import os import shutil import tempfile import pytest from tests.utils import wrap_test_forked from src.enums import DocumentChoices, LangChainAction from src.gpt_langchain import get_persist_directory from src.utils import zip_data, download_simple, get_ngpus_vis, get_mem_gpus, have_faiss, remove, get_kwargs have_openai_key = os.environ.get('OPENAI_API_KEY') is not None have_gpus = get_ngpus_vis() > 0 mem_gpus = get_mem_gpus() # FIXME: os.environ['TOKENIZERS_PARALLELISM'] = 'false' db_types = ['chroma', 'weaviate'] db_types_full = ['chroma', 'weaviate', 'faiss'] @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @wrap_test_forked def test_qa_wiki_openai(): return run_qa_wiki_fork(use_openai_model=True) @pytest.mark.need_gpu @wrap_test_forked def test_qa_wiki_stuff_hf(): # NOTE: total context length makes things fail when n_sources * text_limit >~ 2048 return run_qa_wiki_fork(use_openai_model=False, text_limit=256, chain_type='stuff', prompt_type='human_bot') @pytest.mark.xfail(strict=False, reason="Too long context, improve prompt for map_reduce. Until then hit: The size of tensor a (2048) must match the size of tensor b (2125) at non-singleton dimension 3") @wrap_test_forked def test_qa_wiki_map_reduce_hf(): return run_qa_wiki_fork(use_openai_model=False, text_limit=None, chain_type='map_reduce', prompt_type='human_bot') def run_qa_wiki_fork(*args, **kwargs): # disable fork to avoid # RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method # because some other tests use cuda in parent # from tests.utils import call_subprocess_onetask # return call_subprocess_onetask(run_qa_wiki, args=args, kwargs=kwargs) return run_qa_wiki(*args, **kwargs) def run_qa_wiki(use_openai_model=False, first_para=True, text_limit=None, chain_type='stuff', prompt_type=None): from src.gpt_langchain import get_wiki_sources, get_llm from langchain.chains.qa_with_sources import load_qa_with_sources_chain sources = get_wiki_sources(first_para=first_para, text_limit=text_limit) llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, prompt_type=prompt_type) chain = load_qa_with_sources_chain(llm, chain_type=chain_type) question = "What are the main differences between Linux and Windows?" from src.gpt_langchain import get_answer_from_sources answer = get_answer_from_sources(chain, sources, question) print(answer) def check_ret(ret): """ check generator :param ret: :return: """ rets = [] for ret1 in ret: rets.append(ret1) print(ret1) assert rets @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @wrap_test_forked def test_qa_wiki_db_openai(): from src.gpt_langchain import _run_qa_db query = "What are the main differences between Linux and Windows?" ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=None, langchain_mode='wiki', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.need_gpu @wrap_test_forked def test_qa_wiki_db_hf(): from src.gpt_langchain import _run_qa_db # if don't chunk, still need to limit # but this case can handle at least more documents, by picking top k # FIXME: but spitting out garbage answer right now, all fragmented, or just 1-word answer query = "What are the main differences between Linux and Windows?" ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=256, langchain_mode='wiki', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.need_gpu @wrap_test_forked def test_qa_wiki_db_chunk_hf(): from src.gpt_langchain import _run_qa_db query = "What are the main differences between Linux and Windows?" ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=256, chunk=True, chunk_size=256, langchain_mode='wiki', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @wrap_test_forked def test_qa_wiki_db_chunk_openai(): from src.gpt_langchain import _run_qa_db # don't need 256, just seeing how compares to hf query = "What are the main differences between Linux and Windows?" ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True, chunk_size=256, langchain_mode='wiki', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @wrap_test_forked def test_qa_github_db_chunk_openai(): from src.gpt_langchain import _run_qa_db # don't need 256, just seeing how compares to hf query = "what is a software defined asset" ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True, chunk_size=256, langchain_mode='github h2oGPT', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.need_gpu @wrap_test_forked def test_qa_daidocs_db_chunk_hf(): from src.gpt_langchain import _run_qa_db # FIXME: doesn't work well with non-instruct-tuned Cerebras query = "Which config.toml enables pytorch for NLP?" ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, chunk_size=128, langchain_mode='DriverlessAI docs', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.skipif(not have_faiss, reason="requires FAISS") @wrap_test_forked def test_qa_daidocs_db_chunk_hf_faiss(): from src.gpt_langchain import _run_qa_db query = "Which config.toml enables pytorch for NLP?" # chunk_size is chars for each of k=4 chunks ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, chunk_size=128 * 1, # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens langchain_mode='DriverlessAI docs', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], db_type='faiss', ) check_ret(ret) @pytest.mark.need_gpu @pytest.mark.parametrize("db_type", db_types) @pytest.mark.parametrize("top_k_docs", [-1, 3]) @wrap_test_forked def test_qa_daidocs_db_chunk_hf_dbs(db_type, top_k_docs): langchain_mode = 'DriverlessAI docs' langchain_action = LangChainAction.QUERY.value langchain_agents = [] persist_directory = get_persist_directory(langchain_mode) remove(persist_directory) from src.gpt_langchain import _run_qa_db query = "Which config.toml enables pytorch for NLP?" # chunk_size is chars for each of k=4 chunks if top_k_docs == -1: # else OOMs on generation immediately when generation starts, even though only 1600 tokens and 256 new tokens model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' else: model_name = None ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, chunk_size=128 * 1, # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, db_type=db_type, top_k_docs=top_k_docs, model_name=model_name, ) check_ret(ret) @pytest.mark.need_gpu @pytest.mark.parametrize("db_type", ['chroma']) @wrap_test_forked def test_qa_daidocs_db_chunk_hf_dbs_switch_embedding(db_type): # need to get model externally, so don't OOM from src.gen import get_model base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' prompt_type = 'human_bot' all_kwargs = dict(load_8bit=False, load_4bit=False, load_half=True, load_gptq=False, use_safetensors=False, use_gpu_id=True, base_model=base_model, tokenizer_base_model=base_model, inference_server='', lora_weights='', gpu_id=0, reward_type=False, local_files_only=False, resume_download=True, use_auth_token=False, trust_remote_code=True, offload_folder=None, compile_model=True, verbose=False) model, tokenizer, device = get_model(reward_type=False, **get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs)) langchain_mode = 'DriverlessAI docs' langchain_action = LangChainAction.QUERY.value langchain_agents = [] persist_directory = get_persist_directory(langchain_mode) remove(persist_directory) from src.gpt_langchain import _run_qa_db query = "Which config.toml enables pytorch for NLP?" # chunk_size is chars for each of k=4 chunks ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", model=model, tokenizer=tokenizer, model_name=base_model, prompt_type=prompt_type, text_limit=None, chunk=True, chunk_size=128 * 1, # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, db_type=db_type, ) check_ret(ret) query = "Which config.toml enables pytorch for NLP?" # chunk_size is chars for each of k=4 chunks ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, hf_embedding_model='hkunlp/instructor-large', model=model, tokenizer=tokenizer, model_name=base_model, prompt_type=prompt_type, text_limit=None, chunk=True, chunk_size=128 * 1, # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, db_type=db_type, ) check_ret(ret) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_qa_wiki_db_chunk_hf_dbs_llama(db_type): from src.gpt4all_llm import get_model_tokenizer_gpt4all model_name = 'llama' model, tokenizer, device = get_model_tokenizer_gpt4all(model_name) from src.gpt_langchain import _run_qa_db query = "What are the main differences between Linux and Windows?" # chunk_size is chars for each of k=4 chunks ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, chunk_size=128 * 1, # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens langchain_mode='wiki', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], db_type=db_type, prompt_type='wizard2', model_name=model_name, model=model, tokenizer=tokenizer, ) check_ret(ret) @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @wrap_test_forked def test_qa_daidocs_db_chunk_openai(): from src.gpt_langchain import _run_qa_db query = "Which config.toml enables pytorch for NLP?" ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True, chunk_size=256, langchain_mode='DriverlessAI docs', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @wrap_test_forked def test_qa_daidocs_db_chunk_openaiembedding_hfmodel(): from src.gpt_langchain import _run_qa_db query = "Which config.toml enables pytorch for NLP?" ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=True, text_limit=None, chunk=True, chunk_size=128, langchain_mode='DriverlessAI docs', langchain_action=LangChainAction.QUERY.value, langchain_agents=[]) check_ret(ret) @pytest.mark.need_tokens @wrap_test_forked def test_get_dai_pickle(): from src.gpt_langchain import get_dai_pickle with tempfile.TemporaryDirectory() as tmpdirname: get_dai_pickle(dest=tmpdirname) assert os.path.isfile(os.path.join(tmpdirname, 'dai_docs.pickle')) @pytest.mark.need_tokens @wrap_test_forked def test_get_dai_db_dir(): from src.gpt_langchain import get_some_dbs_from_hf with tempfile.TemporaryDirectory() as tmpdirname: get_some_dbs_from_hf(tmpdirname) # repeat is to check if first case really deletes, else assert will fail if accumulates wrongly @pytest.mark.parametrize("repeat", [0, 1]) @pytest.mark.parametrize("db_type", db_types_full) @wrap_test_forked def test_make_add_db(repeat, db_type): from src.gradio_runner import get_source_files, get_source_files_given_langchain_mode, get_db, update_user_db, \ get_sources, update_and_get_source_files_given_langchain_mode from src.make_db import make_db_main from src.gpt_langchain import path_to_docs with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: with tempfile.TemporaryDirectory() as tmp_persistent_directory_my: with tempfile.TemporaryDirectory() as tmp_user_path_my: msg1 = "Hello World" test_file1 = os.path.join(tmp_user_path, 'test.txt') with open(test_file1, "wt") as f: f.write(msg1) chunk = True chunk_size = 512 langchain_mode = 'UserData' db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, add_if_exists=False, collection_name=langchain_mode, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("World") assert len(docs) == 1 assert docs[0].page_content == msg1 assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) test_file1my = os.path.join(tmp_user_path_my, 'test.txt') with open(test_file1my, "wt") as f: f.write(msg1) dbmy, collection_namemy = make_db_main(persist_directory=tmp_persistent_directory_my, user_path=tmp_user_path_my, add_if_exists=False, collection_name='MyData', fail_any_exception=True, db_type=db_type) db1 = [dbmy, 'foouuid'] assert dbmy is not None docs1 = dbmy.similarity_search("World") assert len(docs1) == 1 assert docs1[0].page_content == msg1 assert os.path.normpath(docs1[0].metadata['source']) == os.path.normpath(test_file1my) # some db testing for gradio UI/client get_source_files(db=db) get_source_files(db=dbmy) get_source_files_given_langchain_mode(db1, langchain_mode=langchain_mode, dbs={langchain_mode: db}) get_source_files_given_langchain_mode(db1, langchain_mode='MyData', dbs=None) get_db(db1, langchain_mode='UserData', dbs={langchain_mode: db}) get_db(db1, langchain_mode='MyDatta', dbs=None) msg1up = "Beefy Chicken" test_file2 = os.path.join(tmp_user_path, 'test2.txt') with open(test_file2, "wt") as f: f.write(msg1up) test_file2_my = os.path.join(tmp_user_path_my, 'test2my.txt') with open(test_file2_my, "wt") as f: f.write(msg1up) kwargs = dict(use_openai_embedding=False, hf_embedding_model='hkunlp/instructor-large', caption_loader=False, enable_captions=False, captions_model="Salesforce/blip-image-captioning-base", enable_ocr=False, verbose=False, is_url=False, is_txt=False) z1, z2, source_files_added, exceptions = update_user_db(test_file2_my, db1, chunk, chunk_size, 'MyData', dbs=None, db_type=db_type, **kwargs) assert z1 is None assert 'MyData' == z2 assert 'test2my' in str(source_files_added) assert len(exceptions) == 0 z1, z2, source_files_added, exceptions = update_user_db(test_file2, db1, chunk, chunk_size, langchain_mode, dbs={langchain_mode: db}, db_type=db_type, **kwargs) assert 'test2' in str(source_files_added) assert langchain_mode == z2 assert z1 is None docs_state0 = [x.name for x in list(DocumentChoices)] get_sources(db1, langchain_mode, dbs={langchain_mode: db}, docs_state0=docs_state0) get_sources(db1, 'MyData', dbs=None, docs_state0=docs_state0) kwargs2 = dict(first_para=False, text_limit=None, chunk=chunk, chunk_size=chunk_size, user_path=tmp_user_path, db_type=db_type, load_db_if_exists=True, n_jobs=-1, verbose=False) update_and_get_source_files_given_langchain_mode(db1, langchain_mode, dbs={langchain_mode: db}, **kwargs2) update_and_get_source_files_given_langchain_mode(db1, 'MyData', dbs=None, **kwargs2) assert path_to_docs(test_file2_my)[0].metadata['source'] == test_file2_my assert os.path.normpath( path_to_docs(os.path.dirname(test_file2_my))[1].metadata['source']) == os.path.normpath( os.path.abspath(test_file2_my)) assert path_to_docs([test_file1, test_file2, test_file2_my])[0].metadata['source'] == test_file1 assert path_to_docs(None, url='arxiv:1706.03762')[0].metadata[ 'source'] == 'http://arxiv.org/abs/2002.05202v1' assert path_to_docs(None, url='http://h2o.ai')[0].metadata['source'] == 'http://h2o.ai' assert 'user_paste' in path_to_docs(None, text='Yufuu is a wonderful place and you should really visit because there is lots of sun.')[ 0].metadata['source'] if db_type == 'faiss': # doesn't persist return # now add using new source path, to original persisted with tempfile.TemporaryDirectory() as tmp_user_path3: msg2 = "Jill ran up the hill" test_file2 = os.path.join(tmp_user_path3, 'test2.txt') with open(test_file2, "wt") as f: f.write(msg2) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path3, add_if_exists=True, fail_any_exception=True, db_type=db_type, collection_name=collection_name) assert db is not None docs = db.similarity_search("World") if db_type == 'weaviate': # FIXME: weaviate doesn't know about persistent directory properly assert len(docs) == 4 assert docs[0].page_content == msg1 assert docs[1].page_content in [msg2, msg1up] assert docs[2].page_content in [msg2, msg1up] assert docs[3].page_content in [msg2, msg1up] assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) docs = db.similarity_search("Jill") assert len(docs) == 4 assert docs[0].page_content == msg2 assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file2) else: assert len(docs) == 3 assert docs[0].page_content == msg1 assert docs[1].page_content in [msg2, msg1up] assert docs[2].page_content in [msg2, msg1up] assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) docs = db.similarity_search("Jill") assert len(docs) == 3 assert docs[0].page_content == msg2 assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file2) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_zip_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: msg1 = "Hello World" test_file1 = os.path.join(tmp_user_path, 'test.txt') with open(test_file1, "wt") as f: f.write(msg1) zip_file = './tmpdata/data.zip' zip_data(tmp_user_path, zip_file=zip_file, fail_any_exception=True) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("World") assert len(docs) == 1 assert docs[0].page_content == msg1 assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_url_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: url = 'https://h2o.ai/company/team/leadership-team/' db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, url=url, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("list founding team of h2o.ai") assert len(docs) == 4 assert 'Sri Ambati' in docs[0].page_content @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_html_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: html_content = """
Animals love to run in the world of Yugu. They play all day long in the alien sun.
""" test_file1 = os.path.join(tmp_user_path, 'test.html') with open(test_file1, "wt") as f: f.write(html_content) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("Yugu") assert len(docs) == 1 assert 'Yugu' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_docx_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'https://calibre-ebook.com/downloads/demos/demo.docx' test_file1 = os.path.join(tmp_user_path, 'demo.docx') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("What is calibre DOCX plugin do?") assert len(docs) == 4 assert 'calibre' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_xls_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: test_file1 = os.path.join(tmp_user_path, 'example.xlsx') shutil.copy('data/example.xlsx', tmp_user_path) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("What is Profit?") assert len(docs) == 4 assert '16604.000' in docs[0].page_content or 'Small Business' in docs[ 0].page_content or 'United States of America' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_md_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: test_file1 = 'README.md' if not os.path.isfile(test_file1): # see if ran from tests directory test_file1 = '../README.md' test_file1 = os.path.abspath(test_file1) shutil.copy(test_file1, tmp_user_path) test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1)) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("What is h2oGPT?") assert len(docs) == 4 assert 'Query and summarize your documents' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_eml_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'https://raw.githubusercontent.com/FlexConfirmMail/Thunderbird/master/sample.eml' test_file1 = os.path.join(tmp_user_path, 'sample.eml') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("What is subject?") assert len(docs) == 1 assert 'testtest' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_simple_eml_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: html_content = """ Date: Sun, 1 Apr 2012 14:25:25 -0600 From: file@fyicenter.com Subject: Welcome To: someone@somewhere.com Dear Friend, Welcome to file.fyicenter.com! Sincerely, FYIcenter.com Team""" test_file1 = os.path.join(tmp_user_path, 'test.eml') with open(test_file1, "wt") as f: f.write(html_content) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("Subject") assert len(docs) == 1 assert 'Welcome' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_odt_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'https://github.com/owncloud/example-files/raw/master/Documents/Example.odt' test_file1 = os.path.join(tmp_user_path, 'sample.odt') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("What is ownCloud?") assert len(docs) == 4 assert 'ownCloud' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_pptx_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'https://www.unm.edu/~unmvclib/powerpoint/pptexamples.ppt' test_file1 = os.path.join(tmp_user_path, 'sample.pptx') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("Suggestions") assert len(docs) == 4 assert 'Presentation' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_simple_pptx_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'https://www.suu.edu/webservices/styleguide/example-files/example.pptx' test_file1 = os.path.join(tmp_user_path, 'sample.pptx') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("Example") assert len(docs) == 1 assert 'Powerpoint' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_epub_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'https://contentserver.adobe.com/store/books/GeographyofBliss_oneChapter.epub' test_file1 = os.path.join(tmp_user_path, 'sample.epub') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("Grump") assert len(docs) == 4 assert 'happy' in docs[0].page_content or 'happiness' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.skip(reason="Not supported, GPL3, and msg-extractor code fails too often") @pytest.mark.xfail(strict=False, reason="fails with AttributeError: 'Message' object has no attribute '_MSGFile__stringEncoding'. Did you mean: '_MSGFile__overrideEncoding'? even though can use online converter to .eml fine.") @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_msg_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: url = 'http://file.fyicenter.com/b/sample.msg' test_file1 = os.path.join(tmp_user_path, 'sample.msg') download_simple(url, dest=test_file1) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type) assert db is not None docs = db.similarity_search("Grump") assert len(docs) == 4 assert 'Happy' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_png_add(db_type): return run_png_add(captions_model=None, caption_gpu=False, db_type=db_type) @pytest.mark.skipif(not have_gpus, reason="requires GPUs to run") @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_png_add_gpu(db_type): return run_png_add(captions_model=None, caption_gpu=True, db_type=db_type) @pytest.mark.skipif(not have_gpus, reason="requires GPUs to run") @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_png_add_gpu_preload(db_type): return run_png_add(captions_model=None, caption_gpu=True, pre_load_caption_model=True, db_type=db_type) @pytest.mark.skipif(not (have_gpus and mem_gpus[0] > 20 * 1024 ** 3), reason="requires GPUs and enough memory to run") @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_png_add_gpu_blip2(db_type): return run_png_add(captions_model='Salesforce/blip2-flan-t5-xl', caption_gpu=True, db_type=db_type) def run_png_add(captions_model=None, caption_gpu=False, pre_load_caption_model=False, db_type='chroma'): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: test_file1 = 'data/pexels-evg-kowalievska-1170986_small.jpg' if not os.path.isfile(test_file1): # see if ran from tests directory test_file1 = '../data/pexels-evg-kowalievska-1170986_small.jpg' assert os.path.isfile(test_file1) test_file1 = os.path.abspath(test_file1) shutil.copy(test_file1, tmp_user_path) test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1)) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, enable_ocr=False, caption_gpu=caption_gpu, pre_load_caption_model=pre_load_caption_model, captions_model=captions_model, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("cat") assert len(docs) == 1 assert 'a cat sitting on a window' in docs[0].page_content assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) @pytest.mark.parametrize("db_type", db_types) @wrap_test_forked def test_simple_rtf_add(db_type): from src.make_db import make_db_main with tempfile.TemporaryDirectory() as tmp_persistent_directory: with tempfile.TemporaryDirectory() as tmp_user_path: rtf_content = """ {\rtf1\mac\deff2 {\fonttbl{\f0\fswiss Chicago;}{\f2\froman New York;}{\f3\fswiss Geneva;}{\f4\fmodern Monaco;}{\f11\fnil Cairo;}{\f13\fnil Zapf Dingbats;}{\f16\fnil Palatino;}{\f18\fnil Zapf Chancery;}{\f20\froman Times;}{\f21\fswiss Helvetica;} {\f22\fmodern Courier;}{\f23\ftech Symbol;}{\f24\fnil Mobile;}{\f100\fnil FoxFont;}{\f107\fnil MathMeteor;}{\f164\fnil Futura;}{\f1024\fnil American Heritage;}{\f2001\fnil Arial;}{\f2005\fnil Courier New;}{\f2010\fnil Times New Roman;} {\f2011\fnil Wingdings;}{\f2515\fnil MT Extra;}{\f3409\fnil FoxPrint;}{\f11132\fnil InsigniaLQmono;}{\f11133\fnil InsigniaLQprop;}{\f14974\fnil LB Helvetica Black;}{\f14976\fnil L Helvetica Light;}}{\colortbl\red0\green0\blue0;\red0\green0\blue255; \red0\green255\blue255;\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;\red255\green255\blue0;\red255\green255\blue255;}{\stylesheet{\f4\fs18 \sbasedon222\snext0 Normal;}}{\info{\title samplepostscript.msw}{\author Computer Science Department}}\widowctrl\ftnbj \sectd \sbknone\linemod0\linex0\cols1\endnhere \pard\plain \qc \f4\fs18 {\plain \b\f21 Sample Rich Text Format Document\par }\pard {\plain \f20 \par }\pard \ri-80\sl-720\keep\keepn\absw570 {\caps\f20\fs92\dn6 T}{\plain \f20 \par }\pard \qj {\plain \f20 his is a sample rich text format (RTF), document. This document was created using Microsoft Word and then printing the document to a RTF file. It illustrates the very basic text formatting effects that can be achieved using RTF. \par \par }\pard \qj\li1440\ri1440\box\brdrs \shading1000 {\plain \f20 RTF }{\plain \b\f20 contains codes for producing advanced editing effects. Such as this indented, boxed, grayed background, entirely boldfaced paragraph.\par }\pard \qj {\plain \f20 \par Microsoft Word developed RTF for document transportability and gives a user access to the complete set of the effects that can be achieved using RTF. \par }} """ test_file1 = os.path.join(tmp_user_path, 'test.rtf') with open(test_file1, "wt") as f: f.write(rtf_content) db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path, fail_any_exception=True, db_type=db_type, add_if_exists=False) assert db is not None docs = db.similarity_search("How was this document created?") assert len(docs) == 4 assert 'Microsoft' in docs[1].page_content assert os.path.normpath(docs[1].metadata['source']) == os.path.normpath(test_file1) if __name__ == '__main__': pass