import glob import os import shutil from tests import get_device_id, get_tests_output_path, run_cli from TTS.vocoder.configs import MelganConfig config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") output_path = os.path.join(get_tests_output_path(), "train_outputs") config = MelganConfig( batch_size=4, eval_batch_size=4, num_loader_workers=0, num_eval_loader_workers=0, run_eval=True, test_delay_epochs=-1, epochs=1, seq_len=2048, eval_split_size=1, print_step=1, discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]}, print_eval=True, data_path="tests/data/ljspeech", output_path=output_path, ) config.audio.do_trim_silence = True config.audio.trim_db = 60 config.save_json(config_path) # train the model for one epoch command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " run_cli(command_train) # Find latest folder continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) # restore the model and continue training for one more epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " ) run_cli(command_train) shutil.rmtree(continue_path)