import streamlit as st import numpy as np import numpy.linalg as la import pickle import os import gdown from sentence_transformers import SentenceTransformer import matplotlib.pyplot as plt import math # Compute Cosine Similarity def cosine_similarity(x, y): """ Exponentiated cosine similarity 1. Compute cosine similarity 2. Exponentiate cosine similarity 3. Return exponentiated cosine similarity (20 pts) """ ################################## ### TODO: Add code here ########## ################################## return np.exp(np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))) # Function to Load Glove Embeddings def load_glove_embeddings(glove_path="Data/embeddings.pkl"): with open(glove_path, "rb") as f: embeddings_dict = pickle.load(f, encoding="latin1") return embeddings_dict def get_model_id_gdrive(model_type): if model_type == "25d": word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8" embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2" elif model_type == "50d": embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ" word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9" elif model_type == "100d": word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq" embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp" return word_index_id, embeddings_id def download_glove_embeddings_gdrive(model_type): # Get glove embeddings from google drive word_index_id, embeddings_id = get_model_id_gdrive(model_type) # Use gdown to get files from google drive embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy" word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl" # Download word_index pickle file print("Downloading word index dictionary....\n") gdown.download(id=word_index_id, output=word_index_temp, quiet=False) # Download embeddings numpy file print("Donwloading embedings...\n\n") gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False) # @st.cache_data() def load_glove_embeddings_gdrive(model_type): word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl" embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy" # Load word index dictionary word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin") # Load embeddings numpy embeddings = np.load(embeddings_temp) return word_index_dict, embeddings @st.cache_resource() def load_sentence_transformer_model(model_name): sentenceTransformer = SentenceTransformer(model_name) return sentenceTransformer def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"): """ Get sentence transformer embeddings for a sentence """ # 384 dimensional embedding # Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 sentenceTransformer = load_sentence_transformer_model(model_name) try: return sentenceTransformer.encode(sentence) except: if model_name == "all-MiniLM-L6-v2": return np.zeros(384) else: return np.zeros(512) def get_glove_embeddings(word, word_index_dict, embeddings, model_type): """ Get glove embedding for a single word """ if word.lower() in word_index_dict: return embeddings[word_index_dict[word.lower()]] else: return np.zeros(int(model_type.split("d")[0])) def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50): """ Get averaged glove embeddings for a sentence 1. Split sentence into words 2. Get embeddings for each word 3. Add embeddings for each word 4. Divide by number of words 5. Return averaged embeddings (30 pts) """ embedding = np.zeros(int(model_type.split("d")[0])) ################################## ##### TODO: Add code here ######## ################################## words = [word.strip('.,?!').lower() for word in sentence.split()] total = 0 for w in words: if w in word_index_dict: embedding += embeddings[word_index_dict[w]] total +=1 if total != 0: embedding = embedding/total return embedding def get_category_embeddings(embeddings_metadata): """ Get embeddings for each category 1. Split categories into words 2. Get embeddings for each word """ model_name = embeddings_metadata["model_name"] st.session_state["cat_embed_" + model_name] = {} for category in st.session_state.categories.split(" "): if model_name: if not category in st.session_state["cat_embed_" + model_name]: st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name) else: if not category in st.session_state["cat_embed_" + model_name]: st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category) def update_category_embeddings(embedings_metadata): """ Update embeddings for each category """ get_category_embeddings(embeddings_metadata) def get_sorted_cosine_similarity(embeddings_metadata): """ Get sorted cosine similarity between input sentence and categories Steps: 1. Get embeddings for input sentence 2. Get embeddings for categories (if not found, update category embeddings) 3. Compute cosine similarity between input sentence and categories 4. Sort cosine similarity 5. Return sorted cosine similarity (50 pts) """ categories = st.session_state.categories.split(" ") cosine_sim = {} if embeddings_metadata["embedding_model"] == "glove": word_index_dict = embeddings_metadata["word_index_dict"] embeddings = embeddings_metadata["embeddings"] model_type = embeddings_metadata["model_type"] input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search, word_index_dict, embeddings, model_type) ########################################## ## TODO: Get embeddings for categories ### ########################################## category_embeddings = {} for cat in categories: category_embeddings[cat] = get_glove_embeddings(cat, word_index_dict, embeddings, model_type) else: model_name = embeddings_metadata["model_name"] # if not "cat_embed_" + model_name in st.session_state: get_category_embeddings(embeddings_metadata) category_embeddings = st.session_state["cat_embed_" + model_name] print("text_search = ", st.session_state.text_search) print(category_embeddings) if model_name: input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name) else: input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search) cat_scores = [] for index in range(len(categories)): ########################################## # TODO: Compute cosine similarity between input sentence and categories # TODO: Update category embeddings if category not found ########################################## cat = categories[index] cat_embed = category_embeddings[cat] # Calc cosine sim cat_scores.append((index, np.dot(input_embedding,cat_embed))) # Store doc_id and score as a tuple sorted_list = sorted(cat_scores, key=lambda x: x[1]) sorted_list = sorted_list[::-1] sorted_cats = [element[0] for element in sorted_list] #flip sorting order # Add list to Map # for cat_pair in sorted_cats: # cosine_sim[cat_pair[0]] = cat_pair[1] return sorted_list def plot_piechart(sorted_cosine_scores_items): sorted_cosine_scores = np.array([ sorted_cosine_scores_items[index][1] for index in range(len(sorted_cosine_scores_items)) ] ) categories = st.session_state.categories.split(" ") categories_sorted = [ categories[sorted_cosine_scores_items[index][0]] for index in range(len(sorted_cosine_scores_items)) ] fig, ax = plt.subplots() ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%") st.pyplot(fig) # Figure def plot_piechart_helper(sorted_cosine_scores_items): sorted_cosine_scores = np.array( [ sorted_cosine_scores_items[index][1] for index in range(len(sorted_cosine_scores_items)) ] ) categories = st.session_state.categories.split(" ") categories_sorted = [ categories[sorted_cosine_scores_items[index][0]] for index in range(len(sorted_cosine_scores_items)) ] fig, ax = plt.subplots(figsize=(3, 3)) my_explode = np.zeros(len(categories_sorted)) my_explode[0] = 0.2 if len(categories_sorted) == 3: my_explode[1] = 0.1 # explode this by 0.2 elif len(categories_sorted) > 3: my_explode[2] = 0.05 ax.pie( sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%", explode=my_explode, ) return fig def plot_piecharts(sorted_cosine_scores_models): scores_list = [] categories = st.session_state.categories.split(" ") index = 0 for model in sorted_cosine_scores_models: scores_list.append(sorted_cosine_scores_models[model]) # scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))]) index += 1 if len(sorted_cosine_scores_models) == 2: fig, (ax1, ax2) = plt.subplots(2) categories_sorted = [ categories[scores_list[0][index][0]] for index in range(len(scores_list[0])) ] sorted_scores = np.array( [scores_list[0][index][1] for index in range(len(scores_list[0]))] ) ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%") categories_sorted = [ categories[scores_list[1][index][0]] for index in range(len(scores_list[1])) ] sorted_scores = np.array( [scores_list[1][index][1] for index in range(len(scores_list[1]))] ) ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%") st.pyplot(fig) def plot_alatirchart(sorted_cosine_scores_models): models = list(sorted_cosine_scores_models.keys()) tabs = st.tabs(models) figs = {} for model in models: figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model]) for index in range(len(tabs)): with tabs[index]: st.pyplot(figs[models[index]]) ### Text Search ### st.sidebar.title("GloVe Twitter") st.sidebar.markdown( """ GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on 2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip). Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*. """ ) model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1) st.title("Search Based Retrieval Demo") st.subheader( "Pass in space separated categories you want this search demo to be about." ) # st.selectbox(label="Pick the categories you want this search demo to be about...", # options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"), # key="categories" # ) st.text_input( label="Categories", key="categories", value="Flowers Colors Cars Weather Food" ) print(st.session_state["categories"]) print(type(st.session_state["categories"])) # print("Categories = ", categories) # st.session_state.categories = categories st.subheader("Pass in an input word or even a sentence") text_search = st.text_input( label="Input your sentence", key="text_search", value="Roses are red, trucks are blue, and Seattle is grey right now", ) # st.session_state.text_search = text_search # Download glove embeddings if it doesn't exist embeddings_path = "embeddings_" + str(model_type) + "_temp.npy" word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl" if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path): print("Model type = ", model_type) glove_path = "Data/glove_" + str(model_type) + ".pkl" print("glove_path = ", glove_path) # Download embeddings from google drive with st.spinner("Downloading glove embeddings..."): download_glove_embeddings_gdrive(model_type) # Load glove embeddings word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type) # Find closest word to an input word if st.session_state.text_search: # Glove embeddings print("Glove Embedding") embeddings_metadata = { "embedding_model": "glove", "word_index_dict": word_index_dict, "embeddings": embeddings, "model_type": model_type, } with st.spinner("Obtaining Cosine similarity for Glove..."): sorted_cosine_sim_glove = get_sorted_cosine_similarity( # st.session_state.text_search, embeddings_metadata ) # Sentence transformer embeddings print("Sentence Transformer Embedding") embeddings_metadata = {"embedding_model": "transformers", "model_name": ""} with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."): sorted_cosine_sim_transformer = get_sorted_cosine_similarity( # st.session_state.text_search, embeddings_metadata ) # Results and Plot Pie Chart for Glove print("Categories are: ", st.session_state.categories) st.subheader( "Closest word I have between: " + st.session_state.categories + " as per different Embeddings" ) print(sorted_cosine_sim_glove) print(sorted_cosine_sim_transformer) # print(sorted_distilbert) # Altair Chart for all models plot_alatirchart( { "glove_" + str(model_type): sorted_cosine_sim_glove, "sentence_transformer_384": sorted_cosine_sim_transformer, } ) # "distilbert_512": sorted_distilbert}) st.write("") st.write( "Demo designed by [Dr. Karthik Mohan](https://www.linkedin.com/in/karthik-mohan-72a4b323/). Implemented by [Arko Banik](https://www.linkedin.com/in/arko-banik-a89a73107/)" )