 13 |
|
| 14 |
# --- 1. Define the State for the Graph ---
|
| 15 |
class GraphState(TypedDict):
|
|
@@ -180,7 +180,7 @@ def build_graph(model_type: str = "groq", retriever=None, summarizer=None):
|
|
| 180 |
if not api_key:
|
| 181 |
raise ValueError("GROQ_API_KEY environment variable not set.")
|
| 182 |
llm = ChatGroq(
|
| 183 |
-
model="
|
| 184 |
api_key=api_key,
|
| 185 |
temperature=0.7,
|
| 186 |
)
|
|
@@ -195,10 +195,15 @@ def build_graph(model_type: str = "groq", retriever=None, summarizer=None):
|
|
| 195 |
)
|
| 196 |
else:
|
| 197 |
raise ValueError("Invalid model_type. Choose 'groq' or 'gemini'.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
if summarizer is None:
|
| 200 |
print("---NO SUMMARIZER PROVIDED, USING DEFAULT (facebook/bart-large-cnn)---")
|
| 201 |
-
summarizer =
|
| 202 |
|
| 203 |
workflow = StateGraph(GraphState)
|
| 204 |
|
|
|
|
| 9 |
from llama_index.core import VectorStoreIndex
|
| 10 |
from llama_index.core.retrievers import BaseRetriever
|
| 11 |
from langchain_groq import ChatGroq
|
| 12 |
+
from transformers import pipeline, BartForConditionalGeneration, BartTokenizer
|
| 13 |
|
| 14 |
# --- 1. Define the State for the Graph ---
|
| 15 |
class GraphState(TypedDict):
|
|
|
|
| 180 |
if not api_key:
|
| 181 |
raise ValueError("GROQ_API_KEY environment variable not set.")
|
| 182 |
llm = ChatGroq(
|
| 183 |
+
model="x-ai/grok-4-fast:free",
|
| 184 |
api_key=api_key,
|
| 185 |
temperature=0.7,
|
| 186 |
)
|
|
|
|
| 195 |
)
|
| 196 |
else:
|
| 197 |
raise ValueError("Invalid model_type. Choose 'groq' or 'gemini'.")
|
| 198 |
+
|
| 199 |
+
def get_default_summarizer():
|
| 200 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
| 201 |
+
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
| 202 |
+
return pipeline("summarization", model=model, tokenizer=tokenizer, device=-1)
|
| 203 |
|
| 204 |
if summarizer is None:
|
| 205 |
print("---NO SUMMARIZER PROVIDED, USING DEFAULT (facebook/bart-large-cnn)---")
|
| 206 |
+
summarizer = get_default_summarizer()
|
| 207 |
|
| 208 |
workflow = StateGraph(GraphState)
|
| 209 |
|