from dotenv import load_dotenv load_dotenv() ## load all the environment variables from .env import streamlit as st import os from PIL import Image import google.generativeai as genai genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) ## Function to load Gemini Pro Vision model=genai.GenerativeModel('gemini-pro-vision') def get_gemini_response(input,image,prompt): response=model.generate_content([input,image[0],prompt]) return response.text def input_image_details(uploaded_file): if uploaded_file is not None: # Read the file into bytes bytes_data=uploaded_file.getvalue() image_parts=[ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") ## Initialize our streamlit app st.set_page_config(page_title="MultiLanguage Invoice Extractor") st.header("MultiLanguage Invoice Extractor") input=st.text_input("Input Prompt: ",key="input") uploaded_file=st.file_uploader("Choose an image of the invoice...", type=["jpg", "jpeg", "png"]) image="" if uploaded_file is not None: image=Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) submit=st.button("Tell me about the invoice") input_prompt=""" You are an expert in understanding invoices. We will upload an image as invoice and you will have to answer any questions based on the uploaded invoice image. """ # If submit button is clicked if submit: image_data=input_image_details(uploaded_file) response=get_gemini_response(input_prompt,image_data,input) st.subheader("The response is") st.write(response)