import gradio as gr import os import nltk from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from fpdf import FPDF from gtts import gTTS from pdfminer.high_level import extract_text nltk.download('punkt') # Load the models and tokenizers once, not every time the function is called tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") # Function to split the text into smaller chunks def split_text(text, chunk_size=1024): words = text.split() for i in range(0, len(words), chunk_size): yield ' '.join(words[i:i + chunk_size]) # Main processing function def pdf_to_text(text, PDF, min_length=20): try: # Extract text from PDF if no input text provided if text == "": text = extract_text(PDF.name) # Split the text into chunks for summarization summarized_text = "" for chunk in split_text(text): # Tokenize chunked text inputs = tokenizer([chunk], max_length=1024, return_tensors="pt") min_length = int(min_length) # Generate summary for each chunk summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000) output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] summarized_text += output_text + " " # Append each chunk summary # Save summarized text to PDF pdf = FPDF() pdf.add_page() pdf.set_font("Times", size=12) pdf.multi_cell(190, 10, txt=summarized_text, align='C') pdf_output_path = "legal.pdf" pdf.output(pdf_output_path) # Convert summarized text to audio audio_output_path = "legal.wav" tts = gTTS(text=summarized_text, lang='en', slow=False) tts.save(audio_output_path) return audio_output_path, summarized_text, pdf_output_path except Exception as e: return None, f"An error occurred: {str(e)}", None # Gradio interface iface = gr.Interface( fn=pdf_to_text, inputs=[gr.Textbox(label="Input Text"), gr.File(label="Upload PDF"), gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Summary Minimum Length")], outputs=[gr.Audio(label="Generated Audio"), gr.Textbox(label="Generated Summary"), gr.File(label="Summary PDF")] ) if __name__ == "__main__": iface.launch()