import gradio as gr import os import re from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from fpdf import FPDF from gtts import gTTS from pdfminer.high_level import extract_text from docx import Document from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas # Switch to a more lightweight model like DistilBART for faster processing tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") # Function to chunk text based on token length def chunk_text(text, max_token_len=512): tokens = tokenizer(text, return_tensors="pt", truncation=False, padding=False)["input_ids"].squeeze() total_length = len(tokens) # Split text into manageable token chunks chunks = [tokens[i:i+max_token_len] for i in range(0, total_length, max_token_len)] return chunks def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"): doc = Document(docx_file) full_text = [] for para in doc.paragraphs: full_text.append(para.text) pdf = canvas.Canvas(output_pdf, pagesize=letter) pdf.setFont("Helvetica", 12) text = pdf.beginText(40, 750) for line in full_text: text.textLine(line) pdf.drawText(text) pdf.save() return output_pdf # Summarize each chunk of tokens def summarize_chunk(chunk, min_length=50, max_length=150): inputs = {"input_ids": chunk.unsqueeze(0)} # Add batch dimension summary_ids = model.generate(inputs["input_ids"], num_beams=1, min_length=min_length, max_length=max_length) return tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) # Main processing function def pdf_to_text(text, PDF, min_length=50): try: file_extension = os.path.splitext(PDF.name)[1].lower() if file_extension == '.docx': pdf_file_path = docx_to_pdf(PDF.name) text = extract_text(pdf_file_path) elif file_extension == '.pdf' and text == "": text = extract_text(PDF.name) # Split text into token-based chunks chunks = chunk_text(text) summarized_text = "" # Summarize each chunk for chunk in chunks: summarized_text += summarize_chunk(chunk, min_length=min_length, max_length=min_length + 100) + "\n\n" # Save summarized text to PDF pdf = FPDF() pdf.add_page() pdf.set_font("Times", size=12) pdf.multi_cell(190, 10, txt=summarized_text, align='C') pdf_output_path = "legal.pdf" pdf.output(pdf_output_path) # Convert summarized text to audio audio_output_path = "legal.wav" tts = gTTS(text=summarized_text, lang='en', slow=False) tts.save(audio_output_path) return audio_output_path, summarized_text, pdf_output_path except Exception as e: return None, f"An error occurred: {str(e)}", None # Preloaded document processor def process_sample_document(min_length=50): sample_document_path = "Marbury v. Madison.pdf" with open(sample_document_path, "rb") as f: return pdf_to_text("", f, min_length) # Gradio interface with gr.Blocks() as iface: with gr.Row(): process_sample_button = gr.Button("Summarize Marbury v. Madison Case Pre-Uploaded") text_input = gr.Textbox(label="Input Text") file_input = gr.File(label="Upload PDF or DOCX") slider = gr.Slider(minimum=10, maximum=300, step=10, value=50, label="Summary Minimum Length") audio_output = gr.Audio(label="Generated Audio") summary_output = gr.Textbox(label="Generated Summary") pdf_output = gr.File(label="Summary PDF") process_sample_button.click(fn=process_sample_document, inputs=slider, outputs=[audio_output, summary_output, pdf_output]) file_input.change(fn=pdf_to_text, inputs=[text_input, file_input, slider], outputs=[audio_output, summary_output, pdf_output]) if __name__ == "__main__": iface.launch()