# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import warnings import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss import math from transformers import AutoConfig, AutoModelForCausalLM, CLIPVisionModel, CLIPImageProcessor from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from diffusion.model.llava.mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel DEFAULT_IMAGE_TOKEN = "" DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" class LlavaMPTConfig(MPTConfig): model_type = "llava_mpt" class LlavaMPTModel(MPTModel): config_class = LlavaMPTConfig def __init__(self, config: MPTConfig, mm_vision_tower=None, mm_hidden_size=None): super(LlavaMPTModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): # HACK: for FSDP self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)] # self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower) if hasattr(config, "use_mm_proj"): self.mm_projector = nn.Linear(config.mm_hidden_size, config.d_model) def initialize_vision_modules(self, vision_tower, mm_vision_select_layer, pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False): self.config.mm_vision_tower = vision_tower image_processor = CLIPImageProcessor.from_pretrained(vision_tower) if not hasattr(self, 'vision_tower'): vision_tower = CLIPVisionModel.from_pretrained(vision_tower) else: vision_tower = self.vision_tower[0] vision_tower.requires_grad_(False) vision_tower = vision_tower.to(torch.float16) self.vision_tower = [vision_tower] vision_config = vision_tower.config num_patches = (vision_config.image_size // vision_config.patch_size) ** 2 self.config.use_mm_proj = True self.config.mm_hidden_size = vision_config.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer if not hasattr(self, 'mm_projector'): self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.d_model) if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items() if 'mm_projector' in k}) return dict( image_processor=image_processor, image_token_len=num_patches, vision_config=vision_config ) def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None): # HACK: replace back original embeddings for LLaVA pretraining orig_embeds_params = getattr(self, 'orig_embeds_params', None) # if orig_embeds_params is not None: # orig_embeds_params = orig_embeds_params[0] # with torch.no_grad(): # self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data inputs_embeds = self.wte(input_ids) vision_tower = getattr(self, 'vision_tower', None) if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: # TODO: this is a modified multimodal LLM -- Haotian Liu vision_tower = vision_tower[0] # HACK: for FSDP with torch.no_grad(): if type(images) is list: # variable length images image_features = [] for image in images: image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True) select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer] image_feature = select_hidden_state[:, 1:] image_features.append(image_feature) else: image_forward_outs = vision_tower(images, output_hidden_states=True) select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] image_features = select_hidden_state[:, 1:] if type(images) is list: image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features] else: image_features = self.mm_projector(image_features) dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype) dummy_image_features = self.mm_projector(dummy_image_features) new_input_embeds = [] cur_image_idx = 0 for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0: # multimodal LLM, but the current sample is not multimodal cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() new_input_embeds.append(cur_input_embeds) continue if vision_tower.config.use_im_start_end: cur_image_features = image_features[cur_image_idx] num_patches = cur_image_features.shape[0] if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum(): raise ValueError("The number of image start tokens and image end tokens should be the same.") image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0] for image_start_token_pos in image_start_tokens: cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device) num_patches = cur_image_features.shape[0] if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token: raise ValueError("The image end token should follow the image start token.") if orig_embeds_params is not None: cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) else: cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) cur_image_idx += 1 new_input_embeds.append(cur_new_input_embeds) else: cur_image_features = image_features[cur_image_idx] num_patches = cur_image_features.shape[0] if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches: raise ValueError("The number of image patch tokens should be the same as the number of image patches.") masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0] mask_index_start = masked_indices[0] if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any(): raise ValueError("The image patch tokens should be consecutive.") if orig_embeds_params is not None: cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0) else: cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0) new_input_embeds.append(cur_new_input_embeds) inputs_embeds = torch.stack(new_input_embeds, dim=0) return super(LlavaMPTModel, self).forward(input_ids=None, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, tok_emb=inputs_embeds) class LlavaMPTForCausalLM(MPTForCausalLM): config_class = LlavaMPTConfig supports_gradient_checkpointing = True def __init__(self, config): super(MPTForCausalLM, self).__init__(config) if not config.tie_word_embeddings: raise ValueError('MPTForCausalLM only supports tied word embeddings') self.transformer = LlavaMPTModel(config) self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == 'inv_sqrt_d_model': logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") self.logit_scale = logit_scale def get_model(self): return self.transformer def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LlavaMPTModel): module.gradient_checkpointing = value def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None): return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, images=images) logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') logits *= self.logit_scale loss = None if labels is not None: labels = torch.roll(labels, shifts=-1) labels[:, -1] = -100 loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): if inputs_embeds is not None: raise NotImplementedError('inputs_embeds is not implemented for MPT yet') attention_mask = kwargs['attention_mask'].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError('MPT does not support generation with right padding.') if self.transformer.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if self.transformer.prefix_lm: prefix_mask = torch.ones_like(attention_mask) if kwargs.get('use_cache') == False: raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') else: prefix_mask = None return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)} def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device, tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None): vision_config = self.get_model().vision_tower[0].config vision_config.use_im_start_end = mm_use_im_start_end tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if tune_mm_mlp_adapter: self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)] for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['transformer.wte.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] AutoConfig.register("llava_mpt", LlavaMPTConfig) AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM)