import os
import json
import time
from itertools import count, islice
from multiprocessing.pool import ThreadPool
from queue import Queue, Empty
from typing import Any, Callable, Iterable, Iterator, Optional, TypeVar
import gradio as gr
import ijson
import pandas as pd
import requests
from datasets import Dataset, Features, Value, Sequence
from datasets.fingerprint import Hasher
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import DatasetCard, InferenceClient
from utils import StringIteratorIO
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
client = InferenceClient(model_id, token=os.environ.get("INFERENCE_API_HF_TOKEN"))
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
session = requests.Session()
empty_dataframe = pd.DataFrame({"1": [], "2": [], "3": []})
loading_dataframe = pd.DataFrame({"Loading...": ["..."]})
NAMESPACE = "dataset-rewriter"
URL = "https://huggingface.co/spaces/dataset-rewriter/dataset-rewriter"
NUM_ROWS_PREVIEW = 3
PARTIAL_SUFFIX = {10: "-10", 100: "-100", 1000: "-1k", 10_000: "-10k", 100_000: "-100k", 1000_000: "-1M"}
MAX_NUM_ROWS_TO_REWRITE = int(os.environ.get("MAX_NUM_ROWS_TO_REWRITE") or 1000)
assert MAX_NUM_ROWS_TO_REWRITE in PARTIAL_SUFFIX, "allowed max num rows are 100, 1000, 10000, 100000 and 1000000"
NUM_PARALLEL_CALLS = 10
NUM_ROWS_PER_CALL = 3
MAX_PROGRESS_UPDATES_PER_SECOND = 4
MAX_STRING_LENGTH = 1000
REWRITE_DATASET = (
"A Machine Learning practitioner is looking for a dataset similar to '{dataset}' but slightly different. "
"They want you to rewrite the dataset and apply this instruction, which can be about transforming, translating or filtering the rows: {prompt}."
"The first rows of the dataset are below in JSON format:\n\n{rows}\n\n"
"Apply the instruction to those rows from the '{dataset}' dataset and output the resulting rows using the same JSON format. "
"Try to keep some of the text or meaning intact, and apply the requested instruction '{prompt}'."
)
FIND_NEW_NAME = (
"You are a helpful assistant specialized in transforming english sentences for machine learning practitioners."
"Your job is to take input sentences like 'Take this dataset and apply the instruction xxx' and rephrase them them as 'The dataset should be yyy'. "
"You shoud use adjectives and exactly follow the output formula 'The dataset should be yyy'. "
"Here is your first job: rephrase the sentence 'Take this dataset and apply the instruction \"{prompt}\"'"
)
DATASET_CARD_CONTENT = """
---
license: mit
tags:
- dataset-rewriter
- synthetic
---
# {new_dataset}
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
**Source of the data:**
The dataset was generated using the [Dataset ReWriter]({url}) and {model_id} from the dataset {dataset} and using the prompt '{prompt}':
- **Original Dataset**: https://huggingface.co/datasets/{dataset}
- **Model**: https://huggingface.co/{model_id}
- **More Datasets**: https://huggingface.co/datasets?other=dataset-rewriter
"""
css = """
a {
color: var(--body-text-color);
}
.settings {
background: transparent;
}
.settings button span {
color: var(--body-text-color-subdued);
}
"""
js = """
function load() {
Array.from(document.getElementsByClassName("secondary")).filter(e => (e.innerText.includes("New row")))[0].innerText = "New column"
return 'done';
}
"""
examples = [
["fka/awesome-chatgpt-prompts", "make the prompt 6 words long maximum"],
["lhoestq/CudyPokemonAdventures", "make Pikachu the main character"],
["infinite-dataset-hub/SmallTalkDialogues", "translate to proper French"],
]
with gr.Blocks(css=css, js=js) as demo:
dataset_info_json = gr.JSON(visible=False)
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(
"# 🤗 Dataset ReWriter ✍️✨\n\n"
"Adjust, translate or transform datasets with a text instruction.\n\n"
)
with gr.Row():
with gr.Column(scale=3):
dataset_search = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
gr.Markdown("### Sample")
pretty_input_preview = gr.DataFrame(interactive=False)
gr.Markdown("### ReWrite")
with gr.Group():
input_prompt = gr.Textbox(label="Adjustment or transformation to apply to the dataset")
with gr.Accordion("(Advanced) Edit columns", open=False):
output_format_dataframe = gr.DataFrame(col_count=(2, "fixed"), headers=["column", "type"])
column_ro_remove_dropdown = gr.Dropdown(info="Select a column to remove", show_label=False)
with gr.Row():
with gr.Column(scale=99):
pass
with gr.Column(scale=1, min_width=88):
remove_column_button = gr.Button("Remove", size="sm", elem_id="remove_column_button")
rewrite_preview_button = gr.Button("Preview Results", variant="primary")
rewrite_full_dataset_button = gr.Button("ReWrite Full Dataset", interactive=False)
gr.Markdown("#### Output")
full_dataset_generation_label = gr.Label(visible=False, show_label=False)
pretty_output_preview = gr.DataFrame(interactive=False)
pretty_full_dataset_generation_output = gr.DataFrame(interactive=False, visible=False)
full_dataset_generation_success_html = gr.HTML()
gr.Examples(examples, inputs=[dataset_search, input_prompt])
gr.Markdown(f"_powered by [{model_id}](https://huggingface.co/{model_id})_")
with gr.Column(scale=4, min_width="200px"):
with gr.Accordion("Settings", open=False, elem_classes="settings"):
gr.Markdown("Save datasets to your account")
gr.LoginButton()
select_namespace_dropdown = gr.Dropdown(choices=[NAMESPACE], value=NAMESPACE, label="Select user or organization", visible=False)
gr.Markdown("Save datasets as public or private datasets")
visibility_radio = gr.Radio(["public", "private"], value="public", container=False, interactive=False)
gr.Markdown("Maximum number of rows to ReWrite")
max_num_rows_dropdown = gr.Dropdown(choices=[num_rows for num_rows in PARTIAL_SUFFIX if num_rows <= MAX_NUM_ROWS_TO_REWRITE], value=MAX_NUM_ROWS_TO_REWRITE, container=False)
gr.Markdown("Duplicate this space to ReWrite more rows")
gr.HTML(f'')
############
#
# Utils
#
###########
def stream_rows(dataset: str, subset: str, split: str, batch_size: int = 100) -> Iterable[dict[str, Any]]:
for i in count():
rows_resp = session.get(f"https://datasets-server.huggingface.co/rows?dataset={dataset}&config={subset}&split={split}&offset={i * batch_size}&length={batch_size}", timeout=10).json()
if "error" in rows_resp:
raise RuntimeError(rows_resp["error"])
if not rows_resp["rows"]:
break
for row_item in rows_resp["rows"]:
yield row_item["row"]
T = TypeVar("T")
def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
it = iter(it)
while batch := list(islice(it, n)):
yield batch
class ContextTooLongError(ValueError):
pass
def crop_text(obj: Any) -> str:
if isinstance(obj, str):
return obj[:MAX_STRING_LENGTH]
else:
raise TypeError()
def stream_reponse(messages: list[dict[str: str]], response_format=None, max_tokens=5000) -> Iterator[str]:
for _ in range(3):
message = None
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
top_p=0.8,
seed=42,
response_format=response_format
):
if message is None or not message.choices or message.choices[0] is None or message.choices[0].delta is None or message.choices[0].delta.content is None:
raise ContextTooLongError(f"messages: {sum(len(message['content']) for message in messages)} chars, max_tokens: {max_tokens}")
yield message.choices[0].delta.content
except requests.exceptions.ConnectionError as e:
if message:
raise
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
def stream_rewrite_dataset_preview_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str) -> Iterator[dict[str, str]]:
prompt = prompt[:1000] if prompt.strip() else ""
messages = [{"role": "user", "content": REWRITE_DATASET.format(
dataset=dataset,
rows=json.dumps({"data": rows}, ensure_ascii=False, default=crop_text),
prompt=prompt,
)}]
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format, "minItems": len(rows), "maxItems": len(rows)}}, "required": ["data"]}}
yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4, use_float=True)
def stream_rewrite_dataset_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str) -> Iterator[dict[str, str]]:
prompt = prompt[:1000] if prompt.strip() else ""
messages = [{"role": "user", "content": REWRITE_DATASET.format(
dataset=dataset,
rows=json.dumps({"data": rows}, ensure_ascii=False, default=crop_text),
prompt=prompt,
)}]
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format, "minItems": len(rows), "maxItems": len(rows)}}, "required": ["data"]}}
try:
yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4, use_float=True)
except (ijson.IncompleteJSONError) as e:
print(f"{type(e).__name__}: {e}")
print("Warning: Some rows were missing during ReWriting.")
def find_new_name(dataset: str, prompt: str, format: dict) -> str:
messages = [{"role": "user", "content": FIND_NEW_NAME.format(prompt=prompt)}]
out = "".join(stream_reponse(messages))
if "should be" in out:
out = dataset.split("/")[-1] + out.split("should be", 1)[1].replace(" ", "-").replace(".", "").replace(",", "")
else:
out = dataset.split("/")[-1] + prompt.replace(" ", "-")
return out[:80] + "-" + Hasher.hash(prompt + str(format))[:4]
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
for i, result in enumerate(func(**kwargs)):
queue.put(result)
return None
def iflatmap_unordered(
func: Callable[..., Iterable[T]],
*,
kwargs_iterable: Iterable[dict],
) -> Iterable[T]:
queue = Queue()
with ThreadPool() as pool:
async_results = [pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable]
try:
while True:
try:
yield queue.get(timeout=0.05)
except Empty:
if all(async_result.ready() for async_result in async_results) and queue.empty():
break
finally: # in case there's an error to raise
[async_result.get(timeout=0.05) for async_result in async_results]
def features_to_format(features: Features) -> dict:
def feature_to_format(feature):
if isinstance(feature, Value):
if "int" in feature.dtype:
return {"type": "integer"}
elif "float" in feature.dtype:
return {"type": "number"}
else:
return {"type": "string"}
elif isinstance(feature, list):
return {"type": "array", "items": feature_to_format(feature[0])}
elif isinstance(feature, dict):
return {"properties": {k: feature_to_format(v) for k, v in feature.items()}, "required": list(feature)}
elif isinstance(feature, Sequence):
if isinstance(feature.feature, dict):
return {"properties": {k: {"type": "array", "items": v } for k, v in feature_to_format(feature.feature).items()}, "required": list(feature)}
else:
return {"type": "array", "items": feature_to_format(feature.feature)}
else:
return {"type": "string"}
return feature_to_format(features)
############
#
# Events
#
###########
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str) -> dict:
if "/" not in dataset.strip().strip("/"):
return None, None, {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
}
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
if "error" in info_resp:
return None, None, {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
split = default_split if default_split in splits else splits[0]
dict_format = features_to_format(Features.from_dict(info_resp["dataset_info"][subset]["features"]))
return subset, split, {
dataset_info_json: info_resp["dataset_info"][subset],
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
output_format_dataframe: pd.DataFrame([{"column": col, "type": json.dumps(format_type)} for col, format_type in dict_format["properties"].items()])
}
def _show_input_preview(dataset: str, default_subset: str, default_split: str) -> dict:
subset, split, output = _resolve_dataset_selection(dataset, default_subset=default_subset, default_split=default_split)
if subset is None or split is None:
return output
print(f"Showing {dataset}")
rows = list(islice((stream_rows(dataset, subset, split, batch_size=NUM_ROWS_PREVIEW)), NUM_ROWS_PREVIEW))
return {
pretty_input_preview: gr.DataFrame(pd.DataFrame([{k: json.dumps(v, ensure_ascii=False, default=crop_text) for k, v in row.items()} for row in rows])),
**output
}
@dataset_search.change(inputs=[dataset_search], outputs=[pretty_input_preview, subset_dropdown, split_dropdown, output_format_dataframe, dataset_info_json])
def show_input_from_dataset_search(dataset: str) -> dict:
return _show_input_preview(dataset, default_subset="default", default_split="train")
@subset_dropdown.select(inputs=[dataset_search, subset_dropdown], outputs=[pretty_input_preview, subset_dropdown, split_dropdown, output_format_dataframe, dataset_info_json])
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _show_input_preview(dataset, default_subset=subset, default_split="train")
@split_dropdown.select(inputs=[dataset_search, subset_dropdown, split_dropdown], outputs=[pretty_input_preview, subset_dropdown, split_dropdown, output_format_dataframe, dataset_info_json])
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _show_input_preview(dataset, default_subset=subset, default_split=split)
@input_prompt.change(outputs=[rewrite_full_dataset_button])
def disable_rewrite_full_dataset() -> dict:
return {rewrite_full_dataset_button: gr.Button(interactive=False)}
@output_format_dataframe.change(inputs=[output_format_dataframe], outputs=[column_ro_remove_dropdown])
def update_columns_to_remove_dropdown(output_format_df: pd.DataFrame) -> dict:
return gr.Dropdown(choices=output_format_df["column"].tolist())
@remove_column_button.click(inputs=[column_ro_remove_dropdown, output_format_dataframe], outputs=[output_format_dataframe])
def update_output_format_dataframe(column: str, output_format_df: pd.DataFrame) -> pd.DataFrame:
return output_format_df[output_format_df["column"] != column]
@rewrite_preview_button.click(inputs=[dataset_search, pretty_input_preview, input_prompt, output_format_dataframe], outputs=[pretty_output_preview, rewrite_full_dataset_button, full_dataset_generation_label, full_dataset_generation_success_html, pretty_full_dataset_generation_output])
def rewrite_preview(dataset: str, pretty_input_preview_df: pd.DataFrame, prompt: str, output_format_df: pd.DataFrame) -> Iterator[pd.DataFrame]:
output_format_df = output_format_df[output_format_df["column"] != ""]
format = output_format_df.to_dict(orient="records")
format = {"properties": {x["column"]: json.loads(x["type"]) for x in format}, "required": [x["column"] for x in format]}
rows = [{k: json.loads(row[k]) for k in output_format_df["column"] if k in row} for row in pretty_input_preview_df.to_dict(orient="records")]
output_rows = []
print(f"(preview) ReWriting {dataset} with instruction '{prompt}'")
yield {rewrite_full_dataset_button: gr.Button(interactive=False), full_dataset_generation_label: gr.Label(visible=False)}
yield {
pretty_output_preview: gr.DataFrame(loading_dataframe, visible=True),
pretty_full_dataset_generation_output: gr.DataFrame(visible=False),
full_dataset_generation_success_html: "",
}
for row in stream_rewrite_dataset_preview_row_by_row(dataset=dataset, rows=rows, prompt=prompt, format=format):
output_rows.append({k: json.dumps(row[k], ensure_ascii=False, default=crop_text) for k in output_format_df["column"]})
yield {pretty_output_preview: gr.DataFrame(pd.DataFrame(output_rows))}
yield {rewrite_full_dataset_button: gr.Button(interactive=True)}
print(f"(preview) Done ReWriting {dataset} with instruction '{prompt}'")
@rewrite_full_dataset_button.click(inputs=[dataset_search, subset_dropdown, split_dropdown, input_prompt, output_format_dataframe, dataset_info_json, select_namespace_dropdown, max_num_rows_dropdown], outputs=[full_dataset_generation_label, full_dataset_generation_success_html, pretty_output_preview, pretty_full_dataset_generation_output])
def rewrite_full_dataset(dataset: str, subset: str, split: str, prompt: str, output_format_df: pd.DataFrame, dataset_info: dict[str, Any], namespace: str, max_num_rows: int, oauth_token: Optional[gr.OAuthToken]) -> Iterator[pd.DataFrame]:
output_format_df = output_format_df[output_format_df["column"] != ""]
format = output_format_df.to_dict(orient="records")
format = {"properties": {x["column"]: json.loads(x["type"]) for x in format}, "required": [x["column"] for x in format]}
num_examples = dataset_info["splits"][split]["num_examples"]
total = min(num_examples, max_num_rows)
print(f"ReWriting {dataset} with instruction '{prompt}'")
yield {full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": 0.}, visible=True)}
yield {pretty_full_dataset_generation_output: empty_dataframe}
yield {
pretty_output_preview: gr.DataFrame(visible=False),
pretty_full_dataset_generation_output: gr.DataFrame(loading_dataframe, visible=True),
full_dataset_generation_success_html: "",
}
num_parallel_calls = max(1, min(total // NUM_ROWS_PER_CALL, NUM_PARALLEL_CALLS))
parallel_input_rows = list(batched(islice(({k: row[k] for k in output_format_df["column"] if k in row} for row in stream_rows(dataset=dataset, subset=subset, split=split)), total), n=total // num_parallel_calls))
parallel_output_rows = [[] for _ in range(num_parallel_calls)]
def run(i):
for batch_rows in batched(parallel_input_rows[i], n=NUM_ROWS_PER_CALL):
for row in stream_rewrite_dataset_row_by_row(dataset=dataset, rows=batch_rows, prompt=prompt, format=format):
parallel_output_rows[i].append({k: json.dumps(row[k], ensure_ascii=False, default=crop_text) for k in output_format_df["column"]})
yield 1
current = 0
_last_time = time.time()
try:
for step in iflatmap_unordered(run, kwargs_iterable=[{"i": i} for i in range(num_parallel_calls)]):
current += step
if _last_time + 1 / MAX_PROGRESS_UPDATES_PER_SECOND < time.time():
_last_time = time.time()
yield {
full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": current / total}),
pretty_full_dataset_generation_output: gr.DataFrame(pd.DataFrame([row for rows in parallel_output_rows for row in rows]))
}
except ContextTooLongError:
raise gr.Error("Input dataset has too long context for the model")
yield {
full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": current / total}),
pretty_full_dataset_generation_output: gr.DataFrame(pd.DataFrame([row for rows in parallel_output_rows for row in rows]))
}
print(f"Done ReWriting {dataset} with instruction '{prompt}'")
output_rows = [{k: json.loads(row[k]) for k in output_format_df["column"]} for rows in parallel_output_rows for row in rows]
new_dataset = find_new_name(dataset + (PARTIAL_SUFFIX[max_num_rows] if num_examples > total else ""), prompt, format)
repo_id = namespace + "/" + new_dataset
yield {full_dataset_generation_label: gr.Label({f"✅ ReWriting {dataset}": len(output_rows) / total, f"⚙️ Saving to {repo_id}": 0.})}
token = oauth_token.token if oauth_token else save_dataset_hf_token
print(f"Saving {repo_id}")
ds = Dataset.from_list(output_rows)
ds.push_to_hub(repo_id, config_name=subset, split=split, token=token)
DatasetCard(DATASET_CARD_CONTENT.format(new_dataset=new_dataset, dataset=dataset, model_id=model_id, prompt=prompt, url=URL)).push_to_hub(repo_id=repo_id, repo_type="dataset", token=token)
yield {full_dataset_generation_label: gr.Label({f"✅ ReWriting {dataset}": len(output_rows) / total, f"✅ Saving to {repo_id}": 1.})}
yield {full_dataset_generation_success_html: (
f''
''
''
)}
print(f"Saved {repo_id}")
demo.launch()