import gradio as gr from fastai.vision.all import * learn = load_learner("export_covid.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Covid Classifier from X-ray Images" description = "Covid Classifier from X-ray Image trained with downloaded data from internet. Created as a demo for Gradio and HuggingFace Spaces." examples = ["COVID-100.png", "COVID-103.png", "normal_5007.png", "normal_5014.png"] interpretation = "default" enable_queue = True gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=2), title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue, ).launch(share=False)