from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.tools import DuckDuckGoSearchRun from langchain import HuggingFaceHub # Function to generate video script def generate_script(prompt,video_length,creativity,api_key): # Template for generating 'Title' title_template = PromptTemplate( input_variables = ['subject'], template='Please come up with a title for a YouTube video on the {subject}.' ) # Template for generating 'Video Script' using search engine script_template = PromptTemplate( input_variables = ['title', 'DuckDuckGo_Search','duration'], template='Create a script for a YouTube video based on this title for me. TITLE: {title} of duration: {duration} minutes using this search data {DuckDuckGo_Search} ' ) #Setting up OpenAI LLM # llm = OpenAI(temperature=creativity,openai_api_key=api_key, # model_name='gpt-3.5-turbo') llm=HuggingFaceHub(repo_id="bhenrym14/platypus-yi-34b", model_kwargs={"temperature":creativity }) #Creating chain for 'Title' & 'Video Script' title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True) script_chain = LLMChain(llm=llm, prompt=script_template, verbose=True) # https://python.langchain.com/docs/modules/agents/tools/integrations/ddg search = DuckDuckGoSearchRun() # Executing the chains we created for 'Title' title = title_chain.run(prompt) # Executing the chains we created for 'Video Script' by taking help of search engine 'DuckDuckGo' search_result = search.run(prompt) script = script_chain.run(title="langchain", DuckDuckGo_Search=search_result,duration=video_length) # Returning the output return search_result,title,script