import gradio as gr import requests import json import os API_KEY = os.getenv('API_KEY') INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/1361fa56-61d7-4a12-af32-69a3825746fa" FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" headers = { "Authorization": f"Bearer {API_KEY}", "Accept": "application/json", "Content-Type": "application/json", } BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning." def clear_chat(chat_history_state, chat_message): print("Clearing chat...") chat_history_state = [] chat_message = '' return chat_history_state, chat_message def user(message, history, system_message=None): print(f"User message: {message}") history = history or [] if system_message: # Check if a system message is provided and should be added history.append({"role": "system", "content": system_message}) history.append({"role": "user", "content": message}) return history def call_nvidia_api(history, max_tokens, temperature, top_p): payload = { "messages": history, "temperature": temperature, "top_p": top_p, "max_tokens": max_tokens, "stream": False } print(f"Payload enviado: {payload}") # Imprime o payload enviado session = requests.Session() response = session.post(INVOKE_URL, headers=headers, json=payload) while response.status_code == 202: request_id = response.headers.get("NVCF-REQID") fetch_url = FETCH_URL_FORMAT + request_id response = session.get(fetch_url, headers=headers) response.raise_for_status() response_body = response.json() print(f"Payload recebido: {response_body}") # Imprime o payload recebido if response_body["choices"]: assistant_message = response_body["choices"][0]["message"]["content"] history.append({"role": "assistant", "content": assistant_message}) return history def chat(history, system_message, max_tokens, temperature, top_p): print("Starting chat...") updated_history = call_nvidia_api(history, max_tokens, temperature, top_p) return updated_history, "" # Gradio interface setup with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown("Gemma 7B Free Demo") description="""
Gemma is a family of lightweight, state-of-the art LLM open models from Google.
How to Use:
Powered by NVIDIA's cutting-edge AI API, Gemma 7B offers an unparalleled opportunity to interact with an AI model of exceptional conversational ability, accessible to everyone at no cost.
HF Created by: @artificialguybr (Twitter)
Discover more: artificialguy.com
""" gr.Markdown(description) chatbot = gr.Chatbot() message = gr.Textbox(label="What do you want to chat about?", placeholder="Ask me anything.", lines=3) submit = gr.Button(value="Send message") clear = gr.Button(value="New topic") system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5) max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=1024, interactive=True) temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.7, interactive=True) top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95, interactive=True) chat_history_state = gr.State([]) # Ajuste na definição da função update_chatbot para aceitar o valor atualizado do system_msg def update_chatbot(message, chat_history, system_message, max_tokens, temperature, top_p): print("Updating chatbot...") if not chat_history or (chat_history and chat_history[-1]["role"] != "user"): chat_history = user(message, chat_history, system_message if not chat_history else None) else: chat_history = user(message, chat_history) chat_history, _ = chat(chat_history, system_message, max_tokens, temperature, top_p) formatted_chat_history = [] for user_msg, assistant_msg in zip([msg["content"].strip() for msg in chat_history if msg["role"] == "user"], [msg["content"].strip() for msg in chat_history if msg["role"] == "assistant"]): if user_msg or assistant_msg: # Verify if either message is not empty formatted_chat_history.append([user_msg, assistant_msg]) return formatted_chat_history, chat_history, "" submit.click( fn=update_chatbot, inputs=[message, chat_history_state, system_msg, max_tokens, temperature, top_p], outputs=[chatbot, chat_history_state, message] ) clear.click( fn=clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message] ) demo.launch()