import torch import torch.nn as nn import torch.nn.functional as F import math def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias) class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes): super(ConvBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = conv3x3(in_planes, int(out_planes / 2)) self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4)) self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4)) if in_planes != out_planes: self.downsample = nn.Sequential( nn.BatchNorm2d(in_planes), nn.ReLU(True), nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False), ) else: self.downsample = None def forward(self, x): residual = x out1 = self.bn1(x) out1 = F.relu(out1, True) out1 = self.conv1(out1) out2 = self.bn2(out1) out2 = F.relu(out2, True) out2 = self.conv2(out2) out3 = self.bn3(out2) out3 = F.relu(out3, True) out3 = self.conv3(out3) out3 = torch.cat((out1, out2, out3), 1) if self.downsample is not None: residual = self.downsample(residual) out3 += residual return out3 class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class HourGlass(nn.Module): def __init__(self, num_modules, depth, num_features): super(HourGlass, self).__init__() self.num_modules = num_modules self.depth = depth self.features = num_features self._generate_network(self.depth) def _generate_network(self, level): self.add_module('b1_' + str(level), ConvBlock(self.features, self.features)) self.add_module('b2_' + str(level), ConvBlock(self.features, self.features)) if level > 1: self._generate_network(level - 1) else: self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features)) self.add_module('b3_' + str(level), ConvBlock(self.features, self.features)) def _forward(self, level, inp): # Upper branch up1 = inp up1 = self._modules['b1_' + str(level)](up1) # Lower branch low1 = F.avg_pool2d(inp, 2, stride=2) low1 = self._modules['b2_' + str(level)](low1) if level > 1: low2 = self._forward(level - 1, low1) else: low2 = low1 low2 = self._modules['b2_plus_' + str(level)](low2) low3 = low2 low3 = self._modules['b3_' + str(level)](low3) up2 = F.interpolate(low3, scale_factor=2, mode='nearest') return up1 + up2 def forward(self, x): return self._forward(self.depth, x) class FAN(nn.Module): def __init__(self, num_modules=1): super(FAN, self).__init__() self.num_modules = num_modules # Base part self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.conv2 = ConvBlock(64, 128) self.conv3 = ConvBlock(128, 128) self.conv4 = ConvBlock(128, 256) # Stacking part for hg_module in range(self.num_modules): self.add_module('m' + str(hg_module), HourGlass(1, 4, 256)) self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) self.add_module('conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) self.add_module('l' + str(hg_module), nn.Conv2d(256, 68, kernel_size=1, stride=1, padding=0)) if hg_module < self.num_modules - 1: self.add_module( 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module('al' + str(hg_module), nn.Conv2d(68, 256, kernel_size=1, stride=1, padding=0)) def forward(self, x): x = F.relu(self.bn1(self.conv1(x)), True) x = F.avg_pool2d(self.conv2(x), 2, stride=2) x = self.conv3(x) x = self.conv4(x) previous = x outputs = [] for i in range(self.num_modules): hg = self._modules['m' + str(i)](previous) ll = hg ll = self._modules['top_m_' + str(i)](ll) ll = F.relu(self._modules['bn_end' + str(i)] (self._modules['conv_last' + str(i)](ll)), True) # Predict heatmaps tmp_out = self._modules['l' + str(i)](ll) outputs.append(tmp_out) if i < self.num_modules - 1: ll = self._modules['bl' + str(i)](ll) tmp_out_ = self._modules['al' + str(i)](tmp_out) previous = previous + ll + tmp_out_ return outputs class ResNetDepth(nn.Module): def __init__(self, block=Bottleneck, layers=[3, 8, 36, 3], num_classes=68): self.inplanes = 64 super(ResNetDepth, self).__init__() self.conv1 = nn.Conv2d(3 + 68, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x