# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import math import torch import torch.nn as nn import torch.nn.functional as F import xformers.ops from einops import rearrange from timm.models.vision_transformer import Mlp, Attention as Attention_ def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def t2i_modulate(x, shift, scale): return x * (1 + scale) + shift class MultiHeadCrossAttention(nn.Module): def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., **block_kwargs): super(MultiHeadCrossAttention, self).__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.q_linear = nn.Linear(d_model, d_model) self.kv_linear = nn.Linear(d_model, d_model*2) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, cond, mask=None): # query/value: img tokens; key: condition; mask: if padding tokens B, N, C = x.shape q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) k, v = kv.unbind(2) attn_bias = None if mask is not None: attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) x = x.view(B, -1, C) x = self.proj(x) x = self.proj_drop(x) return x class AttentionKVCompress(Attention_): """Multi-head Attention block with KV token compression and qk norm.""" def __init__( self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, **block_kwargs, ): """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool: If True, add a learnable bias to query, key, value. """ super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs) self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every'] self.sr_ratio = sr_ratio if sr_ratio > 1 and sampling == 'conv': # Avg Conv Init. self.sr = nn.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio) self.sr.weight.data.fill_(1/sr_ratio**2) self.sr.bias.data.zero_() self.norm = nn.LayerNorm(dim) if qk_norm: self.q_norm = nn.LayerNorm(dim) self.k_norm = nn.LayerNorm(dim) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() def downsample_2d(self, tensor, H, W, scale_factor, sampling=None): if sampling is None or scale_factor == 1: return tensor B, N, C = tensor.shape if sampling == 'uniform_every': return tensor[:, ::scale_factor], int(N // scale_factor) tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2) new_H, new_W = int(H / scale_factor), int(W / scale_factor) new_N = new_H * new_W if sampling == 'ave': tensor = F.interpolate( tensor, scale_factor=1 / scale_factor, mode='nearest' ).permute(0, 2, 3, 1) elif sampling == 'uniform': tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1) elif sampling == 'conv': tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1) tensor = self.norm(tensor) else: raise ValueError return tensor.reshape(B, new_N, C).contiguous(), new_N def forward(self, x, mask=None, HW=None, block_id=None): B, N, C = x.shape new_N = N if HW is None: H = W = int(N ** 0.5) else: H, W = HW qkv = self.qkv(x).reshape(B, N, 3, C) q, k, v = qkv.unbind(2) dtype = q.dtype q = self.q_norm(q) k = self.k_norm(k) # KV compression if self.sr_ratio > 1: k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling) v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling) q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) k = k.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype) v = v.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype) use_fp32_attention = getattr(self, 'fp32_attention', False) # necessary for NAN loss if use_fp32_attention: q, k, v = q.float(), k.float(), v.float() attn_bias = None if mask is not None: attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf')) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) x = x.view(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x ################################################################################# # AMP attention with fp32 softmax to fix loss NaN problem during training # ################################################################################# class Attention(Attention_): def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) use_fp32_attention = getattr(self, 'fp32_attention', False) if use_fp32_attention: q, k = q.float(), k.float() with torch.cuda.amp.autocast(enabled=not use_fp32_attention): attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class FinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class T2IFinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5) self.out_channels = out_channels def forward(self, x, t): shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) x = t2i_modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class MaskFinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True) ) def forward(self, x, t): shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DecoderLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, decoder_hidden_size): super().__init__() self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, t): shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) x = modulate(self.norm_decoder(x), shift, scale) x = self.linear(x) return x ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype) t_emb = self.mlp(t_freq) return t_emb @property def dtype(self): # 返回模型参数的数据类型 return next(self.parameters()).dtype class SizeEmbedder(TimestepEmbedder): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size self.outdim = hidden_size def forward(self, s, bs): if s.ndim == 1: s = s[:, None] assert s.ndim == 2 if s.shape[0] != bs: s = s.repeat(bs//s.shape[0], 1) assert s.shape[0] == bs b, dims = s.shape[0], s.shape[1] s = rearrange(s, "b d -> (b d)") s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) s_emb = self.mlp(s_freq) s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) return s_emb @property def dtype(self): # 返回模型参数的数据类型 return next(self.parameters()).dtype class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings class CaptionEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120): super().__init__() self.y_proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0) self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) self.uncond_prob = uncond_prob def token_drop(self, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return caption def forward(self, caption, train, force_drop_ids=None): if train: assert caption.shape[2:] == self.y_embedding.shape use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption = self.token_drop(caption, force_drop_ids) caption = self.y_proj(caption) return caption class CaptionEmbedderDoubleBr(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120): super().__init__() self.proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0) self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5) self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5) self.uncond_prob = uncond_prob def token_drop(self, global_caption, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return global_caption, caption def forward(self, caption, train, force_drop_ids=None): assert caption.shape[2: ] == self.y_embedding.shape global_caption = caption.mean(dim=2).squeeze() use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) y_embed = self.proj(global_caption) return y_embed, caption