from dataclasses import dataclass @dataclass class VLMConfig: vit_hidden_dim: int = 768 vit_inter_dim: int = 4 * vit_hidden_dim vit_patch_size: int = 16 vit_img_size: int = 224 vit_n_heads: int = 12 vit_dropout: float = 0.0 vit_n_blocks: int = 12 vit_ln_eps: float = 1e-6 vit_cls_flag: bool = False vit_model_type: str = 'google/siglip-base-patch16-224' lm_hidden_dim: int = 576 lm_inter_dim: int = 1536 lm_rms_eps: float = 1e-5 lm_re_base: int = 100000 lm_max_position_embeddings: int = 8192 lm_vocab_size: int = 49152 lm_n_heads: int = 9 lm_n_kv_heads: int = 3 lm_dropout: float = 0.0 lm_n_blocks: int = 30 lm_attn_scaling: float = 1.0 lm_max_length: int = 128 - 49 # Deduct the image token length to achieve a 'nice number' lm_use_tokens: bool = False # Decide if the LM expects tokens or embeddings as input (if using as a backbone for the VLM, set to False) lm_tie_weights: bool = True # Decide if you want to tie the LM Head weight to the token embedding weights lm_model_type: str = 'HuggingFaceTB/SmolLM2-135M' lm_tokenizer: str = 'HuggingFaceTB/cosmo2-tokenizer' lm_eos_token_id: int = 0 mp_pixel_shuffle_factor: int = 2 vlm_load_backbone_weights: bool = True vlm_checkpoint_path: str = 'checkpoints/nanoVLM-222M' @dataclass class TrainConfig: lr_mp: float = 2e-3 lr_backbones: float = 1e-4 data_cutoff_idx: int = None val_ratio: float = 0.01 batch_size: int = 256 mmstar_batch_size: int = 32 eval_in_epochs: bool = True epochs: int = 5 compile: bool = True resume_from_vlm_checkpoint: bool = False # Indicate if the training should be resumed from a checkpoint of the whole VLM or you want to start from scratch train_dataset_path: str = 'HuggingFaceM4/the_cauldron' train_dataset_name: tuple[str, ...] = ("ai2d", "aokvqa", "chart2text", "chartqa", "clevr", "cocoqa", "datikz", "diagram_image_to_text", "docvqa", "dvqa", "figureqa", "finqa", "geomverse", "hateful_memes", "hitab", "iam", "iconqa", "infographic_vqa", "intergps", "localized_narratives", "mapqa", "multihiertt", "ocrvqa", "plotqa", "raven", "rendered_text", "robut_sqa", "robut_wikisql", "robut_wtq", "scienceqa", "screen2words", "st_vqa", "tabmwp", "tallyqa", "tat_qa", "textcaps", "textvqa", "tqa", "vistext", "visual7w", "visualmrc", "vqarad", "vqav2", "vsr", "websight") # "clevr_math", "okvqa", "spot_the_diff", "nlvr2", "mimic_cgd", test_dataset_path: str = "Lin-Chen/MMStar" wandb_entity: str = "HuggingFace" # Indicate the entity to log to in wandb log_wandb: bool = True