name: llama model: pretrained_model_name_or_path: "mistralai/Mistral-7B-v0.1" cache_dir: "/scr-ssd/mzhang/models/mistral-7b-v0.1" # Set this to where you want to save checkpoint weights return_dict: true load_in_8bit: false load_in_4bit: false device_map: auto low_cpu_mem_usage: true torch_dtype: bfloat16 attn_implementation: flash_attention_2 # eager # so we can load attention weights rope_theta: 10000.0 attention: attention_type: lolcats_llama feature_map: relu feature_map_kwargs: eps: 1e-12 # mlp: null # to set fullspace: true layer_idx: null # to set learned_kernel: untied_head_einsum learned_kernel_kwargs: feature_dim: 128 skip_connection: false bias: true zero_init: false tie_qk_kernels: false train_qk: false