import gradio as gr from fastai.vision.all import * def get_headcount(filename): #print(filename) filename = str(filename) filename = filename.split("/")[-1] return df[df["Name"]==filename]["HeadCount"].values[0] learn = load_learner("export_facecount.pkl") # labels = learn.dls.vocab def predict(img): img = PILImage.create(img) op = learn.predict(img) return int(op[0][0]) title = "Face count" description = "A Car or Bike or not classifier trained with downloaded data from internet. Created as a demo for Gradio and HuggingFace Spaces." examples = ["conf.jpeg"] interpretation = "default" enable_queue = True gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Textbox(type="number", label="Number of faces"), title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue, ).launch(share=False)