import torch import torch.nn.functional as F import math from tqdm import tqdm class NoiseScheduleVP: def __init__( self, schedule='discrete', betas=None, alphas_cumprod=None, continuous_beta_0=0.1, continuous_beta_1=20., dtype=torch.float32, ): """Thanks to DPM-Solver for their code base""" """Create a wrapper class for the forward SDE (VP type). *** Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. *** The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: log_alpha_t = self.marginal_log_mean_coeff(t) sigma_t = self.marginal_std(t) lambda_t = self.marginal_lambda(t) Moreover, as lambda(t) is an invertible function, we also support its inverse function: t = self.inverse_lambda(lambda_t) =============================================================== We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). 1. For discrete-time DPMs: For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: t_i = (i + 1) / N e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. Args: betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. **Important**: Please pay special attention for the args for `alphas_cumprod`: The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have alpha_{t_n} = \sqrt{\hat{alpha_n}}, and log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). 2. For continuous-time DPMs: We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise schedule are the default settings in DDPM and improved-DDPM: Args: beta_min: A `float` number. The smallest beta for the linear schedule. beta_max: A `float` number. The largest beta for the linear schedule. cosine_s: A `float` number. The hyperparameter in the cosine schedule. cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. T: A `float` number. The ending time of the forward process. =============================================================== Args: schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, 'linear' or 'cosine' for continuous-time DPMs. Returns: A wrapper object of the forward SDE (VP type). =============================================================== Example: # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): >>> ns = NoiseScheduleVP('discrete', betas=betas) # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) # For continuous-time DPMs (VPSDE), linear schedule: >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) """ if schedule not in ['discrete', 'linear', 'cosine']: raise ValueError( "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( schedule)) self.schedule = schedule if schedule == 'discrete': if betas is not None: log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) else: assert alphas_cumprod is not None log_alphas = 0.5 * torch.log(alphas_cumprod) self.total_N = len(log_alphas) self.T = 1. self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype) self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype) else: self.total_N = 1000 self.beta_0 = continuous_beta_0 self.beta_1 = continuous_beta_1 self.cosine_s = 0.008 self.cosine_beta_max = 999. self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * ( 1. + self.cosine_s) / math.pi - self.cosine_s self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) self.schedule = schedule if schedule == 'cosine': # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. self.T = 0.9946 else: self.T = 1. def marginal_log_mean_coeff(self, t): """ Compute log(alpha_t) of a given continuous-time label t in [0, T]. """ if self.schedule == 'discrete': return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) elif self.schedule == 'linear': return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 elif self.schedule == 'cosine': log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 return log_alpha_t def marginal_alpha(self, t): """ Compute alpha_t of a given continuous-time label t in [0, T]. """ return torch.exp(self.marginal_log_mean_coeff(t)) def marginal_std(self, t): """ Compute sigma_t of a given continuous-time label t in [0, T]. """ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) def marginal_lambda(self, t): """ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. """ log_mean_coeff = self.marginal_log_mean_coeff(t) log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) return log_mean_coeff - log_std def inverse_lambda(self, lamb): """ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. """ if self.schedule == 'linear': tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) Delta = self.beta_0 ** 2 + tmp return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) elif self.schedule == 'discrete': log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) return t.reshape((-1,)) else: log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * ( 1. + self.cosine_s) / math.pi - self.cosine_s t = t_fn(log_alpha) return t def edm_sigma(self, t): return self.marginal_std(t) / self.marginal_alpha(t) def edm_inverse_sigma(self, edmsigma): alpha = 1 / (edmsigma ** 2 + 1).sqrt() sigma = alpha * edmsigma lambda_t = torch.log(alpha / sigma) t = self.inverse_lambda(lambda_t) return t def model_wrapper( model, noise_schedule, model_type="noise", model_kwargs={}, guidance_type="uncond", condition=None, unconditional_condition=None, guidance_scale=1., classifier_fn=None, classifier_kwargs={}, ): """Thanks to DPM-Solver for their code base""" """Create a wrapper function for the noise prediction model. SA-Solver needs to solve the continuous-time diffusion SDEs. For DPMs trained on discrete-time labels, we need to firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. We support four types of the diffusion model by setting `model_type`: 1. "noise": noise prediction model. (Trained by predicting noise). 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). 3. "v": velocity prediction model. (Trained by predicting the velocity). The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." arXiv preprint arXiv:2202.00512 (2022). [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." arXiv preprint arXiv:2210.02303 (2022). 4. "score": marginal score function. (Trained by denoising score matching). Note that the score function and the noise prediction model follows a simple relationship: ``` noise(x_t, t) = -sigma_t * score(x_t, t) ``` We support three types of guided sampling by DPMs by setting `guidance_type`: 1. "uncond": unconditional sampling by DPMs. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise | x_start | v | score `` 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise | x_start | v | score `` The input `classifier_fn` has the following format: `` classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) `` [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. The input `model` has the following format: `` model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score `` And if cond == `unconditional_condition`, the model output is the unconditional DPM output. [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." arXiv preprint arXiv:2207.12598 (2022). The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) or continuous-time labels (i.e. epsilon to T). We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: `` def model_fn(x, t_continuous) -> noise: t_input = get_model_input_time(t_continuous) return noise_pred(model, x, t_input, **model_kwargs) `` where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for SA-Solver. =============================================================== Args: model: A diffusion model with the corresponding format described above. noise_schedule: A noise schedule object, such as NoiseScheduleVP. model_type: A `str`. The parameterization type of the diffusion model. "noise" or "x_start" or "v" or "score". model_kwargs: A `dict`. A dict for the other inputs of the model function. guidance_type: A `str`. The type of the guidance for sampling. "uncond" or "classifier" or "classifier-free". condition: A pytorch tensor. The condition for the guided sampling. Only used for "classifier" or "classifier-free" guidance type. unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. Only used for "classifier-free" guidance type. guidance_scale: A `float`. The scale for the guided sampling. classifier_fn: A classifier function. Only used for the classifier guidance. classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. Returns: A noise prediction model that accepts the noised data and the continuous time as the inputs. """ def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. For continuous-time DPMs, we just use `t_continuous`. """ if noise_schedule.schedule == 'discrete': return (t_continuous - 1. / noise_schedule.total_N) * 1000. else: return t_continuous def noise_pred_fn(x, t_continuous, cond=None): t_input = get_model_input_time(t_continuous) if cond is None: output = model(x, t_input, **model_kwargs) else: output = model(x, t_input, cond, **model_kwargs) if model_type == "noise": return output elif model_type == "x_start": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) return (x - alpha_t[0] * output) / sigma_t[0] elif model_type == "v": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) return alpha_t[0] * output + sigma_t[0] * x elif model_type == "score": sigma_t = noise_schedule.marginal_std(t_continuous) return -sigma_t[0] * output def cond_grad_fn(x, t_input): """ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). """ with torch.enable_grad(): x_in = x.detach().requires_grad_(True) log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) return torch.autograd.grad(log_prob.sum(), x_in)[0] def model_fn(x, t_continuous): """ The noise predicition model function that is used for DPM-Solver. """ if guidance_type == "uncond": return noise_pred_fn(x, t_continuous) elif guidance_type == "classifier": assert classifier_fn is not None t_input = get_model_input_time(t_continuous) cond_grad = cond_grad_fn(x, t_input) sigma_t = noise_schedule.marginal_std(t_continuous) noise = noise_pred_fn(x, t_continuous) return noise - guidance_scale * sigma_t * cond_grad elif guidance_type == "classifier-free": if guidance_scale == 1. or unconditional_condition is None: return noise_pred_fn(x, t_continuous, cond=condition) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) return noise_uncond + guidance_scale * (noise - noise_uncond) assert model_type in ["noise", "x_start", "v", "score"] assert guidance_type in ["uncond", "classifier", "classifier-free"] return model_fn class SASolver: def __init__( self, model_fn, noise_schedule, algorithm_type="data_prediction", correcting_x0_fn=None, correcting_xt_fn=None, thresholding_max_val=1., dynamic_thresholding_ratio=0.995 ): """ Construct a SA-Solver The default value for algorithm_type is "data_prediction" and we recommend not to change it to "noise_prediction". For details, please see Appendix A.2.4 in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf """ self.model = lambda x, t: model_fn(x, t.expand((x.shape[0]))) self.noise_schedule = noise_schedule assert algorithm_type in ["data_prediction", "noise_prediction"] if correcting_x0_fn == "dynamic_thresholding": self.correcting_x0_fn = self.dynamic_thresholding_fn else: self.correcting_x0_fn = correcting_x0_fn self.correcting_xt_fn = correcting_xt_fn self.dynamic_thresholding_ratio = dynamic_thresholding_ratio self.thresholding_max_val = thresholding_max_val self.predict_x0 = algorithm_type == "data_prediction" self.sigma_min = float(self.noise_schedule.edm_sigma(torch.tensor([1e-3]))) self.sigma_max = float(self.noise_schedule.edm_sigma(torch.tensor([1]))) def dynamic_thresholding_fn(self, x0, t=None): """ The dynamic thresholding method. """ dims = x0.dim() p = self.dynamic_thresholding_ratio s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) x0 = torch.clamp(x0, -s, s) / s return x0 def noise_prediction_fn(self, x, t): """ Return the noise prediction model. """ return self.model(x, t) def data_prediction_fn(self, x, t): """ Return the data prediction model (with corrector). """ noise = self.noise_prediction_fn(x, t) alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) x0 = (x - sigma_t * noise) / alpha_t if self.correcting_x0_fn is not None: x0 = self.correcting_x0_fn(x0) return x0 def model_fn(self, x, t): """ Convert the model to the noise prediction model or the data prediction model. """ if self.predict_x0: return self.data_prediction_fn(x, t) else: return self.noise_prediction_fn(x, t) def get_time_steps(self, skip_type, t_T, t_0, N, order, device): """Compute the intermediate time steps for sampling. """ if skip_type == 'logSNR': lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) logSNR_steps = lambda_T + torch.linspace(torch.tensor(0.).cpu().item(), (lambda_0 - lambda_T).cpu().item() ** (1. / order), N + 1).pow( order).to(device) return self.noise_schedule.inverse_lambda(logSNR_steps) elif skip_type == 'time': t = torch.linspace(t_T ** (1. / order), t_0 ** (1. / order), N + 1).pow(order).to(device) return t elif skip_type == 'karras': sigma_min = max(0.002, self.sigma_min) sigma_max = min(80, self.sigma_max) sigma_steps = torch.linspace(sigma_max ** (1. / 7), sigma_min ** (1. / 7), N + 1).pow(7).to(device) t = self.noise_schedule.edm_inverse_sigma(sigma_steps) return t else: raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time' or 'karras'".format(skip_type)) def denoise_to_zero_fn(self, x, s): """ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. """ return self.data_prediction_fn(x, s) def get_coefficients_exponential_negative(self, order, interval_start, interval_end): """ Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end For calculating the coefficient of gradient terms after the lagrange interpolation, see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf For noise_prediction formula. """ assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" if order == 0: return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1) elif order == 1: return torch.exp(-interval_end) * ( (interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)) elif order == 2: return torch.exp(-interval_end) * ( (interval_start ** 2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - ( interval_end ** 2 + 2 * interval_end + 2)) elif order == 3: return torch.exp(-interval_end) * ( (interval_start ** 3 + 3 * interval_start ** 2 + 6 * interval_start + 6) * torch.exp( interval_end - interval_start) - (interval_end ** 3 + 3 * interval_end ** 2 + 6 * interval_end + 6)) def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau): """ Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end For calculating the coefficient of gradient terms after the lagrange interpolation, see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf For data_prediction formula. """ assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" # after change of variable(cov) interval_end_cov = (1 + tau ** 2) * interval_end interval_start_cov = (1 + tau ** 2) * interval_start if order == 0: return torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / ( (1 + tau ** 2)) elif order == 1: return torch.exp(interval_end_cov) * ((interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp( -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 2) elif order == 2: return torch.exp(interval_end_cov) * ((interval_end_cov ** 2 - 2 * interval_end_cov + 2) - ( interval_start_cov ** 2 - 2 * interval_start_cov + 2) * torch.exp( -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 3) elif order == 3: return torch.exp(interval_end_cov) * ( (interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6) - ( interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6) * torch.exp( -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 4) def lagrange_polynomial_coefficient(self, order, lambda_list): """ Calculate the coefficient of lagrange polynomial For lagrange interpolation """ assert order in [0, 1, 2, 3] assert order == len(lambda_list) - 1 if order == 0: return [[1]] elif order == 1: return [[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])], [1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]] elif order == 2: denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) return [[1 / denominator1, (-lambda_list[1] - lambda_list[2]) / denominator1, lambda_list[1] * lambda_list[2] / denominator1], [1 / denominator2, (-lambda_list[0] - lambda_list[2]) / denominator2, lambda_list[0] * lambda_list[2] / denominator2], [1 / denominator3, (-lambda_list[0] - lambda_list[1]) / denominator3, lambda_list[0] * lambda_list[1] / denominator3] ] elif order == 3: denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * ( lambda_list[0] - lambda_list[3]) denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * ( lambda_list[1] - lambda_list[3]) denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * ( lambda_list[2] - lambda_list[3]) denominator4 = (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * ( lambda_list[3] - lambda_list[2]) return [[1 / denominator1, (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1, (lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[ 3]) / denominator1, (-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1], [1 / denominator2, (-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2, (lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[ 3]) / denominator2, (-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2], [1 / denominator3, (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3, (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[ 3]) / denominator3, (-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3], [1 / denominator4, (-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4, (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[ 2]) / denominator4, (-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4] ] def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau): """ Calculate the coefficient of gradients. """ assert order in [1, 2, 3, 4] assert order == len(lambda_list), 'the length of lambda list must be equal to the order' coefficients = [] lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list) for i in range(order): coefficient = 0 for j in range(order): if self.predict_x0: coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive( order - 1 - j, interval_start, interval_end, tau) else: coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative( order - 1 - j, interval_start, interval_end) coefficients.append(coefficient) assert len(coefficients) == order, 'the length of coefficients does not match the order' return coefficients def adams_bashforth_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t): """ SA-Predictor, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf """ assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" # get noise schedule ns = self.noise_schedule alpha_t = ns.marginal_alpha(t) sigma_t = ns.marginal_std(t) lambda_t = ns.marginal_lambda(t) alpha_prev = ns.marginal_alpha(t_prev_list[-1]) sigma_prev = ns.marginal_std(t_prev_list[-1]) gradient_part = torch.zeros_like(x) h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) lambda_list = [] for i in range(order): lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)])) gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau) for i in range(order): if self.predict_x0: gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ i] * model_prev_list[-(i + 1)] else: gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] if self.predict_x0: noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise else: noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise if self.predict_x0: x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part else: x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part return x_t def adams_moulton_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t): """ SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf """ assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" # get noise schedule ns = self.noise_schedule alpha_t = ns.marginal_alpha(t) sigma_t = ns.marginal_std(t) lambda_t = ns.marginal_lambda(t) alpha_prev = ns.marginal_alpha(t_prev_list[-1]) sigma_prev = ns.marginal_std(t_prev_list[-1]) gradient_part = torch.zeros_like(x) h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) lambda_list = [] t_list = t_prev_list + [t] for i in range(order): lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)])) gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau) for i in range(order): if self.predict_x0: gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ i] * model_prev_list[-(i + 1)] else: gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] if self.predict_x0: noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise else: noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise if self.predict_x0: x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part else: x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part return x_t def adams_bashforth_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t): """ SA-Predictor, with the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf """ assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" # get noise schedule ns = self.noise_schedule alpha_t = ns.marginal_alpha(t) sigma_t = ns.marginal_std(t) lambda_t = ns.marginal_lambda(t) alpha_prev = ns.marginal_alpha(t_prev_list[-1]) sigma_prev = ns.marginal_std(t_prev_list[-1]) gradient_part = torch.zeros_like(x) h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) lambda_list = [] for i in range(order): lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)])) gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau) if self.predict_x0: if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling. # The added term is O(h^3). Empirically we find it will slightly improve the image quality. # ODE case # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( (1 + tau ** 2) ** 2)) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda( t_prev_list[-2])) gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( (1 + tau ** 2) ** 2)) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda( t_prev_list[-2])) for i in range(order): if self.predict_x0: gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ i] * model_prev_list[-(i + 1)] else: gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] if self.predict_x0: noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise else: noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise if self.predict_x0: x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part else: x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part return x_t def adams_moulton_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t): """ SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf """ assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" # get noise schedule ns = self.noise_schedule alpha_t = ns.marginal_alpha(t) sigma_t = ns.marginal_std(t) lambda_t = ns.marginal_lambda(t) alpha_prev = ns.marginal_alpha(t_prev_list[-1]) sigma_prev = ns.marginal_std(t_prev_list[-1]) gradient_part = torch.zeros_like(x) h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) lambda_list = [] t_list = t_prev_list + [t] for i in range(order): lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)])) gradient_coefficients = self.get_coefficients_fn(order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau) if self.predict_x0: if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling. # The added term is O(h^3). Empirically we find it will slightly improve the image quality. # ODE case # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h) # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h) gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( (1 + tau ** 2) ** 2 * h)) gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * ( h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ( (1 + tau ** 2) ** 2 * h)) for i in range(order): if self.predict_x0: gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[ i] * model_prev_list[-(i + 1)] else: gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] if self.predict_x0: noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise else: noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise if self.predict_x0: x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part else: x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part return x_t def sample_few_steps(self, x, tau, steps=5, t_start=None, t_end=None, skip_type='time', skip_order=1, predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False ): """ For the PC-mode, please refer to the wiki page https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode 'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. """ skip_first_step = False skip_final_step = True lower_order_final = True denoise_to_zero = False assert pc_mode in ['PEC', 'PECE'], 'Predictor-corrector mode only supports PEC and PECE' t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end t_T = self.noise_schedule.T if t_start is None else t_start assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" device = x.device intermediates = [] with torch.no_grad(): assert steps >= max(predictor_order, corrector_order - 1) timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order, device=device) assert timesteps.shape[0] - 1 == steps # Init the initial values. step = 0 t = timesteps[step] noise = torch.randn_like(x) t_prev_list = [t] # do not evaluate if skip_first_step if skip_first_step: if self.predict_x0: alpha_t = self.noise_schedule.marginal_alpha(t) sigma_t = self.noise_schedule.marginal_std(t) model_prev_list = [(1 - sigma_t) / alpha_t * x] else: model_prev_list = [x] else: model_prev_list = [self.model_fn(x, t)] if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step) if return_intermediate: intermediates.append(x) # determine the first several values for step in tqdm(range(1, max(predictor_order, corrector_order - 1))): t = timesteps[step] predictor_order_used = min(predictor_order, step) corrector_order_used = min(corrector_order, step + 1) noise = torch.randn_like(x) # predictor step x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) # evaluation step model_x = self.model_fn(x_p, t) # update model_list model_prev_list.append(model_x) # corrector step if corrector_order > 0: x = self.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) else: x = x_p # evaluation step if correction and mode = pece if corrector_order > 0: if pc_mode == 'PECE': model_x = self.model_fn(x, t) del model_prev_list[-1] model_prev_list.append(model_x) if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step) if return_intermediate: intermediates.append(x) t_prev_list.append(t) for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)): if lower_order_final: predictor_order_used = min(predictor_order, steps - step + 1) corrector_order_used = min(corrector_order, steps - step + 2) else: predictor_order_used = predictor_order corrector_order_used = corrector_order t = timesteps[step] noise = torch.randn_like(x) # predictor step if skip_final_step and step == steps and not denoise_to_zero: x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=0, model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) else: x_p = self.adams_bashforth_update_few_steps(order=predictor_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) # evaluation step # do not evaluate if skip_final_step and step = steps if not skip_final_step or step < steps: model_x = self.model_fn(x_p, t) # update model_list # do not update if skip_final_step and step = steps if not skip_final_step or step < steps: model_prev_list.append(model_x) # corrector step # do not correct if skip_final_step and step = steps if corrector_order > 0: if not skip_final_step or step < steps: x = self.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) else: x = x_p else: x = x_p # evaluation step if mode = pece and step != steps if corrector_order > 0: if pc_mode == 'PECE' and step < steps: model_x = self.model_fn(x, t) del model_prev_list[-1] model_prev_list.append(model_x) if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step) if return_intermediate: intermediates.append(x) t_prev_list.append(t) del model_prev_list[0] if denoise_to_zero: t = torch.ones((1,)).to(device) * t_0 x = self.denoise_to_zero_fn(x, t) if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step + 1) if return_intermediate: intermediates.append(x) if return_intermediate: return x, intermediates else: return x def sample_more_steps(self, x, tau, steps=20, t_start=None, t_end=None, skip_type='time', skip_order=1, predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False ): """ For the PC-mode, please refer to the wiki page https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode 'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. """ skip_first_step = False skip_final_step = False lower_order_final = True denoise_to_zero = True assert pc_mode in ['PEC', 'PECE'], 'Predictor-corrector mode only supports PEC and PECE' t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end t_T = self.noise_schedule.T if t_start is None else t_start assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" device = x.device intermediates = [] with torch.no_grad(): assert steps >= max(predictor_order, corrector_order - 1) timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order, device=device) assert timesteps.shape[0] - 1 == steps # Init the initial values. step = 0 t = timesteps[step] noise = torch.randn_like(x) t_prev_list = [t] # do not evaluate if skip_first_step if skip_first_step: if self.predict_x0: alpha_t = self.noise_schedule.marginal_alpha(t) sigma_t = self.noise_schedule.marginal_std(t) model_prev_list = [(1 - sigma_t) / alpha_t * x] else: model_prev_list = [x] else: model_prev_list = [self.model_fn(x, t)] if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step) if return_intermediate: intermediates.append(x) # determine the first several values for step in tqdm(range(1, max(predictor_order, corrector_order - 1))): t = timesteps[step] predictor_order_used = min(predictor_order, step) corrector_order_used = min(corrector_order, step + 1) noise = torch.randn_like(x) # predictor step x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) # evaluation step model_x = self.model_fn(x_p, t) # update model_list model_prev_list.append(model_x) # corrector step if corrector_order > 0: x = self.adams_moulton_update(order=corrector_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) else: x = x_p # evaluation step if mode = pece if corrector_order > 0: if pc_mode == 'PECE': model_x = self.model_fn(x, t) del model_prev_list[-1] model_prev_list.append(model_x) if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step) if return_intermediate: intermediates.append(x) t_prev_list.append(t) for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)): if lower_order_final: predictor_order_used = min(predictor_order, steps - step + 1) corrector_order_used = min(corrector_order, steps - step + 2) else: predictor_order_used = predictor_order corrector_order_used = corrector_order t = timesteps[step] noise = torch.randn_like(x) # predictor step if skip_final_step and step == steps and not denoise_to_zero: x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=0, model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) else: x_p = self.adams_bashforth_update(order=predictor_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) # evaluation step # do not evaluate if skip_final_step and step = steps if not skip_final_step or step < steps: model_x = self.model_fn(x_p, t) # update model_list # do not update if skip_final_step and step = steps if not skip_final_step or step < steps: model_prev_list.append(model_x) # corrector step # do not correct if skip_final_step and step = steps if corrector_order > 0: if not skip_final_step or step < steps: x = self.adams_moulton_update(order=corrector_order_used, x=x, tau=tau(t), model_prev_list=model_prev_list, t_prev_list=t_prev_list, noise=noise, t=t) else: x = x_p else: x = x_p # evaluation step if mode = pece and step != steps if corrector_order > 0: if pc_mode == 'PECE' and step < steps: model_x = self.model_fn(x, t) del model_prev_list[-1] model_prev_list.append(model_x) if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step) if return_intermediate: intermediates.append(x) t_prev_list.append(t) del model_prev_list[0] if denoise_to_zero: t = torch.ones((1,)).to(device) * t_0 x = self.denoise_to_zero_fn(x, t) if self.correcting_xt_fn is not None: x = self.correcting_xt_fn(x, t, step + 1) if return_intermediate: intermediates.append(x) if return_intermediate: return x, intermediates else: return x def sample(self, mode, x, tau, steps, t_start=None, t_end=None, skip_type='time', skip_order=1, predictor_order=3, corrector_order=4, pc_mode='PEC', return_intermediate=False ): """ For the PC-mode, please refer to the wiki page https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode 'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. 'few_steps' mode is recommended. The differences between 'few_steps' and 'more_steps' are as below: 1) 'few_steps' do not correct at final step and do not denoise to zero, while 'more_steps' do these two. Thus the NFEs for 'few_steps' = steps, NFEs for 'more_steps' = steps + 2 For most of the experiments and tasks, we find these two operations do not have much help to sample quality. 2) 'few_steps' use a rescaling trick as in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf We find it will slightly improve the sample quality especially in few steps. """ assert mode in ['few_steps', 'more_steps'], "mode must be either 'few_steps' or 'more_steps'" if mode == 'few_steps': return self.sample_few_steps(x=x, tau=tau, steps=steps, t_start=t_start, t_end=t_end, skip_type=skip_type, skip_order=skip_order, predictor_order=predictor_order, corrector_order=corrector_order, pc_mode=pc_mode, return_intermediate=return_intermediate) else: return self.sample_more_steps(x=x, tau=tau, steps=steps, t_start=t_start, t_end=t_end, skip_type=skip_type, skip_order=skip_order, predictor_order=predictor_order, corrector_order=corrector_order, pc_mode=pc_mode, return_intermediate=return_intermediate) ############################################################# # other utility functions ############################################################# def interpolate_fn(x, xp, yp): """ A piecewise linear function y = f(x), using xp and yp as keypoints. We implement f(x) in a differentiable way (i.e. applicable for autograd). The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) Args: x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. yp: PyTorch tensor with shape [C, K]. Returns: The function values f(x), with shape [N, C]. """ N, K = x.shape[0], xp.shape[1] all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) sorted_all_x, x_indices = torch.sort(all_x, dim=2) x_idx = torch.argmin(x_indices, dim=2) cand_start_idx = x_idx - 1 start_idx = torch.where( torch.eq(x_idx, 0), torch.tensor(1, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) start_idx2 = torch.where( torch.eq(x_idx, 0), torch.tensor(0, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) return cand def expand_dims(v, dims): """ Expand the tensor `v` to the dim `dims`. Args: `v`: a PyTorch tensor with shape [N]. `dim`: a `int`. Returns: a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. """ return v[(...,) + (None,) * (dims - 1)]