from fastai.vision.all import * import gradio as gr __all__ = ['is_rock', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] def is_rock(x): return x[0].issuper() import torch import pathlib plt = platform.system() if plt == 'Windows': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('RPS_model.pkl') categories = ('paper', 'rock', 'scissors') def classify_images(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['rock.jpg', 'paper.jpg', 'scissor.jpg'] intf = gr.Interface(fn = classify_images, inputs = image, outputs = label, examples = examples) intf.launch(inline=False)