import copy import os import unittest import torch from torch import nn, optim from tests import get_tests_input_path from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig from TTS.tts.configs.tacotron_config import TacotronConfig from TTS.tts.layers.losses import L1LossMasked from TTS.tts.models.tacotron import Tacotron from TTS.utils.audio import AudioProcessor # pylint: disable=unused-variable torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") config_global = TacotronConfig(num_chars=32, num_speakers=5, out_channels=513, decoder_output_dim=80) ap = AudioProcessor(**config_global.audio) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") def count_parameters(model): r"""Count number of trainable parameters in a network""" return sum(p.numel() for p in model.parameters() if p.requires_grad) class TacotronTrainTest(unittest.TestCase): @staticmethod def test_train_step(): config = config_global.copy() config.use_speaker_embedding = False config.num_speakers = 1 input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) mel_lengths[-1] = mel_spec.size(1) stop_targets = torch.zeros(8, 30, 1).float().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()) :, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor model.train() print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=config.lr) for _ in range(5): outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) optimizer.zero_grad() loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 class MultiSpeakeTacotronTrainTest(unittest.TestCase): @staticmethod def test_train_step(): config = config_global.copy() config.use_speaker_embedding = True config.num_speakers = 5 input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) mel_lengths[-1] = mel_spec.size(1) stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8,)).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()) :, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) config.d_vector_dim = 55 model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor model.train() print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=config.lr) for _ in range(5): outputs = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} ) optimizer.zero_grad() loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 class TacotronGSTTrainTest(unittest.TestCase): @staticmethod def test_train_step(): config = config_global.copy() config.use_speaker_embedding = True config.num_speakers = 10 config.use_gst = True config.gst = GSTConfig() # with random gst mel style input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 120, config.audio["num_mels"]).to(device) linear_spec = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) mel_lengths = torch.randint(20, 120, (8,)).long().to(device) mel_lengths[-1] = 120 stop_targets = torch.zeros(8, 120, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8,)).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()) :, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) config.use_gst = True config.gst = GSTConfig() model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor model.train() # print(model) print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=config.lr) for _ in range(10): outputs = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} ) optimizer.zero_grad() loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 # with file gst style mel_spec = ( torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :120].unsqueeze(0).transpose(1, 2).to(device) ) mel_spec = mel_spec.repeat(8, 1, 1) input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 linear_spec = torch.rand(8, mel_spec.size(1), config.audio["fft_size"] // 2 + 1).to(device) mel_lengths = torch.randint(20, mel_spec.size(1), (8,)).long().to(device) mel_lengths[-1] = mel_spec.size(1) stop_targets = torch.zeros(8, mel_spec.size(1), 1).float().to(device) speaker_ids = torch.randint(0, 5, (8,)).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()) :, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor model.train() # print(model) print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=config.lr) for _ in range(10): outputs = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} ) optimizer.zero_grad() loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 class TacotronCapacitronTrainTest(unittest.TestCase): @staticmethod def test_train_step(): config = TacotronConfig( num_chars=32, num_speakers=10, use_speaker_embedding=True, out_channels=513, decoder_output_dim=80, use_capacitron_vae=True, capacitron_vae=CapacitronVAEConfig(), optimizer="CapacitronOptimizer", optimizer_params={ "RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, "SGD": {"lr": 1e-5, "momentum": 0.9}, }, ) batch = dict({}) batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device) batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device) batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0] batch["text_lengths"][0] = 128 batch["linear_input"] = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device) batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device) batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0] batch["mel_lengths"][0] = 120 batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device) batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device) batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device) batch["d_vectors"] = None for idx in batch["mel_lengths"]: batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0 batch["stop_targets"] = batch["stop_targets"].view( batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1 ) batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze() model = Tacotron(config).to(device) criterion = model.get_criterion() optimizer = model.get_optimizer() model.train() print(" > Num parameters for Tacotron with Capacitron VAE model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 for _ in range(10): _, loss_dict = model.train_step(batch, criterion) optimizer.zero_grad() loss_dict["capacitron_vae_beta_loss"].backward() optimizer.first_step() loss_dict["loss"].backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): @staticmethod def test_train_step(): config = config_global.copy() config.use_d_vector_file = True config.use_gst = True config.gst = GSTConfig() input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) mel_lengths[-1] = mel_spec.size(1) stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_embeddings = torch.rand(8, 55).to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()) :, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) config.d_vector_dim = 55 model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor model.train() print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=config.lr) for _ in range(5): outputs = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings} ) optimizer.zero_grad() loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: name, param = name_param if name == "gst_layer.encoder.recurrence.weight_hh_l0": continue assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1